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Riemannian geometry on the diffeomorphism
group of the circle

Jonatan Lenells

Abstract. The topological group Dk(S) of diffeomorphisms of the unit circle S of Sobolev

class Hk, for k large enough, is a Banach manifold modeled on the Hilbert space Hk(S). In this

paper we show that the H1 right-invariant metric obtained by right-translation of the H1 inner

product on TidDk(S)�Hk(S) defines a smooth Riemannian metric on Dk(S), and we explicitly

construct a compatible smooth affine connection. Once this framework has been established results

from the general theory of affine connections on Banach manifolds can be applied to study the

exponential map, geodesic flow, parallel translation, curvature etc. The diffeomorphism group of

the circle provides the natural geometric setting for the Camassa–Holm equation – a nonlinear

wave equation that has attracted much attention in recent years – and in this context it has been

remarked in various papers how to construct a smooth Riemannian structure compatible with

the H1 right-invariant metric. We give a self-contained presentation that can serve as a detailed

mathematical foundation for the future study of geometric aspects of the Camassa–Holm equation.

1. Introduction

Just like the motion of a rigid body rotating around its centre of mass may
be viewed as a path in the configuration space SO(3) of rotations of R

3, the mo-
tion of a system in continuum mechanics can be described by a path t �!ϕ(t, · ) in
the infinite-dimensional group D(M) of diffeomorphisms of the ambient space M;
a state of the system at a certain time t is fully characterized by the position ϕ(t, x)
of each particle x∈M at the time t. To describe the motion in the configuration
space one often utilizes the inherent property of nature that physical systems tend
to evolve along paths of minimal length. Mathematically, the notion of distance
on the configuration space is modeled by a Riemannian metric and the shortest
paths are geodesics of an associated affine connection. In the case of a rigid body
rotating around a fixed point, uniformity of space yields a symmetry which is cap-
tured mathematically by left-invariance of the metric on the Lie group SO(3). In
the case of an incompressible fluid moving in a bounded smooth domain M⊂R

n,
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n=2, 3, the configuration space is the group Dµ(M) of volume-preserving diffeo-
morphisms of M, and as was first noticed by Arnold [1] and subsequently put on
a rigorous mathematical foundation by Ebin and Marsden [14], endowing Dµ(M)
with the L2 right-invariant metric, the geodesics turn out to model the motion of
a perfect, i.e. non-viscous, homogeneous, and incompressible, fluid. Although the
left-invariance of the metric on SO(3) had to be replaced by a right-invariant metric
on Dµ(M), this observation unveiled an important similarity between the motion
of a rotating rigid body and the motion of an incompressible fluid: they could both
be described as so-called Euler equations for the geodesic flow with respect to an
invariant metric. In the case of SO(3) the Euler equations for the geodesic flow
are the classical Euler equations for the motion of a rigid body rotating around
its centre of mass (cf. [23]), and in the case of Dµ(M) they are the classical Euler
equations for a perfect fluid.

Since then many other well-known nonlinear wave equations have been found
to arise as Euler equations for the geodesic flow on diffeomorphism groups endowed
with various invariant metrics. For example, the Euler equation describing the
geodesics on the Virasoro group (a one-dimensional extension of the diffeomorphism
group of the circle) equipped with the L2 right-invariant metric, is the well-known
Korteweg–de Vries equation [27]. On the other hand, the L2 right-invariant met-
ric on the diffeomorphism group of the circle gives rise to Burger’s equation [2]
(one of the most fundamental nonlinear partial differential equation), while the H1

right-invariant metric yields the Camassa–Holm equation [3] – a nonlinear wave
equation that has attracted much attention in recent years. Choosing a natural
right-invariant metric on the quotient space of the group of diffeomorphisms of the
unit circle S modulo the subgroup of rotations of S, one obtains the Hunter–Saxton
equation [17] (an equation modeling propagation of orientation waves in liquid crys-
tal director fields) as the fundamental equation describing the geodesic flow.

When generalizing the theory for SO(3) to a diffeomorphism group D(M) one
is faced with the following choice. One may choose to let the group D(M) consist
of the smooth diffeomorphisms of M or, for k a sufficiently large positive inte-
ger, let D(M)=Dk(M) incorporate all diffeomorphisms of Sobolev class Hk (or of
class Ck). D(M) is a Lie group and a Fréchet manifold, whereas Dk(M) is a Banach
manifold and a topological group, but not a Lie group (the group operation (ψ, ϕ) �!
ψ�ϕ for ψ, ϕ∈Dk(M) is continuous but not smooth due to derivative-loss, cf. [15]).

The obvious advantage of working on D(M) rather than on Dk(M) is that
composition is smooth, so that the usual operations from Lie group theory can be
performed: by means of right invariance many computations can be located to the
Lie algebra, there exists a well-defined Lie bracket, there are adjoint and coadjoint
representations etc. Moreover, in some instances it is easier to establish smoothness
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of objects. For example, a right-invariant metric obtained by right-translation of an
inner product at the identity is automatically smooth thanks to the smooth group
operation.

On the other hand, the theory for manifolds modeled on a Fréchet space is
very restricted. Whereas nearly all results familiar from finite-dimensional Rieman-
nian geometry immediately generalize to Banach manifolds (see [21]), a transition
to Fréchet manifolds introduces several technical complications. As there are no
general existence and uniqueness results for differential equations in Fréchet spaces,
it is intricate to study geodesic flow and parallel translation. Moreover, the inverse
mapping theorem does not hold in Fréchet spaces, and its generalization, the Nash–
Moser theorem, requires additional technical hypotheses to apply (see [15]). Hence,
for Riemannian Fréchet manifolds neither the Lie group exponential map, nor the
Riemannian exponential map, is necessarily a local diffeomorphism at the identity.
Another advantage of working with the wider class Dk(M) is that when studying
partial differential equations it is often preferable to work in Sobolev spaces rather
than in the category of C∞-maps.

In the present paper we are concerned with the construction of a Riemannian
structure on Dk(S) compatible with the H1 right-invariant metric. We show that
the H1 right-invariant metric is smooth on Dk(S) and provide a smooth affine
connection compatible with it. Once this has been established several implications
from the general theory of affine connections on Banach manifolds are stated. For
example, we obtain local formulas for a smooth curvature tensor, existence of normal
neighborhoods, existence and uniqueness results for the geodesic flow and parallel
translation, locally length-minimizing properties of the geodesics etc. Moreover, in
the last section, the affine connection on Dk(S) is extended to D(S), relating our
results to those of [10], and also adding to the picture of Riemannian geometry on
D(S) in the case of the H1 right-invariant metric by providing the affine connection
associated to the covariant derivative which in [10] was obtained by a Lie group
approach.

In [10] it was believed that the Riemannian structure on Dk(S) was deficient
due to derivative-loss. Indeed, there is an apparent loss of regularity when one, in
analogy to the case of a Lie group, studies the affine connection as an object on the
tangent space at the identity TidDk(S) by means of right-translation. However, the
loss of smoothness turns out to be introduced by the transition to TidDk(S) rather
than being inherent to the Riemannian structure. In fact, working directly on the
manifold Dk(S) we will give a detailed proof that it carries a perfectly well-defined
affine connection compatible with the H1 right-invariant metric.

It was already remarked in [20] that the spray associated to the H1 right-
invariant metric on Dk(S) is smooth, referring to [28] and [16] where the existence
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of a smooth spray associated to the H1 right-invariant metric on Dk(S) follows as
a special case of a more general multi-dimensional theory. We believe it is of interest
to give a self-contained direct proof of this fact and draw conclusions from it.

The Euler equation corresponding to the H1 right-invariant metric on the dif-
feomorphism group of the circle is the Camassa–Holm equation as was first observed
by Misio�lek [25], and later studied by Kouranbaeva [20] (in the case of Dk(S)) and
Constantin–Kolev [10] and [11] (in the case of D(S)). Our hope is that the detailed
exposition of the Riemannian structure on Dk(S) presented in this paper will prove
useful for the future study of qualitative aspects of the Camassa–Holm equation.
Notice that in [6] (see also [8] and [24]) the geometric aspect of the Camassa–Holm
equation is used to find sharp blow-up results, as well as to prove global existence
of solutions.

More generally, we could, for j with 1≤j≤k, consider the Hj right-invariant
metric on Dk(S). However, since the H1 right-invariant metric is the only one
that gives rise to a bi-Hamiltonian Euler equation [12], we choose for the sake of
simplicity to restrict ourselves to the H1 case. For the H1 right-invariant metric
the corresponding Euler equation is in fact not just bi-Hamiltonian, but is also
a completely integrable infinite-dimensional Hamiltonian system (cf. [5] and [13]).
Note that for the L2 right-invariant metric there is no compatible smooth affine
connection on Dk(S) (see [10] and [11]).

The manifold structure of the diffeomorphism group Dk(S) is described in
Section 2. In Section 3 we define a Christoffel map Γ and we show that it is
a smooth map Dk(S)!L2

sym(Hk(S);Hk(S)). In Section 4 it is proved that the H1

right-invariant metric 〈 · , · 〉 defines a weak Riemannian metric on Dk(S), that is, we
show that it is a smooth section of the bundle L2

sym(TDk(S); R). We then prove, in
Section 5, that the affine connection defined by Γ is compatible with the H1 right-
invariant metric in the sense that the covariant derivative induced by Γ is the unique
Riemannian covariant derivative compatible with 〈 · , · 〉. In Section 6 the general
theory of affine connections in Banach manifolds is adopted to obtain several results
for Dk(S). This is taken further in Section 7, where we establish length-minimizing
properties of the geodesics on Dk(S). In the last section we extend the definition of
the affine connection to the Fréchet Lie group D(S) and relate it to the covariant
derivative defined on D(S) in [10]. Finally, the appendix contains some remarks on
differential calculus in Banach spaces.

2. The diffeomorphism group

Let S be the circle of length one and let Dx denote differentiation with respect
to x. For X=[0, 1] or X=S we define, for n≥0, Hn(X) as the Sobolev space of all
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square integrable functions f∈L2(X) with distributional derivatives Di
xf∈L2(X)

for i=1, ..., n. These Hilbert spaces are endowed with the inner products

〈f, g〉Hn(X) =
n∑

i=0

∫

S

(Di
xf)(x) (Di

xg)(x) dx.

By restriction of a periodic function to the unit interval, we may view Hn(S) as
a closed linear subspace of Hn[0, 1].

Let k≥4 be an integer and let Dk(S) denote the Banach manifold of orientation
preserving diffeomorphisms of S of class Hk (cf. [26]). [In view of the Sobolev
imbedding Hs(S)⊂C1(S) valid for s> 3

2 , it is to be expected that k> 3
2 would be

a sufficient assumption. Indeed, k> 3
2 is the required assumption in order for Dk(S)

to be a topological group [14]. However, for simplicity we will state the results in this
paper only for k≥4, so that all derivatives exist in a classical sense. Observe that
since the interesting peaked solutions of the Camassa–Holm equation [3] (cf. [13]
and [22] for the periodic case), belong to H3/2−ε(S) for any ε>0, but not to H3/2(S),
they can at any rate not be rigorously studied by means of the present approach.]

We next describe how to construct canonical charts on TDk(S). Put Mk=
{ϕ∈Dk(S):ϕ(0)=0}. Then the map

ϕ �−! (ϕ(0), ϕ( · )−ϕ(0)) : Dk(S)−! S×Mk,(2.1)

is a diffeomorphism. Note that Mk can be characterized as

Mk = {ϕ∈Hk[0, 1] :ϕx ∈Hk−1(S), ϕx> 0, ϕ(0) = 0 and ϕ(1) = 1},
or equivalently

Mk = {ϕ+id :ϕ∈Hk(S), ϕx>−1 and ϕ(0) = 0},(2.2)

where id∈Dk(S) is the identity map id(x)=x for x∈S. If ϕ∈Mk then ϕx∈Hk−1(S)
implies that (ϕ−1)x=1/(ϕx�ϕ−1)∈Hk−1(S). Hence ϕ−1∈Mk. This proves that the
inverse of any element ϕ∈Dk(S) also belongs to Dk(S).

Let Ek⊂Hk(S) be the closed linear subspace

Ek = {f ∈Hk(S) : f(0) = 0}
with topology induced from Hk(S). The representation (2.2) shows that Mk is
an open subset of the closed hyperplane id +Ek⊂Hk[0, 1]. Thus for any open
interval U⊂S of length strictly less than one, the map (2.1) provides a chart
on Dk(S) with values in U×Mk. Moreover, we have an identification of Hk(S)
with R×Ek given by u∈Hk(S) �!(u(0), u( · )−u(0))∈R×Ek. Hence, T (S×Mk)�
(S×Mk)×(R×Ek)�(S×Mk)×Hk(S), so that (U×Mk)×Hk(S) provides a bundle
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chart for TDk(S). In fact we have shown that TDk(S)�Dk(S)×Hk(S). When
working with objects in TDk(S) it will be convenient to use this representation. For
example, we think of a vector field X : Dk(S)!TDk(S) as a map Dk(S)!Hk(S);
the evaluation of X at ϕ∈Dk(S) is viewed as a map S!TS covering ϕ with value
(X(ϕ))(x)∈R�Tϕ(x)S at the point ϕ(x) for x∈S.

In the sequel, the representation TDk(S)�Dk(S)×Hk(S) will be used without
further mention. If we explicitly want to point out that this representation is used,
we will say that we work locally on Dk(S) (even though one strictly has to restrict
Dk(S)×Hk(S) to (U×Mk)×Hk(S) for it to be a chart). Observe that there are
many different charts on TDk(S), but we choose to always use the ones constructed
here.

Although Dk(S) is a smooth Banach manifold it is not a Lie group. Indeed,
the group operation (ψ, ϕ) �!ψ�ϕ : Dk(S)×Dk(S)!Dk(S) is continuous but not C1;
right multiplicationRϕ : ψ �!ψ�ϕ is smooth whereas left multiplication Lψ : ϕ �!ψ�ϕ
is continuous but not C1 due to derivative-loss (see [15]).

3. A smooth Christoffel map

Let k≥4 be an integer and let A=1−D2
x. A Fourier series argument shows

that A is an isomorphism Hj(S)!Hj−2(S) for any integer j (see [18]). We define
a symmetric bilinear map Γ on TidDk(S)�Hk(S) by

Γid(u, v) =−A−1
(
uv+ 1

2uxvx
)
x
, u, v ∈Hk(S),(3.1)

and extend it to a bilinear map Γϕ : TϕDk(S)×TϕDk(S)!TϕDk(S) for any ϕ∈Dk(S)
by right invariance, i.e.

Γϕ(TidRϕ(u), TidRϕ(v)) =TidRϕ(Γid(u, v)).(3.2)

Being a linear map, the derivative of Rϕ is TRϕ(V )=V �ϕ. Locally, for U, V ∈
TϕDk(S)�Hk(S), we get

Γϕ(U, V ) =−(
A−1

(
(U �ϕ−1)(V �ϕ−1)+ 1

2 (U �ϕ−1)x(V �ϕ−1)x
)
x

)
�ϕ.

As composition is not smooth on Dk(S) it is not clear whether Γ possesses any
smoothness properties. The main result of this section is that ϕ �!Γϕ is a smooth
mapping Dk(S)!L2

sym(Hk(S);Hk(S)), where L2
sym(Hk(S);Hk(S)) denotes the Ba-

nach space of symmetric continuous bilinear maps Hk(S)!Hk(S).

Remark 3.1. The motivation for the definition of Γ comes in Section 5 where
we will see that Γ defines a Riemannian connection on Dk(S) compatible with the



Riemannian geometry on the diffeomorphism group of the circle 303

H1 right-invariant metric. Indeed, the map Γ corresponds to the Christoffel symbols
Γijk well-known from finite-dimensional Riemannian geometry. When working on
a Banach manifold M the Christoffel symbols are replaced by a family of locally
defined symmetric bilinear maps Γm : E×E!E; one for each chart U×E on TM
(cf. [21]). The reason we can view our map Γ as a globally defined object on Dk(S)
is due to the implicit identification TDk(S)�Dk(S)×Hk(S) described in Section 2.

To prove that Γ is smooth we need a couple of lemmas.

Lemma 3.2. Let, for an integer j with 0≤j≤k and smooth functions
f0, ..., fj : S!R,

P =
j∑

i=0

fi(x)Di
x

be a linear differential operator. Then the map

(ϕ,U) �−! (P(U �ϕ−1)) �ϕ : Dk(S)×Hk(S)−!Hk−j(S)(3.3)

is smooth.

Proof. By linearity it is enough to check that

(ϕ,U) �−! f �ϕ·(Dj
x(U �ϕ−1)) �ϕ : Dk(S)×Hk(S)−!Hk−j(S)

is smooth for a smooth function f and j≥0 with j≤k. Since f is smooth the left
composition operator Lf : ϕ �!f �ϕ is smooth Dk(S)!Hk(S). Indeed,

DLf(ϕ)V = fx �ϕ·V,
and a similar formula clearly holds for DiLf for any i≥0. On the other hand,

(ϕ,U) �−! (ϕ, (Dj
x(U �ϕ−1)) �ϕ) : Dk(S)×Hk(S)−!Dk(S)×Hk−j(S)

is the composition of j maps of the form

(ϕ,U) �−! (ϕ, ((U �ϕ−1)x) �ϕ) : Dk(S)×Hk−i(S)−!Dk(S)×Hk−i−1(S)(3.4)

for 0≤i≤j−1. But

((U �ϕ−1)x) �ϕ=
Ux
ϕx
.

Since Dx is a continuous linear operator Hk−i(S)!Hk−i−1(S) and

ϕ �−! 1/ϕx : Dk(S)−!Hk−1(S)

is a smooth map, we conclude that (3.4) is a smooth map for any i with 0≤i≤j−1.
This proves the lemma. �
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For two operators A and B we denote by [A,B] the commutator AB−BA.

Lemma 3.3. Let A=1−D2
x. The map

Q1 : (u, v) �−! [v,A−1]u= vA−1u−A−1(vu)

is a continuous bilinear map Hk−3(S)×Hk(S)!Hk(S), and

Q2 : (u, v, w) �−! [w, [v,A−1]]u

is a continuous trilinear map Hk−4(S)×Hk(S)×Hk(S)!Hk(S).

Proof. We give a direct proof without Fourier analysis. If we can show that
the composition A�Q1 is a continuous map Hk−3(S)×Hk(S)!Hk−2(S) the result
will follow since A is an isomorphism Hk(S)!Hk−2(S). We compute

A([v,A−1]u) =A(vA−1u)−vu= vA−1u−vxxA−1u−2vxA−1ux−vA−1uxx−vu.
Using that vA−1u−vA−1uxx=vu, we get

A([v,A−1]u) =−vxxA−1u−2vxA−1ux.(3.5)

From this expression it follows that A�Q1 is indeed continuous Hk−3(S)×Hk(S)
!Hk−2(S).

Similarly, for (u, v, w)∈Hk−4(S)×Hk(S)×Hk(S), we consider

A(Q2(u, v, w)) =A([w, [v,A−1]]u) =A(w[v,A−1]u−[v,A−1](wu)).(3.6)

Using the identity Aw=wA−[w,A] together with formula (3.5) and the fact that
[w,A]u=2wxux+wxxu, we simplify the first term on the right-hand side as

A(w[v,A−1]u) =wA[v,A−1]u−[w,A]([v,A−1]u)

=−wvxxA−1u−2wvxA−1ux−2wx([v,A−1]u)x−wxx[v,A−1]u.

On the other hand, employing (3.5) and the identity A−1w=wA−1−[w,A−1], the
second term on the right-hand side of (3.6) becomes

−A([v,A−1](wu)) = vxxA
−1(wu)+2vxA−1(wux)+2vxA−1(wxu)

= vxxA
−1(wu)+2wvxA−1ux−2vx[w,A−1](ux)+2vxA−1(wxu).

Thus

A(Q2(u, v, w)) =−wvxxA−1u−2wx([v,A−1]u)x−wxx[v,A−1]u

+vxxA−1(wu)−2vx[w,A−1](ux)+2vxA−1(wxu).

By the result for Q1 this is a continuous map of (u, v, w)∈Hk−4(S)×Hk(S)×Hk(S)
into Hk−2(S). Again since A : Hk(S)!Hk−2(S) is an isomorphism, this proves the
statement for Q2. �
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Now we are in a position to establish smoothness of Γ. In the proof of The-
orem 3.4 the identity

d

dε

∣∣∣∣
ε=0

U � (ϕ+εV )−1 =−(U �ϕ−1)xV �ϕ−1, ϕ∈Dk(S), U, V ∈Hk(S),(3.7)

will be used repeatedly. It is a consequence of

d

dε

∣∣∣∣
ε=0

(ϕ+εV )−1 =− V �ϕ−1

ϕx �ϕ−1
,

and

Ux �ϕ
−1

ϕx �ϕ−1
= (U �ϕ−1)x,

where the first formula follows by differentiating the identity, true for all small
enough ε,

(ϕ+εV ) � (ϕ+εV )−1 = id,

with respect to ε.

Theorem 3.4. The map

ϕ �−!Γϕ : Dk(S)−!L2
sym(Hk(S);Hk(S))

is smooth, where Γ is defined by (3.1)–(3.2).

Proof. By the remarks following Proposition A.3 in the appendix, it is enough
to show that the map

(ϕ,U, V ) �−!Γϕ(U, V ) : Dk(S)×Hk(S)×Hk(S)−!Hk(S)(3.8)

is smooth. Recall that

Γϕ(U, V ) =−(
A−1

(
U �ϕ−1 ·V �ϕ−1+ 1

2 (U �ϕ−1)x(V �ϕ−1)x
)
x

)
�ϕ.

Hence the map

(ϕ,U, V ) �−! (ϕ,−Γϕ(u, v)) : Dk(S)×Hk(S)×Hk(S)−!Dk(S)×Hk(S)

is the composition of the three maps

(ϕ,U, V ) �−! (
ϕ,UV + 1

2

(
(U �ϕ−1)x(V �ϕ−1)x

)
�ϕ

)
:(3.9)

Dk(S)×Hk(S)×Hk(S)−!Dk(S)×Hk−1(S),

(ϕ,U) �−! (ϕ, ((U �ϕ−1)x) �ϕ) : Dk(S)×Hk−1(S)−!Dk(S)×Hk−2(S),(3.10)
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and

P : (ϕ,U) �−! (ϕ, (A−1(U �ϕ−1)) �ϕ) : Dk(S)×Hk−2(S)−!Dk(S)×Hk(S).(3.11)

We will show that they are all smooth maps.
Smoothness of the maps (3.9) and (3.10) follows from Lemma 3.2. As for the

third map P , note that its inverse is

(ϕ,U) �−! (ϕ, (A(U �ϕ−1)) �ϕ) : Dk(S)×Hk(S)−!Dk(S)×Hk−2(S),(3.12)

which is smooth by Lemma 3.2. Hence, if we can show that P=(P1, P2) is Gateaux-
C2, then Proposition A.2 implies that P is C1, and so smoothness will follow auto-
matically by Proposition A.4.

Since P1 is trivially smooth and P2 is linear in U , it is enough to prove that
D1P2 : Dk(S)×Hk−2(S)×Hk(S)!Hk(S) exists and is Gateaux-C1.

A computation, using linearity of A−1 together with (3.7), gives

D1P2(ϕ,U)V =−(A−1((U �ϕ−1)xV �ϕ−1)) �ϕ+V ·(A−1(U �ϕ−1)x) �ϕ,

that is,

D1P2(ϕ,U)V = ([V �ϕ−1, A−1](U �ϕ−1)x) �ϕ.(3.13)

Thus

D1P2(ϕ,U)V =Rϕ �Q1 � ((Dx �Rϕ−1)×Rϕ−1)(U, V ),

where Q1 is the continuous map Hk−3(S)×Hk(S)!Hk(S) from Lemma 3.3. Since
composition is continuous on Dk(S), we deduce that

D1P2 : Dk(S)×Hk−2(S)×Hk(S)−!Hk(S)

is continuous. Furthermore, differentiation of (3.13) gives, for

(ϕ,U, V,W )∈Dk(S)×Hk−2(S)×Hk(S)×Hk(S),

that

D2
1P2(ϕ,U)(V,W ) =−([(V �ϕ−1)xW �ϕ−1, A−1](U �ϕ−1)x) �ϕ

−([V �ϕ−1, A−1]((U �ϕ−1)xW �ϕ−1)x) �ϕ

+W ·([V �ϕ−1, A−1](U �ϕ−1)x)x �ϕ.
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It is straightforward to check that this can be written as

D2
1P2(ϕ,U)(V,W ) = (−[W �ϕ−1, A−1]((U �ϕ−1)x(V �ϕ−1)x)

−[V �ϕ−1, A−1]((U �ϕ−1)x(W �ϕ−1)x)

+[W �ϕ−1, [V �ϕ−1, A−1]](U �ϕ−1)xx) �ϕ,

so that employing Lemma 3.3 again, we see that D2
1P2 is continuous Dk(S)×

Hk−2(S)×Hk(S)×Hk(S)!Hk(S). This proves that D1P2 is Gateaux-C1 and com-
pletes the proof of the theorem. �

4. The H1 right-invariant metric

The H1 metric on Hk(S) defines a positive definite symmetric bilinear form
〈 · , · 〉id on TidDk(S)�Hk(S) by

〈u, v〉id =
∫

S

uAv dx=
∫

S

(uv+uxvx) dx, u, v ∈TidDk(S),

where, as before, A=1−D2
x and k≥4. We define a positive definite symmetric

bilinear form 〈 · , · 〉ϕ on each tangent space TϕDk(S) by right translation

〈TidRϕ(u), TidRϕ(v)〉ϕ = 〈u, v〉id.
Locally, for U, V ∈TϕDk(S)�Hk(S), we have

〈U, V 〉ϕ =
∫

S

U �ϕ−1A(V �ϕ−1) dx.

We call 〈 · , · 〉 the H1 right-invariant metric on Dk(S). Just like for the Christoffel
map Γ it is not a priori clear whether ϕ �!〈 · , · 〉ϕ is a smooth map since the group
operation ϕ �!ϕ−1 on Dk(S) is not smooth. The next result establishes that the H1

right-invariant metric on Dk(S) is indeed a Riemannian metric.

Theorem 4.1. The map

ϕ �−! 〈 · , · 〉ϕ : Dk(S)−!L2
sym(TϕDk(S); R)

is a smooth section of the bundle L2
sym(TDk(S); R).

Proof. Let g : Dk(S)!L2
sym(Hk(S); R) be the local representative for 〈 · , · 〉,

that is, for U, V ∈TϕDk(S)�Hk(S),

g(ϕ)(U, V ) =
∫

S

U �ϕ−1A(V �ϕ−1) dx.
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Let P (ϕ,U, V )=g(ϕ)(U, V ). By the remarks following Proposition A.3 in the ap-
pendix, it is enough to show that P is smooth Dk(S)×Hk(S)×Hk(S)!R.

For W∈Hk(S) we get

D1P (ϕ,U, V )W =
d

dε

∣∣∣∣
ε=0

∫

S

A(U � (ϕ+εW )−1)V � (ϕ+εW )−1 dx

=−
∫

S

A((U �ϕ−1)xW �ϕ−1)V �ϕ−1 dx

−
∫

S

A(U �ϕ−1)(V �ϕ−1)xW �ϕ−1 dx.

By symmetry we consider only the second integral. The substitution y=ϕ−1(x)
yields, as (V �ϕ−1)x(x) dx=Vx�ϕ−1(x)(ϕ−1)x(x) dx=Vx(y) dy,

∫

S

A(U �ϕ−1)(V �ϕ−1)xW �ϕ−1 dx=
∫

S

(A(U �ϕ−1)) �ϕ·VxW dy.

Since

(ϕ,U) �−! (A(U �ϕ−1)) �ϕ : Dk(S)×Hk(S)−!Hk−2(S)

is a smooth map by Lemma 3.2, we see that D1P is smooth Dk(S)×Hk(S)×Hk(S)×
Hk(S)!R. As P is continuous and linear in both U and V , P is smooth. �

5. Covariant derivative

We first make a general definition. Let M be a Banach manifold endowed with
a Riemannian metric 〈 · , · 〉 and let X(M) denote the space of smooth vector fields
on M. Recall that for X,Y ∈X(M) the Lie bracket [X,Y ] is defined locally by

[X,Y ](m) =DY (m)·X(m)−DX(m)·Y (m).

Definition 5.1. An R-bilinear operator (X,Y ) �!∇XY : X(M)×X(M)!X(M)
is a Riemannian covariant derivative if it satisfies

(1) X(m)=0 implies (∇XY )(m)=0 for m∈M and X,Y ∈X(M) (punctual de-
pendence on X),

(2) ∇XY −∇YX=[X,Y ] for X,Y ∈X(M) (torsion-free),
(3) ∇X(fY )=(LXf)Y +f∇XY for f∈C∞(M) and X,Y ∈X(M) (derivation

in Y ),
(4) LX〈Y, Z〉=〈∇XY, Z〉+〈Y,∇XZ〉 for X,Y, Z∈X(M) (compatible with the

metric).
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Remark 5.2. The R-linearity in X together with (1) shows that ∇ is C∞(M)-
linear in X , i.e. ∇fXY =f∇XY for a smooth function f : M!R. In finite di-
mensions punctual dependence on X and C∞(M)-linearity in X are equivalent
properties of ∇, but this is not true in the infinite-dimensional case (cf. [21]).

We define the operator ∇ : X(Dk(S))×X(Dk(S))!X(Dk(S)) locally by

(∇XY )(ϕ) =DY (ϕ)·X(ϕ)−Γϕ(Y (ϕ), X(ϕ)),(5.1)

where X,Y : U×Mk!Hk(S) are the local representatives of vector fields X,Y ∈
X(Dk(S)) (see Section 2 for a detailed description of a bundle chart of the form
(U×Mk)×Hk(S) on TDk(S)).

Theorem 5.3. The bilinear map ∇ defined by (5.1) is a Riemannian covariant
derivative on Dk(S) compatible with the H1 right-invariant metric.

Proof. Properties (1)–(3) are immediate from the local formula defining ∇. To
establish (4) we write locally, for vector fields X,Y, Z∈X(Dk(S)),

(LX〈Y, Z〉)(ϕ)

=
d

dε

∣∣∣∣
ε=0

∫

S

A(Y (ϕ+εX(ϕ)) � (ϕ+εX(ϕ))−1)Z(ϕ+εX(ϕ)) � (ϕ+εX(ϕ))−1 dx

=
∫

S

A((DY (ϕ)·X(ϕ)) �ϕ−1−(Y (ϕ) �ϕ−1)xX(ϕ) �ϕ−1)Z(ϕ) �ϕ−1 dx

+
∫

S

A((DZ(ϕ)·X(ϕ)) �ϕ−1−(Z(ϕ) �ϕ−1)xX(ϕ) �ϕ−1)Y (ϕ) �ϕ−1 dx,

where we used formula (3.7) to carry out the differentiation. With u=X(ϕ)�ϕ−1,
v=Y (ϕ)�ϕ−1, and w=Z(ϕ)�ϕ−1, we get

(LX〈Y, Z〉)(ϕ) =
∫

S

A((DY (ϕ)·X(ϕ)) �ϕ−1)w dx(5.2)

+
∫

S

A((DZ(ϕ)·X(ϕ)) �ϕ−1)v dx−
∫

S

A(vxu)w dx

−
∫

S

A(wxu)v dx.

On the other hand

〈∇XY, Z〉ϕ =
∫

S

(DY (ϕ)·X(ϕ)−Γϕ(Y (ϕ), X(ϕ))) �ϕ−1A(Z(ϕ) �ϕ−1) dx.

Since Γϕ(Y (ϕ), X(ϕ))=−(
A−1(vu+ 1

2vxux)x
)
�ϕ, we get

〈∇XY, Z〉ϕ =
∫

S

(DY (ϕ)·X(ϕ)) �ϕ−1A(w) dx+
∫ (

vu+ 1
2vxux

)
x
w dx.(5.3)
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Now it is easy to check that

−
∫

S

A(vxu)w dx−
∫

S

A(wxu)v dx=
∫ (

vu+ 1
2vxux

)
x
w dx+

∫ (
wu+ 1

2wxux
)
x
v dx

so by (5.2) and (5.3) we obtain

(LX〈Y, Z〉)(ϕ) = 〈∇XY, Z〉ϕ+〈Y,∇XZ〉ϕ.
This proves that ∇ also satisfies (4). �

In the finite-dimensional case, given a Riemannian metric 〈 · , · 〉 on a manifold
M there automatically exists a Riemannian covariant derivative ∇ compatible with
〈 · , · 〉. For vector fields X , Y and Z on M, ∇XY is defined as the unique vector
field such that

2〈∇XY, Z〉=−〈[Y,X ], Z〉−〈X, [Y, Z]〉−〈Y, [X,Z]〉(5.4)

+LX〈Y, Z〉+LY 〈Z,X〉−LZ〈X,Y 〉.
Indeed, the bracket 〈 · , · 〉 establishes an isomorphism TmM!T ∗

mM for eachm∈M,
so since the right-hand side is a continuous linear functional of Z(m), existence of
(∇XY )(m) follows immediately.

This approach does not apply to Dk(S) endowed with the H1 right-invariant
metric. The right-hand side of (5.4) is a continuous linear functional of Z(ϕ) for each
ϕ∈Dk(S). But the topology of TϕDk(S)�Hk(S) induced by the Hk inner product is
stronger than the topology defined by the H1 right-invariant metric 〈 · , · 〉ϕ – the H1

right-invariant metric is a weak Riemannian metric on Dk(S). Therefore there are
elements in T ∗

ϕDk(S) that can not be expressed as 〈V, · 〉ϕ for some V ∈TϕDk(S); the
spaces TϕDk(S) and T ∗

ϕDk(S) are in duality with respect to the Hk inner product;
not with respect to 〈 · , · 〉ϕ. The explicit formula for Γ gave us a way to circumvent
this difficulty.

On the contrary, even for weak Riemannian metrics uniqueness of the Rieman-
nian covariant derivative can be deduced from (5.4). For if ∇ satisfies (1)–(4) of
Definition 5.1, then writing down the property (4) for the cyclic permutations of
X,Y, Z∈X(M) we get

LX〈Y, Z〉= 〈∇XY, Z〉+〈Y,∇XZ〉,
LY 〈Z,X〉= 〈∇Y Z,X〉+〈Z,∇YX〉,
LZ〈X,Y 〉= 〈∇ZX,Y 〉+〈X,∇ZY 〉.

Adding the first two and subtracting the third of these relations, (5.4) drops out.
Since 〈 · , · 〉 is non-degenerate, (5.4) shows the uniqueness of ∇.
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6. Riemannian geometry on Dk(S)

Now that we proved that the map ϕ �!Γϕ defined in Section 3 is a smooth
Christoffel map (Theorem 3.4), all the usual constructions for affine connections on
Banach manifolds can be carried out without additional effort. In this section we
state some relevant results. The general theory for Banach manifolds that we here
apply to Dk(S) can be found in [21].

We also show that if t �!ϕ(t) is a C2-curve in Dk(S), then ϕ is a geodesic
if and only if u(t)=ϕt(t)�ϕ(t)−1 solves the Camassa–Holm equation, establishing
the relation between geodesics for the H1 right-invariant metric on Dk(S) and the
Camassa–Holm equation that was hinted at in the introduction.

Remark 6.1. One might argue that the fact that 〈 · , · 〉 is only a weak Rieman-
nian metric (see the discussion following Theorem 5.3) would prevent the general
results from Banach manifold theory from applying. However, the results presented
in this section depend only on the existence of an affine connection derived from
a family of smooth Christoffel maps – there is no metric involved. We showed in
Theorem 3.4 that Γ is a smooth global Christoffel map. Hence, as far as this section
is concerned, it is irrelevant whether Γ is compatible with any metric or not.

6.1. Affine connection

The horizontal subbundle Hor⊂TTDk(S) is defined locally by

Hor = {(ϕ,U, V,W )∈Dk(S)×Hk(S)×Hk(S)×Hk(S) :W = Γϕ(U, V )},
whereas the vertical subbundle Ver⊂TTDk(S) is given by Ver=kerTπ, where
π : TDk(S)!Dk(S) is the canonical projection. For each Uϕ∈TϕDk(S), HorUϕ

defines a complementary subspace of horizontal vectors to VerUϕ , that is,
HorUϕ ⊕VerUϕ =TUϕTDk(S), where HorUϕ and VerUϕ denote the fibers of Hor re-
spectively Ver over Uϕ. This defines an affine connection on Dk(S).

The horizontal lift horU V of a vector V ∈TϕDk(S) with respect to U∈TϕDk(S)
is the unique element in HorU such that its image under Tπ equals V . Locally,

horU V = (ϕ,U, V,Γϕ(U, V )), ϕ∈Dk(S), U, V ∈Hk(S).

6.2. Spray

The spray Z associated to Γ is the second order vector field Z : TDk(S)!
TTDk(S) defined by Z(U)=horU U . Locally,

Z(ϕ,U) = (ϕ,U, U,Γϕ(U,U)), ϕ∈Dk(S), U ∈Hk(S).
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6.3. Covariant derivative along a curve

Let J⊂R be an open interval and let ϕ : J!Dk(S) be a C1-curve. A lift of ϕ
to TDk(S) is a C1-map V : J!TDk(S) such that π�V =ϕ. Let Lift(ϕ) be the space
of lifts of ϕ.

Define the operator ∇ϕt : Lift(ϕ)!Lift(ϕ) by

∇ϕtV =Vt−Γϕ(V, ϕt), V ∈Lift(ϕ).(6.1)

The map ∇ϕt satisfies the derivation property

(∇ϕt(fV ))(t) = f ′(t)V (t)+f(t)(∇ϕtV )(t)

for a C1-function f : J!R. Moreover, by the chain rule, ∇ϕt is the unique linear
map Lift(ϕ)!Lift(ϕ) such that if X and Y are vector fields on Dk(S) with V (t)=
Y (ϕ(t)) for t∈J and ϕt(t0)=X(ϕ(t0)) for some t0∈J , then

(∇ϕtV )(t0) = (∇XY )(ϕ(t0)).

6.4. Parallel translation

Let J⊂R be an open interval and let ϕ : J!Dk(S) be a C2-curve. A lift
V : J!TDk(S) of ϕ is ϕ-parallel if Vt(t)∈TTDk(S) is horizontal for all t∈J . Locally,
V is ϕ-parallel if and only if

Vt = Γϕ(V, ϕt), t∈J,
which is equivalent to ∇ϕtV ≡0. Let Par(ϕ) denote the set of ϕ-parallel lifts of ϕ.
Applying the theory for Banach manifolds we get the following result, cf. [21].

Theorem 6.2. Let t0∈J . Given V0∈Tϕ(0)Dk(S), there exists a unique ϕ-
parallel lift t �!V (t;V0) : J!TDk(S) such that V (t0;V0)=V0. The map V0 �!V ( · ;V0)
is a linear isomorphism Tϕ(t0)Dk(S)!Par(ϕ).

Moreover, for each t∈J , the map Pt : Tϕ(t0)Dk(S)!Tϕ(t)Dk(S) defined by Pt(V0)=
V (t;V0) is a linear isomorphism.

Hence, the map Pt gives a well-defined parallel translation along any C2-curve in
Dk(S).

Define two continuous maps u, v : J!TidDk(S)�Hk(S) by

u(t) =Tϕ(t)Rϕ(t)−1(ϕt(t)) =ϕt(t) �ϕ(t)−1,

and

v(t) =Tϕ(t)Rϕ(t)−1(V (t)) =V (t) �ϕ(t)−1.
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We can express the equation defining parallel translation as an equation in u and v.
Note that u and v are not C1-maps as

ut =ϕtt �ϕ
−1+

ϕtx �ϕ
−1

ϕx �ϕ−1

is in general an element in Hk−1(S) but not in Hk(S). Nevertheless, we see that

u, v ∈C(J ;Hk(S))∩C1(J ;Hk−1(S)).

Theorem 6.3. Let ϕ : J!Dk(S) be a C2-curve and V : J!TDk(S) be a lift
of ϕ. Define u, v : J!Hk(S) by

v(t) =V (t) �ϕ(t)−1 and u(t) =ϕt(t) �ϕ(t)−1,

so that u, v∈C(J ;Hk(S))∩C1(J ;Hk−1(S)). Then V is ϕ-parallel if and only if u
and v satisfy the equation

vt+vxu= Γid(v, u) in Hk−1(S).(6.2)

Proof. First note that

vxu= (V �ϕ−1)xϕt �ϕ−1 =
Vx �ϕ

−1

ϕx �ϕ−1
ϕt �ϕ

−1 =−Vx �ϕ−1 ·(ϕ−1)t.(6.3)

Suppose V is ϕ-parallel. Using (6.3) we compute in Hk−1(S),

vt =Vt �ϕ
−1+Vx �ϕ−1 ·(ϕ−1)t = Γϕ(V, ϕt) �ϕ−1−vxu= Γid(v, u)−vxu,

where we used the right invariance of Γ. Conversely, if (6.2) holds, then (6.3) yields

Vt �ϕ
−1 = vt−Vx �ϕ−1 ·(ϕ−1)t = Γid(v, u)−vxu−Vx �ϕ−1 ·(ϕ−1)t = Γϕ(V, ϕt) �ϕ−1,

showing that V is ϕ-parallel. �

6.5. Curvature

The curvature tensor R is the trilinear map X(Dk(S))×X(Dk(S))×X(Dk(S))!
X(Dk(S)) defined by

R(X,Y )Z =∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z.

R is tensorial and a long computation shows that locally, for U, V,W∈TϕDk(S)�
Hk(S), it holds that

R(U, V )W =D1Γ(ϕ,W,U)V −D1Γ(ϕ,W, V )U(6.4)

+Γ(ϕ,Γ(ϕ,W, V ), U)−Γ(ϕ,Γ(ϕ,W,U), V ),



314 Jonatan Lenells

where we write Γ(ϕ,U, V ) for Γϕ(U, V ). Since ϕ �!Γϕ is a smooth map Dk(S)!
L2

sym(Hk(S);Hk(S)), the local formula (6.4) for the curvature tensor R immediately
shows that R is a smooth section of the bundle L3(TDk(S);TDk(S)).

6.6. Geodesics

A C2-map ϕ : J!Dk(S) is a geodesic if ϕt is an integral curve of the spray Z.
This is equivalent to ∇ϕtϕt≡0 on J . Locally the geodesic equation is

ϕtt = Γϕ(ϕt, ϕt).

For a vector V0∈TDk(S) we let t �!V (t;V0) : J!TDk(S) be the integral curve of Z
with initial data V0 defined on some maximal interval J . Let D be the set of vectors
V0∈TDk(S) such that V ( · ;V0) is defined at least on the interval [0, 1]. We get the
following result for geodesics and the exponential map on Dk(S) (cf. [21]).

Theorem 6.4. The set D⊂TDk(S) is open and the map

V0 �−!V (1;V0) : D−!TDk(S)

is smooth. Also, the exponential map exp: D!Dk(S) defined by

exp(V0) = π(V (1;V0))

is smooth, and if expϕ denotes the restriction of exp to TϕDk(S), then the derivative
of expϕ at 0∈TϕDk(S) is the identity. By the inverse mapping theorem expϕ is
a diffeomorphism from a neighborhood of 0 in TϕDk(S) to a neighborhood of ϕ in
Dk(S).

Just like for parallel translation we can express the geodesic equation as an
equation for u=ϕt�ϕ−1. If Dk(S) were a Lie group, the equation for u would be
the Euler equation on the Lie algebra TidDk(S) for the H1 right-invariant metric.

Theorem 6.5. Let ϕ : J!Dk(S) be a C2-curve and define u : J!Hk(S) by
u(t)=ϕt(t)�ϕ(t)−1 so that u∈C(J ;Hk(S))∩C1(J ;Hk−1(S)). Then ϕ is a geodesic
if and only if u solves the Camassa–Holm equation

ut−utxx+3uux= 2uxuxx+uuxxx, t∈J, x∈S.(6.5)

Proof. The curve ϕ is a geodesic if and only if ϕt is ϕ-parallel. By Theorem 6.3
this holds if and only if

ut = Γid(u, u)−uux.
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By the definition (3.1) of Γ we rewrite this as

ut =−A−1
(
u2+ 1

2u
2
x

)
x
−uux.(6.6)

Finally, applying the isomorphism A=1−D2
x to both sides of (6.6) shows that (6.6)

and (6.5) are equivalent. �

Let us point out that some of these geodesics exist for all times whereas others
do not. Indeed, it is known (see [4] and [8]) that smooth initial data u0 for the
Camassa–Holm equation either develop into smooth global solutions, or singularities
in finite time can arise in the form of wave breaking (the solution u, representing the
waters free surface, remains bounded while its slope becomes unbounded in finite
time). In the first case, the geodesic ϕ : J!Dk(S) with ϕ(0)=id and ϕt(0)=u0

is defined for all times, while in the second case the geodesic flow breaks down at
the blow-up time (see [10]). For example, any geodesic starting at the identity in
a nonzero direction u0∈TidDk(S)�Hk(S) satisfying

∫
S
u0 dx=0 has a finite existence

time in view of the blow-up result presented in [7].

6.7. Normal neighborhoods

Let ϕ0∈Dk(S). Locally, arbitrarily small neighborhoods of a point (ϕ0, 0)∈
Dk(S)×Hk(S) are of the form U0×Bε(0), for some neighborhood U0 of ϕ0 in Dk(S)
and some ball Bε(0) of radius ε around 0∈Hk(S). The next result establishes the
existence of normal neighborhoods (V ,W) on Dk(S) (see [21]).

Theorem 6.6. Let ϕ0∈Dk(S). Given an open neighborhood V=U0×Bε(0) of
(ϕ0, 0) in TDk(S), there is an open neighborhood W⊂U0 of ϕ0 in Dk(S) such that
any two points ϕ, ψ∈W can be joined by a unique geodesic lying in U0, and such
that for each ϕ∈W the exponential expϕ maps the open set in TϕDk(S) represented
by (ϕ,Bε(0)) diffeomorphically onto an open set U(ϕ) containing W.

Note that the geodesic lies in U0 but not necessarily in W .
One also has the following smoothness result. Let t �!expϕ(tV0) : [0, 1]!Dk(S)

be the unique geodesic in U0 joining ϕ and ψ, then the correspondence

(ϕ, V0) ! (ϕ, expϕ(V0))

is smooth.

7. Length-minimizing properties of geodesics

In this section we show that geodesics in Dk(S) are locally length minimiz-
ing. We also prove the global converse that any length-minimizing curve in Dk(S)
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is a geodesic. Since the H1 right-invariant metric 〈 · , · 〉 on Dk(S) is only a weak
Riemannian metric (i.e. the topology induced by 〈 · , · 〉ϕ on TϕDk(S) is weaker than
the original topology on TϕDk(S)�Hk(S) – see Section 5), we give the results with
full proofs. In essence, however, the proofs are just a repetition of the arguments
presented in [21] for the general situation of Riemannian metrics on Banach mani-
folds.

We first need to establish Gauss’ lemma for the H1 right-invariant metric
on Dk(S).

7.1. Gauss’ lemma

Let J1, J2⊂R be open intervals, and let σ : J1×J2!Dk(S) be a C2-map. A lift
of σ is a C1-map Q : J1×J2!TDk(S) such that π�Q=σ. For each fixed t∈J2 we
may form the curve σt(r)=σ(r, t). Let ∂1σ : J1×J2!TDk(S) denote the partial
derivatives of σ with respect to the first variable, that is,

∂1σ(r, t) =
dσt

dr
(r).

We define ∂2σ similarly. For a lift Q of σ we let D1Q be the lift of σ obtained by
taking the covariant derivative of Qt along the curve σt. Similarly, we have D2Q.

Lemma 7.1. Let J1, J2⊂R be open intervals, and let σ : J1×J2!Dk(S) be
a C2-map. Then

(1) D1∂2σ=D2∂1σ and
(2) ∂2〈∂1σ, ∂1σ〉σ=2〈D1∂2σ, ∂1σ〉σ.
Proof. Locally,

D1∂2σ= ∂1∂2σ−Γσ(∂2σ, ∂1σ).

Symmetry of Γ proves (1). Moreover, since the covariant derivative is compatible
with the metric, we have

∂2〈∂1σ, ∂1σ〉σ = 2〈D2∂1σ, ∂1σ〉σ ,
so that (2) follows from (1). �

For V ∈TϕD(S) we write ‖V ‖ϕ for the norm of V , that is, ‖V ‖ϕ=〈V, V 〉1/2ϕ .
Whenever defined, we let the shell Sh(ϕ, c)⊂Dk(S) be the image of {V ∈TϕDk(S):
‖V ‖ϕ=c} under expϕ.

Lemma 7.2. (Gauss’ lemma) Let ϕ0∈Dk(S) and let (V ,W) be a normal
neighborhood of ϕ0. Let ϕ∈W. Then the geodesics through ϕ are orthogonal to
Sh(ϕ, c) for c sufficiently small and positive.
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Proof. For c>0 sufficiently small, expϕ is defined on an open ball in TϕDk(S)
of radius slightly larger than c. The assertion amounts to proving that for any curve
U : J!TϕDk(S) with ‖U(t)‖ϕ=1 for all t∈J , and 0<r<c, if we define

σ(r, t) = expϕ(rU(t)),

then the two curves

t �−! expϕ(r0U(t)) and r �−! expϕ(rU(t0))

are orthogonal for any given value (r0, t0), that is, we have to show that
〈∂1σ, ∂2σ〉σ≡0. For each fixed t, σt : r �!σ(r, t) is a geodesic. Hence D1∂1σ≡0
and

∂1〈∂1σ, ∂1σ〉σ = 2〈D1∂1σ, ∂1σ〉σ = 0,

so that the function

r �−! 〈∂1σ(r, t), ∂1σ(r, t)〉σ(r,t)(7.1)

is constant for each t. Since ∂1σ(0, t)=U(t) and U(t) has length 1 we infer that
〈∂1σ, ∂1σ〉σ≡1. Therefore, using Lemma 7.1,

∂1〈∂1σ, ∂2σ〉σ = 〈D1∂1σ, ∂2σ〉σ+ 1
2∂2〈∂1σ, ∂1σ〉σ ≡ 0.

Consequently

r �−! 〈∂1σ(r, t), ∂2σ(r, t)〉σ(r,t)

is a constant function of r for each fixed t. But for r=0 we have σ(0, t)=expϕ(0)=ϕ
for every t, so that ∂2σ(0, t)=0 for all t. We conclude that 〈∂1σ, ∂2σ〉σ≡0. �

7.2. Length-minimizing geodesics

For a C1-curve γ : J!Dk(S) we define the length L(γ) by

L(γ) =
∫

J

〈γt(t), γt(t)〉1/2γ(t) dt.

The length of a piecewise C1-path is defined as the sum of the lengths of its
C1-segments. Let ϕ0∈Dk(S) and let (V ,W) be a normal neighborhood of ϕ0

as in Theorem 6.6. Also, let ϕ∈W and let U(ϕ) be a neighborhood containing
W as in the second half of Theorem 6.6. Using that expϕ is a diffeomorphism
Bε(0)⊂TϕDk(S)!U(ϕ), we see that for each piecewise C1-path γ : [a, b]!U(ϕ)\{ϕ}
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there exists a unique map t �!U(t) : [a, b]!TϕDk(S) such that ‖U(t)‖ϕ=1 for t∈[a, b]
and

γ(t) = expϕ(r(t)U(t)) with 0<r(t)<ε.

Since, locally, r(t) and U(t) are obtained by the inverse of the exponential map
followed by the smooth maps

V �−! ‖V ‖ϕ : Hk(S)−!R respectively V �−! V

‖V ‖ϕ : Hk(S)−!Hk(S),

we deduce that r and U are piecewise C1.

Lemma 7.3. For a piecewise C1-curve γ : [a, b]!U(ϕ)\{ϕ} as above, we have
the inequality

L(γ)≥ |r(b)−r(a)|.
Equality holds if and only if the function t �!r(t) is monotone and the map t �!U(t)
is constant.

Proof. Let σ(r, t)=expϕ(rU(t)). Then γ(t)=σ(r(t), t). We have

γ′(t) = ∂1σ(r(t), t)r′(t)+∂2σ(r(t), t).

By Lemma 7.2, ∂1σ and ∂2σ are orthogonal. Repeating the argument leading up
to (7.1) we find that ‖∂1σ‖σ≡1. Hence

‖γ′(t)‖2 = |r′(t)|2+‖∂2σ‖2 ≥ |r′(t)|2,
with equality holding if and only if ∂2σ=0, i.e. if and only if U ′(t)=0. Therefore

L(γ) =
∫ b

a

‖γ′(t)‖dt≥
∫ b

a

|r′(t)|dt≥ |r(b)−r(a)|,

with equality if and only if t �!U(t) is constant and t �!r(t) is monotone. �

The next theorem says that geodesics in Dk(S) are locally length minimizing.

Theorem 7.4. Let (V ,W), V=U0×Bε(0), constitute a normal neighborhood
of an element ϕ0∈Dk(S). Let α : [0, 1]!Dk(S) be the unique geodesic joining two
points ϕ, ψ∈W. Then, for any other piecewise C1-path γ : [0, 1]!Dk(S) joining ϕ
and ψ, it holds that

L(α)≤L(γ).

If equality holds, then a reparametrization of γ is equal to α.
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Proof. Let ϕ, ψ∈W and let ψ=expϕ(rU0) with 0<r<ε, U0∈TϕDk(S), and
‖U0‖ϕ=1. For each δ>0, 0<δ<r, the path γ contains a segment joining the shells
Sh(ϕ, δ) and Sh(ϕ, r), and lying between the two shells. By Lemma 7.3 the length
of this segment is at least r−δ. Letting δ!0 shows that L(γ)≥r. Now assume
equality holds. The same lemma proves that in this case the polar component
t �!U(t) of γ is constant and the radial component t �!r(t) is monotone. Hence we
may reparametrize γ so that it becomes a geodesic. Assume this has been done
so that γ : [0, r]!Dk(S) is the curve t �!expϕ(tV0) with expϕ(rV0)=ψ, for some
V0∈TϕDk(S) with ‖V0‖ϕ=1. Since, by Theorem 6.6, expϕ is a diffeomorphism
Bε(0)!U(ϕ) with W⊂U(ϕ), we infer that V0=U0. Thus α is equal to γ. �

Conversely, it holds globally that any length-minimizing curve is a geodesic.

Theorem 7.5. If α : [0, 1]!Dk(S) is a piecewise C1-path parametrized by arc-
length such that L(α)≤L(γ) for all paths γ in Dk(S) joining α(0) and α(1), then α

is a geodesic.

Proof. We can find a partition of [0, 1] such that the image under α of each small
interval in the partition is contained in some neighborhood W as in Theorem 7.4.
Since α is globally length-minimizing it is also locally length-minimizing. As α was
assumed to be parametrized by arc-length, the second half of Theorem 7.4 shows
that α is a geodesic on each such small interval. Hence the entire path is a geodesic,
as was to be shown. �

8. The Fréchet Lie group D(S)

In this section we comment on the relationship between Dk(S) and the Fréchet
Lie group D(S) of orientation-preserving smooth diffeomorphisms of the circle. D(S)
is an infinite-dimensional Lie group modeled on the Fréchet space C∞(S) (see [9]
and [15]). The Lie bracket on the Lie algebra TidD(S)�C∞(S) induced from right-
invariant vector fields is given by (cf. [10])

[u, v] = uvx−uxv, u, v ∈C∞(S).

The fact that D(S) is a Lie group makes it sometimes easier to establish smoothness
of objects for D(S) than for Dk(S). For example, we can define our map Γ on D(S)
just like we did for Dk(S) (see Section 3) by

Γϕ(U, V ) =−(
A−1

(
(U �ϕ−1)(V �ϕ−1)+ 1

2 (U �ϕ−1)x(V �ϕ−1)x
)
x

)
�ϕ,

where ϕ∈D(S), U, V ∈TϕD(S)�C∞(S), and A=1−D2
x. In this case, as composition

is smooth, it is immediate that Γ is smooth and so defines an affine connection
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on D(S). Similarly, the H1 right-invariant metric

〈U, V 〉ϕ =
∫

S

A(U �ϕ−1)V �ϕ−1dx, U, V ∈TϕD(S)�C∞(S),

is trivially smooth(1). However, as we remarked in the introduction, the absence of
general existence and uniqueness results for differential equations makes it involved
to study geodesic flow, parallel translation etc. on D(S). In fact, when studying the
geodesic flow on D(S) one starts with Dk(S) and in the limit as k!∞ results are
obtained for D(S) [10]. In contrast, as we saw in Sections 6–7, once the smooth Rie-
mannian structure has been established on Dk(S), the other aspects of Riemannian
geometry come neatly packaged.

In [10] existence of a Riemannian covariant derivative on D(S) compatible with
the H1 right-invariant metric was proved by means of the following result.

Theorem 8.1. ([10]) Let 〈 · , · 〉 be a right-invariant metric on D(S). Assume
that there exists a bilinear operator B : C∞(S)×C∞(S)!C∞(S) such that

〈B(u, v), w〉id = 〈u, [v, w]〉id, u, v, w∈C∞(S).(8.1)

Then there exists a unique Riemannian covariant derivative ∇ on D(S) compatible
with 〈 · , · 〉, given by

(∇XY )(ϕ) = [X,Y −Y Rϕ ](ϕ)+ 1
2 ([XR

ϕ , Y
R
ϕ ](ϕ)−B(XR

ϕ , Y
R
ϕ )(ϕ)−B(Y Rϕ , X

R
ϕ )(ϕ)),

where for X∈X(D(S)), we denote by XR
ϕ the right-invariant vector field whose value

at ϕ is X(ϕ) and we extend B to a bilinear map on the family XR(D(S)) of right-
invariant vector fields, B : XR(D(S))×XR(D(S))!XR(D(S)) by

B(Z,W )(ϕ) =B(Z(id),W (id)) �ϕ for ϕ∈D(S) and Z,W ∈XR(D(S)).

The condition (8.1) is satisfied in the case of the H1 right-invariant metric by

B(u, v) =−A−1
(
2vxAu+vAux

)
,(8.2)

so that the existence of a compatible Riemannian covariant derivative is established
for D(S).

This approach is not applicable in the case of Dk(S) as left composition is not
smooth. Since Dk(S) is not a Lie group, we were forced to work directly on Dk(S)
rather than first translate objects to TidDk(S) by means of right invariance.

(1) Note that when dealing with Fréchet manifolds, smoothness is always defined as Gateaux-
smoothness (see the appendix) – the space L(E, F ) is in general not a Fréchet space even though
E and F are Fréchet spaces, preventing the definition for Banach spaces from generalizing without
modification (see [15] and [19]).
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To relate the two approaches we will now show that our map Γ is the Christoffel
map corresponding to the covariant derivative ∇ obtained in [10]. In fact, if we
define a covariant derivative �∇ on D(S) locally, for X,Y ∈X(D(S)), by

(�∇XY )(ϕ) =DY (ϕ)·X(ϕ)−Γϕ(Y (ϕ), X(ϕ)),

then the same proof that we used to show that Γ gives rise to a Riemannian met-
ric compatible with the H1 right-invariant metric in the case of Dk(S) (see Theo-
rem 5.3), works unchanged for D(S). Hence �∇ and ∇ coincide in view of the unique-
ness of the Riemannian covariant derivative. This shows that Γ is the Christoffel
map for the Riemannian covariant derivative obtained in [10]. We state this as
a theorem and also provide a direct proof for the sake of clarity.

Theorem 8.2. Let ∇ be the Riemannian covariant derivative on D(S) compat-
ible with the H1 right-invariant metric derived from Theorem 8.1 and formula (8.2).
Then the map Γ defined by

Γϕ(U, V ) =−(
A−1

(
(U �ϕ−1)(V �ϕ−1)+ 1

2 (U �ϕ−1)x(V �ϕ−1)x
)
x

)
�ϕ,

for ϕ∈D(S) and U, V ∈TϕD(S)�C∞(S), is the Christoffel map corresponding to ∇,
that is, locally

(∇XY )(ϕ) =DY (ϕ)·X(ϕ)−Γϕ(Y (ϕ), X(ϕ)).(8.3)

Direct proof. Let Rψ : D(S)!D(S), Rψ(ϕ)=ϕ�ψ be the right multiplication map.
Its tangent map is

TRψ : V ∈TϕD(S) �−!V �ψ ∈Tϕ�ψD(S).

Thus the right-invariant vector fields X and Y on D(S) corresponding to two func-
tions u, v∈TidD(S)�C∞(S) are X(ϕ)=u�ϕ and Y (ϕ)=v�ϕ for ϕ∈D(S), respec-
tively. Therefore, for a right-invariant vector field Y , we have

DY (ϕ)·X(ϕ) =
d

dε

∣∣∣∣
ε=0

Y (ϕ+ε(u �ϕ)) =
d

dε

∣∣∣∣
ε=0

v � (ϕ+ε(u �ϕ)) = vx �ϕ·u �ϕ.
(8.4)

Note that, as (Y −Y Rϕ )(ϕ)=0, locally

[X,Y −Y Rϕ ](ϕ) =DY (ϕ)·X(ϕ)−DY Rϕ (ϕ)·X(ϕ).

Now fix ϕ∈D(S) and let u=X(ϕ)�ϕ−1∈C∞(S) and v=Y (ϕ)�ϕ−1∈C∞(S). By
(8.4) we have

DY Rϕ (ϕ)·X(ϕ) = (uvx) �ϕ.
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We infer that locally ∇ as defined in Theorem 8.1 is given by

(∇XY )(ϕ) =DY (ϕ)·X(ϕ)−(uvx) �ϕ+ 1
2 ([u, v]−B(u, v)−B(v, u)) �ϕ.(8.5)

By (8.2) we have

B(u, v)+B(v, u) =−A−1(2vxAu+vAux+2uxAv+uAvx).

Using that

A(uv)x = (uv)x−3(uxvx)x−uvxxx−uxxxv,
a computation shows that

B(u, v)+B(v, u) =−(uv)x−2A−1
(
uv+ 1

2uxvx
)
x
.

Since [u, v]=uvx−uxv we get

(∇XY )(ϕ) =DY (ϕ)·X(ϕ)−(uvx) �ϕ

+ 1
2

(
uvx−uxv+(uv)x+2A−1

(
uv+ 1

2uxvx
)
x

)
�ϕ.

Thus, recalling that

Γid(u, v) =−A−1
(
uv+ 1

2uxvx
)
x
,

we arrive by right invariance of Γ at

(∇XY )(ϕ) =DY (ϕ)·X(ϕ)−Γϕ(Y (ϕ), X(ϕ)). �

A. Differential calculus in Banach spaces

For Banach spaces E and F we let L(E,F) be the Banach space of continuous
linear maps E!F. For any k≥1, Lk(E; F) denotes the Banach space of continuous
k-multilinear maps E!F, and Lksym(E; F)⊂Lk(E; F) is the subset of symmetric
maps. For a Banach manifold M, Lksym(TM; R) denotes the vector bundle over M
with fiber Lksym(TmM; R) over m∈M.

Let U be an open subset of E. As usual when dealing with Banach spaces
a continuous map f : U!F is said to be C1 if Df : U!L(E,F) is continuous. Since
L(E,F) is a Banach space we may define Dpf recursively for any p≥1. If G is also
a Banach spaces and f a map (U×V⊂E×F)!G, we write D1f : U×V!L(E,G)
for the partial derivative with respect to the first variable.

We will also need a different notion of differentiability. Recall that a Fréchet
space is a complete Hausdorff metrizable locally convex topological vector space.

Definition A.1. Let E and F be Fréchet spaces, U be an open subset of E,
and f : U!F be a continuous mapping. We say that f is Gateaux-C1 if for each
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point x∈U there exists a linear map Df(x) : E!F such that

Df(x)v= lim
t!0

f(x+tv)−f(x)
t

for all v∈E and the map

(x, v) �−!Df(x)v : U×E−!F(A.1)

is continuous (jointly as a function on a subset of the product).

We say that f is Gateaux-C2 if both f and the map in (A.1) are Gateaux-C1.
The notion of Gateaux-Cp, p≥3, is defined inductively. See [15] for an extensive
presentation of calculus for Gateaux differentiable functions in Fréchet spaces.

Clearly, if f is a map between Banach spaces so that both definitions of dif-
ferentiability apply, then normal differentiability implies Gateaux differentiability,
that is, if f is Cp, p≥1, then f is Gateaux-Cp. The basic result in the converse
direction is the following.

Proposition A.2. Let E and F be Banach spaces, U be an open subset of E,
and f : U!F be a continuous mapping. If f is Gateaux-Cp+1 for some p≥0, then
f is Cp. In particular, for smooth maps between Banach spaces the two definitions
coincide.

Proof. We refer to the book by Keller [19, p. 99 (see also the remark on p. 110)].
Note that our Gateaux-Cp maps correspond to the class Cpc in [19] . �

We also have the following result.

Proposition A.3. ([26, Theorem 5.3]) Let E, F and G be Banach spaces,
and let U be an open subset of E. Let f be a Cp-mapping of U×F into G such
that f(x, u) is linear with respect to the second variable u. Set h(x)u=f(x, u) and
regard h as a mapping of U into L(F,G). Then h is a Cp−1-mapping.

The typical application in this paper of Propositions A.2 and A.3 is the fol-
lowing consequence. Let E and F be Banach spaces, U be an open subset of E,
and (x, u, v) �!P (x, u, v) : U×E×E!F be a continuous mapping linear in u and v.
Suppose we can show that P is Gateaux-Cp+1. Then P is Cp by Proposition A.2.
Hence Proposition A.3 shows that the map

(x, u) �−! (v �!P (x, u, v)) : U×E−!L(E,F),

is Cp−1. Using that L(E, L(E,F))�L2(E; F), another application of Proposition A.3
yields that

x �−! ((u, v) �!P (x, u, v)) : U×E−!L2(E; F)
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is Cp−2. The upshot is that if P is Gateaux-smooth then x �!Px=P (x, · , · ) is
a smooth map U!L2(E; F).

We also need the following corollary of the inverse function theorem.

Proposition A.4. ([21, Proposition 5.3]) Let U and V be open subsets of
Banach spaces and let f : U!V be a Cp-map which is also a C1-diffeomorphism.
Then f is a Cp-diffeomorphism.
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