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Exact propagators for some degenerate
hyperbolic operators

Richard Beals and Yakar Kannai

Abstract. Exact propagators are obtained for the degenerate second order hyperbolic

operators ∂2
t −t2l∆x, l=1, 2, ..., by analytic continuation from the degenerate elliptic operators

∂2
t +t2l∆x. The partial Fourier transforms are also obtained in closed form, leading to integral

transform formulas for certain combinations of Bessel functions and modified Bessel functions.

1. Introduction

Among the methods for obtaining propagators for hyperbolic operators are
several that involve analytic continuation from the elliptic case; see, for example [7]
and [8]. In this paper we use continuation from the Green’s functions [5] for degen-
erate elliptic operators of the form

n∑

j=1

∂2

∂y2
j

+|y|2k−2
m∑

j=1

∂2

∂x2
j

(1.1)

with n=1 and t=y1 to produce formulas for propagators for the degenerate hyper-
bolic operators

Lm =
∂2

∂t2
−t2k−2

m∑

j=1

∂2

∂x2
j

, k = 2, 3, ... .(1.2)

(We treat k as fixed and omit it from the notation.) Continuation is carried out
in the “space” variables xj . For even m, the propagators are piecewise algebraic
functions (or distribution derivatives of piecewise algebraic functions). This idea
was discussed briefly in [4], but the result as stated there is only correct for t

sufficiently close to the starting time s.
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We remark that continuing in xm alone as the “time” variable, leads to explicit
propagators for the singular hyperbolic operators

L = Lnm = |y|2k−2 ∂2

∂t2
−

n∑

j=1

∂2

∂y2
j

−|y|2k−2
m−1∑

j=1

∂2

∂x2
j

, k = 2, 3, ... .

This will be carried out in a subsequent paper. The details of the procedure, and the
form of the result relative to the original Green’s function, are somewhat different
from the degenerate case (1.2) that we consider in this paper.

By a propagator for (1.2) we mean a distribution Wm=Wm(x, t; y, s) such that
for each test function f =f(x) the function or distribution

u(x, t)=
∫

Rm

Wm(x, t; y, s)f(y) dy

is the solution of

Lmu = 0, t �= s; u(x, s)= 0,
∂u

∂t
(x, s)= f(x).

In this section we give an explicit formula for the propagator for m even. The
case m odd can be obtained by the method of descent. As in the classical case,
the results are easier to state in low dimensions, where the propagator is a locally
integrable function. In Theorem 1 the result for the case m=2 is stated. The result
for the general case is stated in Theorem 2. The support and singular support of
the propagator are identified in Theorem 3.

To state the results we introduce functions of two variables

β±(R, σ)=
(
R±

√
R2−σ2

)1/2k
, R≥ σ≥ 0,

which we extend to other real values of R by continuation into the upper half-plane
for fixed σ≥0:

β±(R, σ)=

{ (
R±i

√
σ2−R2

)1/2k
, −σ≤R≤σ,

e±iπ/2kβ±(|R|, σ), R≤−σ.
(1.3)

Using these values we define a locally integrable function W , where

W (x, t; y, s)=
β+(R, σ)+sgn (st)β−(R, σ)√

R2−σ2
(1.4)

on the region I defined by the inequality

k2|x−y|2 < (|t|k−|s|k)2
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and

W (x, t; y, s)=
cos((α+π)/2k)σ1/2k

sin(π/2k)
√

σ2−R2
(1.5)

on the region II− defined by the inequalities

(|t|k−|s|k)2 < k2|x−y|2 < (|t|2+|s|2)2, st < 0;

and

W (x, t; y, s) = 0, otherwise,(1.6)

where

R = R(x−y, t, s)=
t2k+s2k−k2|x−y|2

2
;

σ = σ(t, s)= |st|k and α = α(x−y, t, s)= arccos(R/σ).

Theorem 1. The propagator for the operator L2 with pole at (y, s), s �=0, is

W2(x, t; y, s)= sgn (t−s)
k

4π
W (x, t; y, s).(1.7)

We consider W as a distribution, and take distribution derivatives to obtain
the propagator for arbitrary even m.

Theorem 2. For arbitrary even m, the propagator for the operator Lm is

Wm = cm σ1/2k

(
1
R

∂

∂σ

)(m−2)/2

(σ(m−2)/2−1/2kW ).(1.8)

where

cm =
(
−1

2

)(m−2)/2

sgn (t−s)
km−1

4πm/2
.(1.9)

Theorem 3. The singular support of the propagator Wm of Theorem 2, m

even, is the union of the set defined by the equality

k2|x−y|2 = (|t|k−|s|k)2

and the set defined by

k2|x−y|2 = (|t|k+|s|k)2, st≤ 0.
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To fix ideas, take s<0 here. Then for t<0 the operator is strongly hyperbolic
and the singular support of the propagator is what it must be: the union of the
characteristics from the pole (y, s). At t=0 the operator is weakly hyperbolic,
and the singular support of the propagator now picks up all forward characteristics
from the points (x, 0) with k2|x−y|2=s2k. This is an example of the phenomenon of
branching of singularities at multiply characteristic points, introduced and studied
extensively in [1], [2], [3], [9], [10], [12], [13], [14], [15], [16] and [17].

Theorem 1 is proved in Section 2 below, Theorem 2 is proved in Section 3, and
Theorem 3 is proved in Section 4.

It is natural to take advantage of translation invariance of Lm in the x variables
to calculate the partial Fourier transform of the propagator or, in more general sit-
uations, to construct a parametrix; this approach is used, in particular, in [12], [16]
and [19]. In Section 5 we calculate the partial Fourier transform of the propagator
and of the Green’s function for the associated degenerate elliptic operator and find
the relationship between the two. This provides a check on the results in Sections 2
and 3.

The calculations in Section 5 apply equally well to the generalized degenerate
elliptic operator and generalized degenerate wave operator

dt

dt2
−t2k−2T and

dt

dt2
+t2k−2T,

where T is any nonnegative selfadjoint operator. We obtain a Green’s function for
the first of these operators and a propagator for the second. In Theorem 4 we relate
the two via analytic continuation in the variable t.

Having computed Green’s functions and propagators and also their partial
Fourier transforms, in Section 6 we obtain formulas (some possibly new) for some
integral transforms of certain combinations of Bessel functions and modified Bessel
functions.

2. Proof of Theorem 1

We assume throughout this section that s �=0.
The degenerate elliptic operator

L =
∂2

∂t2
+t2k−2

(
∂2

∂x2
1

+
∂2

∂x2
2

)
(2.1)

has a unique Green’s function with pole at (y, s) that is homogeneous with respect
to the dilations

(x, t; y, s) �−! (λx, λkt; λy, λks), λ> 0.
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Up to a multiplicative constant, this Green’s function is the algebraic function

K0(x, t; y, s)=
β+(R0, σ)2−β−(R0, σ)2

√
R2

0−σ2
[
β+(R0, σ)2+β−(R0, σ)2−2st

]1/2
,(2.2)

where

R0 = R0(x−y, t; s)=
t2k+s2k+k2|x−y|2

2
, σ = |st|k;

see [5]. Note that β+β−=σ1/k=|st|, so

β2
++β2

−−2st = β2
++β2

−−sgn (st)β+β− = [β+−sgn (st)β−]2.

Therefore K0 can be written in the form

K0(x, t; y, s)=
β+(R0(x−y, t, s), σ(s, t))+sgn (st)β−(R0(x−y, t, s), σ(t, s))√

R0(x−y, t, s)2−σ(t, s)2
.(2.3)

We modify the operator (2.1) by taking xj to eiθ/2xj and ∂/∂xj to e−iθ/2∂/∂xj,
0≤θ≤π. This gives the operator

Lθ =
∂2

∂t2
+e−iθ t2k−2

(
∂2

∂x2
1

+
∂2

∂x2
2

)

and the function Kθ(t, x; y, s) given by (2.3) with R0 replaced by

Rθ(t, x−y; s)=
t2k+s2k+eiθk2|x−y|2

2
.

The limit case Lπ is the operator L2 of (1.2).

Lemma 1. For 0<θ<π, the function Kθ is smooth except at t=s and x=y.

Proof. Let

f±(R, σ)= R±
√

R2−σ2, R≥ σ > 0,

and consider the continuations for ImR>0. If f±(R)=a∈R then R=(a2+σ2)/2a,
so R is real. It follows that Im f±(R, σ) has fixed sign on the upper half plane, and
it can be seen that the sign of ± Im f± is positive. The same is true for β±, which
is defined using the principal branch of the root.

A singularity can occur only where R2=σ2, which does not happen for x �=y,
since x �=y implies that R is in the upper half plane. If x=y, then

4(R2−σ2)= (t2k+s2k)2−4(st)2k = (|t|k+|s|k)2(|t|k−|s|k)2.
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This vanishes only if |t|=|s|. But for st<0, fix R �=0 and assume that

ε =
√

1−σ2/R2 −! 0.

Then

Kθ =
R1/2k

R

(1+ε)1/2k−(1−ε)1/2k

ε
=

R1/2k

R

(
1
k

+O(ε)
)

.

Therefore Kθ is only singular where x=y, |t|=|s|, and st>0. �

To evaluate the limit Kπ as θ!π we distinguish four regions, two of which
were identified above:

I: k2|x−y|2<(|t|k−|s|k)2;

II± : (|t|k−|s|k)2<k2|x−y|2<(|t|k+|s|k)2, ±st>0;

III: k2|x−y|2>(|t|k+|s|k)2.

As θ!π, continuation from region I leads to limiting values of R>σ, continuation
from regions II± leads to values −σ<R<σ, and continuation from region III leads
to values R<−σ.

The limiting values of
√

R2−σ2 are i
√

σ2−R2 for −σ<R<σ and −√
R2−σ2

for R<−σ. For R<−σ the limiting value of R±√
R2−σ2 is

R∓
√

R2−σ2 =−(|R|±
√

R2−σ2
)

Therefore the limiting values of β± as R!R are as in (1.3):

β±(R, σ)=

{
(R±i

√
σ2−R2)1/2k, −σ≤R≤σ;

e±iπ/2k β±(|R|), R≤−σ.

In the region R2<σ2,

β+(R, σ)= σ1/2k[cos(α/2k)+i sin(α/2k)], α = arccos(R/σ).

It follows that the real parts ReKπ of the limiting values of Re Kθ are

β+(R, σ)+sgn (st)β−(R, σ)√
R2−σ2

in I;

0 in II+;

σ1/2k sin(α/2k)√
σ2−R2

, in II−;

− cos(π/2k)
β+(|R|, σ)+sgn (st)β−(|R|, σ)√

R2−σ2
in III.
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The imaginary parts ImKπ of the limiting values are

0 in I;

−σ1/2k cos(α/2k)√
σ2−R2

, in II+;

0 in II−;

− sin(π/2k)
β+(|R|, σ)−sgn (st)β−(|R|, σ)√

R2−σ2
in III.

Lemma 2. The limiting value Kπ is locally integrable.

Proof. It is enough to show that 1/
√

R2−σ2 is locally integrable for s �=0. At
points where R2+σ2 �=0 the gradient of R2−σ2 is not zero, so 1/

√
R2−σ2 has an

integrable singularity. At R=σ=0 we have x �=0, so the gradient of R and the
gradient of S=st are independent. Therefore the integral of 1/

√
R2−σ2 near such

a point is dominated by
∫ 1

0

∫ Sk

0

dR dS√
S2k−R2

+
∫ 1

0

∫ 1

Sk

dR dS√
R2−S2k

=
∫ 1

0

arcsin 1 dS+
∫ 1

0

arcoshS−k dS

which is finite, since arcoshS−k∼−k log S as S!0. �

Lemma 3. L2Kπ=0 (as distribution) except possibly at x=0, t=s.

Proof. It follows from estimates like those in the proof of Lemma 2 that Kθ

converges in L1
loc to Kπ as θ!π, so Kθ also converges as distribution. The identity

LθKθ=0 holds at θ=0, except possibly at the singularity at x=y and t=s. By
continuity this identity continues to be valid for 0<θ<π, and therefore it is valid
in the limit θ=π. �

Since L2 has real coefficients, both the real and imaginary parts of Kπ are
annihilated by L2 away from the pole, and therefore are candidates for propagator,
as are linear combinations of the two. On general principles, the support of the
propagator should be the closure of the region I for st>0 and lie in the closure of
the union of region I and region II− for st<0. However, according to Lemma 2, no
nontrivial linear combination of the real and imaginary parts will eliminate region
III. To do so we take advantage of the fact that s is simply a parameter in the
equation L2Kπ=0. Replacing s by −s leaves R and σ unchanged. The combination

W (x, t; y, s)= Re Kπ(x, t; y, s)−cot(π/2k) Im Kπ(x, t; y,−s)(2.4)

is annihilated by L2 away from x=y and t=±s. Lemma 2 implies that the support
of W is precisely the closure of the union of region I and region II−. It can be
checked that the values of W are those given in (1.4)–(1.6).
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Proof of Theorem 1. We have observed that L2W =0 except possibly at x=y

and t=±s. However Im Kπ(x, t, y,−s) vanishes identically near x=y and t=−s, so
taking the combination (2.4) does not introduce a new singularity at that point;
thus L2W =0 at x=y and t=−s.

To complete the proof we need to check the behavior of

u(x, t)=
∫

Rm

W (t, x; y, s)f(y) dy.

as t!s, where f is a test function. For st>0 this is
∫

σ<R

β+(R, σ)+β−(R, σ)√
R2−σ2

f(y) dy(2.5)

with 2R=t2k+s2k−k2|x−y|2 and σ=(st)k.

Lemma 4. As t!s �=0, the integral (2.5) is

4π

k
|t−s| f(x)+O((t−s)2).

Proof. Up to terms of higher order in t−s we have R≈s2k, R+σ≈2s2k, and

2(R−σ)= (tk−sk)2−k2r2 ≈ k2[s2k−2(t−s)2−r2],

2
√

R2−σ2 ≈ k|s|k[s2k−2(t−s)2−r2]1/2,

where r=|x−y|. Therefore, on the support of W as t!s, β+(R, σ)≈|s|, β−(R, σ)≈0,
and

W (t, x; y, s)≈ 2|s|
k|s|k√A2−r2

, A= |s|k−1|t−s|.

It follows that as t!s, up to higher powers of t−s we have
∫

W (t, x; y, s) f(x−y) dy≈ 2f(x)
k|s|k−1

∫

r<A

dy√
A2−r2

=
2f(x)
k|s|k−1

∫ A

0

2πrdr√
A2−r2

=
2f(x)
k|s|k−1

·2πA=
4πf(x)

k
|t−s|.

Differentiation of (2.5) with respect to t gives sgn (t−s)4πf(x)/k. This con-
firms the normalization in Theorem 1: the propagator is

W2(t, x; s, y)= sgn (t−s)
k

4π
W (t, x; y, s). �
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3. Proof of Theorem 2

Up to a multiplicative constant, for even m the Green’s function for the degen-
erate elliptic operator (1.1) with pole at (y, s) is

Km0(x, t; y, s)= σ1/2k

(
1
R

∂

∂σ

)(m−2)/2

[σ(m−2)/2−1/2kK0(x, t; y, s)];(3.1)

see [5]; here K0 is defined by (2.2) or (2.3).
We showed in Section 2 that the function Kθ converges in the sense of dis-

tributions to Kπ, considered now as a function of R and σ. Therefore derivatives
converge in the sense of distributions. Using the analogous notation we define Kmθ,
0<θ<π, so Kmθ converges as distribution to a limit Kmπ as θ!π.

The degenerate elliptic operator (1.1) annihilates Km0 away from the pole,
and again this persists under the continuation to the degenerate hyperbolic case.
However, because of the division by R the limit appears to have new singularities
at R=0 in the region II−. In fact there are no such new singularities in this region.

Lemma 5. The distribution Kmπ is analytic in II−.

Proof. For σ>0 and R≈0, the function

R−(m−2)/2 (R+i
√

σ2−R2)1/2k+(R−i
√

σ2−R2)1/2k

√
σ2−R2

= R−(m−2)/2σ−1+1/2k (η+i
√

1−η2)1/2k+(η−i
√

1−η2)1/2k

√
1−η2

, η =
R

σ
,

has a convergent expansion of the form

R−(m−2)/2
∞∑

j=0

aj σ−1+1/2kηj =
∞∑

j=0

aj σ−1−j+1/2kRj−(m−2)/2.(3.2)

With the factor R−(m−2)/2 removed, the operator that acts on K0 in (3.1) can be
rewritten as

σ1/2k

(
∂

∂σ

)(m−2)/2

σ(m−1)/2σ−1/2k = σ1/2k

(m−2)/2∏

j=1

(Dσ+j)σ−1/2k,(3.3)

where Dσ=σ∂/∂σ. Now σ1/2kDσσ−1/2k=Dσ−1/2k, so the operator (3.3) is

(m−2)/2∏

j=1

(
Dσ+j− 1

2k

)
.(3.4)
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The operator D+j−1/2k kills σ−j+1/2k . Therefore the operator (3.4) kills the
terms up to j=−1+(m−2)/2 in the expansion (3.2), which leaves only terms with
nonnegative integer powers of R. �

The distribution Wm of (1.8) is, up to the factor cm of (1.9), obtained by
applying (3.3) to W . As t approaches s, W coincides with Kmπ restricted to
a neighborhood of the closure of the region I. To complete the proof of Theorem 2,
we need to consider the behavior of the formal integral

u(x, t)=
∫

Kmπ(x, t; y, s) f(y) dy

over such a neighborhood. In polar coordinates r=|x−y| and ω,

u(x, t)=
∫

Kmπ(x, t; y, s) f(y) rm−1 dr dω(3.5)

Here s is fixed. It will be convenient for the moment to take the independent
variables to be R, τ=R−σ and ω in place of t, r and ω. Since

k2r2 = tk+s2k−2R= (|t|k−|s|k)2−2τ

we have k2r dr=−dτ and (3.5) for t≈s is

u(x, t)=− 1
k2

∫

τ>0

R−(m−2)/2 M [Kπ(x−y, t; s)] f(y) rm−2 dτ dω,

where M is the differential operator

(m−2)/2∏

j=1

(
−σ

∂

∂τ
+j− 1

2k

)
,

with transpose

M t =
(m−2)/2∏

j=1

(
∂

∂τ
σ+j− 1

2k

)
,

Thus we may rewrite (3.5) once more as

u(x, t)=− 1
k2

∫

τ>0

R−(m−2)/2Kπ(x, t; y, s)M t[f(y) rm−2] dτ dω.(3.6)

Lemma 6. The integral (3.6) is

(−2)(m−2)/2 4πm/2

km−1
|t−s| f(x)+O((t−s)2)(3.7)

as t!s �=0.
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Proof. As in the proof of Theorem 1, on the domain of integration, as t!s �=0
we have

k2r2 ≤ k2|x−y|2 ≤ (tk−sk)2 ≈ k2s2k−2(t−s)2

so r=O(t−s). Therefore up to terms of higher order in t−s, we may assume that
all differentiations ∂/∂τ in (3.6) fall on

rm−2 =
[
(tk−sk)2−2τ

k2

](m−2)/2

,

leading to

[(m−2)/2] !
(
−2σ

k2

)(m−2)/2

= Γ(m/2)
(
−2σ

k2

)(m−2)/2

.

On the domain of integration R≈σ, so we may replace (3.6) by

−(−2)(m−2)/2 Γ(m/2)
km−2

∫

τ>0

W (x, t; y, s) dτ dω(3.8)

= (−2)(m−2)/2 Γ(m/2)
km−2

∫

σ<R

W (x, t; y, s) r dr dω

= (−2)(m−2)/2 Γ(m/2)σm−1

km−2

∫

σ<R

W (x, t; y, s) r dr,

where σm−1=2πm/2/Γ(m/2) is the volume of the unit (m−1)-sphere. As in
Lemma 4, up to terms of higher order in t−s the last integral is

2
k|s|k−1

∫

r<A

r dr√
A2−r2

=
2A

k|s|k−1
=

2|t−s|
k

.(3.9)

Combining (3.8) and (3.9), we obtain (3.7). �

Differentiation with respect to t gives

∂u

∂t
(x, t)= (−2)(m−2)/2 4πm/2

km−1
sgn (t−s) f(x)+O(t−s).

This confirms the normalization in Theorem 2.



202 Richard Beals and Yakar Kannai

4. Proof of Theorem 3

The assertion about the support of the propagator is a consequence of Lemma 2
and the construction of the function W of (2.12). As shown in Section 2, W can
only be singular where R2=σ2, which, in the support of W , is precisely the union
of the boundary of region I and the boundary of region II−. On the other hand,
the singular support clearly contains the boundary of the support, so we only need
to examine the common boundary of regions I and II−, i.e. the set where R=σ

and st≤0. The calculation in Lemma 1 shows that as one approaches the common
boundary from region I, W≈R−1+1/2k/k. However the evaluation (1.5) shows that
as one approaches the boundary from region II−, W!+∞.

This proves Theorem 3 for the case m=2. According to Lemma 3.1, passage
to the propagator for m>2 does not introduce any new singularities. Moreover the
derivatives that relate Wm to W2 are transverse to the boundaries of I and II−,
so they do not kill the singularities on those boundaries. Therefore the singular
support is the same as for m=2, and Theorem 3 is valid for general even m.

5. Partial Fourier transform and spectral resolution

As noted in the introduction, a natural way to attack the propagator is to
take advantage of translation invariance in the xj variables and compute the partial
Fourier transform

U|ξ|(t, s)= Ŵm(ξ, t; s)=
∫

Rm

e−ix·ξWm(x, t; 0, s) dx.(5.1)

This is to be the solution of the Cauchy problem

∂2U|ξ|
∂t2

+t2k−2|ξ|2U|ξ| = 0,(5.2)

U|ξ|(t, ξ; s)
∣∣
t=s

= 0 and
∂U|ξ|
∂t

(t, s)
∣∣∣
t=s

= 1.

Fix ξ for the moment, and use the Lommel transformation [11]:

U|ξ|(t)= |τ |1/2kF (τ), τ = sgn t
|ξ||t|k

k
.(5.3)

The differential equation in (5.2) for U|ξ| is equivalent to Bessel’s equation for F :

τ2F ′′(τ)+τF ′(τ)+
(

τ2− 1
4k2

)
F (τ)= 0.
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The solutions F are linear combinations of the Bessel functions J±1/2k [6], [18].
Therefore U|ξ| itself is a linear combination of the two functions

C|ξ|(t)=
( |τ |

2

)1/2k

J−1/2k(τ)=
∞∑

j=0

(−1)j

j! Γ(j+1−1/2k)

( |ξ|tk
2k

)2j

and

S|ξ|(t) = sgn t

( |τ |
2

)1/2k

J1/2k(τ)=
( |ξ|

2k

)1/k ∞∑

j=0

(−1)j t

j! Γ(j+1+1/2k)

( |ξ|tk
2k

)2j

,

which are even and odd with respect to t, respectively. The solution to (5.2) is

U|ξ|(t)=
1

∆|ξ|
[C|ξ|(s)S|ξ|(t)−S|ξ|(s)C|ξ|(t)],(5.4)

∆|ξ| = C|ξ|(s)S′(s)−S|ξ|(s)C′(s).

The Wronskian C|ξ|S′
|ξ|−S|ξ|C′

|ξ| is constant, so we may evaluate at s=0 to obtain

∆|ξ| = C|ξ|(0)S′
|ξ|(0)=

1
Γ(1−1/2k)

1
Γ(1+1/2k)

( |ξ|
2k

)1/k

=
sin(π/2k)

π/2k

( |ξ|
2k

)1/k

.

To see how this relates to analytic continuation from the Green’s function for
the degenerate elliptic operator, we note that the partial Fourier transform of the
Green’s function is the bounded Green’s function G|ξ|(t, s) with pole at t=s for the
operator

d2

dt2
−t2k−2|ξ|2.

The transformation (5.3) converts this to the modified Bessel’s equation

τ2F ′′(τ)+τ F ′(τ)−
(

τ2+
1

4k2

)
F (τ)= 0.

The solutions F are linear combinations of the modified Bessel functions I±1/2k [6],
[18]. Therefore G|ξ| is a piecewise linear combination of the even and odd functions

A|ξ|(t) =
( |τ |

2

)1/2k

I−1/2k(τ)=
∞∑

j=0

1
j! Γ(j+1−1/2k)

( |ξ|tk
2k

)2j

and

B|ξ|(t)= sgn t

( |τ |
2

)1/2k

I1/2k(τ)=
( |ξ|

2k

)1/k ∞∑

j=0

t

j! Γ(j+1+1/2k)

( |ξ|tk
2k

)2j

.
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The linear combinations L|ξ|(t)=A|ξ|(t)+B|ξ|(t) and R|ξ|(t)=A|ξ|(t)−B|ξ|(t) satisfy

lim
t!−∞L|ξ|(t)= 0 = lim

t!∞R|ξ|(t),

so the bounded Green’s function is

G|ξ|(t, s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
∆̂|ξ|

R|ξ|(s)L|ξ|(t), t<s,

1
∆̂|ξ|

L|ξ|(s)R|ξ|(t), t>s,

(5.5)

where ∆̂|ξ| is the Wronskian L|ξ|R′
|ξ|−L′

|ξ|R|ξ|. Again this may be evaluated at t=0:

∆̂|ξ| =−2A|ξ|(0)B′
|ξ|(0)=−2

1
Γ(1−1/2k)

1
Γ(1+1/2k)

( |ξ|
2k

)1/k

=−2∆|ξ|.

The continuation t �!ωt, ω=eiπ/2k, converts the degenerate elliptic operator to
a multiple of the degenerate hyperbolic operator. Note that

A|ξ|(ωt)= C|ξ|(t) and B|ξ|(ωt)= S|ξ|(t).

Therefore

L|ξ|(ωt)= C|ξ|(t)+ωS|ξ|(t) and R|ξ|(ωt)= C|ξ|(t)−ωS|ξ|(t).

For t<s

G|ξ|(ωt, ωs)=− 1
2∆|ξ|

R|ξ|(ωs)L|ξ|(ωt)

=− 1
2∆|ξ|

[C|ξ|(s)−ωS|ξ|(s)][C|ξ|(t)+ωS|ξ|(t)]

=− 1
2∆|ξ|

[C|ξ|(s)C|ξ|(t)−ω2S|ξ|(s)S|ξ|(t)+ωC|ξ|(s)S|ξ|(t)−ωS|ξ|(s)C|ξ|(t)],

while for t>s

G|ξ|(ωt, ωs)=− 1
2∆|ξ|

L|ξ|(ωs)R|ξ|(ωt)

=− 2
∆|ξ|

[C|ξ|(s)+ωS|ξ|(s)][C|ξ|(t)−ωS|ξ|(t)]

=− 1
2∆|ξ|

[C|ξ|(s)C|ξ|(t)−ω2S|ξ|(s)S|ξ|(t)−ωC|ξ|(s)S|ξ|(t)+ωS|ξ|(s)C|ξ|(t)].
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Combining this gives

ω−1G|ξ|(ωt, ωs)=− 1
2∆|ξ|

[ω−1C|ξ|(s)C|ξ|(t)−ωS|ξ|(s)S|ξ|(t)]

− sgn (t−s)
2∆|ξ|

[C|ξ|(s)S|ξ|(t)−S|ξ|(s)C|ξ|(t)].

A similar calculation, using the fact that C is even and S is odd, shows that

ω−1G|ξ|(ωt,−ωs)=− 1
2∆|ξ|

[ω−1C|ξ|(s)C|ξ|(t)+ωS|ξ|(s)S|ξ|(t)]

− sgn (t+s)
2∆|ξ|

[C|ξ|(s)S|ξ|(t)+S|ξ|(s)C|ξ|(t)].

Therefore

Re[ω−1G|ξ|(ωt, ωs)]=− sgn (t−s)
2∆|ξ|

[C|ξ|(s)S|ξ|(t)−S|ξ|(s)C|ξ|(t)]

− cos(π/2k)
2∆|ξ|

[C|ξ|(s)C|ξ|(t)−S|ξ|(s)S|ξ|(t)]

and

Im[ω−1G|ξ|(ωt,−ωs)] =− sin(π/2k)
2∆|ξ|

[C|ξ|(s)C|ξ|(t)−S|ξ|(s)S|ξ|(t)].

As a consequence we obtain

Re[ω−1G|ξ|(ωt, ωs)]−cot(π/2k) Im[ω−1G|ξ|(ωt,−ωs)] =− sgn(t−s)
2

U|ξ|(t, ξ; s).

This is in agreement with (2.4), because the normalization constants cm in Theo-
rems 1 and 2 are twice the negatives of the normalization constants (n=1) in [5]
(once one takes account of the factor (−1)(m−2)/2 that should have been included
in (4.15) and (1.11) of [5], from differentiating the denominator of Fn2k in [5]).

This derivation can be adapted to calculate the propagator and Green’s func-
tion with the x-Laplacian replaced by any nonpositive selfadjoint operator.

Theorem 4. Suppose T is a nonnegative selfadjoint operator with spectral
resolution

T =
∫ ∞

0

λ2 dEλ.
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Then the (bounded with respect to t) Green’s function for the generalized elliptic
operator

d2

dt2
−t2k−2T

is

KT (t, s)=
∫ ∞

0

Gλ(t, s) dEλ.

The propagator for the generalized wave operator

d2

dt2
+t2k−2T

is

WT (t, s)=
∫ ∞

0

Uλ(t, s) dEλ.

Here Gλ and Uλ are defined by (5.5) and (5.4), respectively, with |ξ|=λ. They are
related through analytic continuation in t and s by

WT (t, s)=−2sgn (t−s){Re[ω−1KT (ωt, ωs)]−cot(2π/k) Im[ω−1KT (ωt, ωs)]},
with ω=eiπ/2k.

6. Some integral transform formulas

Inverting (5.1) with m=2 and taking account of invariance under reflection
and rotation in ξ, we have

k

4π
W (x, t; 0, s)=

1
(2π)2

∫

R2
eix·ξUξ(t, s) dξ(6.1)

=
1

(2π)2

∫ ∞

0

∫ 2π

0

ei|x|λ cos θUλ(t, s)λdθ dλ

=
1
2π

∫ ∞

0

J0(|x|λ)Uλ(t, s)λdλ,

where Uλ is given by (5.4) with |ξ|=λ and W (x, t; 0, s) is defined in (1.4)–(1.6).
Both sides of (6.1) simplify considerably at s=0. In fact the region II− is void.

Moreover, in view of homogeneity we may normalize with t=k1/k. Then

2R(x, t; 0) = k2(1−|x|2), β+(x, t; 0) = R1/2k, σ = β−(x, t, 0)= 0,(6.2)
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so

W (x, t; 0, 0)=

[
k2(1−|x|)2]1/2k

k2(1−|x|2)/2
= 2k−2+1/k(1−|x|2)−1+1/2k, |x|2 < 1.

Also

Uλ(t, 0)=
π/2k

sin(π/2k)

(
λ

2k

)−1/k

Cλ(0)Sλ(t)

=
π/2k

sin(π/2k)

(
λ

2k

)−1/k 1
Γ(1−1/2k)

(
λ

2

)1/2k

J1/2k(λ)

= Γ(1+1/2k) k1/k

(
λ

2

)−1/2k

J1/2k(λ),

and (6.1) becomes a special case of a known formula [6]:

∫ ∞

0

J0(rλ)J1/2k(λ)λ1−1/2k dλ=

⎧
⎪⎨

⎪⎩

1
Γ(1/2k)

(
1−r2

2

)−1+1/2k

, 0≤r<1,

0, r>1.

(6.3)

Similarly, we have shown that the partial Fourier transform of the homogeneous
Green’s function Knmk for the degenerate elliptic operator (5.2) with n=1 and m=2
is G|ξ| of (5.5), so

− k

8π
K0(t, x; 0, s)=

1
(2π)2

∫

R2
eix·ξGξ(t, s) dξ(6.4)

=
1
2π

∫ ∞

0

J0(|x|λ)Gλ(t, s)λdλ

where Gλ is given by (5.5) with |ξ|=λ and K0 is defined in (2.2) or (2.3).
As before, both sides of (6.4) simplify when s=0. Again we normalize with

t=k1/k. Using the analogues of (6.2), we obtain

K0(x, t; 0, 0)= 2k−2+1/k(1+|x|2)−1+1/2k,

while

Gλ(t, 0)=− π/2k

2 sin(π/2k)

(
λ

2k

)−1/k

Aλ(0)[Aλ(t)−Bλ(t)]

=− π/2k

2 sin(π/2k)

(
λ

2k

)−1/k 1
Γ(1−1/2k)

(
λ

2

)1/2k

[I−1/2k(λ)−I1/2k(λ)].
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In the normalization [6] (which differs from that in [18]),

I−1/2k−I1/2k =
2 sin(π/2k)

π
K1/2k,

where Kν denotes the modified Bessel function of the third kind. Therefore equation
(6.4) becomes a special case of a known formula [6]:

∫ ∞

0

J0(rλ)K1/2k(λ)λ1−1/2k dλ=
1
2

Γ(1−1/2k)
(

1+r2

2

)−1+1/2k

.(6.5)
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