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Université Henri Poincaré
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1. Introduction

Let X be a complex projective variety with mild singularities. The aim of the minimal
model program is to produce a birational map X���X ′ such that the following conditions
hold:

(1) If KX is pseudo-effective, then X ′ is a good minimal model so that KX′ is semi-
ample; i.e. there is a morphism X ′!Z and KX′ is the pull-back of an ample Q-divisor
on Z.

(2) If KX is not pseudo-effective, then there exists a Mori–Fano fiber space X ′!Z,
in particular −KX′ is relatively ample.

(3) The birational map X���X ′ is to be constructed out of a finite sequence of
well-understood “elementary” birational maps known as flips and divisorial contractions.

The existence of flips was recently established in [BCHM], where it is also proved
that if KX is big then X has a good minimal model and if KX is not pseudo-effective then
there is a Mori–Fano fiber space. The focus of the minimal model program has therefore
shifted to varieties (or more generally log-pairs) such that KX is pseudo-effective but not
big.

The second author was partially supported by NSF research grant no. 0757897. During an impor-
tant part of the preparation of this article, the third author was visiting KIAS (Seoul); he wishes to
express his gratitude for the support and excellent working conditions provided by this institute. We
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this article.
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Conjecture 1.1. (Good minimal models) Let (X, Δ) be an n-dimensional Kawamata
log-terminal (klt) pair. If KX +Δ is pseudo-effective then (X, Δ) has a good minimal
model.

Note that in particular the existence of good minimal models for log-pairs would
imply the following conjecture (which is known in dimension �3; cf. [KMM] and [Ko]).

Conjecture 1.2. (Non-vanishing) Let (X, Δ) be an n-dimensional klt pair. If KX +Δ
is pseudo-effective then (KX +Δ)�0.

It is expected that Conjectures 1.1 and 1.2 also hold in the more general context of
log-canonical (or even semi-log-canonical) pairs (X, Δ). Moreover, it is expected that the
non-vanishing conjecture implies existence of good minimal models. The general strategy
for proving that Conjecture 1.2 implies Conjecture 1.1 is explained in [Fuj1]. One of the
key steps is to extend pluri-log-canonical divisors from a divisor to the ambient variety.
The key ingredient is the following statement.

Conjecture 1.3. (DLT extension) Let (X, S+B) be an n-dimensional divisorially
log-terminal (dlt) pair such that �S+B�=S, KX +S+B is nef and KX +S+B∼QD�0,
where

S⊂Supp(D)⊂Supp(S+B).

Then
H0(X,OX(m(KX +S+B)))−!H0(S,OS(m(KX +S+B)))

is surjective for all m>0 sufficiently divisible.

We remark that Conjecture 1.3 follows from Conjecture 1.1. In fact,

(X, Δ = S+B−εD)

is a klt pair for any 0<ε�1. By Conjecture 1.1, KX +Δ∼(1−ε)(KX +S+B) is semi-
ample. Let f : X!Z be the corresponding morphism. If dimZ=0, then D=0 and there
is nothing to prove. We may thus assume that dimZ>0. As S⊂Supp(D), it follows that
S does not dominate Z, and hence by [Fuj3, Theorem 6.3 (i)], the short exact sequence

0−!OX(m(KX +S+B)−S)−!OX(m(KX +S+B))−!OS(m(KX +S+B))−! 0

remains exact after pushing forward by f . By [Fuj3, Theorem 6.3 (ii)], we have that

H1(Z, f∗OX(m(KX +S+B)−S)) = 0,

and hence

H0(Z, f∗OX(m(KX +S+B)))−!H0(Z, f∗OS(m(KX +S+B)))
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is surjective and Conjecture 1.3 follows. The assumption Supp(D)⊂Supp(S+B) is nec-
essary for technical reasons. It is expected that it is not a necessary assumption. In
practice it is often easily satisfied (see for example the proof of Theorem 7.1).

In practice, one would like to use Conjecture 1.3 to prove Conjecture 1.1. We prove
the following result (cf. Theorem 7.1 for a more precise statement).

Theorem 1.4. Assume that Conjecture 1.3n holds (i.e. it holds in dimension n)
and that Conjecture 1.2n holds for all semi-log-canonical pairs. Then Conjecture 1.1n

holds.

The main purpose of this article is to prove that Conjecture 1.3 holds under the
additional assumption that (X, S+B) is purely log-terminal (plt); see Theorem 1.7 below.

Remark 1.5. Conjecture 1.2 is known to hold in dimension �3 (cf. [Fuj1], [Ka3],
[KMM] and [Mi]) and when KX +Δ is nef and σ(KX +Δ)=0 (cf. [N]). See also [A1]
and [Fuk] for related results. A proof for the case when X is smooth and Δ=0 has been
announced in [Si6] (this is expected to imply the general case; cf. Theorem 8.8).

The existence of good minimal models is known for canonical pairs (X, 0), where
KX is nef and (KX)=ν(KX) (cf. [Ka1]), when (KX)=dim(X) by [BCHM] and when
the general fiber of the Iitaka fibration has a good minimal model by [La].

Birkar has shown that Conjecture 1.2 (for log-canonical pairs with R-boundaries)
implies the existence of minimal models (resp. Mori–Fano fiber spaces) and the existence
of the corresponding sequence of flips and divisorial contractions cf. [Bi2, Theorem 1.4].
Moreover, by [G, Theorem 1.5], Conjectures 1.1n−1 and 1.2n−1 for klt pairs with Q-
boundaries imply Conjecture 1.2n−1 for log-canonical pairs with R-boundaries.

The existence of minimal models for klt 4-folds is proven in [Sh].

We also recall the following important consequence of Conjecture 1.1 (cf. [Bi2]).

Corollary 1.6. Assume that Conjecture 1.1n holds. Suppose that (X, Δ) is an
n-dimensional klt pair and let A be an ample divisor such that KX +Δ+A is nef. Then
any (KX +Δ)-minimal model program with scaling terminates.

Proof. If KX +Δ is not pseudo-effective, then the claim follows by [BCHM]. If
KX +Δ is pseudo-effective, then the result follows from [La].

We now turn to the description of the main result of this paper (cf. Theorem 1.7)
which we believe is of independent interest.

Let X be a smooth variety, and let S+B be a Q-divisor with simple normal crossings,
such that S=�S+B�,

KX +S+B ∈Psef(X) and S �⊂Nσ(KX +S+B).
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We consider a log-resolution π: X̃!X of (X, S+B), so that we have

KX̃ +S̃+B̃ = π�(KX +S+B)+Ẽ,

where S̃ is the proper transform of S. Moreover B̃ and Ẽ are effective Q-divisors, the
components of B̃ are disjoint and Ẽ is π-exceptional.

Following [HM2] and [P2], if we consider the extension obstruction divisor

Ξ :=Nσ(‖KX̃ +S̃+B̃‖S̃)∧B̃|S̃ ,

then we have the following result.

Theorem 1.7. (Extension theorem) Let X be a smooth variety and S+B be a
Q-divisor with simple normal crossings such that

(1) (X, S+B) is plt (i.e. S is a prime divisor with multS(S+B)=1 and �B�=0);
(2) there exists an effective Q-divisor D∼QKX +S+B such that

S⊂Supp(D)⊂Supp(S+B);

(3) S is not contained in the support of Nσ(KX +S+B) (i.e. for any ample divisor
A and any rational number ε>0, there is an effective Q-divisor D∼QKX +S+B+εA

whose support does not contain S).
Let m be an integer such that m(KX +S+B) is a Cartier divisor, and let u be a

section of m(KX +S+B)|S such that

Zπ�(u)+mẼ|S̃ �mΞ,

where we denote by Zπ�(u) the zero divisor of the section π�(u). Then u extends to a
section of m(KX +S+B).

The above theorem is a strong generalization of similar results available in the liter-
ature (see for example [BP], [C], [EP], [dFH], [HM1], [HM2], [P1], [P2],[Si3], [Si4], [Ta1],
[Ta2], [Ts] and [V]). The main and important difference is that we do not require any
strict positivity from B. The positivity of B (typically one requires that B contain an
ample Q-divisor) is of great importance in the algebraic approach as it allows us to make
use of the Kawamata–Viehweg vanishing theorem. It is for this reason that so far we
are unable to give an algebraic proof of Theorem 1.7.

To understand the connections between Theorem 1.7 and the results quoted above,
a first observation is that one can reformulate Theorem 1.7 as follows. Let (X, S+B) be
a plt pair such that there exists an effective divisor D∼QKX +S+B with the property
that S⊂Supp(D)⊂Supp(S+B). Let u be a section of the bundle m(KX +S+B)|S such
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that u⊗k⊗sA extends to X, for each k and each section sA of a sufficiently ample line
bundle A; then u extends to X. This result will be extensively discussed in §4 and §5;
here we mention very briefly a few key points.

We write as usual
m(KX +S+B) =KX +S+L,

where L:=(m−1)(KX +S+B)+B, and in this context we recall that the fundamental
results (cf. [Ma] and [OT]) allows us to extend the section u of (KX +S+L)|S , provided
that we can endow the bundles O(S) and L with metrics hS =e−ϕS and hL=e−ϕL ,
respectively, such that the following inequalities are satisfied:

ΘhL
(L) � 0 and ΘhL

(L) � 1
α

ΘhS
(S) (�)

(here α>1 is a real number) and such that u is L2 with respect to hL|S .
Assume first that the Q-bundle KX +S+B admits a metric h=e−ψ with semi-

positive curvature, and such that it is adapted to u,

ψ|S � 1
m

log |u|2+C,

i.e. the restriction of the metric h to S is well defined and less singular than the metric
induced by u. Our first contribution to the subject is to show that the hypothesis

S⊂Supp(D)⊂Supp(S+B)

in Theorem 1.7 arising naturally from algebraic geometry fits perfectly with the analytic
requirements (�), i.e. this hypothesis together with the existence of the metric h=e−ψ

can be combined in order to produce the metrics hS and hL as above. We refer to §4 for
details; we establish a generalization of the version of the Ohsawa–Takegoshi theorem
(cf. [O1], [O2] and [OT]) established in [Ma], [MV] and [V]. The overall idea is that the
existence of the divisor D is used as a substitute for the usual strict positivity of B.

We remark next that the existence of the metric h=e−ψ is a priori not clear; instead
we know that u⊗k⊗sA extends to X. The extension U

(km)
A of the section u⊗k⊗sA induces

a metric on the bundle
KX +S+B+

1
km

A,

and one could think of defining e−ψ by taking the limit as k!∞ of these metrics. Alas,
this cannot be done directly, since we do not have uniform estimates for the L2 norm
of the section U

(km)
A as k!∞. Prior to the limit process, we address this issue in §5:

by using an iteration process we are able to convert the qualitative information about
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the (extension properties of the) sections u⊗k⊗sA into a quantitative one. The iteration
process is a bit too technical to be presented here, but very vaguely, the important
idea is quite simple: assume that we know that some section of the Cartier divisor
(km(KX +S+B)+A)|S extends to X. Then (under some precise curvature conditions)
the extension with minimal L2/km-norm satisfies an “effective” estimate (cf. inequality
(59) in §5).

In conclusion, we show that a family of extensions can be constructed with a very
precise estimate of their norm, as k!∞. By a limit process justified by the estimates
we have just mentioned together with the classical results in [Le1], we obtain a metric
on KX +S+B adapted to u, and then the extension of u follows by our version of the
Ohsawa–Takegoshi extension theorem (which is applied several times in the proof of
Theorem 1.7).

In many applications the following corollary to Theorem 1.7 suffices.

Corollary 1.8. Let KX +S+B be a nef plt pair such that there exists an effective
Q-divisor D∼QKX +S+B with S⊂Supp(D)⊂Supp(S+B). Then

H0(X,OX(m(KX +S+B)))−!H0(S,OS(m(KX +S+B)))

is surjective for all sufficiently divisible integers m>0.
In particular, if ((KX +S+B)|S)�0, then the stable base locus of KX +S+B does

not contain S.

This paper is organized as follows. In §2 we recall the necessary notation, conventions
and preliminaries. In §3 we give some background on the analytic approach and in
particular we explain the significance of good minimal models in the analytic context.
In §4 we prove an Ohsawa–Takegoshi extension theorem which generalizes a result of
L. Manivel and D. Varolin. In §5 we prove the extension theorem (Theorem 1.7). Finally,
in §7 we prove Theorem 1.4.

2. Preliminaries

2.1. Notation and conventions

We work over the field of complex numbers C.
Let D=

∑
i diDi and D′=

∑
i d′iDi be Q-divisors on a normal variety X. The round-

down of D is given by �D�:=∑
i�di�Di, where �di�=max{z∈Z:z�di}. Note that by

definition we have |D|=|�D�|. We let

D∧D′ :=
∑

i

min{di, d
′
i}Di and D∨D′ :=

∑
i

max{di, d
′
i}Di.
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The Q-Cartier divisor D is nef if D·C�0 for any curve C⊂X. The Q-divisors D and
D′ are numerically equivalent, D≡D′, if and only if (D−D′)·C=0 for any curve C⊂X.
The Kodaira dimension of D is

(D) := tr degC

( ⊕
m�0

H0(X,OX(mD))
)
−1.

If (D)�0, then (D) is the smallest integer k>0 such that

lim inf
m!∞

h0(OX(mD))
mk

> 0.

We have (D)∈{−1, 0, 1, ...,dim X}. If (D)=dimX then we say that D is big. If
D≡D′ then D is big if and only if D′ is big. If D is numerically equivalent to a limit of
big divisors, then we say that D is pseudo-effective.

Let A be a sufficiently ample divisor and D be a pseudo-effective Q-divisor. Then
we define

σ(D) := max
{

k > 0 : lim sup
m!∞

h0(OX(mD+A))
mk

<∞
}

.

It is known that (D)� σ(D) and equality holds when σ(D)=dimX.
Let V ⊂|D| be a linear series. We let

Bs(V ) = {x∈X : x∈Supp(E) for all E ∈V }

be the base locus of V and

Fix(V ) =
∧

E∈V

E

be the fixed part of |V |. In particular |V |=|V −F |+F , where F =Fix(V ). If Vi⊂|iD| is
a sequence of (non-empty) linear ies such that Vi ·Vj⊂Vi+j for all i, j>0, then we let

B(V ) =
⋂
i>0

Bs(Bi)

be the stable base locus of V and

Fix(V ) =
⋂
i>0

Supp(Fix(Bi))

be the stable fixed part of V . When Vi=|iD| and (D)�0, we will simply write

Fix(D) =Fix(V ) and B(D) =B(V ).
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If D is pseudo-effective and A is an ample divisor on X, then we let

B−(D) =
⋃

ε∈Q>0

B(B+εA)

be the diminished stable base locus. If C is a prime divisor and D is a big Q-divisor, then
we let

σC(D) = inf{multC(D′) :D′∼Q D and D′ � 0},
and if D is pseudo-effective then we let

σC(D) = lim
ε!0

σC(D+εA).

Note that σC(D) is independent of the choice of A and is determined by the numerical
equivalence class of D. Moreover the set of prime divisors for which σC(D) �=0 is finite
(for this and other details about σC(D), we refer the reader to [N]). One also defines the
R-divisor

Nσ(D) =
∑
C

σC(D)C

so that the support of Nσ(D) equals
⋃

ε∈Q>0
Fix(B+εA).

If S is a normal prime divisor on a normal variety X, P is a prime divisor on S and
D is a divisor such that S is not contained in B+(D), then we define

σP (‖D‖S) = inf{multP (D′|S) :D′∼Q D,D′ � 0 and S �⊂Supp(D′)}.

If instead D is a pseudo-effective divisor such that S �⊂B−(D), then we let

σP (‖D‖S) = lim
ε!0

σP (‖D+εA‖S).

Note that σP (‖D‖S) is determined by the numerical equivalence class of D and inde-
pendent of the choice of the ample divisor A. One can see that the set of prime divisors
such that σP (‖D‖S)>0 is countable. For this and other details regarding σP (‖D‖S) we
refer the reader to [HK, §9]. We now define Nσ(‖D‖S)=

∑
P σP (‖D‖S)P . Note that

Nσ(‖D‖S) is a formal sum of countably many prime divisors on S with positive real
coefficients.

2.2. Singularities of the minimal model program

If X is a normal quasi-projective variety and Δ is an effective Q-divisor such KX +Δ
is a Q-Cartier divisor, then we say that (X, Δ) is a pair. We say that a pair (X, Δ) is
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log-smooth if X is smooth and the support of Δ has simple normal crossings. A log-
resolution of a pair (X, Δ) is a projective birational morphism f : Y!X such that Y is
smooth, the exceptional set Exc(f) is a divisor with simple normal crossings support and
f−1
∗ Δ+Exc(f) has simple normal crossings support. We will write

KY +Γ = f∗(KX +Δ)+E,

where Γ and E are effective with no common components. We say that (X, Δ) is Kawa-
mata log-terminal or klt (resp. log-canonical) if there is a log-resolution (equivalently, for
any log-resolution) of (X, Δ) such that the coefficients of Γ are <1 (resp. �1). We say
that (X, Δ) is divisorially log-terminal or dlt if the coefficients of Δ are �1 and there is
a log-resolution such that the coefficients of Γ−f−1

∗ Δ are <1. In this case, if we write
Δ=S+B, where S=

∑
i Si=�Δ�, then each component of a stratum SI =Si1∩...∩Sik

of
S is normal and (SI , ΔSI

) is dlt, where KSI
+ΔSI

=(KX +Δ)|SI
. If (X, Δ) is dlt and S

is a disjoint union of prime divisors, then we say that (X, Δ) is purely log-terminal or
plt. This is equivalent to requiring that (Si, ΔSi) is klt for all i. We will often assume
that S is prime.

2.3. The minimal model program with scaling

A proper birational map φ: X���X ′ is a birational contraction if φ−1 contracts no di-
visors. Let (X, Δ) be a projective Q-factorial dlt pair and φ: X���X ′ be a birational
contraction to a normal Q-factorial variety X ′. Then φ is (KX +Δ)-negative (resp.
non-positive) if a(E,X, Δ)<a(E,X ′, φ∗Δ) (resp. a(E,X, Δ)�a(E,X ′, φ∗Δ)) for all φ-
exceptional divisors. If moreover KX′ +φ∗Δ is nef then φ is a minimal model for (X, Δ)
(or equivalently a (KX +Δ)-minimal model). Note that in this case (by the negativity
lemma), we have that a(E,X, Δ)�a(E,X ′, φ∗Δ) for all divisors E over X, and (X ′, φ∗Δ)
is dlt. If moreover KX +φ∗Δ is semi-ample, then we say that φ is a good minimal model
for (X, Δ). Note that if φ is a good minimal model for (X, Δ), then

Supp(Fix(KX +Δ)) = Supp(Nσ(KX +Δ)) = Exc(φ) (1)

is the set of φ-exceptional divisors. Another important remark is that if φ is a minimal
model, then

H0(X,OX(m(KX +Δ)))∼= H0(Y,OY (m(KY +φ∗Δ))).

More generally the following fact holds.

Remark 2.1. If φ: X���Y is a birational contraction such that

a(E,X, Δ) � a(E,X ′, φ∗Δ)
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for every divisor E over X, then

H0(X,OX(m(KX +Δ)))∼= H0(Y,OY (m(KY +φ∗Δ)))

for all m>0.

Let f : X!Z be a proper surjective morphism with connected fibers from a Q-
factorial dlt pair (X, Δ) such that 
(X/Z)=1 and −(KX +Δ) is f -ample.

(1) If dimZ<dim X, then we say that f is a Fano–Mori contraction.
(2) If dim Z=dimX and dim Exc(f)=dimX−1, we say that f is a divisorial con-

traction.
(3) If dimZ=dimX and dim Exc(f)<dim X−1, we say that f is a flipping contrac-

tion.
If f is a divisorial contraction, then (Z, f∗Δ) is a Q-factorial dlt pair. If f is a

flipping contraction, then, by [BCHM], the flip f+: X+!Z exists, is unique and is given
by

X+ = ProjZ
⊕
m�0

f∗OX(m(KX +Δ)).

We have that the induced rational map φ: X���X+ is an isomorphism in codimension 1
and (X+, φ∗Δ) is a Q-factorial dlt pair.

Let (X, Δ) be a projective Q-factorial dlt pair (resp. a klt pair), and A be an ample
(resp. big) Q-divisor such that KX +Δ+A is nef. By [BCHM], we may run the minimal
model program with scaling of A, so that we get a sequence of birational contractions
φi: Xi���Xi+1, where X0=X, and of rational numbers ti�ti+1 such that the following
conditions are satisfied:

(1) if Δi+1 :=φi∗Δi and Hi+1=φi∗Hi, then (Xi, Δi) is a Q-factorial dlt pair (resp.
a klt pair) for all i�0;

(2) KXi
+Δi+tHi is nef for any ti�t�ti+1;

(3) if the sequence is finite, i.e. i=0, 1, ..., N , then KXN
+ΔN +tNHN is nef or there

exists a Fano–Mori contraction XN!Z;
(4) if the sequence is infinite, then limi!∞ ti=0.
If the sequence is finite, we say that the minimal model program with scaling ter-

minates. Conjecturally this is always the case.

Remark 2.2. Note that it is possible that ti=ti+1. Moreover, it is known that there
exist infinite sequences of flops (cf. [Ka4]), i.e. (KX +Δ)-trivial maps.

Remark 2.3. Note that if KX +Δ is pseudo-effective then the support of Nσ(KX +Δ)
contains finitely many prime divisors and it coincides with the support of

Fix(KX +Δ+εA)
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for any 0<ε�1 (cf. [N]). It follows that if the sequence of flips with scaling is infinite,
then Nσ(KXi +Δi)=0 for all i�0.

Theorem 2.4. If one of the following conditions is satisfied :
(1) no component of �S� is contained in B−(KX +Δ) (which happens e.g. if KX +Δ

is big and klt);
(2) KX +Δ is not pseudo-effective;
(3) (X, Δ) has a good minimal model ;

then the minimal model program with scaling terminates.

Proof. See [BCHM] and [La].

Remark 2.5. It is important to observe that in [BCHM] the above results are dis-
cussed in the relative setting. In particular it is known that if (X, Δ) is a klt pair and
π: X!Z is a birational projective morphism, then (X, Δ) has a good minimal model
over Z. More precisely, there exists a finite sequence of flips and divisorial contractions
over Z giving rise to a birational contraction φ: X���X ′ over Z such that KX′ +φ∗Δ
is semi-ample over Z (i.e. there is a projective morphism q: X ′!W over Z such that
KX′ +φ∗Δ∼Qq∗A, where A is a Q-divisor on W which is ample over Z).

Remark 2.6. It is known that the existence of good minimal models for pseudo-
effective klt pairs is equivalent to the following conjecture (cf. [GL]): If (X, Δ) is a
pseudo-effective klt pair, then σ(KX +Δ)= (KX +Δ).

Suppose in fact that (X, Δ) has a good minimal model, say (X ′, Δ′) and let

f : X ′−!Z = ProjR(KX′ +Δ′)

be such that KX′ +Δ′=f∗A for some ample Q-divisor A on Z. Following [N, Chapter V],
we have that

σ(KX +Δ) = σ(KX′ +Δ′) = dim Z = (KX′ +Δ′) = (KX +Δ).

Conversely, assume that

σ(KX +Δ) = (KX +Δ) � 0.

If σ(KX +Δ)=dimX, then the result follows from [BCHM]. If σ(KX +Δ)=0, then by
[N, V.1.11], we have that KX +Δ is numerically equivalent to Nσ(KX +Δ). By [BCHM]
(cf. Remark 2.3), after finitely many steps of the minimal model program with scaling, we
may assume that Nσ(KX′ +Δ′)=0, and hence that KX′ +Δ′≡0. Since (KX +Δ)=0,
we conclude that KX′ +Δ′∼Q0, and hence (X, Δ) has a good minimal model. Assume
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now that 0< σ(KX +Δ)<dim X. Let f : X!Z=ProjR(KX +Δ) be a birational model
of the Iitaka fibration with very general fiber F . By [N, Chapter V], we have that

σ(KX +Δ) = σ(KF +Δ|F )+dimZ,

but since dim Z= (KX +Δ), we have that σ(KF +Δ|F )=0. Thus (F, Δ|F ) has a good
minimal model. By [La], (X, Δ) has a good minimal model.

Recall the following result due to Shokurov known as “special termination”.

Theorem 2.7. Assume that the minimal model program with scaling for klt pairs of
dimension �n−1 terminates. Let (X, Δ) be a Q-factorial n-dimensional dlt pair and A

be an ample divisor such that KX +Δ+A is nef. If φi: Xi���Xi+1 is a minimal model
program with scaling, then φi is an isomorphism on a neighborhood of �Δi� for all i�0.

If moreover KX +Δ≡D�0 and the support of D is contained in the support of �Δ�,
then the minimal model program with scaling terminates.

Proof. See [Fuj2].

We will also need the following standard results about the minimal model program.

Theorem 2.8. (Length of extremal rays) Let (X, Δ) be a log-canonical pair, (X, Δ0)
be a klt pair and f : X!Z be a projective surjective morphism with connected fibers such
that 
(X/Z)=1 and −(KX +Δ) is f-ample.

Then there exists a curve Σ contracted by F such that

0 <−(KX +Δ)·Σ � 2 dim X.

Proof. See for example [BCHM, Theorem 3.8.1].

Theorem 2.9. Let f : X!Z be a flipping contraction and φ: X���X+ be the cor-
responding flip. If L is a nef and Cartier divisor such that L≡Z 0, then so is φ∗L.

Proof. Easy consequence of the cone theorem, see e.g. [KM, Theorem 3.7].

2.4. A few analytic preliminaries

We collect here some definitions and results concerning (singular) metrics on line bundles,
which will be used in the sections that follow. For a more detailed presentation and
discussion, we refer the reader to [D1].

Definition 2.10. Let L!X be a line bundle on a compact complex manifold. A
singular Hermitian metric hL on L is given in any trivialization θ: L|Ω!Ω×C by

|ξ|2hL
:= |θ(ξ)|2e−ϕL(x), ξ ∈Lx,

where ϕL∈L1
loc(Ω) is the local weight of the metric hL and hL=e−ϕL .
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The difference between the notions of smooth and singular metrics is that in the
latter case the local weights are only assumed to satisfy a weak regularity property. The
hypothesis ϕL∈L1

loc(Ω) is needed in order to define the curvature current of (L, hL) by

ΘhL
(L)|Ω :=

√−1
2π

∂∂̄ϕL.

If the local weights ϕL of hL are plurisubharmonic (“psh” for short; see [D1] and the
references therein), then we have ΘhL

(L)�0; conversely, if we know that ΘhL
(L)�0,

then each ϕL coincides almost everywhere with a psh function.
We next state one of the important properties of the class of psh functions, which

will be used several times in the proof of Theorem 1.7. Let β be a C∞-form of (1, 1)-type,
such that dβ=0. Let τ1 and τ2 be two functions in L1(X), such that

β+
√−1∂∂̄τj � 0

on X, for each j=1, 2. We define τ :=max{τ1, τ2}, and then we have

β+
√−1∂∂̄τ � 0

on X (we refer, e.g., to [D3] for the proof).

2.5. Examples

One of the best known and useful examples of singular metrics appears in the context
of algebraic geometry: we assume that L⊗m has some global holomorphic sections, say
{σj}j∈J . Then there is a metric on L, whose local weights can be described by

ϕL(x) :=
1
m

log
∑
j∈J

|fj(x)|2,

where the holomorphic functions {fj}j∈J⊂O(Ω) are the local expressions of the global
sections {σj}j∈J . The singularities of the metric defined above are of course the common
zeros of {σj}j∈J . One very important property of these metrics is the semi-positivity of
the curvature current, that is

ΘhL
(L) � 0,

as it is well known that the local weights induced by the sections {σj}j∈J above are psh.
If the metric hL is induced by one section σ∈H0(X, L⊗m) with zero set Zσ, then we
have that

ΘhL
(L) =

1
m

[Zσ],



216 j.-p. demailly, c. d. hacon and m. păun

and hence the curvature is given (up to a multiple) by the current of integration over the
zero set of σ. From this point of view, the curvature of a singular Hermitian metric is a
natural generalization of an effective Q-divisor in algebraic geometry.

A slight variation on the previous example is the following. Let L be a line bundle
which is numerically equivalent to an effective Q-divisor

D =
∑

j

νjWj .

Then D and L have the same first Chern class, and hence there is an integer m>0 such
that L⊗m=OX(mD)⊗
⊗m, for some topologically trivial line bundle 
∈Pic0(X).

In particular, there exists a metric h� on the line bundle 
 whose curvature is equal
to zero (i.e. the local weights ϕ� of h� are real parts of holomorphic functions). Then
the expression

ϕ�+
∑

j

νj log |fj |2

(where fj is the local equation of Wj) is the local weight of a metric on L; we call it the
metric induced by D (although it depends on the choice of h�).

The following result is not strictly needed in this article, but we mention it because
we feel that it may help to understand the structure of the curvature currents associated
with singular metrics.

Theorem 2.11. ([Si1]) Let T be a closed positive current of (1, 1)-type. Then we
have

T =
∑
j�1

νj [Yj ]+Λ,

where the νj are positive real numbers, {Yj}j�1 is a (countable) family of hypersurfaces
of X and Λ is a closed positive current whose singularities are concentrated along a
countable union of analytic subsets of codimension at least 2.

We will not make precise the notion of “singularity” appearing in the statement
above. We just mention that it is the analog of the multiplicity of a divisor. By The-
orem 2.11, we infer that if the curvature current of a singular metric is positive, then
it can be decomposed into a divisor-like part (however, notice that the sum above may
be infinite), together with a diffuse part Λ, which—very, very roughly—corresponds to
a differential form.

As we will see in §4 below, it is crucial to be able to work with singular metrics in
full generality: the hypothesis of all vanishing/extension theorems that we are aware of,
are mainly concerned with the diffuse part of the curvature current, and not the singular
one. Unless explicitly mentioned otherwise, all the metrics in this article are allowed to
be singular.
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2.6. Construction of metrics

We consider now the following setup. Let L be a Q-line bundle, satisfying the following
conditions:

(1) L admits a metric hL=e−ϕL with semi-positive curvature current ΘhL
(L);

(2) the Q-line bundle L is numerically equivalent to the effective Q-divisor

D :=
∑
j∈J

νjWj ,

where ν1>0 and the restriction of hL to the generic point of W1 is well defined (i.e. not
equal to ∞); we denote by hD the metric on L induced by the divisor D;

(3) if h0 is a non-singular metric on L, then we can write

hL = e−ψ1h0 and hD = e−ψ2h0,

where ψj are global functions on X; suppose that we have

ψ1 �ψ2;

working locally on some coordinate open set Ω⊂X, if we let ϕL be the local weight of
the metric hL, and for each j∈J we let fj be an equation of Wj∩Ω, then the above
inequality is equivalent to

ϕL �ϕ�+
∑
j∈J

νj log |fj |2 (†)

(cf. the above discussion concerning the metric induced by a Q-divisor numerically equiv-
alent to L).

In this context, we have the following simple observation.

Lemma 2.12. Let Ω⊂X be a coordinate open set. Define the function ϕW1∈L1
loc(Ω)

which is the local weight of a metric on OX(W1), via the equality

ϕL = ν1ϕW1 +ϕ�+
∑

j∈J\{1}
νj log |fj |2.

Then (†) is equivalent to the inequality

|f1|2e−ϕW1 � 1

at each point of Ω.

Proof. This is a consequence of the fact that log |fj |2 are the local weights of the
singular metric on OX(Wj) induced by the tautological section of this line bundle, com-
bined with the fact that L and OX(D) are numerically equivalent. The inequality above
is equivalent to (†).
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2.7. Mean-value inequality

We end this subsection by recalling a form of the mean-value inequality for psh functions,
which will be particularly useful in §5.

Let α be a smooth (1, 1)-form on X such that dα=0, and let f∈L1(X) be such that

α+
√−1∂∂̄f � 0. (+)

We fix the following quantity

I(f) :=
∫

X

ef dVω,

where dVω is the volume element induced by a metric ω on X. We have the following
well-known result.

Lemma 2.13. There exists a constant C=C(X, ω, α) such that for any function
f∈L1(X) satisfying the condition (+) above we have

f(x) �C+log I(f) for all x∈X.

Proof. We consider a coordinate system z :={z1, ..., zn} defined on Ω⊂X and cen-
tered at some point x∈X. Let Br :={z :‖z‖<r} be the Euclidean ball of radius r, and
let dλ be the Lebesgue measure corresponding to the given coordinate system. Since X

is a compact manifold, we may assume that the radius r is independent of the particular
point x∈X.

By definition of I(f) we have

I(f) � 1
Vol(Br)

∫
z∈Br

ef(z)+C(X,ω) dλ,

where C(X, ω) takes into account the distortion between the volume element dVω and
the local Lebesgue measure dλ, together with the Euclidean volume of Br.

We may assume the existence of a function gα∈C∞(Ω) such that α|Ω=
√−1∂∂̄gα.

By (+), the function f+gα is psh on Ω. We now modify the inequality above as

I(f) � 1
Vol(Br)

∫
z∈Br

ef(z)+gα(z)+C(X,ω,α) dλ.

By the concavity of the logarithm, combined with the mean-value inequality applied to
f+gα, we infer that

log I(f) � f(x)−C(X, ω, α),

where the (new) constant C(X, ω, α) only depends on the geometry of (X, ω) and on
a finite number of potentials gα (because of the compactness of X). The proof of the
lemma is therefore finished. A last remark is that the constant “C(X, ω, α)” is uniform
with respect to α: given δ>0, there exists a constant C(X, ω, α, δ) such that we can take
C(X, ω, α′):=C(X, ω, α, δ) for any closed (1, 1)-form α′ such that ‖α−α′‖<δ.
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3. Finite generation of modules

According to Remark 2.6, in order to establish the existence of good minimal models for
pseudo-effective klt pairs it suffices to show that

σ(KX +Δ) = (KX +Δ).

In this section we will provide a direct argument for the equality above in the case where
Δ is big. Even if this result is well known to experts and implicit in some of the literature,
our point of view is slightly different (see however [CL] for a related point of view), and
it turns out to be very useful as a guiding principle for the arguments that we will invoke
in order to prove Theorem 1.7.

Let X be a smooth, projective variety, and let Δ be a big Q-divisor such that (X, Δ)
is klt. Analytically, this just means that Δ can be endowed with a metric hΔ=e−ϕΔ whose
associated curvature current dominates a metric on X, and such that e−ϕΔ∈L1

loc(X). To
be precise, what we really mean at this point is that the line bundle associated with d0Δ
can be endowed with a metric whose curvature current is greater than a Kähler metric,
and whose d0-th root is hΔ.

Let A⊂X be an ample divisor. We consider the vector space

M :=
⊕

m∈d0N

H0(X,OX(m(KX +Δ)+A)),

which is an R-module, where

R :=
⊕

m∈d0N

H0(X,OX(m(KX +Δ))).

In this section we will discuss the following result.

Proposition 3.1. M is a finitely generated R-module.

Since the choice of the ample divisor A is arbitrary, the above proposition implies
that we have σ(KX +Δ)= (KX +Δ).

We provide a sketch of the proof of Proposition 3.1 below. As we have already men-
tioned, the techniques are well known, so we will mainly highlight the features relevant
to our arguments. The main ingredients are the finite generation of R, coupled with the
extension techniques originated in [Si3] and Skoda’s division theorem [Sk].

Sketch of proof of Proposition 3.1. We start with some reductions. First, we may
assume that σ(KX +Δ)�0 and hence that (KX +Δ)�0, cf. [BCHM]. Next, we may
assume the following facts:

• There exists a finite set of normal crossing hypersurfaces {Yj}j∈J of X such that

Δ =
∑
j∈J

νjYj +AΔ, (2)
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where 0�νj <1 for any j∈J , and AΔ is an ample Q-divisor. This can be easily achieved
on a modification of X.

• Since the algebra R is generated by a finite number of elements, we may assume
that it is generated by the sections of m0(KX +Δ), where m0 is sufficiently large and
divisible. The corresponding metric of KX +Δ (induced by the generators of R) is
denoted by hmin=e−ϕmin (cf. the construction recalled in §2.5; see [D3] for a more detailed
presentation). Hence, we may assume that

Θhmin(KX +Δ) =
∑

j

aj
min[Yj ]+Λmin (3)

(after possibly replacing X by a further modification). In relation (3) above, we can take
the set {Yj}j∈J to coincide with the one in (2) (this is why we must allow some of the
coefficients νj and aj

min to be equal to zero). Λmin denotes a non-singular semi-positive
(1, 1)-form.

For each integer m divisible enough, let Θm be the current induced by (the normal-
ization of) a basis of sections of the divisor m(KX +Δ)+A; it belongs to the cohomology
class associated with KX +Δ+A/m. We can decompose it according to the family of
hypersurfaces {Yj}j∈J as follows

Θm =
∑
j∈J

aj
m[Yj ]+Λm, (4)

where aj
m�0 and Λm is a closed positive current, which may be singular, despite the fact

that Θm is less singular than Θhmin(KX +Δ). Note that aj
m�aj

min.
An important step in the proof of Proposition 3.1 is the following statement.

Claim 3.2. We have
lim

m!∞ aj
m = aj

min (5)

for each j∈J (and thus Λm converges weakly to Λmin).

Proof. We consider an element j∈J . The sequence {aj
m}m�1 is bounded, and can

be assumed to be convergent, so we denote by aj
∞ its limit. We observe that we have

aj
∞ � aj

min (6)

for each index j. Arguing by contradiction, we assume that at least one of the inequalities
(6) above is strict.

Let Λ∞ be any weak limit of the sequence {Λm}m�1. We note that in principle Λ∞
will be singular along some of the Yj , even if the Lelong number of each Λm at the generic
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point of Yj is equal to zero for any j: the reason is that any weak limit of {Θm}m�1 is
expected to be at least as singular as Θmin.

In any case, we remark that given any positive real number t∈R, we have the
numerical identity

KX +
∑
j∈J

(νj +t(aj
min−aj

∞)−aj
∞)Yj +AΔ+tΛmin≡ (1+t)Λ∞. (7)

By using the positivity of AΔ to tie-break, we may assume that for all j∈J such that
aj
min �=aj

∞ the quantities

tj :=
1−νj +aj

∞
aj
min−aj∞

(8)

are distinct, and we moreover assume that the minimum is achieved for j=1. The relation
(7) with t=t1 becomes

KX +Y1+
∑

j∈J\{1}
τ jYj +AΔ≡ (1+t1)Λ∞, (9)

where τ j :=νj +t1(aj
min−aj

∞)−aj
∞<1 are real numbers, which can be assumed to be

positive (since we can “move” the negative ones to the right-hand side). But then we
have the following result (implicit in [P2]).

Theorem 3.3. There exists an effective R-divisor

D := a1
∞Y1+Ξ

linearly equivalent to KX +Δ and such that Y1 does not belong to the support of Ξ.

We will not reproduce here the complete argument of the proof, instead we highlight
the main steps of this proof.

• Passing to a modification of X, we may assume that the hypersurfaces {Yj}j∈J\{1}
are mutually disjoint and AΔ is semi-positive (instead of ample), such that

AΔ−
∑

j∈J\{1}
εjYj

is ample (for some 0<εj�1, where the corresponding Yj are exceptional divisors). We
set S :=Y1.

• We may assume that [Λm]=[Λ∞], i.e. the cohomology class is the same for any
m, but for “the new” Λm we only have

Λm �− 1
m

ωAΔ . (10)
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• The restriction Λm|S is well defined, and can be written as

Λm|S =
∑

j∈J\{1}

j

mYj |S +Λm,S .

• By induction, we obtain an effective R-divisor DS linearly equivalent to(
KX +S+

∑
j∈J\{1}

τ jYj +AΔ

)∣∣∣∣
S

,

whose order of vanishing along Yj |S is at least min{τ j , 
j
∞}. We note that in [P2] we

only obtain an effective R-divisor DS which is numerically equivalent to(
KX +S+

∑
j∈J\{1}

τ jYj +AΔ

)∣∣∣∣
S

.

We may however assume that DS is R-linearly equivalent to(
KX +S+

∑
j∈J\{1}

τ jYj +AΔ

)∣∣∣∣
S

by an argument due to [CL].
• The R-divisor DS extends to X by the “usual” procedure, namely Diophantine

approximation and extension theorems (see, e.g., [P2] and [HM2]). This last step ends
the discussion of the proof of Theorem 3.3.

Remark 3.4. The last bullet above is the heart of the proof of the claim. We stress
the fact that the factor AΔ of the boundary is essential, even if the coefficients τ j and
the divisor DS are rational.

An immediate Diophantine approximation argument shows that the divisor D pro-
duced by Theorem 3.3 should not exist: its multiplicity along Y1 is strictly smaller than
a1
min, and this is a contradiction.

The rest of the proof of Proposition 3.1 is based of the following global version of
the Skoda division theorem (cf. [Sk]), established in [Si5].

Let G be a divisor on X, and let σ1, ..., σN be a set of holomorphic sections of
OX(G). Let E be a divisor on X, endowed with a possibly singular metric hE =e−ϕE

with positive curvature current.

Theorem 3.5. ([Si5]) Let u be a holomorphic section of the divisor

KX +(n+2)G+E
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such that ∫
X

|u|2e−ϕE(∑
j |σj |2

)n+1 <∞ (11)

(we notice that the quantity under the integral sign is a global measure on X). Then
there exist sections u1, ..., uN of KX +nG+E such that

u =
∑

j

ujσj . (12)

This result together with Claim 3.2 prove the finite generation ofM, along the same
lines as in [D1]; we next provide the details.

Let m be a sufficiently big and divisible integer (to be specified in a moment), and let
u be a section of m(KX +Δ)+A. We recall that m0 denotes a positive integer such that
the metric on KX +Δ induced by the sections {σ1, ..., σN} of m0(KX +Δ) is equivalent
to ϕmin. We have

m(KX +Δ)+A = KX +(n+1)G+E,

where
G :=m0(KX +Δ)

and

E := Δ+(m−(n+1)m0−1)
(

KX +Δ+
1
m

A

)
+m0(n+1)+

1
m

A

are endowed respectively with the metrics ϕG induced by the sections {σ1, ..., σN} above
and

ϕE :=ϕΔ+(m−(n+1)m0−1)ϕm+m0(n+1)+
1
m

ϕA.

Here we denote by ϕm the metric on KX +Δ+A/m induced by the global sections of
OX(m(KX +Δ)+A). We next check that condition (11) is satisfied. Notice that

∫
X

|u|2e−ϕE(∑
j |σj |2

)n+1 �C

∫
X

e(m0(n+1)+1)ϕm−(n+1)m0ϕmin−ϕΔ dVω,

since we clearly have |u|2�Cemϕm (we skip the non-singular weight corresponding to A

in the expression above). The fact that (X, Δ) is klt, together with Claim 3.2, implies
that there exists some fixed index m1 such that we have∫

X

e(m0(n+1)+1)ϕm−(n+1)m0ϕmin−ϕΔ dVω <∞, (13)

as soon as m�m1. In conclusion, the relation (11) above holds true; hence, as long as
m�m1, Skoda’s division theorem can be applied, and Proposition 3.1 is proved.



224 j.-p. demailly, c. d. hacon and m. păun

Remark 3.6. As we have already mentioned, in the following sections we will show
that a consistent part of the proof of Proposition 3.1 is still valid in the absence of the
ample part AΔ. Here we highlight the properties of KX +Δ which will replace the strict
positivity. We consider the following context. Let

Δ≡
∑
j∈J

νj [Yj ]+ΛΔ (14)

be a Q-divisor, where 0�νj <1 and ΛΔ is a semi-positive form of (1, 1)-type. We assume
as always that the hypersurfaces Yj have simple normal crossings. The difference between
this setup and the hypothesis of Proposition 3.1 is that Δ is not necessarily big.

We assume that KX +Δ is Q-effective. Recall that, by [BCHM], the associated
canonical ring R(KX +Δ) is finitely generated. The reductions performed at the begin-
ning of the proof of Proposition 3.1 do not use AΔ. However, difficulties arise when we
come to the proof of Claim 3.2. Indeed, the assumption

aj
∞ <aj

min for some j ∈J

implies that we will have

KX +Y1+
∑

j∈J\{1}
τ jYj ≡ (1+t1)Λ∞, (15)

cf. (9), but in the present context the numbers τ j cannot be assumed to be strictly smaller
than 1. Nevertheless we have the following facts.

(a) The Q-divisor
KX +Y1+

∑
j∈J\{1}

τ jYj

is pseudo-effective, and

Y1 /∈Nσ

(
KX +Y1+

∑
j∈J\{1}

τ jYj

)
.

(b) There exists an effective R-divisor, say G:=
∑

i μiWi, which is R-linearly equiv-
alent to

KX +Y1+
∑

j∈J\{1}
τ jYj

such that
Y1⊂Supp(G)⊂{Yj}j∈J .
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The properties above are consequences of the fact that we have assumed that
Claim 3.2 fails to hold. They indicate that the Q-divisor

L :=KX +Y1+
∑

j∈J\{1}
τ jYj

has some kind of positivity: property (a) implies the existence of a sequence of metrics
hm=e−ϕm on the Q-line bundle L such that

Θhm
(L) =

√−1∂∂̄ϕm �− 1
m

ω, (16)

and this, combined with (b), shows that the line bundle OX(Y1) admits a sequence of
singular metrics gm :=e−ψ1,m such that

ϕm = μ1ψ1,m+
∑
i �=1

μi log |fWi |2, (17)

where we assume that W1=Y1 (see Lemma 2.12). So the curvature of (L, hm) is not just
bounded from below by −ω/m, but we also have

Θhm(L) �μ1Θgm(Y1) (18)

as shown by (17).
The important remark is that the relations (16) and (18) are very similar to the

curvature requirement in the geometric version of the Ohsawa–Takegoshi-type theorem
due to Manivel (cf. [Ma] and [D3]). In the following section we will establish the relevant
generalization. As for the tie-breaking issue (cf. (15)), we are unable to bypass it with
purely analytic methods.

4. A version of the Ohsawa–Takegoshi extension theorem

The main building block of the proof of the “invariance of plurigenera” (cf. [Si3] and
[Si4]) is given by the Ohsawa–Takegoshi theorem (cf. [OT] and [Be]). In this section, we
will prove a version of this important extension theorem, which will play a fundamental
role in the proof of Theorem 1.7.

Actually, our result is a slight generalization of the corresponding statements in the
articles quoted above, adapted to the setup described in Remark 3.6. For clarity of
exposition, we will change the notation as follows.

Let X be a projective manifold and let Y ⊂X be a non-singular hypersurface. We
assume that there exists a metric hY on the line bundle OX(Y ) associated with Y ,
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denoted by hY =e−ϕY with respect to any local trivialization, satisfying the following
conditions:

(i) If we denote by s the tautological section associated with Y , then

|s|2e−ϕY � e−α, (19)

where α�1 is a real number.
(ii) There are two semi-positively curved Hermitian Q-line bundles, say (G1, e

−ϕG1 )
and (G2, e

−ϕG2 ), such that
ϕY = ϕG1−ϕG2 (20)

(cf. (17) above).
Let F!X be a line bundle, endowed with a metric hF such that the following

curvature requirements are satisfied:

ΘhF
(F ) � 0 and ΘhF

(F ) � 1
α

ΘhY
(Y ). (21)

Moreover, we assume the existence of real numbers δ0>0 and C such that

ϕF � δ0ϕG2 +C; (22)

that is to say, the poles of the metric which has the “wrong” sign in the decomposition
(20) are part of the singularities of hF . Since ϕG2 is locally bounded from above, we may
always assume that δ0�1.

We denote by h̄Y =e−ϕY a non-singular metric on the line bundle corresponding
to Y . We have the following result.

Theorem 4.1. Let u be a section of the line bundle OY (KY +F |Y ) such that∫
Y

|u|2e−ϕF <∞ (23)

and such that the hypotheses (19)–(22) are satisfied. Then there exists a section U of the
line bundle OX(KX +Y +F ) with U |Y =u∧ds such that for every δ∈(0, 1] we have∫

X

|U |2e−δϕY −(1−δ)ϕY −ϕF �Cδ

∫
Y

|u|2e−ϕF , (24)

where the constant Cδ is given explicitly by

Cδ = C0(n)δ−2
(
max

X
|s|2e−ϕY

)1−δ

(25)

for some numerical constant C0(n) depending only on the dimension (but not on δ0 or
C in (22)).
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Perhaps the closest statement of this kind in the literature is due to Varolin, cf. [V];
in his article, the metric hY is allowed to be singular, but the weights of this metric are
assumed to be bounded from above. This hypothesis is not satisfied in our case; however,
the assumption (22) plays a similar role in the proof of Theorem 4.1.

Proof. We will closely follow the “classical” arguments and show that the proof goes
through (with a few standard modifications) in the more general setting of Theorem 4.1.
The main issue which we have to address is the regularization procedure. Although the
technique is more or less standard, since this is the key new ingredient we will provide a
complete treatment.

4.1. Regularization procedure

Let us first observe that every line bundle B over X can be written as a difference
B=OX(H1−H2) of two very ample divisors H1 and H2. It follows that B is trivial upon
restriction to the complement X\(H ′

1∪H ′
2) for any members H ′

1∈|H1| and H ′
2∈|H2|

of the corresponding linear systems. Therefore, one can find a finite family Hj⊂X of
very ample divisors, such that Y �⊂Hj and each of the line bundles under consideration
F , OX(Y ) and G⊗N

i (choosing N divisible enough so that G⊗N
i ∈Pic(X)) is trivial on

the affine Zariski open set X\H, where H=
⋃

j Hj . We also fix a proper embedding
X\H⊂Cm in order to regularize the weights ϕF and ϕY of our metrics on X\H. The
L2 estimate will be used afterwards to extend the sections to X itself.

The arguments which follow are first carried out on a fixed affine open set X\H
selected as above. In this respect, estimate (22) is then to be understood as valid only
with a uniform constant C=C(Ω) on every relatively compact open subset Ω�X\H. In
order to regularize all of our weights ϕF and ϕY =ϕG1−ϕG2 , respectively, we invoke the
following well-known result which enables us to employ the usual convolution kernel in
Euclidean space.

Theorem 4.2. ([Si2]) Given a Stein submanifold V of a complex analytic space M ,
there exist an open Stein neighborhood W⊃V of V , together with a holomorphic retract
r: W!V .

In our setting, the above theorem shows the existence of a Stein open set W⊂Cm,
such that X\H⊂W , together with a holomorphic retraction r: W!X\H. We use the
map r in order to extend the objects we have constructed on X\H; we define

ϕ̃F :=ϕF r, ϕ̃Gi
:=ϕGi

r and ϕ̃Y := ϕ̃G1−ϕ̃G2 . (26)
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Next we will use a standard convolution kernel in order to regularize the functions above.
We consider exhaustions

W =
⋃
k

Wk and X\H =
⋃
k

Xk (27)

of W by bounded Stein domains (resp. of X\H by the relatively compact Stein open
subsets Xk :=(X\H)∩Wk). Let

ϕF,ε := ϕ̃F ∗
ε: Wk −!R

be the regularization of ϕ̃F , where for each k we assume that ε�ε(k) is small enough, so
that the function above is well defined. We use similar notation for the regularization of
the other functions involved in the picture.

We next show that the normalization and curvature properties of the functions above
are preserved by the regularization process. In first place, the assumption ΘhF

(F )�0
means that ϕF is psh. Hence ϕF,ε�ϕF and we still have

|s|2e−ϕY,ε(z) � |s|2e−ϕY (z) � e−α � e−1 (19ε)

on Xk. (Here of course |s| means the absolute value of the section s viewed as a complex-
valued function according to the trivialization of OX(Y ) on X\H.) Further, (20) and
(21) imply that all functions

z �−!ϕF,ε(z), z �−!ϕGi,ε(z) and z �−!ϕF,ε(z)− 1
α

ϕY,ε(z) (21ε)

are psh on Xk, by stability of plurisubharmonicity under convolution. Finally, (22) leads
to

ϕF,ε � δ0ϕG2,ε+C(k) on Wk, (22ε)

by linearity and monotonicity of convolution.
In conclusion, the hypotheses of Theorem 4.1 are preserved by the particular reg-

ularization process we have described here. We show in the following subsection that
the “usual” Ohsawa–Takegoshi theorem applied to the regularized weights allows us to
conclude.

4.2. End of the proof of Theorem 4.1

We view here the section u of OY (KY +F |Y ) as an (n−1)-form on Y with values in F |Y .
Since F is trivial on X\H, we can even consider u as a complex-valued (n−1)-form on
Y ∩(X\H). The main result used in the proof of Theorem 4.1 is the following technical
version of the Ohsawa–Takegoshi theorem.
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Theorem 4.3. ([D3]) Let M be a weakly pseudo-convex n-dimensional manifold and
let f : M!C be a holomorphic function such that ∂f �=0 on {z :f(z)=0}. Consider two
smooth functions ϕ and 
 on M such that

√−1∂∂̄ϕ � 0 and
√−1∂∂̄ϕ � 1

α

√−1∂∂̄
,

and such that |f |2� :=|f |2e−��e−α, where α�1 is a constant. Then, given an (n−1)-form
γ on Mf :={z :f(z)=0}, there is an n-form Γ on M satisfying the following properties:

(a) Γ|Mf
=γ∧df ;

(b) we have ∫
M

|Γ|2e−�−ϕ

|f |2� log2 |f |2�
�C0(n)

∫
Mf

|γ|2e−ϕ,

where C0(n) is a numerical constant depending only on the dimension.

We apply the above version of the Ohsawa–Takegoshi theorem in our setting: for
each k and each ε�ε(k) there exists a holomorphic n-form Uk,ε on the Stein manifold
Xk such that ∫

Xk

|Uk,ε|2e−ϕY,ε−ϕF,ε

|s|2e−ϕY,ε log2(|s|2e−ϕY,ε)
�C0(n)

∫
Y ∩Xk

|u|2e−ϕF,ε (28)

and such that Uk,ε|Y ∩Xk
=u∧ds. Notice that ϕF,ε�ϕ̃F =ϕF on Y ∩Xk, and hence we

get the (ε, k)-uniform upper bound∫
Y ∩Xk

|u|2e−ϕF,ε �
∫

Y ∩(X\H)

|u|2e−ϕF . (29)

Our next task is to take the limit as ε!0 in the relation (28), while keeping k fixed at
first. To this end, an important observation is that∫

Xk

|Uk,ε|2e−δϕY,ε−(1−δ)ϕY −ϕF,ε �Cδ

∫
Y ∩(X\H)

|u|2e−ϕF (30)

for any 0<δ�1. Indeed, the function t �!tδ log2(t) is bounded from above by

e−2

(
2
δ

)2

� δ−2

when t belongs to the fixed interval [0, e−α]⊂[0, e−1], so that t(log t)2�δ−2t1−δ, and
hence, by (19ε), we have

e−ϕY,ε−ϕF,ε

|s|2e−ϕY,ε log2(|s|2e−ϕY,ε)
� δ2 e−ϕY,ε−ϕF,ε

|s|2(1−δ)e−(1−δ)ϕY,ε
. (31)
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We further observe that, by compactness of X, the continuous function

z �−! |s(z)|2(1−δ)e−(1−δ)ϕY

is bounded from above on X by

M1−δ =
(
max

X
|s|2e−ϕY

)1−δ

<∞,

and we can take Cδ=C0(n)M1−δδ−2. Therefore, (30) follows from (28) and (31). Let us
choose δ�δ0 for the moment. Since ϕY =ϕG1−ϕG2 , we see that (22ε) implies

δϕY,ε+(1−δ)ϕY +ϕF,ε � δϕG1,ε+(δ0−δ)ϕG2,ε+(1−δ)ϕY +C(k). (32)

The functions ϕG1,ε and ϕG2,ε are psh, and thus in particular uniformly bounded from
above on Xk by a constant independent of ε. Hence δϕY,ε+(1−δ)ϕY +ϕF,ε is uniformly
bounded from above by a constant C3(k, δ0) if we fix e.g. δ=δ0. By (30) the unweighted
norm of Uk,ε admits the bound ∫

Xk

|Uk,ε|2 �C4(k, δ0).

We stress here the fact that the constant is independent of ε. Therefore we can extract
a subsequence that is uniformly convergent on all compact subsets of Xk. Indeed, this
follows from the classical Montel theorem, which in turn is a consequence of the Cauchy
integral formula to prove equicontinuity (this is where we use the fact that C4(k, δ0) is
independent of ε), coupled with the Arzelà–Ascoli theorem. Let Uk be the corresponding
limit. Fatou’s lemma shows that we have the estimate∫

Xk

|Uk|2e−ϕY −ϕF

|s|2e−ϕY log2(|s|2e−ϕY )
�C0(n)

∫
Y ∩(X\H)

|u|2e−ϕF . (33)

If we let k!∞, we get a convergent subsequence Uk with U=limk!∞ Uk on

X\H =
∞⋃

k=1

Xk,

which is uniform on all compact subsets of X\H and such that∫
X\H

|U |2e−ϕY −ϕF

|s|2e−ϕY log2(|s|2e−ϕY )
�C0(n)

∫
Y ∩(X\H)

|u|2e−ϕF . (34)

We can reinterpret U as a section of (KX +Y +F )|X\H satisfying the equality

U |Y ∩(X\H) = u∧ds. (35)
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Then the estimate (34) is in fact an intrinsic estimate in terms of the Hermitian metrics
(i.e. independent of the specific choice of trivialization we have made, especially since H

is of measure zero with respect to the L2-norms). The proof of (30) also shows that∫
X\H

|U |2e−δϕY −(1−δ)ϕY −ϕF �Cδ

∫
Y ∩(X\H)

|u|2e−ϕF (36)

for every δ∈(0, 1]. In a neighborhood of any point x0∈H, the weight δϕY +(1−δ)ϕY +ϕF

expressed with respect to a local trivialization of F near x0 is locally bounded from
above by (32), if we take δ�δ0. We conclude that U extends holomorphically to X and
Theorem 4.1 is proved.

Remark 4.4. In the absence of hypothesis (22), the uniform bound arguments in the
proof of Theorem 4.1 collapse. In particular the limit U might acquire poles along H.

The way we are using the parameter δ0 during the proof above may be a little
bit confusing, so we offer here a few more explanations. Indeed, the presence of the
denominator in the L2-norm (28) of the local solutions Uk,ε shows that the unweighted
norm of this family of sections is bounded by a constant which may depend on δ0,
but it is independent of ε and k. Therefore, the said family is normal so that we can
extract a limit. Fatou’s lemma combined with the original estimate (28) show that the
inequality obtained for the limit (34) is independent of δ0. Hence the exact value of δ0

does not matter quantitatively, even if its existence is of fundamental importance for our
arguments.

We also remark that, in most of the applications, the denominator in Theorem 4.3
is simply ignored; in our proof, its presence is essential.

5. Proof of Theorem 1.7

In the present section, we will prove Theorem 1.7. Our proof relies heavily on Theo-
rem 4.1. However, in order to better understand the relevance of the technical statements
which follow (see Theorem 5.3 below), we first consider a particular case of Theorem 1.7.

Theorem 5.1. Let {S, Yj}j be a set of hypersurfaces of a smooth, projective manifold
X having normal crossings. Assume also that there exist rational numbers 0<bj <1 such
that KX +S+B is Hermitian semi-positive, where B=

∑
j bjYj and that there exists an

effective Q-divisor D:=
∑

j νjWj on X, numerically equivalent to KX +S+B, such that

S⊂Supp(D)⊂Supp(S+B).

Let m0 be a positive integer such that m0(KX +S+B) is a Cartier divisor. Then every
section u of the line bundle OS(m0(KS +B|S)) extends to X.
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Proof. Let h0=e−ϕ0 be a smooth metric on KX +S+B, with semi-positive curva-
ture. As in the introductory §2.3, we have

OX(N(KX +S+B))∼=OX(ND)⊗
N ,

where N is a sufficiently divisible positive integer and 
 is a line bundle on X, which
admits a metric h�=e−ϕ� whose curvature form is equal to zero.

We may assume that
ϕ0 �ϕ�+

∑
j

νj log |fWj |2 (37)

i.e., that h0 is less singular that the metric induced by the divisor
∑

j νjWj , simply by
adding a sufficiently large constant to the local weights of h0.

Assume that S=W1. We define a metric ϕS on the line bundle corresponding to S

such that the following equality holds

ϕ0 = ν1ϕS +ϕ�+
∑
j �=1

νj log |fWj
|2.

In order to apply Theorem 4.1, we write

m0(KX +S+B) =KX +S+B+(m0−1)(KX +S+B)

and we endow the line bundle corresponding to F :=B+(m0−1)(KX +S+B) with the
metric ϕF :=ϕB+(m0−1)ϕ0.

Then, we see that the hypotheses of Theorem 4.1 are satisfied, as follows.
• We have |fS |2e−ϕS �1 by the inequality (37) above.
• We have ΘhF

(F )�0, as well as ΘhF
(F )�ΘhS

(OX(S))/α, for any α�1/(m0−1)ν1.
In order to apply Theorem 4.1, we define

α := max
{

1,
1

(m0−1)ν1

}
(38)

and we rescale the metric hS by a constant as

ϕα
S :=ϕS +α.

Then we have |fS |2e−ϕα
S �e−α due to the first bullet above, and moreover the curvature

conditions
ΘhF

(F ) � 0 and ΘhF
(F ) � 1

α
Θhα

S
(OX(S))

are satisfied.
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• The (rescaled) weight ϕα
S can be written as the difference of two psh functions

ϕG1−ϕG2 , where

ϕG1 :=α+δ0ϕ0 and ϕG2 := δ0

(
ϕ�+

∑
j �=1

νj log |fWj |2
)

,

and δ0=1/ν1. We have

C+δ0

(
ϕ�+

∑
j �=1

νj log |fWj |2
)

�ϕF ,

by the assumption concerning the support of D.
We also have

∫
S
|u|2e−ϕF <∞, since (X, B) is klt and h0 is non-singular. Therefore,

by Theorem 4.1, the section u extends to X.

Remark 5.2. The norm of the extension that we construct by this procedure will
depend only on Cδ computed in Theorem 4.1, on the rescaling factor eδα, where α is
defined in (38), and on

∫
S
|u|2e−ϕF .

5.1. Construction of potentials for adjoint bundles

As one can see, the hypothesis (3) of Theorem 1.7 is much weaker than the corresponding
one in Theorem 5.1 (i.e. the Hermitian semi-positivity of KX +S+B), and this induces
many complications in the proof. The aim of Theorem 5.3 below is to construct a
substitute for the smooth metric h0, and it is the main technical tool in the proof of
Theorem 1.7.

Theorem 5.3. Let {S, Yj}j be smooth hypersurfaces of X with normal crossings.
Let 0<bj <1 be rational numbers and h be a Hermitian metric satisfying the following
properties:

(1) We have KX +S+
∑

j bjYj≡
∑

j νjWj , where νj are positive rational numbers,
and {Wj}j⊂{S, Yj}j.

(2) There exist a positive integer m0 such that m0(KX +S+
∑

j bjYj) is a Cartier
divisor, and a non-identically zero section u of OS(m0(KS +

∑
j bjYj |S)).

(3) h is a non-singular metric on the Q-line bundle KX +S+
∑

j bjYj , and there
exists a sequence {τm}m�1⊂L1(X) such that

Θh

(
KX +S+

∑
j

bjYj

)
+
√−1∂∂̄τm �− 1

m
ω

as currents on X, the restriction τm|S is well defined and we have

τm|S �C(m)+log |u|2/m0 , (39)

where C(m) is a constant, which is allowed to depend on m.
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Then there exists a constant C<0 independent of m and a sequence of functions
{fm}m�1⊂L1(X) satisfying the following properties:

(i) We have supX fm=0, and moreover

Θh

(
KX +S+

∑
j

bjYj

)
+
√−1∂∂̄fm �− 1

m
ω

as currents on X.
(ii) The restriction fm|S is well defined and we have

fm|S �C+log |u|2/m0 . (40)

The proof of Theorem 5.3 follows an iteration scheme, that we now explain. We start
with the potentials {τm}m�1 provided by the hypothesis (3) above; then we construct
potentials {τ (1)

m }m�1 such that the following properties are satisfied.
(a) We have supX τ

(1)
m =0, and moreover

Θh

(
KX +S+

∑
j

bjYj

)
+
√−1∂∂̄τ (1)

m �− 1
m

ω

in the sense of currents on X.
(b) The restriction τ

(1)
m |S is well defined and there exists a constant C independent

of m such that
τ (1)
m �C+log |u|2/m0 +
 sup

S
τm,

at each point of S (where 0<
<1 is to be determined).
The construction of {τ (1)

m }m�1 with the pertinent curvature and uniformity prop-
erties (a) and (b) is possible by Theorem 4.1. Then we repeat this procedure: starting
with {τ (1)

m }m�1 we construct {τ (2)
m }m�1, and so on. Due to the uniform estimates we

provide during this process, the limit of {τ (p)
m }m�1 as p!∞ will satisfy the requirements

of Theorem 5.3. We now present the details.

Proof. Let B :=
∑

j bjYj . By hypothesis, there exists {τm}m�1⊂L1(X) such that

max
X

τm = 0 and Θh(KX +S+B)+
√−1∂∂̄τm �− 1

m
ω (41)

on X. We denote by D=
∑

j νjWj the Q-divisor provided by hypothesis (1) of Theo-
rem 5.3 and let τD :=log |D|2

h⊗h−1
�

(by this we mean the norm of the Q-section associated

with D, measured with respect to the metric h⊗h−1
� ; cf. the proof of Theorem 5.1) be

the logarithm of its norm. We may certainly assume that τD�0. By replacing τm by
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max{τm, τD}, the relations (41) above are still satisfied (cf. §2.4), and in addition we
may assume that

τm � τD (42)

at each point of X.
Two things can happen: either S belongs to the set {Wj}j , or it does not. In the

latter case there is nothing to prove, as the restriction τm|S is well defined, so we assume
that S=W1. After the normalization indicated above, we define a metric e−ψS,m on
OX(S) which will be needed in order to apply Theorem 4.1. Let

ϕτm :=ϕh+τm

be the local weight of the metric e−τmh on KX +S+B. The metric ψS,m is defined so
that the following equality holds:

ϕτm
= ν1ψS,m+ϕ�+

∑
j �=1

νj log |fWj |2 (43)

(cf. Lemma 2.12), where fWj is a local equation for the hypersurface Wj . We here use
the hypothesis (1) of Theorem 5.3. Then the functions ψS,m given by equality (43) above
are the local weights of a metric on OX(S).

The norm/curvature properties of the objects constructed so far are listed below.
(a) The inequality |fS |2e−ψS,m �1 holds at each point of X. Indeed, this is a direct

consequence of the relations (42) and (43) above (cf. Lemma 2.12).
(b) We have Θϕτm

(KX +S+B)�−ω/m.
(c) We have Θϕτm

(KX +S+B)�ν1ΘψS,m
(S). This inequality is obtained as a di-

rect consequence of (43), since the curvature of h� is equal to zero.
(d) For each m there exists a constant C(m) such that

τm|S �C(m)+log |u|2/m0 .

Indeed, for this inequality we use the hypothesis (3) of Theorem 5.3, together with the
remark that the renormalization and the maximum we have used to ensure (42) preserve
this hypothesis.

As already hinted, we will modify each element of the sequence of functions {τm}m�1

by using some “estimable extensions” of the section u (given by hypothesis (2)) and its
tensor powers, multiplied by a finite number of auxiliary sections of some ample line
bundle. Actually, we will concentrate our efforts on one single index, e.g. m=km0,
and focus on understanding the uniformity properties of the constants involved in the
computations.
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In order to simplify the notation, let τ :=τkm0 and denote by ψS the metric on OX(S)
defined by the equality

ϕτ = ν1ψS +ϕ�+
∑
j �=1

νj log |fWj |2. (44)

Even if this notation does not make it explicit, we stress here the fact that the metric
ψS depends on the function τ we want to modify.

We consider a non-singular metric hS =e−ϕS on OX(S) which is independent of τ ,
and for each 0�δ�1 we define the convex combination metric

ψδ
S := δψS +(1−δ)ϕS . (45)

The parameter δ will be fixed at the end, once we collect all the requirements we need it
to satisfy.

We assume that the divisor A is sufficiently ample, so that the metric ω in (b) above
is the curvature of the metric hA on OX(A) induced by its global sections, say {sA,i}i.

Now we consider the section u⊗k⊗sA of the line bundle

OS(km0(KS +B|S)+A|S),

where sA∈{sA,i}i, and we define the set

E := {U ∈H0(X,OX(km0(KX +S+B)+A)) : U |S = u⊗k⊗sA}.

A first step towards the proof of Theorem 5.3 is the following statement (see, e.g.,
[BP]).

Lemma 5.4. The set E is non-empty. Moreover, there exists an element U∈E such
that

‖U‖2(1+δ)/km0 :=
∫

X

|U |2(1+δ)/km0e−δϕτ−ψδ
S−ϕBe−(1+δ)ϕA/km0 <∞, (46)

as soon as δ is sufficiently small.

Proof. We write the divisor km0(KX +S+B)+A in adjoint form as

km0(KX +S+B)+A = KX +S+F,

where
F :=B+(km0−1)(KX +S+B)+A.

We endow the line bundle OX(F ) with the metric whose local weights are

ϕF :=ϕB+(km0−1)ϕτ +ϕA. (47)
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By property (b) and our choice of A, the curvature of this metric is greater than ω/km0,
and the section u⊗k⊗sA is integrable with respect to it, by property (d).

The classical Ohsawa–Takegoshi theorem shows the existence of a section U corre-
sponding to the divisor km0(KX +S+B)+A such that U |S =u⊗k⊗sA and such that∫

X

|U |2e−ϕB−(km0−1)ϕτ−ϕA−ϕS <∞. (48)

By the Hölder inequality we obtain∫
X

|U |2(1+δ)/km0e−δϕτ−ψδ
S−ϕBe−(1+δ)ϕA/km0 �CI(km0−1−δ)/km0 , (49)

where we denote by I the quantity

I :=
∫

X

eϕτ−km0ψδ
S/(km0−1−δ)−ϕB dVω, (50)

and C corresponds to the integral (48) raised to the power 1+δ/km0. In the above
expression we have skipped a non-singular metric corresponding to ϕS . By relation (44),
the integral I will be convergent, provided that

δ

ν1
� 1

2
, (51)

so the lemma is proved.

We consider next an element U∈E for which the semi-norm (46) is minimal. Let
{Up}p�1⊂E be such that the sequence

np :=
∫

X

|Up|2(1+δ)/km0e−δϕτ−ψδ
S−ϕBe−(1+δ)ϕA/km0

converges towards the infimum, say n∞, of the quantities (46) when U∈E . From this,
we infer that {Up}p�0 has a convergent subsequence, and obtain our minimizing section
as its limit. This can be justified either by Hölder’s inequality, or by observing that we
have

ψδ
S +ϕB �C+

δ

ν1
ϕτ−δ

∑
j �=1

νj

ν1
log |fYj |2+

∑
j �=1

bj log |fYj |2,

where the last term is bounded from above, as soon as δ satisfies the inequalities

δ
νj

ν1
� bj for all j. (52)

In conclusion, some element U
(km0)
min ∈E with minimal semi-norm exists, by the usual

properties of holomorphic functions, combined with the Fatou lemma. Next, we will
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show that the semi-norm of U
(km0)
min is bounded in a very precise way (again, see [BP] for

similar ideas).
To this end, we first construct an extension V of u⊗k⊗sA by using U

(km0)
min as a

metric; this will be done by using Theorem 4.1, so we first write

km0(KX +S+B)+A = KX +S+F,

where

F :=B+(km0−1−δ)
(

KX +S+B+
1

km0
A

)
+δ(KX +S+B)+

1+δ

km0
A.

We endow the line bundle OX(F ) with the metric whose local weights are

ϕF :=ϕB+
km0−1−δ

km0
log |U (km0)

min |2+δϕτ +
1+δ

km0
ϕA, (53)

and the line bundle corresponding to S with the metric e−ψS previously defined in (44).
Prior to applying Theorem 4.1 we check here the hypothesis (19)–(22). Due to (42) and
(44), we have

|s|2e−ψS � 1. (54)

Moreover, we see (cf. (44)) that we have

ψS =
1
ν1

(
ϕτ−ϕ�−

∑
j �=1

νj log |fWj
|2

)
,

and hence the requirement (22) amounts to showing that we have

C1(k, δ)+
∑
j �=1

νj

ν1
log |fWj

|2 �C2(k, δ)ϕF , (55)

where Cj(k, δ) are sufficiently large constants, depending (eventually) on the norm of
the section U

(km0)
min , and on δ. The existence of such quantities is clear, because of the

hypothesis (1) of Theorem 5.3 and of the presence of ϕB in the expression (53).
The curvature hypotheses required by Theorem 4.1 are also satisfied, since we have

ΘhF
(F ) � 0 and ΘhF

(F ) � δν1ΘhS
(S), (56)

by relations (53) and (44) (the slightly negative part of the Hessian of ϕτ is compensated
by the Hessian of ϕA/km0).
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Therefore, we are in position to apply Theorem 4.1 and infer the existence of an
element Vδ∈E such that∫

X

|Vδ|2
|U (km0)

min |2(km0−1−δ)/km0
e−δϕτ−(1+δ)ϕA/km0−ϕB−ψδ

S

�C(δ)
∫

S

|u|(1+δ)/m0e−ϕB−δϕτ .
(57)

The constant C(δ) in (57) above is obtained by Theorem 4.1, via the rescaling
procedure described in the proof of Theorem 5.1 adapted to the current context; we
stress the fact that this constant is completely independent of k and ϕτ .

We will show next that it is possible to choose δ :=δ1 small enough, independent of
k and τ , such that the right-hand side of (57) is smaller than Ce−δ1 supS τ . Here and in
what follows we will freely interchange τ and ϕτ , as they differ by a function which only
depends on the fixed metric h on KX +S+B; in particular, the difference τ−ϕτ equals
a quantity independent of the family of potentials we are trying to construct.

Prior to this, we recall the following basic result, originally due to Hörmander for
open sets in Cn, and to Tian in the following form.

Lemma 5.5. ([Ti]) Let M be a compact complex manifold and α be a real closed
(1, 1)-form on M . We consider the family of normalized potentials

P := {f ∈L1(X) : supM f = 0 and α+
√−1∂∂̄f � 0}.

Then there exist constants γH >0 and CH >0 such that∫
M

e−γHf dV �CH (58)

for any f∈P. In addition, the numbers γH and CH are uniform with respect to α.

We will use the previous lemma as follows: first we notice that we have∫
S

|u|(1+δ)/m0e−ϕB−δϕτ dV =
∫

S

|u|(1+δ)/m0e−ϕB−δϕh−δτ dV,

simply because, by definition, the equality ϕτ =ϕh+τ holds true on X.
The pair (S, B|S) is klt, and hence there exists a positive real number μ0>0 such

that e−(1+μ0)ϕB|S ∈L1
loc(S). By the Hölder inequality, we have

∫
S

|u|(1+δ)/m0e−ϕB−δϕh−δτ dV �C

(∫
S

e−(1+μ0)δτ/μ0 dV

)μ0/(1+μ0)

,

where dV is a non-singular volume element on S, and the constant C above is independent
of τ and δ, provided that δ belongs to a fixed compact set (which is the case here, since
0�δ�1).
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Next, in order to obtain an upper bound of the right-hand side of the preceding
inequality, by the above lemma we can write

(∫
S

e−(1+μ0)δτ/μ0 dV

)μ0/(1+μ0)

= e−δ supS τ

(∫
S

e−(1+μ0)δ(τ−supS τ)/μ0 dV

)μ0/(1+μ0)

.

We fix now δ :=δ1 small enough such that the following conditions are satisfied:
• We have δ1/ν1< 1

2 and δ1ν
j �ν1bj for all j �=1 (we recall that S=Y1).

• The following inequality holds:

δ1
1+μ0

μ0
� γH ,

where γH is given by Lemma 5.5 applied to the data

M = S and α := Θh(KS +B)+
1

km0
ω

(where h here is the restriction to S of the metric in (3) of Theorem 5.3). We notice that
γT and CT may be assumed to be uniform with respect to k, precisely because of the
uniformity property mentioned at the end of Lemma 5.5.

The conditions we imposed on δ1 in the two bullets above are independent of the
particular potential τ we choose. Hence, in the proof, we first fix δ1 as above, then
construct the minimal element U

(km0)
min , and after that we produce an element V ∈E such

that

I(V ) :=
∫

X

|V |2e−δ1ϕτ−(1+δ1)ϕA/km0−ϕB−ψ
δ1
S

|U (km0)
min |2(km0−1−δ1)/km0

�Ce−δ1 supS τ , (59)

as a consequence of (57), Lemma 5.5 and the above explanations.
On the other hand, we claim that we have∫

X

|U (km0)
min |2(1+δ1)/km0e−δ1ϕτ−ψ

δ1
S −ϕBe−(1+δ1)ϕA/km0 � I(V ). (60)

Indeed, this is a consequence of Hölder’s inequality: if relation (60) fails to hold, then it
is easy to show that the quantity∫

X

|V |2(1+δ1)/km0e−δ1ϕτ−ψ
δ1
S −ϕBe−(1+δ1)ϕA/km0

is strictly smaller than the left-hand side of (60)—and this contradicts the minimality
property of the U

(km0)
min .

In conclusion, we have the inequality∫
X

|U (km0)
min |2(1+δ1)/km0e−δ1ϕτ−ψ

δ1
S −ϕBe−(1+δ1)ϕA/km0 �Ce−δ1 supS τ , (61)
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by combining (59) and (60).
Let {sA,i}M

i=1 be the finite set of sections of A which were fixed at the beginning
of the proof. Then we can construct an extension U

(km0)
min,i of u⊗k⊗sA,i, with bounded

L2/km0-norm as in (61). We define the function

τ̃ :=
1

km0
log

∑
i

|U (km0)
min,i |2h⊗km0⊗hA

, (62)

and we observe that we have ∫
X

e(1+δ1)τ̃ dV �Ce−δ1 supS τ , (63)

as a consequence of (61), since the function τ (or if one prefers, ϕτ ) is negative, and the
part of ψδ1

S having the “wrong sign” is absorbed by ϕB .
Next, as a consequence of the mean-value inequality for psh functions, together with

the compactness of X (see Lemma 2.13) we infer from (63) that

τ̃(x) �C− δ1

1+δ1
sup

S
τ (64)

for any x∈X. Again, the constant C has changed since (63), but in a manner which is
universal, i.e. independent of τ .

We also remark that the restriction to S of the functions τ̃ we have constructed is
completely determined by

τ̃ |S = log |u|2/m0
h .

In order to restart the same procedure, we introduce the functions

τ (1) := τ̃−sup
X

τ̃ , (65)

collecting their properties below:
(N) supX τ (1)=0;
(H) Θh(KX +S+B)+

√−1∂∂̄τ (1)�−ω/km0 as currents on X;
(R) we have

τ (1)|S � δ1

1+δ1
sup

S
τ−C+

1
m0

log |u|2h;

in particular, we have

sup
S

τ (1) � δ1

1+δ1
sup

S
τ−C. (66)
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In order to see that the last inequality holds, we fix any point x0∈S such that u

does not vanish at this point. After possibly rescaling u, we may assume that

1
m0

log |u(x0)|2h = 0,

and then we have

τ (1)(x0) � δ1

1+δ1
sup

S
τ−C+

1
m0

log |u(x0)|2h.

We certainly have supS τ (1)�τ (1)(x0); and hence (66) follows.

We next remark that the restriction properties of τ (1) have improved: modulo the
function

x �−!−C+
1

m0
log |u(x)|2h,

which is independent of τ , we “gain” a factor δ1/(1+δ1)<1.

Remark 5.6. It is of paramount importance to realize that the constant C appearing
in the expression of the function above is universal : it only depends on the geometry
of (X, S), the metric h and the norm of u, and also on the form which compensate the
negativity of the Hessian of τ (cf. (57), Tian’s Lemma 5.5 and the comments after that).
Also, if these quantities are varying in a uniform manner (as is the case for our initial
sequence {τm}m�1), then the constant C may be assumed to be independent of m.

Therefore, it is natural to repeat this procedure with the sequence of functions τ (1)

as input, so that we successively produce the potentials τ (p) with properties (N), (H) and
(R) as above, for each p�1. We again stress the fact that the quantities C and δ1 have
two crucial uniformity properties: with respect to p (the number of iterations) and to m

(the index of the sequence in Theorem 5.3).

Proceeding by induction we show that the following two equations hold:

τ (p)|S �
(

δ1

1+δ1

)p

sup
S

τ−Cδ1

(
1−

(
δ1

1+δ1

)p−1 )
−C+log |u|2/m0

h , (67)

sup
S

τ (p) �
(

δ1

1+δ1

)p

sup
S

τ−C(1+δ1)
(

1−
(

δ1

1+δ1

)p )
. (68)

The relation (68) is obtained by successive applications of (66) of the relation (R), since
we have

sup
S

τ (p) � δ1

1+δ1
sup

S
τ (p−1)−C

for any p�1. The lower bound (67) is derived as a direct consequence of (68) and (66).
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The functions required by Theorem 5.3 are obtained by standard facts of pluripo-
tential theory (see e.g. [Le1], [Le2] and [Kl]): some subsequence {τ (pν)

km0
}ν�1 of {τ (p)

km0
}ν�1

will converge in L1 to the potential fkm0 , as upper regularized limits

fkm0(z) := lim sup
x!z

lim
ν!∞ τ

(pν)
km0

(x).

By letting p!∞, we see that the non-effective part of the estimate (67) tends to zero,
so Theorem 5.3 is proved.

5.2. Proof of Theorem 1.7

In this last part of the proof of Theorem 1.7, we first recall that, by the techniques origi-
nating in Siu’s seminal article [Si4], for any fixed section sA∈H0(X,OX(A)) the section
u⊗k⊗sA extends to X for any k�1 (cf. [HM2, Theorem 6.3]). Indeed, by assumption we
have

Zπ�(u)+m0Ẽ|S̃ �m0Ξ

(cf. the notation in the introduction) and then the extension of u⊗k⊗sA follows.
These extensions provide us with the potentials {τm}m�1 (simply by letting

τm =
1
m

log|Uk|2,

where Uk is the given extension of u⊗k⊗sA) and then Theorem 5.3 converts this into a
quantitative statement: there exists another family of potentials {fm}m�1 such that

max
X

fm = 0 and Θh(KX +S+B)+
√−1∂∂̄fm �− 1

m
ω, (69)

together with
fm|S �C+log |u|2/m0 ,

where C is a constant independent of m. Under these circumstances, we invoke the
same arguments as at the end of the preceding paragraph to infer that some subsequence
{fmν}ν of {fm}m will converge in L1 to the potential f∞, as an upper regularized limit

f∞(z) = lim sup
x!z

lim
ν!∞ fmν (x)

for every z∈X.
The properties of the limit f∞ are listed below:

f∞|S �C+log |u|2/m0 and Θh(KX +S+B)+
√−1∂∂̄f∞ � 0. (70)
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We remark at this point that the metric e−f∞h constructed here plays in the proof of
Theorem 5.3 the same role as the metric h0 in the arguments we have provided for
Theorem 5.1.

The rest of the proof is routine: we write

m0(KX +S+B) =KX +S+F,

where we use the notation

F :=B+(m0−1)(KX +S+B). (71)

We endow the line bundles OX(F ) and OX(S) respectively with the metrics

ϕF :=ϕB+(m0−1)ϕ∞

and
ϕ∞ = ν1ϕS +ϕ�+

∑
j �=1

νj log |fWj |2,

where h∞=e−ϕ∞ is the metric given by e−f̃∞h; here we write

f̃∞ := max{f∞, τD},

so that (as usual) we assume that

ϕ∞ �ϕ�+
∑

j

νj log |fWj |2 (72)

and S=W1.
Then the requirements of Theorem 4.1 are easily checked, as follows.

• We have |s|2e−ϕS �1 by relation (72) above, and moreover we have the equality

ϕS =
1
ν1

(
ϕ∞−ϕ�−

∑
j �=1

νj log |fWj |2
)

from which one can determine the Hermitian bundles (Gi, e
−ϕGi ).

• There exist δ0>0 and C such that

ϕF � δ0

( ∑
j �=1

νj log |fWj |2
)

+C,

because of the presence of the term ϕB in the expression of ϕF ; hence (22) is satisfied.
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• ΘhF
(F )�0, by property (70), and for α>1/ν1 we have

ΘhF
(F )− 1

α
ΘhS

(S) � αν1−1
αν1

ΘhF
(F ), (73)

and we remark that the right-hand-side curvature term is greater than 0.
• We have ∫

S

|u|2e−ϕB−(m0−1)ϕ∞ dλ �C,

by relation (70). Indeed, as a consequence of (70) we have

|u|2e−ϕB−(m0−1)ϕ∞ � |u|2/m0e−ϕB

so the convergence of the preceding integral is due to the fact that (S, B|S) is klt.
Therefore, we can apply Theorem 4.1 and obtain an extension of u. Theorem 1.7 is

proved.

Remark 5.7. In fact, the metric (53) of the line bundle OX(F ) has strictly positive
curvature, but the amount of positivity this metric has is ω/km0, and the estimates for
the extension we obtain under these circumstances are not useful, in the sense that the
constant C(δ) in (57) becomes something like Ck2.

6. Further consequences, I

In this section we derive a few results which are related to Theorem 1.7. Up to a few
details (which we will highlight), their proofs are similar to that of Theorem 1.7, so our
presentation will be brief.

We first remark that the arguments in §4 and §5 have the following consequence.

Theorem 6.1. Let {S, Yj}j be a finite set of hypersurfaces having normal cross-
ings. Assume that B=

∑
j bjYj , where 0<bj <1 is a set of rational numbers, satisfies the

following properties:
(i) The bundle KX +S+B is pseudo-effective and S /∈Nσ(KX +S+B).
(ii) We have

KX +S+B≡
∑

j

νjWj ,

where νj >0 and

S⊂Supp
(∑

j

νjWj

)
⊂Supp(S+B).

Then KX +S+B admits a metric h=e−ϕ with positive curvature and well-defined
restriction to S.
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As one can see, the only modification we have to do for the proof of Theorem 1.7
is to replace the family of sections u⊗k⊗sA with a family of sections approximating a
closed positive current on S, whose existence is insured by hypothesis (i).

The next statement of this section is an R-version of Theorem 1.7.

Theorem 6.2. Let {S, Yj}j be a finite set of hypersurfaces having normal crossings.
Let 0<bj <1 be a set of real numbers. Consider the R-divisor B :=

∑
j bjYj , and assume

that the following properties are satisfied :
(a) The R-bundle KX +S+B is pseudo-effective and S /∈Nσ(KX +S+B).
(b) There exists an effective R-divisor

∑
j

νjWj ,

numerically equivalent with KX +S+B, such that S⊂{Wj}j⊂Supp(S+B).
(c) The bundle KS +B|S is R-linearly equivalent to an effective divisor, say

D :=
∑

j

μjZj ,

such that π�(D)+Ẽ|S̃ �Ξ (here we use the notation and conventions of Theorem 1.7).
Then KX +S+B is R-linearly equivalent to an effective divisor whose support does

not contain S.

Proof. By a Diophantine approximation argument presented in detail in [HM2] (see
also [CL] and [P2, §1.7]), we deduce the following fact. For any η>0, there exist rational
numbers bj

η, νj
η and μj

η such that the following relations are satisfied:
• we have KX +S+Bη≡

∑
j νj

ηWj , where Bη :=
∑

j bj
ηYj ;

• the bundle KS +Bη|S is Q-linearly equivalent to
∑

j μj
ηZj ;

• if qη is the common denominator of bj
η, νj

η and μj
η, then

qη‖bη−b‖<η, qη‖νη−ν‖<η and qη‖μη−μ‖<η. (74)

Let uη∈H0(S,OS(qη(KS +Bη|S))) be the section associated with the divisor

∑
j

μj
ηZj .

We invoke again the extension theorems in [HM2] (see also [P2, §1.7 and §1.8]): as a
consequence, the section

u⊗kη
η ⊗s

qη

A,i
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of the bundle kηqη(KS +Bη)+qηA extends to X, where kη is a sequence of integers such
that kη!∞ as η!0.

We use the corresponding extensions {U (kη,qη)
i }Mη

i=1 in order to define a metric hη on

KX +S+Bη+
1
kη

A,

with semi-positive curvature current, and whose restriction to S is equivalent with
log |uη|2/qη .

The proof of Theorem 5.3 shows that for each η>0, there exists a function fη∈L1(X)
such that

(1η) We have maxX fη=0, as well as Θh(KX +S+B)+
√−1∂∂̄fη�−2ω/kη.

(2η) The restriction fη|S is well defined, and we have

fη|S �C+log |uη|2/qη . (75)

Passing to a subsequence, we may assume that there is a limit of fη. Hence we infer
the existence of a function f∞ such that Θh(KX +S+B)+

√−1∂∂̄f∞�0 and such that

f∞|S �C+log
(∏

j

|fZj
|2μj

)
. (76)

We will next use the metric h∞ :=e−f∞h in order to extend the section uη above, as
soon as η is small enough. We write

qη(KX +S+Bη) =KX +S+Bη+(qη−1)(KX +S+B)+(qη−1)(Bη−B). (77)

Consider a metric on

Fη :=Bη+(qη−1)(KX +S+B)+(qη−1)(Bη−B)

given by ∑
j

(qηbj
η−(qη−1)bj) log |fYj |2+(qη−1)ϕf∞ . (78)

In the expression above, we denote by ϕf∞ the local weight of the metric h∞. By the
maximum procedure, used e.g. at the end of the proof of Theorem 5.3, we may assume
that

ϕf∞ � log
(∏

j

|fWj |2νj

)
. (79)
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The metric in (78) has positive curvature, and one can easily check that the other curva-
ture hypothesis are also satisfied (here we assume that η�1, to ensure the positivity of
qηbj

η−(qη−1)bj for each j). The integrability requirement (23) is satisfied, since we have

∫
S

∏
j |fZj |2qημj

η∏
j |fYj |2qηbj

η−2(qη−1)bj ∏
j |fZj |2(qη−1)μj

dλ <∞ (80)

for all η�1, by the Dirichlet conditions at the beginning of the proof. Hence each section
uη extends to X and the proof of Theorem 6.2 is finished by the usual convexity argument,
namely that KX +S+B belongs to the convex envelope of the family {KX +S+Bη}η of
effective bundles.

Our last statement concerns a version of Theorem 1.7 whose hypotheses are more
analytic; the proof is obtained mutatis mutandis.

Theorem 6.3. Let {S, Yj}j be a finite set of hypersurfaces having normal crossings.
Let 0<bj <1 be a set of rational numbers. Consider the Q-divisor

B :=
∑

j

bjYj

and assume that the following properties are satisfied :
(a) The bundle KX +S+B is pseudo-effective and S /∈Nσ(KX +S+B).
(b) There exists a closed positive current T∈c1(KX +S+B) such that
(b.1) T =ν1[S]+ΛT , where ν1>0 and ΛT is positive;
(b.2) δ0ϕΛT

�ϕB−C, where δ0 and C are positive real numbers.
(c) The bundle m0(KS +B) has a section u, whose zero divisor D satisfies the

relation π�(D)+Ẽ|S̃ �Ξ (here we use the notation and conventions in Theorem 1.7).
Then the section u extends to X. In particular, the bundle KX +S+B is Q-effective,

and moreover it has a section non-vanishing identically on S.

We remark here that in the proof of statement Theorem 6.3 we are using the full
force of Theorem 4.1. The hypothesis above corresponds to the fact that {Wj}j⊂{S, Yj}j

in Theorem 1.7.

7. Proof of Theorem 1.4

We begin by proving Conjecture 1.8.

Proof of Conjecture 1.8. Let f : X ′!X be a log-resolution of (X, S+B) and write

KX′ +S′+B′ = f∗(KX +S+B)+E,
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where S′ is the strict transform of S, and B′ and E are effective Q-divisors with no
common components. Then (X ′, S′+B′+εE) is also a log-smooth plt pair for some
rational number 0<ε�1. We may also assume that the components of B′ are disjoint.

Since KX +S+B is pseudo-effective, so is KX′ +S′+B′+εE. As KX +S+B is nef,
we have Nσ(KX +S+B)=0, and so

Nσ(KX′ +S′+B′+εE) =Nσ(f∗(KX +S+B)+(1+ε)E) = (1+ε)E.

In particular S′ is not contained in Nσ(KX′ +S′+B′+εE) and we have

Nσ(‖KX′ +S′+B′+εE‖S′) = (1+ε)E|S′ ,

so that

Ξ = (B′+εE)|S′∧(1+ε)E|S′ = εE|S′ .

Since there is an effective Q-divisor D∼QKX +S+B such that

S⊂Supp(D)⊂Supp(S+B),

we see that D′=f∗D+(1+ε)E∼QKX′ +S′+B′+εE is an effective Q-divisor such that

S′⊂Supp(D′)⊂Supp(S′+B′+εE).

By Theorem 1.7,

∣∣m(KX′ +S′+B′+εE)
∣∣ |S′ ⊃ ∣∣m(KS′ +B′|S′)

∣∣+mεE|S′

for any m>0 sufficiently divisible. Let σ∈H0(S,OS(m(KS +BS))) and

σ′ ∈H0(S′,OS′(m(KS′ +B′|S′ +εE|S′)))

be the corresponding section. By what we have seen above, this section lifts to a section
σ̃′∈H0(X ′,OX′(m(KX′ +S′+B′+εE))). If we set

σ̃ = f∗σ̃′ ∈H0(X,OX(m(KX +S+B))),

then σ̃|S =σ.
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Theorem 1.4 is an immediate consequence of the following result.

Theorem 7.1. Assume that Conjecture 1.3n holds and that Conjecture 1.2n−1 holds
for semi-dlt pairs. If (X, Δ) is an n-dimensional klt pair such that (KX +Δ)�0, then
(X, Δ) has a good minimal model.

Proof. We proceed by induction on the dimension. In particular we may also assume
that Conjecture 1.1n−1 holds. (Notice that, by [Bi2, Theorem 1.4] and [G, Theorem 1.5],
we may in fact assume that Conjecture 1.1n−1 holds for log-canonical pairs with R-
boundaries.)

If (KX +Δ)=dimX, then (X, Δ) has a good minimal model by [BCHM].
If 0< (KX +Δ)<dim X, then (X, Δ) has a good minimal model by [La].
We may therefore assume that (KX +Δ)=0. We write KX +Δ∼QD�0. Passing

to a resolution, we may assume that (X, Δ+D) is log-smooth. We will need the following
lemma.

Lemma 7.2. If D=
∑

i∈I diDi, then it suffices to show that (X, Δ′) has a good
minimal model, where Δ′ is any Q-divisor of the form Δ′=Δ+

∑
i giDi, gi�0 are positive

rational numbers and either
(1) (X, Δ′) is klt, or
(2) (X, Δ′) is dlt and gi>0 for all i∈I.

Proof. If gi>0 for all i∈I, then for any rational number 0<ε�1, we have

(1−ε)(KX +Δ′)∼Q KX +Δ′−ε

(
D+

∑
i

giDi

)
,

where

Δ � Δ′′ := Δ′−ε

(
D+

∑
i

giDi

)
� Δ′

and (X, Δ′′) is klt. Since KX +Δ′′∼Q(1−ε)(KX +Δ′), it follows that (X, Δ′) has a good
minimal model if and only if (X, Δ′′) has a good minimal model. Replacing Δ′ by Δ′′,
we may therefore assume that (X, Δ′) is klt.

Note that

KX +Δ �KX +Δ′ �KX +Δ+gD∼Q (1+g)(KX +Δ)

for some rational number g>0. Therefore, (KX +Δ′)=0. In particular,

Fix(KX +Δ′) = Supp(D+Δ′−Δ) = Supp(D),
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where Fix denotes the support of the divisors contained in the stable base locus. Suppose
that (X, Δ′) has a good minimal model φ: X���X ′. Passing to a resolution, we may
assume that φ is a morphism and that

Supp(D) =Fix(KX +Δ′) = Exc(φ).

We now run a (KX +Δ)-minimal model program with scaling over X ′. By [BCHM]
(cf. Theorem 2.4 and Remark 2.5), this minimal model program terminates. Therefore,
we may assume that Fix(KX +Δ/X ′)=0. Since D is exceptional over X ′, if D �=0, then
by [BCHM, Lemma 3.6.2 (1)], there is a component F of D which is covered by curves
Σ such that D·Σ<0. This implies that Fix(KX +Δ/X ′)=Fix(D/X ′) is non-empty; a
contradiction as above. Therefore D=0, and hence KX +Δ∼Q0.

We let S=
∑

i Si be the support of D, and we let

S+B = S∨Δ

(i.e. multP (S+B)=max{multP (S), multP (Δ)}) and G=D+S+B−Δ, so that

KX +S+B∼Q G � 0 and Supp(G) = Supp(S).

By Lemma 7.2, it suffices to show that (X, S+B) has a good minimal model. We
now run a minimal model program with scaling of a sufficiently ample divisor. By
Conjecture 1.6n−1 and Theorem 2.7n, this minimal model terminates giving a birational
contraction φ: X���X ′ such (X ′, S′+B′ :=φ∗(S+B)) is dlt and KX′ +S′+B′ is nef.

If S′=0, then KX′ +S′+B′∼Q0 and we are done by Lemma 7.2. Therefore, we may
assume that S′ �=0. By Conjecture 1.2n−1, we have H0(S′,OS′(m(KS′ +B′

S′))) �=0 for all
sufficiently divisible integers m>0. By Conjecture 1.3n, the sections of

H0(S′,OS′(m(KS′ +B′
S′)))

extend to
H0(X ′,OX′(m(KX′ +S′+B′))) = H0(X ′,OX′(mG′)),

and hence S′ �⊂Bs(G′), contradicting the fact that (G′)=0.

8. Further remarks

The goal of this section is to show that one can reduce Conjecture 1.2 to the following
weaker conjecture.

Conjecture 8.1. Let X be a smooth projective variety. If KX is pseudo-effective,
then (KX)�0.

We will need the following results.
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Theorem 8.2. ([HMX, Theorem 1.5]) Let d∈N and I⊂[0, 1] be a set satisfying the
descending chain condition. Then there is a finite subset I0⊂I such that if the following
conditions are satisfied :

(1) X is a projective variety of dimension d;
(2) (X, Δ) is a log-canonical pair ;
(3) Δ=

∑
i δiΔi, where δi∈I;

(4) KX +Δ≡0;
then δi∈I0.

Remark 8.3. Recall that a set satisfies the descending chain condition if any non-
increasing subsequence is eventually constant.

Theorem 8.4. (Ascending chain condition for LCTs, [HMX, Theorem 1.1]) Let
d∈N and let I⊂[0, 1] and J⊂R�0 be such that I and J satisfy the descending chain
condition. Then the set

{lct(D,X,Δ) : (X, Δ) is log-canonical, dimX = d, Δ∈ I and D∈J}
satisfies the ascending chain condition. Here D is an R-Cartier divisor and Δ∈I (resp.
D∈J) means that Δ=

∑
i δiΔi with δi∈I (resp. D=

∑
i diDi with di∈J) and

lct(D,X,Δ) = sup{t � 0 : (X, Δ+tD) is log-canonical}.
Remark 8.5. Following [Bi1] it seems likely that Conjecture 1.2 in dimension n and

Theorem 8.4 in dimension n−1 imply the termination of flips for any pseudo-effective
n-dimensional log-canonical pair.

Definition 8.6. Let (X, Δ) be a projective klt pair and G be an effective Q-Cartier
divisor such that KX +Δ+tG is pseudo-effective for some t�0.

Then the pseudo-effective threshold τ =τ(X, Δ; G) is given by

τ = inf{t � 0 :KX +Δ+tG is pseudo-effective}.
Proposition 8.7. If (X, Δ+G) is a klt pair and τ =τ(X, Δ; G)�1 is the pseudo-

effective threshold, then τ is rational.

Proof. We may assume that τ =τ(X, Δ; G)>0. Fix an ample divisor A on X and
for any 0�x�τ let y=y(x)=τ(X, Δ+xG; A). Then y(x) is a continuous function such
that y(τ)=0 and y(x)∈Q for all rational numbers 0�x<τ ; moreover, for all 0�x<τ , the
(KX +Δ+xG)-minimal model program with scaling ends with a (KX +Δ+xG+yA)-
trivial Mori fiber space g f : X���Yx!Zx (cf. [BCHM] or Theorem 2.4). If F =Fx is the
general fiber of g, then

KF +ΔF +xGF +yAF := (KYx
+f∗(Δ+xG+yA))|F ≡ 0,
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and KF +ΔF +τGF is pseudo-effective. Note that, by Theorem 8.4, we may assume
that KF +ΔF +τGF is log-canonical. If this was not the case, since KF +ΔF +xGF is
log-canonical, we would in fact have an increasing sequence τi=lct(GF , F, ΔF ) with limit
τ which would contradict Theorem 8.4. Therefore KF +ΔF +ηGF is log-canonical and
numerically trivial for some rational number x<η=η(x)�τ . By Theorem 8.2, we may
assume that η=η(x) is constant, and hence η=τ . In particular τ∈Q.

Theorem 8.8. Assume that Conjectures 1.1n−1 and 8.1n hold. Let (X, Δ) be an
n-dimensional klt pair such that KX +Δ is pseudo-effective. Then (KX +Δ)�0.

Proof. We may assume that KX is not pseudo-effective and Δ �=0. Replacing X by
a birational model, we may assume that (X, Δ) is log-smooth. Let τ =τ(X, 0; Δ). Note
that τ >0. By Proposition 8.7 and its proof, there is a birational contraction f : X���Y ,
a rational number τ >0 and a (KY +τf∗Δ)-trivial Mori fiber space Y!Z. (Here, for
0<τ−x�1, we have denoted fx by f , Yx by Y and Zx by Z.)

Assume that dim X>dim Z>0. After possibly replacing X by a resolution, we may
assume that f : X!Y is a morphism. Let C be a general complete intersection curve on
F , the general fiber of Y!Z. We may assume that C∩f(Exc(f))=∅, and so we have
an isomorphism C ′=f−1(C)!C. Thus

(KX +τΔ)·C ′ = (KY +τf∗Δ)·C = 0.

In particular KX +τΔ is not big over Z. Since dim(X/Z)<dim X, by Conjecture 1.1n−1,
we may assume that the general fiber of (X, τΔ) has a good minimal model over Z. By
[La], we have a good minimal model h: X���W for (X, Δ) over Z. Let

r: W −!V := ProjZ R(KW +τh∗Δ)

be the corresponding morphism over Z. By [A2, Theorem 0.2], we may write

KW +τh∗Δ∼Q r∗(KV +BV ),

where (V,BV ) is klt. By induction on the dimension (KV +BV )�0. Hence

(KX +Δ) � (KX +τΔ) = (KV +BV ) � 0.

Therefore, we may assume that dim Zx=0 for all τ0�x<τ , where 0<τ−τ0�1. We
claim that we may assume that f :=fτ0 is (KX +τΔ)-non-positive. Since 
(Y )=1 and
KY +τf∗Δ is pseudo-effective, it follows that KY +τf∗Δ is nef. Then, by the negativity
lemma, it is easy to see that (KX +τΔ)= (KY +τf∗Δ) (cf. Remark 2.1). But, as

(Y )=1, we have (KY +τf∗Δ)�0 as required.
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We will now prove the claim. Notice that

Supp(Nσ(KX +xΔ+y(x)A)) = Supp(Nσ(KX +xΔ+(y(x)+α)A))

for some α>0, and

Supp(Nσ(KX +xΔ+(y(x)+α)A))⊂Supp(Nσ(KX +x′Δ+y(x′)A))

as long as (α+y(x)−y(x′))A+(x−x′)Δ is ample. Thus the above inclusion holds for any
‖x−x′‖�1. Since the number of components in Supp(Nσ(KX +xΔ+y(x)A)) is


(X)−
(Yx) = 
(X)−1,

this number is independent of x, and so the inclusion

Supp(Nσ(KX +xΔ+y(x)A))⊂Supp(Nσ(KX +x′Δ+y(x′)A))

is an equality (for any ‖x−x′‖�1). In other words, we have shown that, for any τ0�x<τ ,
there is an ε>0 such that

Supp(Nσ(KX +xΔ+y(x)A)) = Supp(Nσ(KX +x′Δ+y(x′)A))

for all |x−x′|<ε. It follows easily that Supp(Nσ(KX +xΔ+y(x)A)) is independent of x

(for all τ0�x<τ) and so Yx���Y is an isomorphism in codimension 1 for any τ0�x<τ .
Since KYx +fx∗(xΔ+y(x)A)∼R0, it is easy to see that KY +f∗(xΔ+y(x)A)∼R0. By the
negativity lemma, we have

a(E, Y, f∗(xΔ+y(x)A)) = a(E, Yx, fx∗(xΔ+y(x)A)),

with E being any f -exceptional divisor for f : X���Y . For any τ0�x<τ , we then have

a(E, Y, f∗(xΔ+y(x)A)) = a(E, Yx, fx∗(xΔ+y(x)A)) � a(E,X, xΔ+y(x)A).

Passing to the limit x!τ , we obtain the required inequality

a(E, Y, f∗(τΔ)) � a(E,X, τΔ),

i.e. f is (KX +τΔ)-non-positive.

Finally we recall the following important application of the existence of good minimal
models.
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Theorem 8.9. Assume that Conjecture 1.1 holds. Let X be a smooth projective
variety and Δi be finitely many effective Q-divisors on X such that

∑
i Δi has simple

normal crossings support and
⌊∑

i Δi

⌋
=0. Let C⊂{

Δ=
∑

i tiΔi :0�ti�1
}

be a rational
polytope.

Then there are finitely many birational contractions φi: X���Xi and finitely many
projective morphisms ψi,j : Xi!Zi,j (surjective with connected fibers) such that if Δ∈C
and KX +Δ is pseudo-effective, then there exist i such that φi: X���Xi is a good minimal
model of (X, Δ) and j such that Zi,j is the ample model of (X, Δ) (in particular if Δ
is a Q-divisor, then Zi,j =ProjR(KX +Δ)). Moreover, the closures of the sets

Ai,j =
{

Δ =
∑

i

tiΔi : KX +Δ∼R ψ∗
i,jHi,j ,with Hi,j ample on Zi,j

}

are finite unions of rational polytopes.

Proof. The proof easily follows along the lines of the proof of [BCHM, Lemma 7.1].
We include the details for the reader’s convenience. We may work locally in a neigh-
borhood C of any Δ as above. Let φ: X���Y be a good minimal model of KX +Δ and
ψ: Y!Z=ProjR(KX +Δ) be such that KY +φ∗Δ∼R,Z 0. Since φ is (KX +Δ)-negative,
we may assume that the same is true for any Δ′∈C (after possibly replacing C by a
smaller subset). We may therefore assume that for any Δ′∈C, the minimal models of
(X, Δ) and (Y, φ∗Δ′) coincide (cf. [BCHM, Lemmas 3.6.9 and 3.6.10]). Thus, we may
replace X by Y and hence assume that KX +Δ is nef. Let KX +Δ∼Rψ∗H, where H is
ample on Z and ψ: X!Z. Note that there is a positive constant δ such that H ·C�δ for
any curve C on Z. We claim that (after possibly further shrinking C), for any Δ′∈C, we
have that KX +Δ′ is nef if and only if it is nef over Z.

To this end, note that if (KX +Δ′)·C<0 and (KX +Δ)·C>0, then (KX +Δ∗)·C<0,
where Δ∗=Δ+t(Δ′−Δ), for some t>0, belongs to the boundary of C. But then, by
Theorem 2.8, we may assume that −(KX +Δ∗)·C�2 dim X. As

(KX +Δ)·C = H ·ψ∗C � δ,

it follows easily that this cannot happen for Δ′ in any sufficiently small neighborhood
Δ⊂C′⊂C. We may replace C by C′ and the claim follows.

Therefore, it suffices to prove the relative version of the theorem over Z (cf. [BCHM,
Lemma 7.1]). By induction on the dimension of C, we may assume that the theorem holds
(over Z) for the boundary of C. For any Δ �=Δ′∈C, we can choose Θ on the boundary of
C such that

Θ−Δ = λ(Δ′−Δ), λ > 0.
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Since KX +Δ∼R,Z 0, we have

KX +Θ∼R,Z λ(KX +Δ′).

Therefore, KX +Θ is pseudo-effective over Z if and only if KX +Δ′ is pseudo-effective
over Z and the minimal models over Z of KX +Θ and KX +Δ′ coincide (cf. [BCHM,
Lemmas 3.6.9 and 3.6.10]). It is also easy to see that if ψ′: X!Z ′ is a morphism over
Z, then KX +Θ∼Rψ′∗H ′ for some ample divisor H ′ on Z ′ if and only if KX +Δ′∼R

(ψ′)∗(λH ′). The theorem now easily follows.

Theorem 8.10. Assume that Conjecture 1.1 holds. Let X be a smooth projective
variety and Δi be Q-divisors on X such that

∑
i Δi has simple normal crossings support

and
⌊∑

i Δi

⌋
=0. Then the adjoint ring

R(X; KX +Δ1, ...,KX +Δr)

is finitely generated.

Proof. This is an easy consequence of Theorem 8.9, see, e.g., the proof of [BCHM,
Corollary 1.1.9].

Corollary 8.11. With the notation of Theorem 8.9, let P be any prime divisor on
X and C+ be the intersection of C with the pseudo-effective cone. Then the function

σP : C+−!R�0

is continuous and piecewise rational affine linear.

Proof. This is immediate from Theorem 8.9.
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