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Computing the Euler characteristic
of generalized Kummer varieties

Martin G. Gulbrandsen

Abstract. We give an elementary proof of the formula χ(KnA)=n3σ(n) for the Euler

characteristic of the generalized Kummer variety KnA, where σ(n) denotes the sum of divisors

function.

1. Introduction

Let A be an abelian surface and let n≥2 be a natural number. Beauville [1]
introduced the generalized Kummer variety KnA (see Definition 2.2), as an example
of a compact irreducible symplectic variety. In this note we will give an almost
elementary proof of the following result.

Theorem 1.1. (Göttsche [6]) The topological Euler characteristic of the gen-
eralized Kummer variety is given by

χ(KnA)=n3σ(n),

where σ(n) denotes the sum of divisors function σ(n)=
∑
d|n d.

This formula was first found by Göttsche [6, Corollary 2.4.13], as a corollary
of his computation of the Betti numbers of KnA. If we aim only at the Euler
characteristic, however, a much simpler argument is possible. Indeed, Debarre [3]
gave an alternative proof of the theorem, using a Lagrangian fibration of a certain
(subvariety of a) relative Jacobian of curves on A, together with various geometric
constructions relating the relative Jacobian toKnA. Our proof utilizes a Lagrangian
fibration of KnA itself, in the case where A is a product of elliptic curves.

The structure of our argument can be outlined as follows: It is enough to
consider the case where A=E×E′ is a product of elliptic curves (Proposition 3.1).
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In this case, KnA admits a Lagrangian fibration (Section 4), and only the most
degenerate fibres contribute to the Euler characteristic (Lemma 4.2). Using the
formula of Ellingsrud and Strømme (Theorem 2.1) for the Euler characteristic of
the punctual Hilbert scheme, the computation of χ(KnA) can be reduced to the
computation of the Euler characteristic of certain varieties parametrizing effective
divisors on E (Lemma 4.3). This computation is carried out in Section 5, with the
help of a well known combinatorial formula, recalled in Section 2.3.

1.1. Notation

We work with schemes over C throughout. By a map we mean a morphism in
the category of schemes. By a variety we mean a reduced, not necessarily irreducible,
separated scheme of finite type. Whenever a∈A is a point on an abelian variety,
we write Ta : A!A for the translation map, and we denote by 0∈A the identity
element for the group law.

2. Preliminaries

2.1. Topology

We are concerned with the Euler characteristic χ defined using cohomology
with compact support. It has two friendly properties.

Firstly, χ is additive: If X is a variety, and U⊂X is open, we have

χ(X)=χ(X\U)+χ(U).

By a point-set-topological argument it follows that

χ(X)=
∑

i

χ(Ui)

whenever X=
⋃
i Ui is a disjoint union of locally closed subsets.

Secondly, χ is multiplicative: If f : X!Y is a map of algebraic varieties, such
that all fibres f−1(y) have equal Euler characteristic, we have

χ(X)=χ(Y )χ(f−1(y)) (for any y ∈Y ).

This follows from the well-known multiplicative property for topological fibrations,
together with the existence of a stratification of Y into locally closed strata, such
that f is locally trivial (in the transcendent topology) above each stratum [10,
Corollaire 5.1].
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2.2. Geometry

Given a surface X , we write X [n] for the Hilbert scheme parametrizing finite
subschemes ξ⊂X of length n, and X(n) for the symmetric product parametrizing
positive zero-cycles on X of degree n. There exists a map [8], the Hilbert–Chow
morphism,

ρ : X [n] −!X(n)

which on the level of sets sends a subscheme ξ∈X [n] to its cycle.
Fix a point p∈X . The punctual Hilbert scheme is the reduced subvariety

H(n)⊂X [n] consisting of subschemes supported at p. We suppress both the point
p and the surface X from the notation, as the isomorphism class of H(n) is inde-
pendent of these choices. We will make essential use of the following result.

Theorem 2.1. (Ellingsrud and Strømme [4]) The Euler characteristic of the
punctual Hilbert scheme H(n) equals the number p(n) of partitions of n.

In the case where X=A is an abelian surface, we may compose the Hilbert–
Chow morphism with the n-fold addition map on A to obtain a map

A[n] −!A.

The fibre over 0∈A is the Kummer variety of Beauville:

Definition 2.2. Given A and n, the generalized Kummer variety KnA is the
closed subset

KnA=
{

ξ ∈A[n]

∣
∣
∣
∣

∑

x∈ξ
mxx= 0

}

(where mx denotes the multiplicity of x in ξ) together with its reduced induced
structure.

From now on, we will drop the word “generalized”, and simply refer to KnA

as a Kummer variety.

2.3. Combinatorics

We will need an expression for the sum of divisors function σ(n) in terms of the
number of partitions function p(n). Our starting point is the well-known formula

p(n)=
1
n

n∑

k=1

σ(k)p(n−k),(1)
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which may be proved either using Euler’s generating function for p(n) or by a count-
ing argument [7, Theorem 6, Chapter 12].

We denote by α=(1α12α2 ...) the partition of n=
∑
i iαi in which i occurs αi

times. We use the notation α�n to signify that α is a partition of n.
Solving (1) for σ(n) we find by induction the formula

σ(n)=
∑

α�n

∏

i

p(i)αic(α)

for integers c(α) satisfying the recursion

c(α)=

{
n, if α=(n1),

−∑
i c(1

α1 ...iαi−1...), otherwise.
(2)

In (2), the partitions on the right-hand side are obtained from α=(1α12α2 ...) by
lowering the i-th exponent by one. If αi is already zero, we interpret c(1α1 ...iαi−1...)
as being zero.

3. Deformation to a product

We will in fact calculate the Euler characteristic of KnA in the special case
where A=E×E′ is a product of elliptic curves. To conclude that the resulting
formula will be valid also for an arbitrary abelian surface, we use a deformation
argument.

Recall [2, Theorem 8.3.1 and Proposition 8.8.2] that there exists an irreducible
moduli spaceAg,d for polarized abelian varieties (A,L) of type d with level structure,
where the type d=(d1, ..., dg) is a tuple of natural numbers, and a level structure is
an isomorphism

K(L)∼=
g⊕

i=1

(Z/diZ)2.

Here, the group K(L) consists of the points a∈A such that T ∗
aL∼=L. Furthermore,

if d1≥3, then Ag,d carries a universal family.
Now, a product A=

∏g
i=1 Ei of elliptic curves admits polarizations of any type.

In fact, denoting by pri : A!Ei the projection to the i-th factor, the sheaf

L=
g⊗

i=1

pr∗i OEi(Di)

defines a polarization of type d=(d1, ..., dg), whenever Di is a divisor of degree di
on Ei. From this it follows that, whenever A is a product of g elliptic curves and
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A′ is an arbitrary g-dimensional abelian variety, there exists an abelian scheme

X −!S

over a nonsingular, irreducible curve S, with A and A′ among its fibres. Namely,
we may take S to be (the normalization of) any irreducible curve through the two
points in Ag,d corresponding to A and A′, equipped with level structures of the
same type, and X to be the pullback of the universal family.

Proposition 3.1. Let A=E×E′ be a product of elliptic curves, and let A′ be
an arbitrary abelian surface. Then the associated Kummer varieties KnA and KnA′

are deformation equivalent via a smooth deformation, and hence diffeomorphic. In
particular, their Euler characteristics are equal.

Proof. Let X!S be an abelian scheme of relative dimension two over a non-
singular, irreducible curve, with A and A′ among its fibres. Let X [n]

S and X
(n)
S

denote the relative Hilbert scheme and the relative symmetric product. We have
the Hilbert–Chow morphism [8]

ρ : X [n]
S −!X

(n)
S

and the n-fold addition map

µ : X(n)
S −!X

over S, and both these maps commute with base change. Form the fibred productK,

K ��

��

X
[n]
S

µ�ρ

��

S
σ �� X,

where σ is the zero section. Then the fibres of K!S are the Kummer varieties
of the fibres of X!S, and in particular we have found the required deformation
between KnA and KnA′.

It only remains to check that the deformation is smooth. For this we basically
follow Beauville’s proof [1] for the nonsingularity of the Kummer variety: It is
straightforward to verify that there is a cartesian diagram

K×SX ν ��

q

��

X
[n]
S

µ�ρ

��

X
nX �� X,
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where ν is induced by the natural action of X on the Hilbert scheme by translation,
q is the second projection and nX denotes multiplication by the natural number
n. Since nX is étale, so is ν, and by Fogarty’s result [5, Theorem 2.9], the Hilbert
scheme X [n]

S is smooth over S. We conclude that K×SX is smooth over S.
In particular, both X and K×SX are flat over S. It follows that K×SX is

flat over X via the second projection q. By pulling back q over the zero section σ,
we recover the structure map K!S, which thus is flat. To prove it is smooth it is
therefore enough to prove that every geometric fibre is nonsingular. In other words,
we may replace S with the spectrum of an algebraically closed field k, in which case
the fact that K×kX is nonsingular implies that K is nonsingular. �

4. Projection maps

From now on, let A=E×E′ be a product of elliptic curves. Let pr : A!E
denote the first projection. The restriction of the composed map

A[n]
ρ

�� A(n)
pr(n)

�� E(n)

to the Kummer variety KnA⊂A[n] is a map

π : KnA−!E(n).

Let P⊂E(n) denote the image of π. By definition of KnA, P is precisely the set
of effective divisors of degree n mapping to the zero element 0∈E under the n-fold
addition map

E(n) −!E.

Remark 4.1. Although we will not need this, we can identify P as follows:
Since the points of an effective divisor D of degree n on E sums to zero if and
only it is linearly equivalent to the divisor n·0=0+...+0, we see that P is just the
linear system |n·0|∼=Pn−1. It is easy to check that a generic fibre of π is connected,
and it follows from results of Matsushita [9] that π is an example of a Lagrangian
fibration. Together with Proposition 3.1, this provides a simple example of the fact
that after deformation, any Kummer variety admits a Lagrangian fibration.

In any case, we have a “projection to the first factor”

π : KnA−!P ⊂E(n)

and similarly a “projection to the second factor”

π′ : KnA−!P ′ ⊂E′(n),
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mapping onto the sets P , resp. P ′, of effective degree n divisors summing to zero
on E, resp. E′. We first examine the fibres of π′.

Lemma 4.2. Let π′ : KnA!P ′ be the map defined above. If D∈P ′ is not of
the form n·a for some point a∈E′, then

χ(π′−1(D))= 0.

Thus, the Euler characteristic of KnA is

χ(KnA)=n2χ(F ),

where F is the fibre π′−1(n·0).

Proof. Choose a point a∈SuppD, and write

D=D′+k·a,
where k is the multiplicity of a in D. By assumption, D′ is nonzero. A point
ξ∈KnA in the fibre (π′)−1(D) can be uniquely written as a disjoint union

ξ= ξ1∪ξ2,
where ξ1 has length k and is supported in E×{a}. Taking the sum on E of the
points in ξ1, with multiplicities, we get a map

ν : π′−1(D)−!E.

We claim that all fibres of ν are isomorphic. In fact, given p∈E we may choose
q, r∈E such that

kq= p, and (n−k)r=−p.
Then, decomposing ξ=ξ1∪ξ2 as above, the map

θ : ν−1(p)−! ν−1(0), θ(ξ)=T−1
(q,0)(ξ1)∪T−1

(r,0)(ξ2),

defines an isomorphism between the fibre over p and the fibre over 0. Since the
base space E for ν has Euler characteristic zero, we conclude that the total space
(π′)−1(D) also has Euler characteristic zero.

For the last part of the lemma, let U⊂P ′ denote the set of divisors with at
least two distinct supporting points. We have just shown that over U , all fibres
of π′ have Euler characteristic zero. Using the multiplicative property of the Euler
characteristic (Section 2.1), we conclude that (π′)−1(U) also has Euler characteristic
zero. Now U is the complement of the set of divisors of the form n·a, where a is
an n-division point on E′, hence there are n2 points outside U . Furthermore, any
fibre (π′)−1(D) over a divisor of the form D=n·a is isomorphic to the fibre F over
n·0, via translation by (0, a). Thus the formula χ(KnA)=n2χ(F ) follows. �
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We next study the fibre F=(π′)−1(n·0) by means of the first projection map
π : KnA!P . Note that F consists of those subschemes ξ∈A[n], supported in
E×{0}, for which the sum of its support points, with multiplicities, equals 0.
This set can be stratified according to the multiplicities of the points in ξ. Let
α=(1α12α2 ...) be a partition of n, and define the locally closed subset V (α)⊂F by

V (α)= {ξ ∈F | ξ has αi points of multiplicity i}.
We define a corresponding locally closed subset W (α)⊂P by

W (α)= {D∈P |D has αi points of multiplicity i}.
Then we can reduce the computation of the Euler characteristic of F to the

Euler characteristic of each W (α):

Lemma 4.3. With W (α) as above we have

χ(F )=
∑

α�n

∏

i

p(i)αiχ(W (α)).

Proof. Clearly, the projection map π : KnA!P maps V (α) to W (α). Let

πα : V (α)−!W (α)

denote the restricted map. The divisors D∈W (α) are of the form

D=
∑

i

(

i

αi∑

j=1

pij

)

,

where the pij∈E are distinct points. Hence the fibre of πα above D consists of
subschemes of the form ξ=

⋃
ij ξij , where each component ξij has length i and is

supported at (pij , 0)∈A. Thus every fibre of πα is isomorphic to a product
∏
iH(i)αi

of punctual Hilbert schemes. By Theorem 2.1 we conclude that

χ(V (α))=
∏

i

p(i)αiχ(W (α)).

Finally, since F=
⋃
α�nW (α) is a disjoint union of locally closed subsets, we get the

result by summing the last formula over all partitions of n. �

5. The recursion

Comparing Lemmas 4.2 and 4.3 with Section 2.3, wee see that Theorem 1.1
follows if we can show that (1/n)χ(W (α)) satisfies the recurrence relation (2).
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Lemma 5.1. We have χ(W (n1))=n2 for every n.

Proof. W (n1) consists of the divisors of the form D=n·a, where a is an n-
division point on E. Hence we can identify W (n1) with the set of n-division points
En∼=(Z/nZ)2, which is a finite group of order n2. �

Lemma 5.2. Let α=(1α12α2 ...) be a partition of n, not equal to (n1), and let
i be an index such that αi �=0. Let

α′ = (1α1 ...iαi−1...)

denote the partition of n−i obtained from α by lowering the i-th exponent by one.
Then

χ(W (α))=−n
2(

∑
j αj−1)

αi(n−i)2 χ(W (α′)).

Proof. Basically, we would like to compare W (α) and W (α′) by means of the
incidence variety

{(a,D) |D has multiplicity i at a}⊂E×W (α).

However, if we remove from D the component supported at a, we do get an effective
divisor of degree n−i, but the sum of its points under the group law on E is no
longer zero. Thus there is no natural map from the incidence variety to W (α′).

Instead, we let

Y = {(a, b,D) |D has multiplicity i at a and (n−i)b= ia on E}⊂E×E×W (α).

It is clearly an algebraic subset. There are maps

Y
φ

��

ψ

��

W (α)

W (α′),

where φ is induced by projection to the third factor, and

ψ(a, b,D)=Tb(D−i·a).
Here, D−i·a denotes the effective divisor obtained from D by removing the com-
ponent supported at a. Note that the sum of the supporting points of Tb(D−i·a),
with multiplicities, is zero, so ψ is indeed a map to W (α′).
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We want to calculate the Euler characteristic χ(Y ) twice, using each of the
maps φ and ψ, and equate the results.

First, let D∈W (α) and consider the fibre

φ−1(D)∼= {(a, b) |D has multiplicity i at a and (n−i)b= ia on E}⊂E×E.
Now D has αi points of multiplicity i. Let us denote them aj with j=1, ..., αi. Then
φ−1(D) is just the disjoint union of the αi sets

{b | (n−i)b= iaj}⊂E

and each of these consists of (n−i)2 points. Thus every fibre of φ is a discrete set
of αi(n−i)2 points. In particular we have

χ(Y )=αi(n−i)2χ(W (α)).(3)

Next, the fibre over a point D′∈W (α′) can be described as

ψ−1(D′)∼= {(a, b) | a+b /∈D′ and (n−i)b= ia}⊂E×E.
This identification comes about since, if ψ(a, b,D)=D′, then the divisorD is unique-
ly determined by the pair (a, b) as

D=T−1
b (D′)+i·a,

and this divisor has multiplicity i at a if and only if a /∈T−1
b (D′), or equivalently

a+b /∈D′.
Now ψ−1(D′) is contained in the slightly bigger set

B= {(a, b) | (n−i)b= ia}⊂E×E,(4)

which has Euler characteristic zero, as can be seen by projecting to e.g. the second
factor, and noting that all fibres are isomorphic (in fact, they are discrete sets of i2

points).
It remains to count the pairs (a, b)∈B with a+b∈D′. For each point c in the

support of D′, the set

{(a, b) | (n−i)b= ia and a+b= c}∼= {b |nb= ic}⊂E

consists of n2 points. Since there are
∑

j αj−1 distinct points c∈D′, we see that
ψ−1(D′) is the complement in B to n2

(∑
j αj−1

)
points. Hence we have

χ(Y )=−n2

(∑

j

αj−1
)

χ(W (α′))

and equating with (3) gives the result. �
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We can now finish the proof of the theorem by verifying that (1/n)χ(W (α))
satisfies the relation (2), that is,

1
n
χ(α)=

⎧
⎪⎨

⎪⎩

n, if α=(n1),

−
∑

i

1
n−iχ(1α1 ...iαi−1...), otherwise,

where we use the shorthand χ(α)=χ(W (α)). In fact, the first equality is Lemma 5.1,
and by Lemma 5.2 we have

−
∑

i

1
n−iχ(1α1 ...iαi−1...) =

∑

i

αi(n−i)
n2

(∑
j αj−1

)χ(α)

=
1
n
χ(α)

∑
i αi(n−i)

n
(∑

j αj−1
)

=
1
n
χ(α),

since n=
∑
i iαi, α being a partition of n.

Remark 5.3. The recursion in Lemma 5.2 is easier to solve than the one in
Section 2.3. In fact, we find that

c(α)=
1
n
χ(α)= (−1)

∑
i αi−1n

(∑
i αi−1

)
!

∏
i(αi!)

giving a closed solution to (2).
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6. Göttsche, L., Hilbert Schemes of Zero-dimensional Subschemes of Smooth Varieties,
Lecture Notes in Math. 1572, Springer, Berlin, 1994.

7. Grosswald, E., Topics from the Theory of Numbers, Macmillan, New York, 1966.



60
Computing the Euler characteristic of generalized Kummer varieties

Martin G. Gulbrandsen:

8. Iversen, B., Linear Determinants with Applications to the Picard Scheme of a Family
of Algebraic Curves, Lecture Notes in Math. 174, Springer, Berlin, 1970.

9. Matsushita, D., Addendum: “On fibre space structures of a projective irreducible
symplectic manifold”, Topology 40 (2001), 431–432.

10. Verdier, J.-L., Stratifications de Whitney et théorème de Bertini–Sard, Invent. Math.
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