
Acta Math., 209 (2012), 265–322

DOI: 10.1007/s11511-012-0087-1
c© 2012 by Institut Mittag-Leffler. All rights reserved

Almost sure multifractal spectrum
for the tip of an SLE curve

by

Fredrik Johansson Viklund

Columbia University

New York, NY, U.S.A.

Gregory F. Lawler

University of Chicago

Chicago, IL, U.S.A.

1. Introduction

The chordal Schramm–Loewner evolution (SLE�) is a 1-parameter family of probability
measures on curves γ: [0,∞)!
H, where H denotes the complex upper half-plane. It
was invented by Schramm [21] as a candidate for the scaling limit of 2-dimensional
lattice models from statistical physics that satisfy conformal invariance and a Markovian
property in the limit. Several lattice models have since been shown to have scaling limits
that can be described by SLE. Examples include loop-erased random walk and the
uniform spanning tree [14], the percolation exploration-process [22], and the FK-Ising
model [23]. We refer the reader to [8], [10] and [24] for surveys and further references.

The properties of the SLE curves themselves has been the focus of much research
since their introduction in [21]. For example, Rohde and Schramm [20] proved existence
and Hölder continuity in the standard parametrization, and an upper bound on the
Hausdorff dimension. Beffara [1] later proved the more difficult lower bound on the
dimension. Lind [16] found the lower bound on the optimal Hölder exponent and the
present authors [5] proved that this exponent is sharp.

In this paper we will be interested in the behavior at the tip γ(t) of the growing
SLE curve. Since the curves are fractals, one cannot make sense of derivatives. Instead,
the natural approach is to consider the behavior of |g′t(z)| for z near γ(t), where gt is a
uniformizing conformal map from the complement of the curve to the upper half-plane.
For technical reasons it is often easier to consider ft=g−1

t near Vt, the pre-image of the
tip on the real-line. Our main goal will be to derive the almost sure tip multifractal
spectrum for SLE. For a suitable interval of α, it is defined, roughly speaking, as the
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dimension of the subset of the curve corresponding to t for which y|f ′t(Vt+iy)| decays
like yα when y!0+. We shall see that the tip multifractal spectrum is closely related
to the multifractal spectrum of harmonic measure at the tip of the growing curve. As a
function of α, this spectrum measures the size of the part of the curve that corresponds
to t for which the harmonic measure of a ball of radius ε centered at the tip decays
like εα as ε!0+. We remark that both these spectra are independent of the particular
parametrization of the curve.

The multifractal spectrum of harmonic measure has been studied extensively in the
physics and mathematics literature. For example, in the case of the paths of Brow-
nian motion, the spectrum is determined by the Brownian intersection exponents, see
[11] and the references therein. In two dimensions these exponents were established by
Lawler, Schramm and Werner in [11]–[13]. In the case of the SLE curves, Duplantier has
predicted, using non-rigorous so-called quantum-gravity methods, a harmonic measure
spectrum for the tip of an SLE curve, see [4, §7]. However, this spectrum is different from
the ones we will work with, as it describes the local dimension of harmonic measure in a
radial setup; it corresponds in some sense to the analog of our function %(β) for a radial
SLE curve at the bulk point. (See §3 for the definition of %.) Duplantier and Binder also
used quantum gravity arguments to predict the spectrum of harmonic measure for the
bulk of SLE, see [3]. Roughly speaking, this spectrum is defined as the dimension of the
subset of the curve away from the tip where, for a given α, harmonic measure in a ball
of radius ε decays like εα as ε!0+. Beliaev and Smirnov [2] made a start to proving this
result by establishing the average integral means spectrum for SLE. To get the almost
sure multifractal spectrum from the average integral means spectrum, one can formally
apply the so-called multifractal formalism [17] and find the bulk spectrum by taking a
Legendre transform of the average integral means spectrum. This approach is believed
to be valid for SLE, although it has not been proved in this case. Indeed, to the best of
our knowledge the present paper is the first to establish almost sure multifractal spectra
for the SLE� family.

The starting point of our analysis is estimation of moments of the derivative of ft

using the reverse-time Loewner flow; this was started by Rohde and Schramm in [20]
and extended in many places, e.g., [2], [5], [6], [9] and [16]. (This is the analogue of the
average integral means spectrum result for our problem.) In order to get almost sure
results, one needs second-moment estimates. The ideas for that appear in [9] and they
were used in, e.g., [5]. These ideas are also important in understanding the so-called
natural parametrization of SLE curves, see [15].
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1.1. Multifractal spectra for the tip

We now proceed to discuss in greater detail the multifractal spectra that we will consider.
To motivate our definitions, we will start out in a slightly different setting than the one
we will work with in the rest of the paper.

Suppose that ζ is a boundary point of a simply connected domain D. We say that
ζ is accessible (in D by η) if η: [0, 1]!C is a simple curve with η(0)=ζ and η((0, 1])⊂D.
If ζ is accessible by η, let h be a conformal transformation of D onto C\(−∞, 0] with
h(ζ)=0. By h(ζ)=0, we mean h(η(0+))=0. We now specialize to the following situation:
Let γ̃: (−∞,∞)!C be a simple curve with γ̃(t)!∞ as t!±∞. For each t, we consider
the “slit” plane Dt=C\γ̃((−∞, t]), which is a simply connected domain whose boundary
contains γ̃(t) and ∞. The (non-tangential) tip multifractal spectrum which we describe
in this subsection is one way to describe the behavior near γ̃(t) of the conformal map
uniformizing Dt, for different values of t. Clearly, the boundary point γ̃(t) is accessible
in Dt by the curve η(t)(s)=γ̃(t+s).

Remark. For endpoints of slits like γ̃(t) in Dt, there is only one possible meaning
for h(γ̃(t))=0, but for general D a boundary point ζ might be approached from different
directions that correspond to different values of h(ζ). Formally, this can be understood
using prime ends (see, e.g., [19, Chapter 2]). In the case at hand, the curve η specifies a
particular direction/prime end.

Let D=Dt, take ζ=γ̃(t), and set g(z)=i
√
h(z), where the branch of the square root

is chosen so that
√

1=1. Then g is a conformal transformation of D onto the upper
half plane H with g(ζ)=0. The map g is only unique up to composition with a Möbius
transformation, that is, if g̃ is another such map, then g̃(z)=(T �g)(z), where T is a
Möbius transformation of H fixing 0. Similarly, h is not unique.

Let η∗(s)=g(η(s)). Then η∗: (0, 1]!H is a curve with η∗(0+)=0. If η∗1 : (0, 1]!H is
another curve with η∗1(0+)=0, and η1(s)=g−1(η∗1(s)), then η1(0+)=ζ and ζ is accessible
by η1. (This uses the fact that the curve η exists and that we are considering a domain
slit by a curve.) We say that η∗ satisfies a weak cone condition if there is a subpower
function (see §2.1) ψ such that, for all s>0,

|Re η∗(s)|6 (Im η∗(s))ψ
(

1
Im η∗(s)

)
,

and we say that η is weakly non-tangential if g�η satisfies a weak cone condition. It is
not difficult to see that this definition is independent of the choice of g. One example of
a weakly non-tangential curve for D is

η(s) = g−1(si), 0<s6 1.



268 f. johansson viklund and g. f. lawler

We will use this particular curve to define the tip multifractal spectrum but the definition
will be the same for any weakly non-tangential curve.

Next, we let f=g−1, so that f is a conformal transformation of H onto D. Since
f(is)=η(s), s>0, is a simple curve, the length of η((0, s]) is given by

v(f ; s) :=
∫ s

0

|f ′(iy)| dy. (1.1)

A sufficient condition for the existence of a limiting ζ=η(0+) is that v(f ; 0+)=0 which is
equivalent to

v(f ; t)<∞, t > 0.

We can also use the plane slit by the negative real axis as uniformizing domain and write
f(w)=F (−w2), where F : C\(−∞, 0]!D with F (0)=ζ. Then F−1(η((0, s]))=[0, s2]. In
particular, the length of F−1(η((0, s])) is s2, and the length of f−1(η((0, s])) is s.

We say that the (non-tangential) scaling exponent at the boundary point ζ is θ if

v(f ; s)≈∗ s2θ, s! 0+.

In particular, if D=C\(−∞, t], then the scaling exponent at t equals 1. (Recall that
f : H!D and see (2.1) for the definition of ≈∗ .) More generally, if γ is differentiable
at t, then θ=1 at t. Note that the Beurling estimates (see Lemma 2.6) imply that θ61.
(In fact, the same bound holds for a lim sup version of the definition of θ.) The scaling
exponent is closely related to the behavior of |f ′(iy)| as y!0+. Indeed, if y|f ′(iy)|≈∗y1−β

for some β<1, then, as we will show in Proposition 2.7,

v(f ; y)≈∗ y1−β , y! 0+,

so that
θ= 1

2 (1−β).

Although the definition of v(f ; y) depends on the choice of the conformal map f , it is
not hard to see that the scaling exponent θ is independent of the choice.

Returning to the curve γ̃, we can consider Tθ, the set of t such that the scaling
exponent of Dt at γ̃(t) equals θ. The tip multifractal spectrum can then be defined to
be either of the following two functions:

θ 7−!dimH(Tθ) and θ 7−!dimH[γ̃(Tθ)],

where dimH denotes Hausdorff dimension. The first function depends on the choice of the
parametrization of γ̃ and the second is independent of the parametrization. One could
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also define lim inf and lim sup versions of this. The main goal of this paper is to compute
the tip multifractal spectrum for the chordal SLE path. For technical convenience, we
will use an alternative definition in terms of the behavior of |f ′(iy)| as y!0+ and we will
use β rather than θ as our variable.

Suppose now that γ=γ(t) is a curve in 
H with γ(0+)∈R. Let Ht be the unbounded
connected component of H\γ([0, t]). One way to define the multifractal spectrum of
harmonic measure at the tip is as the function

α 7−!dimH[γ(T hm
α )],

where T hm
α is the set of t such that the normalized harmonic measure from infinity of

a ball of radius ε>0 about the tip γ(t) scales like εα as ε!0+. We will both use this
definition and a slightly different (non-equivalent) definition that is more closely related
to the tip multifractal spectrum that we described above. See §2.3 for precise definitions.

1.2. Main results

Let f̂t(z)=ft(z+Vt), where ft: H!Ht is the chordal SLE� Loewner chain. That is, ft

solves, for t>0, the chordal Loewner partial differential equation

∂tft(z) =−f ′t(z)
a

z−Vt
, f0(z) = z,

where a=2/� and Vt is standard Brownian motion. Further, for −16β61, let

%(β) =
�

8(β+1)

[(
�+4
�

)
(β+1)−1

]2
,

and set

β± =−1+
�

12+�∓4
√

8+�
.

Define

Θβ = {t∈ (0, 2] : y|f̂ ′t(iy)| ≈∗ y1−β}.

See §2.1 for the definition of ≈∗.

Theorem. (Tip multifractal spectrum) Suppose that �>0 and β−6β6β+. For
chordal SLE�, almost surely,

dimH(Θβ) =
2−%(β)

2
and dimH[γ(Θβ)]=

2−%(β)
1−β

.
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See the precise statement in Theorem 3.1; we prove more than we state here.
Notice that we obtain Beffara’s theorem on the dimension of the SLE� curves [1] as

a special case of Theorem 3.1.
Using the tip multifractal spectrum and some additional work, we can derive the

almost sure spectrum for harmonic measure at the tip, see §2.3 for more details. Although
we modify the definition of the spectrum somewhat, we prove in Theorem 3.2 the stronger
almost sure version of the theorem. To state it, define

α± =
1

1−β±
,

where β± are as above. Let hmt( ·)=limy!∞ y hm(iy, · ,Ht) be the renormalized harmonic
measure from infinity in Ht. For each t>0, let γ(t)=limy!0+ f̂t(iy) be the tip at time t
of the growing SLE� curve and set

Θhm
α = {t∈ (0, 2] : hmt(Et,ε)≈∗ εα},

where Et,ε is the part of ∂Ht that contains γ(t) as the prime end corresponding to Vt

and is separated from ∞ by ∂B(γ(t), ε)={z :|z−γ(t)|=ε}. We have the following result.

Theorem. (Multifractal spectrum for harmonic measure at the tip) Suppose that
�>0 and α−6α6α+. For chordal SLE�, almost surely,

dimH[γ(Θhm
α )]=α

(
1− 4

�

)
+

(4+�)2

8�
−�

8

(
α2

2α−1

)
. (1.2)

In §6 we prove Theorem 3.3 which together with Theorem 3.2 and a Beurling estimate
shows that the right-hand side of (1.2) gives the harmonic measure spectrum for a (one-
sided) version which is closer to the usual definition, but for a smaller range of α.

1.3. Overview of the paper

Our paper is organized as follows. The next section discusses some preliminary facts.
After setting some notation about asymptotics in §2.1, the deterministic Loewner equa-
tion is discussed in §2.2. Much in this subsection is standard but we have included this
in order to phrase the results appropriately for our purposes. Also, we want to separate
estimates that deal only with the Loewner equation itself from those that are particular
to SLE. In this subsection, there are three kinds of results: those that hold for all con-
formal maps of H for which we use the letter h; those that hold for all solutions of the
chordal Loewner equation for which we use gt and ft=g−1

t ; and towards the end facts
about solutions of the Loewner equation for driving functions that are weakly Hölder-1

2 .
We also formally define the tip multifractal spectra in this section.
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Figure 1. Multifractal spectrum of harmonic measure at the tip for SLE� , �=2, 4, 6. The

maximum is the Hausdorff dimension of the curve.

The main theorem is not stated in full until §3, where the Schramm–Loewner evolu-
tion (SLE) is discussed. From here on a value of the SLE parameter � is fixed and a large
number of � -dependent parameters are defined. Although we do not discuss it directly,
what we are doing is establishing the guess for the value of the multifractal spectrum in
terms of the Legendre transform of a logarithmic moment generating function.

The basic proof of the main theorem can be found in §4. This section is relatively
short because it relies on estimates on the moments of the derivative, some of which were
established in [5] and [9]; the necessary additions are proved in §5. To make the paper
self-contained we have also included an appendix that discusses a key result from [9].
§6 uses the forward Loewner flow to prove a result on the harmonic measure spectrum
stated in §3.3. We warn the reader that some of the notation in §6 does not agree with
the earlier sections and that the assumption �<8 is made there.

1.4. Acknowledgement

We would like to thank the referee for his/her careful reading and useful comments that
helped us improve the quality of our paper.

2. Preliminaries

2.1. Notation

In order to avoid writing bulky expressions with ratios of logarithms, we will adopt the
following notation.
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We call a function ψ: [0,∞)!(0,∞) a (positive) subpower function if it is continuous,
non-decreasing, and

lim
x!∞

x−uψ(x) = 0

for all u>0.
If f and g are positive functions tending to zero with y, we write

f(y)≈∗ g(y), y! 0+, (2.1)

if there exists a subpower function ψ such that

ψ

(
1
y

)−1

g(y) 6 f(y) 6ψ

(
1
y

)
g(y), y! 0+.

We write

f(y) 4 g(y), y! 0+,

if

lim sup
y!0+

log g(y)
log f(y)

6 1,

and we write

f(y) 4i.o. g(y), y! 0+,

if

lim inf
y!0+

log g(y)
log f(y)

6 1.

Here “i.o.” stands for “infinitely often”. Clearly f(y)4g(y) implies that f(y)4i.o.g(y),
but the converse is not true. Similarly we write f(y)<g(y) and f(y)<i.o.g(y) for

lim inf
y!0+

log g(y)
log f(y)

> 1 and lim sup
y!0+

log g(y)
log f(y)

> 1,

respectively. We write f(y)≈g(y) if f(y)4g(y) and f(y)<g(y), that is, if

lim
y!0+

log g(y)
log f(y)

= 1.

Note that, if β>0, then

f(y)≈ yβ ⇐⇒ f(y)≈∗ yβ .

We will also use the notation for asymptotics for functions f(n) and g(n) as n!∞
along the positive integers. We summarize the notation in the following table:
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Notation Definition, as y!0+

f(y)≈∗g(y) ψ

(
1
y

)−1

g(y)6f(y)6g(y)ψ
(

1
y

)

f(y)4g(y) lim sup
y!0+

log g(y)
log f(y)

61

f(y)4i.o.g(y) lim inf
y!0+

log g(y)
log f(y)

61

f(y)<g(y) lim inf
y!0+

log g(y)
log f(y)

>1

f(y)<i.o.g(y) lim sup
y!0+

log g(y)
log f(y)

>1

2.2. Chordal Loewner equation

In this section, we review some facts about conformal mappings and the chordal Loewner
equation. See [8, Chapters 3 and 4] for proofs of theorems stated without proof here.

Let γ̃: (−∞,∞)!C be a simple curve as in the introduction. The chordal Loewner
equation describes the evolution of γ̃((0,∞)) given γ̃((−∞, 0]). Let g̃ be a conformal
transformation of C\γ̃((−∞, 0]) onto the upper half-plane H with g̃(γ(0))=0 and g̃(∞)=
∞. In order to describe γ̃(t), t>0, it suffices to describe

γ(t) := g̃(γ̃(t)), 0 6 t<∞,

and this is what the Loewner equation in H does. For the remainder of the paper, we will
consider a curve γ in H as above. (In general, however, we will not assume it is simple.)
The Riemann mapping theorem implies that there is a unique conformal transformation
gt of H\γ((0, t]) onto H with gt(z)=z+o(1) as z!∞. We can expand gt at infinity,

gt(z) = z+
a(t)
z

+O(|z|−2),

where a(t) by definition is the half-plane capacity of γ((0, t]). It is continuous and strictly
increasing. We make the (slightly) stronger assumption that a(t)!∞ as t!∞. Then
the chordal Loewner integral equation states that

gt(z) = z+
∫ t

0

da(s)
gs(z)−Vs

, t6Tz,
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where Vs=gs(γ(s)) and Tz=inf{t:Im gt(z)=0}=inf{t:gt(z)−Vt=0}. It can be shown
that s 7!Vs is a continuous function and it is called the Loewner driving function (or
term). It is convenient to choose a parametrization of γ such that a(t)=at for some
a>0, in which case we arrive at the Loewner differential equation

∂tgt(z) =
a

gt(z)−Vt
, g0(z) = z. (2.2)

Let
ft(z) = g−1

t (z) and f̂t(z) = ft(z+Vt) = g−1
t (z+Vt).

By differentiating both sides of ft(gt(z))=z with respect to t, we see that

∂tft(z) =−f ′t(z)
a

z−Vt
, (2.3)

where we used the notation f ′t(z)=∂zft(z). Since gt(γ(t))=Vt, we get

γ(t) = ft(Vt) = lim
y!0+

ft(Vt+iy) = lim
y!0+

f̂t(iy). (2.4)

We let
vt(y) = v(f̂t; y) =

∫ y

0

|f̂ ′t(iu)| du.

Note that if gt satisfies (2.2) and g∗t =gt/a, then

∂tg
∗
t (z) =

1
g∗t (z)−V ∗

t

, g∗0(z) = z,

where V ∗
t =Vt/a.

Conversely, we can start with a continuous function t 7!Vt and a>0, and define a
Loewner chain (gt, t>0) by (2.2). We define γ(t) by (2.4) provided that the limit exists.
As mentioned above, if vt(y)<∞ for some y>0, then vt(0+)=0 and the limit in (2.4)
exists. More work is needed to determine whether γ is a continuous function of t or not.
We say that the family of conformal maps gt is generated by a curve if γ, as defined by
(2.4), exists and is a continuous function of t. We do not assume that the curve is simple.
If Ht denotes the unbounded component of H\γ((0, t]), then gt is the unique conformal
transformation of Ht onto H satisfying

gt(z) = z+
at

z
+O(|z|−2), z!∞.

Lemma 2.1. For every t and every y>0 with vt(y)<∞,

1
4y|f̂

′
t(iy)|6 |γ(t)−f̂t(iy)|6 vt(y). (2.5)
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Proof. The second estimate is immediate from the definition of vt(y) and the first
inequality follows from the Koebe- 1

4 theorem applied to f̂t on the open disk of radius y
about iy.

Lemma 2.2. If ft satisfies (2.3) and z=x+iy∈H, then, for s>0,

e−5as/y2
|f ′t(z)|6 |f ′t+s(z)|6 e5as/y2

|f ′t(z)|. (2.6)

In particular, if s6y2, then

e−5a|f ′t(z)|6 |f ′t+s(z)|6 e5a|f ′t(z)|.

Proof. Without loss of generality, we may assume that a=1. Differentiating (2.3)
with respect to z yields

∂tf
′
t(z) =−f ′′t (z)

1
z−Vt

+f ′t(z)
1

(z−Vt)2
.

Note that |z−Vt|>y. Applying Bieberbach’s theorem (the n=2 case of the Bieberbach
conjecture) to the disk of radius y about z, we can see that

|f ′′t (z)|6 4
y
|f ′t(z)|,

and hence

|∂tf
′
t(z)|6

5
y2
|f ′t(z)|,

which implies (2.6).

The Koebe distortion and growth theorems are traditionally stated in terms of uni-
valent functions defined on the unit disk (see, e.g., [19, Chapter 2]). We will use these
theorems for univalent functions on H, and the next proposition gives the appropriate
results.

Proposition 2.3. Let h: H!C be a conformal transformation, x∈R, y>0 and
r>1. Then

(x2+4)−2|h′(iy)|6 |h′(y(x+i))|6 (x2+4)2|h′(iy)|, (2.7)

|h(y(x+i))−h(iy)|6 1
2 (x2+4)3/2y|x| |h′(iy)|, (2.8)

r−3|h′(iy)|6 |h′(iyr)|6 r|h′(iy)|, (2.9)

|h(iyr)−h(iy)|6 1
2 (r2−1)y|h′(iy)|. (2.10)
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Proof. By scaling, we may assume that y=1. Let

G(z) =
z−i
z+i

, G′(z) =
2i

(z+i)2
,

which is a conformal transformation of H onto the unit disk D withG(i)=0 and |G′(i)|= 1
2 .

We can write
h(z) = f(G(z)), h′(z) = f ′(G(z))G′(z),

where f is a univalent function on D. The distortion theorem tells us that

|f ′(w)|6 1+|w|
(1−|w|)3

|f ′(0)|, |w|< 1,

and the growth theorem states that

|f(w)−f(0)|6 |w|
(1−|w|)2

|f ′(0)|, |w|< 1.

As |G′(i)|= 1
2 , we get

|h′(z)|6 2|G′(z)|(1+|G(z)|)
(1−|G(z)|)3

|h′(i)|, (2.11)

and

|h(z)−h(i)|6 2|G(z)|
(1−|G(z)|)2

|h′(i)|. (2.12)

Since

|G(x+i)|= |x|√
x2+4

and |G′(x+i)|= 2
x2+4

,

we plug this into (2.11) and see that

|h′(x+1)|6 1
16

(√
x2+4+|x|

)4|h′(i)|6 (x2+4)2|h′(i)|.

This gives the second inequality in (2.7) and the first follows easily by real translation.
Plugging into (2.12) gives

|h(x+i)−h(x)|6 2
16 |x|

√
x2+4

(√
x2+4+x

)2|h′(i)|6 1
2 (x2+4)3/2|x| |h′(i)|.

Since r>1, we obtain

|G(ir)|= r−1
1+r

=
∣∣∣∣G(

i

r

)∣∣∣∣, |G′(ir)|= 2
(1+r)2

and
∣∣∣∣G′( i

r

)∣∣∣∣ =
2r2

(r+1)2
.

Plugging this into (2.11) and (2.12) gives (2.9) and (2.10).
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Corollary 2.4. If h: H!C is a conformal transformation, then, for every y>0,

v(h; y) >
y|h′(iy)|

2
, (2.13)

2
3
v(h; 2−n) 6

∞∑
j=n

2−j |h′(i2−j)|6 8
3
v(h; 2−n).

Proof. We write

v(h; 2−n) =
∞∑

j=n

∫ 2−j

2−j−1
|h′(iy)| dy.

Using (2.9) (which holds for r>1), we get

v(h; y) =
∫ y

0

|h′(is)| ds= y

∫ 1

0

|h′(iry)| dr> y|h′(iy)|
∫ 1

0

r dr=
y|h′(iy)|

2
,∫ r

r/2

|h′(iy)| dy6 r|h′t(ir)|
∫ 1

1/2

ds

s3
=

3r
2
|h′(ir)|,∫ r

r/2

|h′(iy)| dy> r|h′(ir)|
∫ 1

1/2

s ds=
3r
8
|h′(ir)|.

We define the following measure of the modulus of continuity of Vt:

∆(t, s) = sup
06r6s2

√
s−2(Vt+r−Vt)2+4.

Note that ∆(t, s)>2, and it is of order 1 if

sup
06r6s2

|Vt+r−Vt| ≈ s.

The definition of ∆(t, s) with the 4 has been chosen to make the statement of the next
proposition cleaner.

Proposition 2.5. If t>0 and 06s6y2 with vt(y)+vt+s(y)<∞, then

|γ(t+r)−γ(t)|6 vt(y)+vt+s(y)+e5a|f̂ ′t(iy)|∆(t, y)4y. (2.14)

Proof. By the triangle inequality and (2.5), we have

|γ(t+r)−γ(t)|6 |f̂t(iy)−γ(t)|+|f̂t+s(iy)−γ(t+s)|+|f̂t(iy)−f̂t+s(iy)|

6 vt(y)+vt+s(y)+|ft+s(Vt+s+iy)−ft(Vt+iy)|.
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Also,

|ft+s(Vt+s+iy)−ft(Vt+iy)|

6 |ft+s(Vt+s+iy)−ft+s(Vt+iy)|+|ft+s(Vt+iy)−ft(Vt+iy)|.

Using (2.8) and (2.6), we see that

|ft+s(Vt+s+iy)−ft+s(Vt+iy)|6 1
2 |f

′
t+s(Vt+iy)|∆(t, y)4y

6 1
2e

5a|f ′t(Vt+iy)|∆(t, y)4y

= 1
2e

5a|f̂ ′t(iy)|∆(t, y)4y.

Also (2.6) and (2.3) imply that

|∂rft+s(Vt+iy)|6
a

y
e5ar/y2

|f̂ ′t(iy)|, (2.15)

and hence

|ft+s(Vt+iy)−ft(Vt+iy)|6 |f ′t(Vt+iy)|
∫ y2

0

a

y
e5au/y2

du

= 1
5ye

5a|f̂ ′t(iy)| (2.16)

< 1
2ye

5a∆(t, y)4|f̂ ′t(iy)|.

Lemma 2.6. There exist c>0 such that, for t>0 and 0<y61,

c
y√

2at+1
6 |f̂ ′t(iy)|6

√
2at+1
y

.

Proof. We may assume a=1, for otherwise we consider g∗t =gt/a. Let w=f̂t(iy), that
is, gt(w)=Vt+iy, and let Ys=Im gs(w). The Loewner equation implies that ∂s(Y 2

s )>−2
and hence Imw6

√
2t+1. Similarly, Im γ(s)6

√
2t6

√
2t+1 for 06s6t. The Loewner

equation also implies that ∂s(Ys/|g′s(w)|)60, which implies that

y|f̂ ′t(iy)|=
Yt

|g′t(w)|
6

Y0

|g′0(w)|
=Imw6

√
2t+1.

This gives the second inequality.
For the first inequality, let d=dist(w, γ([0, t])∪R). The Beurling estimate [8, Theo-

rem 3.76] implies that there is a c∗<∞ such that the probability that a Brownian motion
starting at w goes distance

√
2t+1 without hitting γ([0, t])∪R is bounded above by

c∗

(
d√

2t+1

)1/2

.



tip multifractal spectrum for sle 279

By the gambler’s ruin estimate, the probability that a Brownian motion in H starting
at iy reaches It :={w̃:Im w̃=2

√
2t+1 } before hitting the real line equals y(2

√
2t+1 )−1.

Since the imaginary part decreases in the forward Loewner flow, it follows from conformal
invariance that the probability that a Brownian motion starting at w reaches It before
hitting γ([0, t])∪R is at least y(2

√
2t+1 )−1. Therefore,

c∗

(
d√

2t+1

)1/2

>
y

2
√

2t+1
.

The Koebe- 1
4 theorem implies that d64y|f̂ ′t(iy)|, and plugging in we get

|f̂ ′t(iy)|>
y

16c2∗
√

2t+1
.

Proposition 2.7. Let h: H!C be a conformal transformation and v(h; y) be defined
as in (1.1). Then, for every β<1, as y!0+,

y|h′(iy)|4 y1−β ⇐⇒ v(h; y) 4 y1−β ,

y|h′(iy)|<i.o. y
1−β ⇐⇒ v(h; y) <i.o. y

1−β ,

y|h′(iy)| ≈∗ y1−β ⇐⇒ v(h; y)≈∗ y1−β .

(2.17)

Proof. Using Corollary 2.4, all of the assertions follow easily except the fact that
v(h; y)≈∗y1−β implies y|h′(iy)|≈∗y1−β , which we will show here. Assume v(h; y)≈∗y1−β .
By (2.13), we know that y|h′(iy)|4y1−β . For 0<ε<1−β, let

u=uε =
3ε

1−β−ε
,

and note that (2.9) implies, for y sufficiently small, that

y1−β+ε 6 v(h; y) = v(h; y1+u)+
∫ y

y1+u

|h′(is)| ds6 y1−β+2ε+
∫ y

y1+u

|h′(is)| ds

6 y1−β+2ε+y1−3u|h′(iy)|.

Hence, for all sufficiently small y,

y|h′(iy)|> 1
2y

1−βy3uε+ε.

Since uε!0 as ε!0+, this gives y|h′(iy)|<y1−β .
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Definition. For every −16β61, let


Θβ = {t∈ (0, 2] : y|f̂ ′t(iy)|<i.o. y
1−β},

Θβ = {t∈ (0, 2] : y|f̂ ′t(iy)| ≈∗ y1−β},

Θ̃β = {t∈ (0, 2] : y|f̂ ′t(iy)|4 y1−β},

Θ β = {t∈ (0, 2] : y|f̂ ′t(iy)|4i.o. y
1−β},

Θ∗
β = {t∈ (0, 2] : vt(y) 4i.o. y

1−β},

where in each case the asymptotics are as y!0+.

If β 6=1, we can write these sets as the set of t∈(0, 2] such that

lim sup
y!0+

log |f̂ ′t(iy)|
log(1/y)

>β,

lim
y!0+

log |f̂ ′t(iy)|
log(1/y)

=β,

lim sup
y!0+

log |f̂ ′t(iy)|
log(1/y)

6β,

lim inf
y!0+

log |f̂ ′t(iy)|
log(1/y)

6β,

lim inf
y!0+

log vt(y)
log(1/y)

6β−1,

respectively.
Using Lemma 2.6, we can see that for every β>1,


Θβ =Θβ =Θ−β =Θ̃−β =Θ−β = ∅.

Note that (2.13) implies that Θ∗
β⊂Θ β . By Proposition 2.7, we can also write

Θβ = {t∈ (0, 2] : vt(y)≈∗ y1−β as y! 0+},

and similarly for 
Θβ and Θ̃β . Also, 
Θβ∪Θ̃β=(0, 2] and

Θβ ⊂
Θβ∩Θ̃β∩Θ∗
β .

Definition. The driving function Vt is weakly Hölder-1
2 on [0, 2] if, for each α< 1

2 , Vt

is Hölder continuous of order α on [0, 2].
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Two equivalent definitions are the following.
• If

δ(s) = sup{|Vt+s−Vt| : 0 6 t6 t+s6 2},

then

ψ(x) = sup
s>1/x

s−1/2δ(s)

is a subpower function.
• There is a subpower function ψ such that for all 06t62 and 06s61,

∆(t, s) 6ψ

(
1
s

)
.

The next proposition shows that for weakly Hölder- 1
2 functions Vt, it suffices to

consider dyadic y and corresponding t in the definition of Θβ , etc.

Proposition 2.8. Suppose that Vt is weakly Hölder-1
2 on [0, 2]. For each t∈[0, 2]

define

tn = tn(t) =
j−1
22n

, if
j−1
22n

6 t<
j

22n
.

Then, for −16β61, the following holds:
• we have

Θβ = {t∈ (0, 2] : 2−n|f̂ ′tn
(i2−n)| ≈∗ 2−n(1−β)},


Θβ = {t∈ (0, 2] : 2−n|f̂ ′tn
(i2−n)|<i.o. 2−n(1−β)},

Θ β = {t∈ (0, 2] : 2−n|f̂ ′tn
(i2−n)|4i.o 2−n(1−β)},

where the asymptotics are as n!∞ along the integers;
• if t∈
Θβ , then

vt(y) <i.o. y
1−β and |γ(t)−f̂t(iy)|<i.o. y

1−β , y! 0+;

• if t∈Θ̃β , then

vt(y) 4 y1−β and |γ(t)−f̂t(iy)|4 y1−β , y! 0+; (2.18)

• if t∈Θβ , then

vt(y)≈∗ y1−β and |γ(t)−f̂t(iy)| ≈∗ y1−β , y! 0+.
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Proof. Note that

|f̂ ′t(i2−n)|= |f ′t(Vt+i2−n)|6∆(t, 2−n)4|f ′t(Vtn
+i2−n)|6 e5a∆(t, 2−n)4|f̂ ′tn

(i2−n)|,

and similarly
|f̂ ′t(i2−n)|> e−5a∆(t, 2−n)−4|f̂ ′tn

(i2−n)|.

Hence, if Vt is weakly Hölder- 1
2 , then there is a subpower function ψ such that, for all t

and n,
ψ(2n)−1|f̂ ′tn

(i2−n)|6 |f̂ ′t(i2−n)|6ψ(2n)|f̂ ′tn
(i2−n)|.

This implies the first assertion. The remaining ones, which do not require Vt to be weakly
Hölder- 1

2 , follow from (2.5).

2.3. Harmonic measure at the tip

We will now discuss harmonic measure giving two non-equivalent definitions, one that
is standard and one which is more directly related to the multifractal spectrum we have
discussed.

In this subsection γ denotes a curve in H with one endpoint on the real line. We
assume that the curve comes from a Loewner chain driven by a continuous function Vt,
so it may have double points but it does not cross itself. Let Ht be the unbounded
connected component of H\γ([0, t]). As before, we write gt:Ht!H for the normalized
conformal mapping so that limy!0+ f̂t(iy)=γ(t), where ft=g−1

t and f̂t(z)=ft(z+Vt). If
the curve has double points, we are interpreting γ(t) in terms of prime ends, and we then
tacitly understand γ(t) as the prime end corresponding to Vt.

If z∈Ht, then hmt,z will denote the usual harmonic measure of R∪γ((0, t]) from z,
that is, the hitting measure of Brownian motion starting at z stopped when it reaches
∂Ht. We let

hmt(U) = lim
y!∞

y hmt,iy(U),

which is the normalized harmonic measure from the boundary point at infinity. Note
that for each z∈Ht, hmt and hmt,z are mutually absolutely continuous. Also, confor-
mal invariance, the normalization at infinity, and the well-known Poisson formula in H
together show that, for bounded U ,

hmt(U) =
1
π

length(gt(U)).

Let
µ̃(t, ε) =hmt[	B(γ(t), ε)],
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C

γ([0, t])

gt

gt(σ)

Vt

Figure 2. The image of ∂B(γ(t), ε) can have many components. The crosscut gt(σ) separates

the interval [x−, x+]3Vt from ∞ in H and the (normalized) harmonic measure µ(t, ε) equals

(x+−x−)/π. By conformal invariance, µ(t, ε) equals the harmonic measure of the part of ∂Ht

separated from ∞ by σ in Ht.

where B(z, ε) denotes the open disk of radius ε about z with closure 	B(z, ε). For α>0,
define

Θ̃hm
α = {t∈ (0, 2] : µ̃(t, ε)≈∗ εα as ε! 0+}.

We define the multifractal spectrum of harmonic measure at the tip by

α 7−!dimH[γ(Θ̃hm
α )].

This multifractal spectrum can be hard to compute. One of the difficulties is that
B(γ(t), ε)∩Ht can contain many connected components whose images under gt are far
apart. We will give a different definition that is more directly related to the tip multi-
fractal spectrum in this paper.

Fix t>0 and ε>0, and let B=B(γ(t), ε). Let O=Ot,ε denote the connected com-
ponent of B∩Ht that contains γ(t) (considered as a prime end) on its boundary. Let
C be the collection of connected components σ′ of ∂B∩Ht that is in ∂O and such that
σ′ separates (the prime end) γ(t) from infinity in Ht, that is, every curve from γ(t) to
infinity in Ht passes through σ′. We let σ=σε be the unique member of C that separates
all other elements of C from infinity in Ht. Let E=Et,ε be the part of ∂Ht separated
from infinity by the crosscut σ. Note that E is connected. We will be interested in the
decay rate of the harmonic measure of E as ε!0+. Let

x− =x−,t,ε<Vt<x+ =x+,t,ε

denote the images of the endpoints of σ under gt. (Since gt maps onto the “nice” domain
H, these points always exist; see, e.g., [19, Chapter 2].) In other words, E is the preimage
of the interval [x−, x+] under gt, and we define

µ(t, ε) =hmt(E) =
x+−x−
π

.
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It is not necessarily true that E⊂ 	B(γ(t), ε); see Figure 2. However, an estimate using
the Beurling projection theorem shows that there is a c<∞ such that

µ
(
t, 1

2ε
)
6 cµ̃(t, ε). (2.19)

We define
Θhm

α = {t∈ (0, 2] :µ(t, ε)≈∗ εα as ε! 0+}.

The next lemma makes the connection with the tip multifractal spectrum.

Lemma 2.9. If 1
2 6α<∞, then

Θhm
α =Θ1−1/α.

Proof. We will prove that there exist 0<c1, c2<∞ such that for all t>0 and all
sufficiently small ε>0, one has

µ(t, 2vt(ε)) > c1ε, (2.20)

µ(t, ε)|f̂ ′t(iµ(t, ε))|6 c2ε. (2.21)

The lemma follows immediately from these estimates combined with Proposition 2.7.
Let ηε denote the line segment (0, iε]. The harmonic measure from infinity of ηε

in H\ηε equals c1ε for a specific constant c1, and hence by conformal invariance the
harmonic measure from infinity of η∗ε :=f̂t�ηε in Ht\η∗ε is also c1ε. Since η∗ε is a curve of
length vt(ε) and one of its endpoints is γ(t), the interior of η∗ε is contained in Ot,vt(ε).
From this and a Beurling estimate as in (2.19), we get (2.20).

It remains to prove (2.21). To this end, let σε=σε,t be the open arc whose endpoints
are mapped to x−,ε<x+,ε as above. Let `ε=x+,ε−x−,ε and note that µ(t, ε)=`ε/π. Set
yε=`ε and zε=Vt+iyε. By the distortion theorem it suffices to show that yε|f̂ ′t(iyε)|6cε.
Recall that gt(σε) is a crosscut of H connecting x−,ε with x+,ε. Since yε=`ε, there is an
absolute constant c2>0 such that harmonic measure of gt(σε) from zε in H\gt(σε) is at
least c2. By conformal invariance, this is also true for the harmonic measure of σε from
f̂t(iyε) in Ht\σε. By the distortion theorem and the Koebe-1

4 theorem, we know that
dist(f̂t(iyε), ∂Ht)�yε|f̂ ′t(iyε)|. Note also that

dist(f̂t(iyε), ∂Ht) 6dist(f̂t(iyε), ∂Ht∪σε)+2ε,

since σε is a crosscut of Ht of diameter at most 2ε. The needed estimate then comes from
the Beurling estimate which implies that in any simply connected domain D, if V ⊂∂D,
then

hmD(z, V ) 6 c

√
diam(V )

dist(z, ∂D)
,

and this completes the proof.
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3. Tip spectrum for SLE

Let �>0 and a=2/�. Then the chordal Schramm–Loewner evolution with parameter �
(SLE�) is the solution to the Loewner equation (2.2) with a=2/�, where Vt is a standard
Brownian motion. It is well known that, with probability 1, Vt is weakly Hölder- 1

2 . Let

d=min
{
1+ 1

8�, 2
}
.

It was proved by Beffara [1] that d is the Hausdorff dimension of the path γ([0, 2]). This
will follow as a particular case of our main theorem, so we will not need to assume this
result. However, it is convenient to use this notation.

3.1. Main theorem

Before stating the main theorem, we will define some special values of the parameter β.
See §3.4 for more details. Let

%(β) =
�

8(β+1)

[(
�+4
�

)
(β+1)−1

]2
, (3.1)

and define

d̂β =
2−%(β)

2
and dβ =

2d̂β

1−β
=

2−%(β)
1−β

.

The maximum value of d̂β equals 1 and is obtained at

β# :=
�

�+4
−1.

The maximum value of dβ equals d and is obtained at

β∗ :=
�

max{4,�−4}
−1.

We define β−6β#6β∗6β+ by %(β−)=%(β+)=2. A straightforward computation gives

β+ =−1+
�

12+�−4
√

8+�
, (3.2)

β− =−1+
�

12+�+4
√

8+�
< 0. (3.3)

Also −1<β−<β+61, with equality only for �=8.

Remark. The function β+(�) determines the optimal Hölder exponent for the SLE�
path in the capacity parametrization: with probability 1, the chordal SLE� path away
from the base is Hölder-α for α< 1

2 (1−β+) and not Hölder-α for α> 1
2 (1−β+). See [5,

Theorem 1.1].
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We recall from §2.1 that

Θβ = {t∈ (0, 2] : y|f̂ ′t(iy)| ≈∗ y1−β},

Θβ = {t∈ (0, 2] : y|f̂ ′t(iy)|<i.o. y

1−β},

Θ̃β = {t∈ (0, 2] : y|f̂ ′t(iy)|4 y1−β},

Θ β = {t∈ (0, 2] : y|f̂ ′t(iy)|4i.o. y
1−β},

Θ∗
β = {t∈ (0, 2] : vt(y) 4i.o. y

1−β},

where the asymptotics are as y!0+. We can now state our main result.

Theorem 3.1. For chordal SLE�, if −16β61, the following facts hold with prob-
ability 1:

• If β−6β6β+, then

dimH(Θβ) = d̂β and dimH[γ(Θβ)]= dβ . (3.4)

• If β#6β6β+, then
dimH(
Θβ) = d̂β . (3.5)

• If β∗6β6β+, then
dimH[γ(
Θβ)]= dβ . (3.6)

• If β−6β6β#, then
dimH(Θ β) = d̂β . (3.7)

• If β−6β6β∗, then
dimH[γ(Θ∗

β)]= dβ . (3.8)

• If β>β+, then

Θβ = ∅.

• If β<β−, then
Θ β = ∅.

3.2. Remarks

• It follows from the theorem that, with probability 1, the results hold for a dense
set of β. This implies that, with probability 1, (3.5)–(3.8) hold for all β. However, we
have not shown whether or not for a particular realization there might be an exceptional
β for which (3.4) does not hold.
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• The restriction to t∈(0, 2] is only a convenience. By scaling we get a similar result
for t∈(0,∞).

• The relationship dimH[γ(Θβ)]=2 dimH(Θβ)/(1−β) can be understood as follows.
For s small, the image of the interval [t, t+s2] under f̂t can be approximated by a set
of diameter s|f̂ ′t(is)| containing f̂t(is). If |f̂ ′t(is)|≈s−β , then this set has diameter s1−β .
That is to say, intervals of length (diameter) s2 in a covering of Θβ are sent to sets of
diameter s1−β . Note that this is in contrast to complex Brownian motion where intervals
of length s2 are always sent to sets whose diameter is of order s.

• Since Θβ⊂
Θβ∩Θ̃β∩Θ∗
β and Θ∗

β⊂Θ β , it suffices to prove the lower bounds for
Θβ in (3.4) and the upper bounds for 
Θβ , Θβ and Θ∗

β in (3.5)–(3.8). The upper bounds
will be proved in §4.1 and the lower bounds in §4.2.

• To prove the upper bound (3.5) it suffices to show that, for each s>0,

dimH(
Θβ∩(s, 2])6 d̂β ,

and similarly for (3.6)–(3.8). This is what we do in §4.1.
• Recall that Θ∗

β⊂Θ β . It is open whether or not

dimH[γ(Θ β)]6 dβ .

• Note that (0, 2]=
Θβ∗∪Θ∗
β∗ . It follows that

dimH(γ((0, 2]))= dβ∗ = d.

Hence, Beffara’s theorem on the dimension of the path [1], [9] is a particular case of the
theorem.

• The statements about the dimension of γ(Θβ), γ(
Θβ) and γ(Θ∗
β) are independent

of the parametrization of the curve.
• Using the Markov property for SLE it is not hard to show that, with probability 1,

either Θβ is dense in (0,∞) or it is empty. Also, dimH[γ(Θβ∩[t1, t2])] is the same for all
0<t1<t262. In particular, in order to prove the lower bound on dimension, it suffices
to prove that, for all α<dβ ,

P{dimH[γ(Θβ∩[1, 2])]>α}> 0.

This is what we will do in §4.2. The proof proves the slightly stronger (for �>4) result

P{dimH[H∩γ(Θβ∩[1, 2])]>α}> 0.

• If �=8, we have β∗=β+=1 and dimH[γ(Θ1)]=2. This is related to the fact that
this is the hardest case to establish the existence of the curve; the curve is almost surely
not Hölder continuous (in the capacity parametrization) when �=8 [5]. For other values
of �, we have β∗<β+<1.
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3.3. Multifractal spectrum of harmonic measure

Let Θhm
α be defined as in §2.3. Let

Ftip(α) := d1−1/α =α

(
1− 4

�

)
+

(4+�)2

8�
−�

8

(
α2

2α−1

)
,

and let α−, α∗ and α+ correspond to β−, β∗ and β+, respectively, through the relation

α=
1

1−β
.

Remark. We can compare the function Ftip with the conjectured almost sure bulk
spectrum for SLE� given by

Fbulk(α) =α+
(4+�)2

8�
− (4+�)2

8�

(
α2

2α−1

)
.

Theorem 3.2. Suppose that α−6α6α+. For chordal SLE�, with probability 1,

dimH[γ(Θhm
α )]=Ftip(α).

Proof. This is an immediate corollary of Theorem 3.1 and Lemma 2.9.

Theorem 3.2 combined with (2.19) gives some information on Θ̃hm
α . In §6, we will

use the forward Loewner flow to give a proof of the following result.

Theorem 3.3. If 0<�<8 and 1
2 6α6α∗, then, with probability 1, there exists a set

V such that dimH[γ(V )]6Ftip(α) and for t /∈V , γ(t)∈H,

µ̃(t, 2−n) 4 2−nα, n!∞. (3.9)

Let
T̃ hm

α = {t∈ (0, 2] : µ̃(t, 2−n) < 2−αn and γ(t)∈H}

and note that Theorem 3.3 combined with (2.19) and Theorem 3.2 implies that, for each
α−6α<α∗, with probability 1,

dimH[γ(T̃ hm
α )]=Ftip(α).

Indeed, it follows directly from (2.19) and Theorem 3.2 that the lower bound on the
dimension holds with probability 1. To get the upper bound, notice that T̃ hm

α is contained
in {t∈(0, 2]:µ̃(t, 2−n)<i.o.2−nα}, which, for those t such that γ(t)∈H, in turn is contained
in the set V from Theorem 3.3.
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3.4. Parameters

In the statement of the main theorem, β and % were the parameters used. However, in
deriving the result, it is useful to consider a number of other parameters. Let

r∗ =min
{

1,
8
�

}
and rc =

1
2

+
4
�
,

and note that
0<r∗ 6 rc,

where the second inequality is strict unless �=8. Let r<rc; we define λ, ζ, β and % as
functions of r.

Let
λ=λ(r) = r

(
1+ 1

4�
)
− 1

8�r
2. (3.10)

We write λ∗=λ(r∗), and similarly for other parameters. As r increases from −∞ to rc,
λ increases from −∞ to

λc =1+
3�
32

+
2
�
.

Since the relationship is injective, we can write either λ(r) or r(λ). Solving the quadratic
equation gives

r(λ) =
4+�−

√
(4+�)2−8λ�
�

.

Also,
λ(0)= 0 and λ∗ = d.

Let
ζ = ζ(r) = r− 1

8�r
2 =λ(r)− 1

4�r, (3.11)

and note that
ζ∗ =2−d.

We can write ζ as a function of λ,

ζ(λ) =λ+

√
(4+�)2−8λ�−4−�

4
.

We now briefly discuss some results from [9] and [5]. The reverse-time SLE� Loewner
flow ht (see §5.2 for definitions) has the property that, for fixed t, the distribution of
|h′t(z)| is the same as that of |f̂ ′t(z)|. Let

Zt =Xt+iYt =ht(i)−Vt.
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Then, if r∈R and λ and ζ are defined as above, we have that

|h′t(z)|λYt(z)ζ [sin argZt(z)]−r

is a martingale. Typically one expects Yt(i)�
√
t and sin argZt(i)�1. If this is true, then

the martingale property would imply that

E[|f̂ ′t2(i)|λ] = E[|h′t2(i)|λ]� t−ζ .

It turns out that this argument can be carried out if r<rc, and this is the starting point
for determining the multifractal spectrum.

We define β=β(r) by the relation

dζ

dλ
=−β.

A straightforward calculation gives

β(r) =−1+
�

4+�−�r
and �r(β) = 4+�− �

β+1
.

Note that β increases with r with

β(−∞) =−1, β(0)=− 4
4+�

=β#, β(r∗) =β∗ and βc =1,

where β# and β∗ are as defined in the previous section. Roughly speaking, E[|f̂ ′t2(i)|λ] is
carried on an event on which |f̂ ′t2(i)|≈tβ and

P{|f̂ ′t2(i)| ≈ tβ}≈ t−(ζ+λβ). (3.12)

We emphasize that the relation between r, λ and β for −∞<r<rc is bijective, and
in order to specify the values of the parameters it suffices to give the value of any one of
these. For example, we could choose β as the independent variable and write r(β) and
λ(β). This is the natural approach when proving Theorem 3.1, but the formulas tend to
be somewhat simpler if we choose r to be the independent variable.

From (3.12), it is natural to define

%= %(r) = ζ(r)+λ(r)β(r) =
�

2r2

8(4+�−�r)
.

We can also write % as a function of β and a computation gives (3.1). Note that

d%

dβ
=
dζ

dλ

dλ

dβ
+λ+β

dλ

dβ
=λ.



tip multifractal spectrum for sle 291

Let r+ and r− denote the two values of r for which ζ(r)+λ(r)β(r)=2, with corre-
sponding values β+=β(r+) and β−=β(r−). Then

r± =
4
�

(−2±
√

8+� ),

and β+ and β− are given as in (3.2) and (3.3). Note that, if � 6=8, then r+<rc.

Define

dβ =
2−%(β)
1−β

=
2−(ζ+βλ)

1−β
.

Note that dβ is maximized at β=β∗ (interpreted as a limit for �=8) with d∗=d. We can
also define d as a function of r, that is

d(r) = 1+
�− 1

8�
2r2

8+�−2�r
.

Straightforward differentiation shows that d′(r)=0 implies r=1 or r=8/�. Note that
1=8/�=r+ if �=8 and

1<r+<
8
�
, if �< 8,

8
�
<r+< 1, if �> 8.

From this we can see that d(r) achieves its maximum on (−∞, r+) at r=r∗; in fact, d(β)
increases for β<β∗ and decreases for β∗<β<β+.

In order to match the notation of [9], let

q= rc−r=
1
2

+
4
�
−r. (3.13)

Obviously, q>0 if and only if r<rc. For future reference, we note that

1−2q
1+2q

=β. (3.14)

4. Proof of the main theorem

In this section we will present the proof of the theorem relying on estimates about
moments of derivatives of the map f̂ . The upper bounds are proved in §4.1, and the
lower bound is proved in §4.2.
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4.1. Upper bounds

In this subsection (and this subsection only) we write

f̂j,n = f̂(j−1)2−2n .

For each t∈[0,∞), we associate a dyadic time by defining

tn = tn(t) =
j−1
22n

, if
j−1
22n

6 t<
j

22n
.

We fix s with 0<s62 and allow constants to depend on s.
The next theorem states the derivative estimates that we will use for the upper

bounds; a proof can be found in [5].

Theorem 4.1. ([5]) If r<rc, there exists c<∞ such that, for all t>1,

E[|f̂ ′t2(i)|λ]6 ct−ζ . (4.1)

Corollary 4.2. If β>β#, there is a c<∞ such that, if

Nn,β =
∑

s22n6j622n+1

1{|f̂ ′j,n(i2−n)|>2nβ},

then
E[Nn,β ]6 c2n(2−%). (4.2)

Proof. The range β>β# corresponds to λ>0. Hence, by Chebyshev’s inequality,

P{|f̂ ′j,n(i2−n)|> 2nβ}6 2−nβλE[|f̂ ′j,n(i2−n)|λ] = 2−nβλE[|f̂ ′j(i)|λ]6 c2−nβλj−ζ/2,

and hence

E[Nn,β ] =
∑

s22n6j622n+1

P{|f̂ ′j,n(2−n)|> 2nβ}

6 2−nβλ
∑

s22n6j622n+1

j−ζ/2 6 c2n(2−βλ−ζ) = c2n(2−%).

Corollary 4.3. If β<β#, there is a c<∞ such that, if

N∗
n,β =

∑
s22n6j622n+1

1{|f̂ ′j,n(i2−n)|62nβ},

then
E[N∗

n,β ]6 c2n(2−%). (4.3)
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Proof. This is proved in the same way using λ<0.

The standard technique to find upper bounds for Hausdorff dimension uses an ap-
propriate sequence of covers for a set. We will now describe the covers that we will use.
Let

I(j, n) =
[
j−1
22n

,
j

22n

]
.

If b, b̄∈R with −1<b<b̄<1, let 	B(j, n, b̄) be the closed disk in C of radius 2n(b̄−1) centered
at f̂j,n(i2−n), and let

In(s, b) =
⋃
j

I(j, n) and Bn(s, b, b̄) =
⋃
j

	B(j, n, b̄),

where in each case the union is over s22n6j622n+1 with |f̂ ′j,n(i2−n)|>2nb. Let

Im(s, b) =
∞⋃

n=m

In(s, b) and Bm(s, b, b̄) =
∞⋃

n=m

Bn(s, b, b̄).

Lemma 4.4. If −1<b<β<b1<b̄<1 then, for each m,


Θβ∩(s, 2]⊂ Im(s, b) and γ(
Θβ∩Θ̃b1∩(s, 2])⊂Bm(s, b, b̄).

Proof. Suppose that t∈
Θβ∩(s, 2]. By Proposition 2.8, there exists a subsequence
nj!∞ such that

|f ′tnj
(i2−nj )|> 2njb.

In other words, there is a sequence nj such that I(tnj
22nj , nj)∈Inj

(s, b). This proves the
first assertion.

If t∈
Θβ∩Θ̃b1∩(s, 2] and b1<u<b̄, then (2.18) shows that, for all sufficiently large n,

|γ(t)−f̂t(i2−n)|6 2(u−1)n.

The triangle inequality gives

|γ(t)−f̂tn
(i2−n)|6 |γ(t)−f̂t(i2−n)|+|f̂t(i2−n)−f̂tn

(i2−n)|,

and estimating as in (2.16), we have, for n sufficiently large,

|f̂t(i2−n)−f̂tn
(i2−n)|6 2(u−1)n.

Hence, for n sufficiently large,

|γ(t)−f̂tn
(i2−n)|6 2nj(b̄−1).

This implies that, for all sufficiently large j,

γ(t)∈B(tnj
22nj , b, b̄).
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Proposition 4.5. If β>β#, then, with probability 1,

dimH(
Θβ∩(s, 2])6 d̂β . (4.4)

Moreover, if β>β+, then, with probability 1,


Θβ∩(s, 2]= ∅.

Proof. It suffices to consider β#<β<1. Suppose that β#<b<β<1. Using the cover
from Lemma 4.4, we get

Hα(
Θβ∩(s, 2])6
∞∑

n=m

Nn,b2−2αn,

and hence (4.2) implies that

E[Hα(
Θβ∩(s, 2])]6 c
∞∑

n=m

2n(2−%(b))2−2αn.

The sum goes to zero, provided 2α>2−%(b), and hence, with probability 1,

Hα(
Θβ∩(s, 2])= 0, α> 1− 1
2%(b).

Letting b!β gives (4.4).
For the second assertion, note that

P{
Θβ∩(s, 2] 6= ∅}6
∞∑

n=m

E[Nn,b]6 c
∞∑

n=m

2n(2−%(b)).

If β>β+, then %(β)>2 and we can find b<β with %(b)>2.

Lemma 4.6. If β#6β<b1<1, then, with probability 1,

dimH[γ(
Θβ∩Θ̃b1∩(s, 2])]6
2−%(β)
1−b1

. (4.5)

Proof. Choose b and b̄ with β#<b<β<b1<b̄<1. Using the cover from Lemma 4.4,
we get

Hα[γ(
Θβ∩Θ̃b1∩(s, 2])]6
∞∑

n=m

Nn,b2α(b̄−1)n,

and hence (4.2) implies that

E[Hα(γ(
Θβ∩Θ̃b1∩(s, 2]))]6 c
∞∑

n=m

2n(2−%(b))2α(b̄−1)n.

The sum on the right goes to zero provided

α>
2−%(b)
1−b̄

.

We now choose sequences of values for b and b̄ that converge to β and b1, respectively,
to conclude (4.5).
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Proposition 4.7. If β∗6β61, then, with probability 1,

dimH[γ(
Θβ∩(s, 2])]6 dβ . (4.6)

Proof. If β=b0<b1<b2<...<bk<1 with bk>b+, then


Θβ =
k⋃

j=1

(
Θbj−1∩Θ̃bj
).

Therefore, (4.5) implies that

dimH[γ(
Θβ∩(s, 2])]6max
{

2−%(bj−1)
1−bj

: j=1, ..., k
}
.

By taking finer and finer partitions and using the continuity of %, we see that

dimH[γ(
Θβ∩(s, 2])]6 sup
b>β

2−%(b)
1−b

= dβ .

The last equality uses β>β∗ and the fact, which can easily be verified (see §3.4), that
the function

b 7−! 2−%(b)
1−b

is decreasing on the interval [β∗, β+].

For β<β# we use a slightly different cover. Let I(j, n) be as above and let

I∗n(s, b) =
⋃
j

I(j, n) and B∗n(s, b, b̄) =
⋃
j

B(j, n, b̄),

where in each case the union is over s22n6j622n+1 with |f̂ ′j,n(i2−n)|62nb. Let

Im
∗ (s, b) =

∞⋃
n=m

I∗n(s, b) and Bm
∗ (s, b, b̄) =

∞⋃
n=m

B∗n(s, b, b̄).

Lemma 4.8. If −1<β<b<b̄, then

Θ β∩(s, 2]⊂ Im
∗ (s, b) and γ(Θ∗

β∩(s, 2])⊂Bm
∗ (s, b, b̄).

Proof. Suppose that t∈Θ β∩(s, 2]. By Proposition 2.8, there exists a subsequence
nj!∞ such that

|f̂ ′tnj
(i2−nj )|6 2njb. (4.7)
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In other words, there is a sequence nj such that I(tnj
22nj , nj)∈I∗nj

(s, b). This proves the
first assertion.

Now suppose that t∈Θ∗
β∩(s, 2]⊂Θ β∩(s, 2]. Then there exists a sequence nj such

that both (4.7) holds and
vt(2−nj ) 6 2nj(b−1).

Using the triangle inequality as in Lemma 4.4, we see that

|γ(t)−f̂tnj
(i2−nj )|6 vt(2−nj )+|f̂t(i2−nj )−f̂tnj

(i2−nj )|,

and arguing as before we see that, for j sufficiently large,

|γ(t)−f̂tnj
(i2−nj )|6 2nj(b̄−1)

and
γ(t)∈B∗(tnj

22n, b, b̄).

Proposition 4.9. If β<β#, then, with probability 1,

dimH(Θ β∩(s, 2])6 d̂β and dimH[γ(Θ∗
β∩(s, 2])]6 dβ .

Moreover, if β<β−, then, with probability 1,

Θ β∩(s, 2]= ∅.

Proof. This is proved in the same way as Proposition 4.5 and Lemma 4.6 using
(4.3).

4.2. Lower bound

In this subsection we prove the lower bound for the dimension in (3.4). We fix r such
that %=λβ+ζ<2 and recall that r<rc. As has been pointed out, it suffices to show that,
with positive probability,

dimH(Θβ∩[1, 2])>
2−%

2
and dimH[γ(Θβ∩[1, 2])]>

2−%
1−β

. (4.8)

We will use a standard technique of Frostman to show that, with positive probability,
there exist non-trivial positive measures µ and ν, whose supports are contained in

Θβ∩[1, 2] and γ(Θβ∩[1, 2]),
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respectively, such that

Eα(µ)<∞, α<
2−%

2
, and Eα(ν)<∞, α<

2−%
1−β

,

where

Eα(µ) =
∫∫

µ(dx)µ(dy)
|x−y|α

is the energy integral. It is well known that this implies (4.8); see, e.g., [18, Theorem 8.9].
For this subsection, we will adopt a different notation than in the previous subsection.
We let

f̂j,n = f̂1+(j−1)/n2 , j=1, 2, ..., n2.

We will be studying |f̂ ′j,n(i/n)|. The proof considers a subset of times in Θβ∩[1, 2] that
behave in some sense nicely. The hard work is Theorem 4.10 which will be proved in §5.
This theorem discusses the existence of some events Ej,n on which

|f̂ ′j,n(iy)| ≈ y−β , n−1 6 y6 1.

The definition of the events (“good times”) will be left for §5.

Theorem 4.10. Let %=λβ+ζ<2. There exist 0<c1, c2<∞, a subpower function ψ

and events
Ej,n, n=1, 2, ..., j=1, ..., n2,

such that the following holds. Let E(j, n)=1Ej,n
and

F (j, n) =nζ−2

∣∣∣∣f̂ ′j,n(
i

n

)∣∣∣∣λE(j, n).

• If 16j6n2, then on the event Ej,n,

ψ

(
1
y

)−1

y−β 6 |f̂ ′j,n(iy)|6ψ

(
1
y

)
y−β , n−1 6 y6 1. (4.9)

• If 16j6k6n2, then

c1n
−2 6 E[F (j, n)]6nζ−2E

[∣∣∣∣f̂ ′j,n(
i

n

)∣∣∣∣λ]
6
c2
n2
, (4.10)

• If 16j6k6n2, then

E[F (j, n)F (k, n)]6n−4

(
n2

k−j+1

)%/2

ψ

(
n2

k−j+1

)
. (4.11)

• If 16j<k6n2 and E(j, n)E(k, n)=1, then∣∣∣∣f̂j,n

(
i

n

)
−f̂k,n

(
i

n

)∣∣∣∣−(2−%)(1−β)

6

(
n2

k−j+1

)(2−%)/2

ψ

(
n2

k−j+1

)dβ

. (4.12)
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Proof. This theorem combines Propositions 5.8 and 5.9 with Lemmas 5.5 and 5.7
proved in §5.

Proposition 4.11. Under the assumptions of Theorem 4.10, with positive probabil-
ity there exists A⊂[1, 2] such that, for t∈A,

1
4y

−βψ(1/y)−1 6 |f̂ ′t(iy)|6 4y−βψ(1/y), 0<y6 1, (4.13)

and such that

dimH(A)>
2−%

2
and dimH[γ(A)]>

2−%
1−β

.

Proof assuming Theorem 4.10. We use a now standard argument to show that with
positive probability a “Frostman measure” of appropriate dimension can be put on the
set of t satisfying (4.13). The proof is very similar to that of [9, Lemma 10.3], so we omit
some of the details.

Let µj,n denote the random measure on R that is a multiple of Lebesgue measure on
I(j, n):=[1+(j−1)n−2, 1+jn−2], where the multiple is chosen to that ‖µj,n‖=F (j, n).
Let νj,n denote the random measure on C that is a multiple of Lebesgue measure on the
disk of radius 1

4n
β−1ψ(n2)−1 centered at f̂j,n(i/n), where the constant is chosen so that

‖νj,n‖=F (j, n). Let

µn =
n2∑

j=1

µj,n and νn =
n2∑

j=1

νj,n.

Note that

‖µn‖= ‖νn‖=
n2∑

j=1

F (j, n).

From (4.10) and (4.11), we see that

E[‖µn‖]> c1 and E[‖µn‖2]6 c2.

Hence, by the Cauchy–Schwarz inequality, there is a constant c>0 such that

P{‖µn‖> 0}> c> 0

uniformly in n. In Lemma 4.12 below we show that there is cα<∞ such that the energy
integrals satisfy

E[Eα(µn)]6 cα, α<
2−%

2
, and E[Eα(νn)]6 cα, α<

2−%
1−β

.
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We let µ denote a subsequential limit of the µn which with positive probability we
know is non-trivial and satisfies Eα(µ)<∞ for all α< 1

2 (2−%). Hence,

dimH(suppµ)> 1
2 (2−%).

Similarly, let ν denote a subsequential limit of the νn which is non-zero with positive
probability and satisfies

dimH(supp ν) >
2−%
1−β

.

We claim that every t∈suppµ satisfies (4.13). Indeed, the construction shows that, if
t∈suppµ, then there is a subsequence nk!∞ and jk∈{1, ..., n2

k} such that E(jk, nk)=1
and

lim
k!∞

jk−1
n2

k

= t. (4.14)

Suppose that, for some t∈[1, 2] and 0<y61, we had

|f̂ ′t(iy)|> 4y−βψ

(
1
y

)
.

Continuity would imply that, for all s in a neighborhood of t,

|f̂ ′s(iy)|> 2y−βψ

(
1
y

)
.

This implies that there is no sequence (jk, nk) as above with E(jk, nk) satisfying (4.14).
A similar argument shows that there cannot exist t∈suppµ and y with

|f̂ ′t(iy)|6
1
4
y−βψ

(
1
y

)−1

,

and this gives (4.13). Similarly, supp ν is contained in γ(A′), where A′ denotes the set of
t∈[1, 2] satisfying (4.13).

Lemma 4.12. Suppose that the assumptions of Theorem 4.10 hold and let µn and
νn be the random measures constructed in the proof of Proposition 4.11. For every
α< 1

2 (2−%) and α′<(2−%)/(1−β) there exist constants cα<∞ and cα′<∞ depending
only on α and α′, respectively, such that the energy integrals satisfy

E[Eα(µn)]6 cα and E[Eα′(νn)]6 cα′ .

Proof. We will show the details for νn, the argument for µn being similar. For
j=1, ..., n2, let

zj,n = f̂j,n

(
i

n

)
, rn =

nβ−1

4ψ(n2)
and mj,n =

F (j, n)
πr2n

,
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where ψ and F are as in Theorem 4.10. Recall that νn=
∑n2

j=1 νj,n, where

dνj,n(z) =mj,n1{B(zj,n,rn)} dA(z)

and dA(z) is the area measure. Suppose that α<(2−%)/(1−β). By definition,

E[Eα(νn)]=
n2∑

j,k=1

E
[∫∫

dνj,n(z) dνk,n(w)
|z−w|α

]
.

First consider the case where j=k:∫∫
dνk,n(z) dνk,n(w)

|z−w|α
=
F (k, n)2

π2r4n

∫∫
B(zk,n,rn)×B(zk,n,rn)

dA(z) dA(w)
|z−w|α

.

One can check that there is a constant c<∞ such that the right-hand side is bounded by
cF (k, n)2r−α

n . Taking the expected value, using (4.11) and writing ε=(2−%)/(1−β)−α,
we see that

E
[
F (k, n)2

rα
n

]
6 cn−2−ε(1−β)ψ1(n2),

where ψ1 is a subpower function. Consequently, since β<1, we conclude that there is a
constant c1<∞ depending only on α such that

n2∑
k=1

E
[∫∫

dνk,n(z) dνk,n(w)
|z−w|α

]
6 c1

uniformly in n. Now let j<k. We have∫∫
dνj,n(z) dνk,n(z)

|z−w|α
=
F (j, n)F (k, n)

π2r4n

∫∫
B(zj,n,rn)×B(zk,n,rn)

dA(z) dA(w)
|z−w|α

.

Since j<k, we can bound the last integral by a constant times

r4n
|zj,n−zk,n|α

.

Using (4.11) and (4.12), this gives

E
[∫∫

dνj,n(z) dνk,n(z)
|z−w|α

]
6 c

(
n−2

k−j+1

)
.

We conclude by noting that the sum over 16j<k6n2 of this last quantity is uniformly
bounded in n.
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5. Estimating the moments

In this section r<rc with corresponding values of ζ, β, % and λ. All constants may
depend on r. Let us give an overview of the section. We begin by discussing the reverse-
time Loewner flow and how it relates to ft. We then go on to define the “good times”
which, roughly speaking, are T for which the reverse flow driven by t 7!VT−t−Vt behaves
“as expected”. (Here, Vt is a two-sided Brownian motion.) We make this precise in a
number of lemmas that show how the derivative of the map and the flow of suitable
points can be controlled on the event that T is “good”. The needed correlation estimates
can then be derived using moment bounds from [9] and [5]. However, to have the paper
self-contained, we discuss some of the critical bounds in Appendix A.

5.1. Reverse Loewner flow

Here we state the basic lemma that relates the reverse Loewner flow to the forward flow
for SLE. We will estimate the moments for h and h̃ rather than for f̂ .

If Vt is a continuous function, define gt to be the solution to the forward-time
(chordal) Loewner equation

∂tgt(z) =
a

gt(z)−Vt
, g0(z) = z. (5.1)

Let ft(z)=g−1
t (z) and f̂t(z)=ft(z+Vt). If Ut is another continuous function, let ht be

the solution to the reverse-time (chordal) Loewner equation

∂tht(z) =
a

Ut−ht(z)
, h0(z) = z. (5.2)

The next lemma relates the forward-time and reverse-time equations; although versions
of this have appeared before, we give a short proof. We point out that this is a fact about
the Loewner equation itself; no assumptions are made about the function V other than
continuity.

Lemma 5.1. Assume that Vt, −∞<t<∞, is a continuous function with V0=0. For
each T>0, let

Ut,T =VT−t−VT .

Let gt, 06t<∞, be the solution to the forward-time Loewner equation (5.1), and let
ft and f̂t be as above. Let ht,T , 06t<∞, be the solution to the reverse-time Loewner
equation (5.2) with Ut=Ut,T . Let

Zt,T (z) =ht,T (z)−Ut,T .
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Then
hT,T (z) = f̂T (z)−VT = f̂T (z)+UT ,

and, if 06S6T and z, w∈H, then

hT,T (z) =hS,S(ZT−S,T (z))+UT−S,T , (5.3)

f̂T (z)−f̂S(w) =hS,S(ZT−S,T (z))−hS,S(w). (5.4)

In particular,
h′T,T (z) =h′S,S(ZT−S,T (z))h′T−S,T (z).

Proof. Fix T and write

Ut :=Ut,T and ht :=ht,T .

For 06S6T , we have
Ut,S =VS−t−VS =UT−S+t−UT−S .

Let ut(z)=hT−t(z)+VT . Then ut satisfies

∂tut(z) =−∂thT−t(z) =
a

hT−t(z)−(Vt−VT )
=

a

ut(z)−Vt
,

with initial value u0(z)=hT (z)+VT . Thus we see from (5.1) that ut(z) and gt(z) satisfy
the same ordinary differential equation but with different initial values. However,

ũt(z) := gt(hT (z)+VT )

and ut(z) does satisfy the same ordinary differential equation with the same initial con-
ditions, and so it follows that

uT (z) = gT (hT (z)+VT ).

On the other hand, as uT (z)=h0(z)+VT =z+VT , we get

z+VT = gT (hT (z)+VT ),

and since f̂T (z)=g−1
T (z+VT ), we can write this as

hT (z) = f̂T (z)−VT = f̂T (z)+UT .

For 06s6T , define h(s)
t by

hs+t =h
(s)
t �hs.
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By (5.2), we see that

∂t[h
(s)
t (z)−Us] =

a

Ut+s−h(s)
t (z)

=
a

Ut+s−Us−[h(s)
t (z)−Us]

,

h
(s)
0 (z)−Us = z−Us.

Therefore,
h

(s)
t (z)−Us =ht,T−s(z−Us), (5.5)

which implies that
hs+t(z) =ht,T−s(Zs,T (z))+Us. (5.6)

Setting s=T−S and t=S gives (5.3), and setting s=S and t=T−S gives

f̂T−S(w) =hT−S(w)−UT−S,T−S =hT−S,T−S(w)−(UT−US),

f̂T (z) =hT (z)−UT =hT−S,T−S(ZS,T (z))+US−UT .

Subtracting these equations gives (5.4). The final assertion follows from (5.3) and the
chain rule.

The preceding lemma holds for all continuous Vt. If Vt is a standard Brownian
motion, then so is Ut,T for each T . We get the following corollary.

Lemma 5.2. Let 0<S<T and let gt, 06t6T , be the solution to (5.1), where Vt is
a standard Brownian motion. Let Ut be a standard Brownian motion and let h and h̃ be
the solutions to

∂tht(z) =
a

Ut−ht(z)
, h0(z) = z, (5.7)

∂th̃t(z) =
a

Ũt−h̃t(z)
, h̃0(z) = z,

where Ũt=UT−S+t−UT−S. Then

hT−S+t(z) = h̃t(hT−S(z)−UT−S)+UT−S .

Moreover, the joint distribution of the functions

(f̂ ′S(w), Im f̂S(w), f̂ ′T (z), Im f̂T (z), f̂T (z)−f̂S(w))

is the same as the joint distribution of

(h̃′S(w), Im h̃S(w), h̃′S(Z)h′T−S(z), Im h̃S(Z), h̃S(Z)−h̃S(w)),

where Z=ZT−S(z)=hT−S(z)−UT−S.
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5.2. Good times

Let T>0 and let ht=ht,T be defined as in the proof of Lemma 5.1. More specifically, gt

is the solution to the forward-time Loewner equation (5.1) with a (two-sided) Brownian
motion Vt as driving function, and ht is the solution to the reverse-time Loewner equation
(5.2) with Ut=Ut,T =VT−t−VT as driving function. Let

Zt(z) =Xt(z)+Yt(z) =ht(z)−Ut.

Recall from Lemma 5.1 that we have

ht+s(z) =ht+s,T (z) =ht,T−s(Zs(z))+Us.

Note that
h′t+s(z) =h′t,T−s(Zs(z))h′s(z). (5.8)

If ψ is a subpower function and 0<δ61, we let

ψ̂δ(t) =min
{
ψ

(
t

δ

)
, ψ

(
1
t

)}
=

{
ψ(t/δ), if t6

√
δ,

ψ(1/t), if t>
√
δ.

Note that, for every subpower function ψ and every c<∞, there is an M<∞ such that,
for all δ>0,

ψ̂δ(t) 6M, if δ6 t6 cδ or t>
1
c
. (5.9)

Roughly speaking, ψ̂δ(t) is O(1) for t comparable to δ or comparable to 1, but can be
larger for other δ<t<1.

Definition. We call a time T ψ-good at δ if the following conditions hold for ht=ht,T

with ψ̂=ψ̂δ and Zt=Xt+iYt=Zt(δi):

Yt2 > tψ̂(t)−1, δ6 t6 2, (5.10)

|Xt2 |6 (t+δ)ψ̂(t), 0 6 t6 2, (5.11)(
t

δ

)β

ψ(t)−1 6 |h′t2(iδ)|6
(
t

δ

)β

ψ(t), δ6 t6 2, (5.12)

t−βψ(t)−1 6
|h′4(iδ)|
|h′t2(iδ)|

= |h′4−t2,T−t2(Zt2)|6 t−βψ(t), δ6 t6 2. (5.13)

This definition depends on ψ and δ. Note that if T is ψ-good at δ and φ is a
subpower function with ψ6φ, then ψδ6φδ and T is φ-good at δ. In the remainder
of this subsection, we derive some properties of ψ-good times. These will be used to
estimate first and second moments for |h′t2(δi)|λ on the event that T is ψ-good at δ.
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Proposition 5.3. For every subpower function ψ there is a subpower function φ

such that, for all δ>0, if T is ψ-good at δ, then

|Ut2 |6 tφ

(
1
t

)
, δ6 t6 2. (5.14)

Proof. Let Xt=Xt(iδ) and Yt=Yt(iδ). We let φ denote a subpower function, but it
may change from line to line. From the Loewner equation, we know that

dXt =− aXt

X2
t +Y 2

t

dt−dUt.

Hence,

|Ut2 |6 |Xt2 |+a
∫ t2

0

|Xs| ds
X2

s +Y 2
s

.

By (5.11), it suffices to show that∫ t2

0

|Xs| ds
X2

s +Y 2
s

6φ

(
1
t

)
.

Using (5.10) and (5.11), we have

|Xs|
X2

s +Y 2
s

6
φ(1/s)√

s
,

and hence ∫ t2

0

|Xs| ds
X2

s +Y 2
s

6
∫ t2

0

φ(1/s) ds√
s

=
∫ ∞

t−2
φ(x)x−3/2 dx= φ̃

(
1
t

)
t,

where

φ̃

(
1
t

)
=

1
t

∫ t2

0

φ(1/s) ds√
s

.

It is easy to check that φ̃ is continuous and decays faster than xε for each ε.

Lemma 5.4. If ψ is a subpower function, there is a c>0 such that, for every 0<δ61,
if T is ψ-good at δ and Yt=Yt(δi), then

Yδ2 > (1+c)δ. (5.15)

Proof. Using (5.10) and (5.11), and the fact that Yt2 increases with t, we see that
there is a c1<∞ such that

|Xt2 |6 c1δ6 c1Yt2 , 0 6 t6 δ.

The Loewner equation (5.2) implies that

∂sYs =
aYs

X2
s +Y 2

s

>
a

c21+1
1
Ys
, s6 δ2,

from which (5.15) follows.
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Lemma 5.5. For every subpower function ψ, there is a c such that, if 0<δ61 and
T is ψ-good at δ, then

|h4−t2,T−t2(Zt2)−h4−t2,T−t2(δi)|> cψ̂δ(t)−2t1−β , δ6 t6 2.

Proof. Using (5.10) and (5.15), we see that there is a c1>0 such that if B denotes
the open disk of radius c1tψ̂δ(t)−1 about Zt2 , then δi /∈B. Using (5.13) and the Koebe
1
4 -theorem, we see that h4−t2,T−t2(B) contains a disk of radius 1

4c1ψ̂δ(t)−2t1−β about
h4−t2,T−t2(Zt2). Since h4−t2,T−t2(δi) /∈B, the result follows.

Lemma 5.6. For all subpower functions ψ and φ there is a subpower function ψ̄

such that, if T is ψ-good at δ, then the following holds for all δ6t62. Suppose that

tφ

(
1
t

)−1

6 y6 tφ

(
1
t

)
and |x|6 (t+δ)φ

(
1
t

)
.

Then

t−βψ̄

(
1
t

)−1

6 |h′4−t2,T−t2(x+iy)|6 t−βψ̄

(
1
t

)
.

Proof. By Proposition 2.3 and conditions (5.10) and (5.11),

ψ̃

(
1
t

)−1

|h′4−t2,T−t2(Zt2)|6 |h′4−t2,T−t2(x+iy)|6 ψ̃

(
1
t

)
|h′4−t2,T−t2(Zt2)|,

where Zt2 =Zt2(iδ). The result then follows from (5.13).

Lemma 5.7. For all subpower functions ψ and φ there is a subpower function ψ̄

such that, if T is ψ-good at δ, then the following holds for 16t62. Let w=x+iy with

δ6 y6 1 and
(
x

y

)2

+1 6φ

(
1
y

)
.

Then,

y−βψ̄δ

(
1
y

)−1

6 |h′t2(w)|6 y−βψ̄δ

(
1
y

)
.

In particular,

y−βψ̄δ

(
1
y

)−1

6 |h′t2(iy)|6 y−βψ̄δ

(
1
y

)
. (5.16)

Proof. We will do the case t=2; the argument is similar for 16t62. We let ψ̄
denote a subpower function in this proof, but it may change from line to line. Since
(x/y)2+16φ(1/y), we can see from Proposition 2.3 that

ψ̄

(
1
y

)−1

|h′t2(iy)|6 |h′t2(w)|6 ψ̄

(
1
y

)
|h′t2(iy)|,
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so we may assume that x=0. Let s=y. Using the Loewner equation (5.2), we can see
that there is a c<∞ such that

y6 Imhs2(iy) 6 cy, |Rehs2(iy)|6 cy and |h′s2(iy)|6 c.

The last estimate and (5.8) imply that

|h′4(iy)| � |h4−s2,T−s2(Zs2(iy))|.

Using (5.14), we see that

|ReZs2(iy)|6 y

[
c+ψ

(
1
y

)]
.

By the previous result,

ψ̄

(
1
y

)−1

y−β 6 |h′4−s2,T−s2(Zs2(iy))|6 ψ̄

(
1
y

)
y−β .

Definition. If n is a positive integer and j=1, ..., n2, we say that (j, n) is ψ-good if
T=1+(j−1)n−2 is ψ-good at n−1. We let Ej,n denote the event “(j, n) is ψ-good” and
E(j, n) denotes the indicator function of Ej,n.

It is important to note that on the event Ej,n, (5.16) implies that (4.9), the corre-
sponding estimate for |f̂ ′|, holds, with perhaps a different choice of subpower function ψ.
Similarly, we note that Lemma 5.5 implies that (4.12) holds on the event Ej,n. The main
estimate for the lower bound is the following.

Proposition 5.8. If r<rc, there exist a subpower function ψ and c>0 such that,
for all n>1 and all j=1, 2, ..., n2,

E
[∣∣∣∣f̂ ′j,n(

i

n

)∣∣∣∣λE(j, n)
]

> cn−ζ . (5.17)

Remark. For fixed n, the expectation in (5.17) is the same for all j.

Although the proof of Proposition 5.8 has essentially appeared in [9, Theorem 10.8],
we have included Appendix A which discusses it. We point out that the assumption
r<rc is crucial for the result.

5.3. Correlations

In this subsection we fix a subpower function ψ such that Proposition 5.8 holds. If n is
a positive integer, we write j and k for positive integers satisfying 16j<k6n2. We will
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consider Ej,n∩Ek,n with indicator function E(j, n)E(k, n). If j, k and n are fixed, we
write

S=1+
j−1
n2

, T =1+
k−1
n2

, h̃t =ht,S and ht =ht,T ,

and recall that this means that h̃t and ht are solutions to the reverse-time Loewner
equation with VS−t−VS and VT−t−VT as driving functions, respectively.

Proposition 5.9. There is a subpower function φ such that, for all 16j<k6n2,

E
[∣∣∣∣f̂ ′T (

i

n

)∣∣∣∣λ∣∣∣∣f̂ ′S(
i

n

)∣∣∣∣λE(j, n)E(k, n)
]

6n−2ζ

(
n2

k−j

)(λβ+ζ)/2

φ

(
n2

k−j

)
.

Moreover, on the event Ej,n∩Ek,n,∣∣∣∣f̂T

(
i

n

)
−f̂S

(
i

n

)∣∣∣∣ >

(
k−j
n2

)(1−β)/2

φ

(
n2

k−j

)
.

Proof. We write φ for a subpower function, but we let it vary from line to line; in
the end we choose the maximum of all the subpower functions mentioned. Recall that
f̂ ′S(i/n)=h̃′S(i/n), f̂ ′T (i/n)=h′T (i/n) and

f̂T

(
i

n

)
−f̂S

(
i

n

)
= h̃S

(
ZT−S

(
i

n

))
−h̃S

(
i

n

)
.

The second assertion of the proposition follows immediately from Lemma 5.5, so we need
only show the first one.

Since T is ψ-good at 1/n, we know from (5.13) that∣∣∣∣h′T (
i

n

)∣∣∣∣ 6

∣∣∣∣h′T−S

(
i

n

)∣∣∣∣( n2

k−j

)β/2

φ

(
n2

k−j

)
.

Therefore,

E
[∣∣∣∣f̂ ′T (

i

n

)∣∣∣∣λ∣∣∣∣f̂ ′S(
i

n

)∣∣∣∣λE(j, n)E(k, n)
]

6

(
n2

k−j

)λβ/2

φ

(
n2

k−j

)
E

[∣∣∣∣h′T−S

(
i

n

)∣∣∣∣λ∣∣∣∣h̃′S(
i

n

)∣∣∣∣λE(j, n)E(k, n)
]
.

Note that |h′T−S(i/n)|λE(k, n) and |h̃′S(i/n)|λE(j, n) are independent random variables.
Therefore,

E
[∣∣∣∣h′T−S

(
i

n

)∣∣∣∣λ∣∣∣∣h̃′S(
i

n

)∣∣∣∣λE(j, n)E(k, n)
]

6 E
[∣∣∣∣h̃′S(

i

n

)∣∣∣∣λE(j, n)
]
E

[∣∣∣∣h′T−S

(
i

n

)∣∣∣∣λE(k, n)
]
.

We now apply Theorem 4.1 to see that the right-hand side above is bounded above by

n−ζ(k−j)−ζ/2φ

(
n2

k−j

)
=n−2ζ

(
n2

k−j

)ζ/2

φ

(
n2

k−j

)
,

and this concludes the proof.
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6. Proof of Theorem 3.3

In this section we will use the forward Loewner flow to prove Theorem 3.3, which we
now restate.

Theorem 3.3. If 0<�<8 and 1
2 6α6α∗, then, with probability 1, there exists a

set V such that dimH[γ(V )]6Ftip(α) and, for t /∈V , γ(t)∈H,

µ̃(t, 2−n) 4 2−nα, n!∞.

Throughout we will fix �=2/a<8. We will write u rather than α (to avoid having
both α and a in formulas). To prove the theorem it suffices to show that for every
bounded domain D⊂H bounded away from the real line, there is a set VD with

dimH[γ(VD)]6Ftip(u)

and such that (3.9) holds for t /∈VD with γ(t)∈D. We fix such a D and allow constants to
depend on D. The basic strategy is typical for establishing upper bounds for multifractal
spectra. We estimate a particular moment of |g′τ (z)| for an appropriate stopping time,
use Chebyshev’s inequality to get an estimate on probabilities, and use this estimate to
bound the dimension of a well-chosen covering.

We warn the reader again that some of the notation in this section is not consistent
with that in other sections.

We parameterize SLE� so that the conformal maps gt satisfy

∂tgt(z) =
a

gt(z)−Ut
, g0(z) = z, (6.1)

where Ut=−Bt is a standard Brownian motion. This is valid for z∈C\{0} up to time
Tz∈(0,∞]. We let Ht be the unbounded component of H\γ((0, t]).

6.1. Preliminaries

Let
Zt =Zt(z) =Xt+iYt = gt(z)−Ut.

If z∈H, let

∆t = |g′t(z)|, Υt =
Yt

|g′t(z)|
, Θt =argZt and St =sinΘt.

Note that Υt equals 1
2 times the conformal radius of Ht about z (or we can think of it

as the conformal radius normalized so that the conformal radius of H about i equals 1).
The Koebe- 1

4 theorem implies that

1
2Υt 6dist(z, ∂Ht) 6 2Υt. (6.2)
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Straightforward computations using (6.1) show that, for z∈H,

∂t∆t =∆t
a(Y 2

t −X2
t )

|Zt|4
and ∂tΥt =−Υt

2aY 2
t

|Zt|4
.

There exist 0<c1<c2<∞ such that, for z∈D,

c1 6Υ0 6 c2 and c1 6S0 6 1. (6.3)

Let, for u> 1
2 ,

r= r(u) =
1
2
−2a− 1

4u−2
, (6.4)

and let

λ=λr =
r2

2a
+r

(
1− 1

2a

)
and ξ= ξr =

r2

4a
=
λ

2
− r

2

(
1− 1

2a

)
. (6.5)

Note that r increases with u. Define

ûc =
1
2

+
1

8a−2
.

Note that ûc<α∗=2a/(4a−1). If u<ûc, since a> 1
4 ,

r < r(ûc) = 1−4a<min
{

1
2−2a, 2−3a

}
and −λ<r< 0.

The following is a straightforward Itô’s formula calculation that we omit.

Proposition 6.1. Let r∈R and let λ and ξ be as in (6.5). If z∈H and

Mt =Mt(z) = |Zt|rY ξ
t ∆λ

t =S−r
t Υξ+r

t ∆λ+r
t ,

then Mt is a local martingale satisfying

dMt =Mt
rXt

|Zt|2
dBt.

Let Dn denote the set of dyadic rationals in C,

z=
j

2n
+i

k

2n
, j, k∈Z.

Note that if w∈C, then there exists z∈Dn with |z−w|62−n, and hence

B(w, 2−n)⊂B(z, 2−n+1).
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6.2. Basic strategy

Let
τn,z = inf{s : Υs(z) 6 2−n+3}.

We will only consider n so large that 2−n+46c1, where c1 is the constant in (6.3). Note
that P{τn,z=∞}>0. If τn,z<∞, (6.2) implies that

2−n+2 6dist(z, ∂Hτn,z
) =dist(z, γ((0, τn,z]))6 2−n+4.

In particular, if |w−z|62−n, then dist(w, ∂Hτn,z
)>2−n+1.

Recall that we defined the normalized harmonic measure by

hmt(V ) = lim
y!∞

y hm(iy, V,Ht)

and µ̃(t, ε)=hmt[	B(γ(t), ε)]. Similarly, we define

ĥmt(V ) := lim
y!∞

y hm(iy, ∂V,Ht\V ),

and note that hmt(V )6ĥmt(V ). Set hmn,z=hmτn,z
, and similarly for ĥm. If

|z−γ(t)|6 2−n

then τn,z6t, and hence, by monotonicity of harmonic measure, we have

ĥmn,z[B(z, 2−n+1)]>hmt[B(z, 2−n+1)]> µ̃(t, 2−n).

Let Dn(D) denote the set of z∈Dn such that dist(z,D)62−n and

Au
m =Au

m(D) =
∞⋃

n=m

⋃
z

B(z, 2−n+1),

where the inner union is over all z∈Dn(D) satisfying

ĥmn,z[B(z, 2−n+1)]> 2−nu. (6.6)

Then, if γ(t)∈D\Au
m, for all sufficiently large n,

µ̃(t, 2−n) 6 2−nu.

Hence, for each m, Au
m is a cover of D∩Vu, where Vu is the set of γ(t) that do not satisfy

(3.9). Let Nn=Nn,u(D) be the cardinality of the set of z∈Dn(D) satisfying (6.6). Then,
for all s,

Hs(D∩Vu) 6 lim
m!∞

Hs(Au
m) 6 c lim

m!∞

∞∑
n=m

Nn2−ns.

The following proposition follows immediately.
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Proposition 6.2. Let u, s>0 and suppose that

Nn,u(D) 4 2ns, n!∞.

Then
dimH(D∩Vu) 6 s.

Proof. The argument above shows that Hs′(D∩Vu)=0 for all s′>s.

In order to show that for SLE

dimH(D∩Vu) 6 s

with probability 1, it suffices to show that

E[Nn,u(D)]4 2ns, n!∞.

Indeed, this relation and the Borel–Cantelli lemma imply that, with probability 1,
Nn,u(D)62ns′ for all s′>s. Note that

E[Nn,u(D)]6 cD22n sup
dist(z,D)62−n

P{τn,z <∞; ĥmn,z[B(z, 2−n+1)]> 2−nu}.

Notice that conformal invariance of harmonic measure and distortion estimates imply
that, on the event τn,z<∞,

ĥmn,z[B(z, 2−n+1)]� 2−n|g′τn,z
(z)|.

Indeed, gτn,z
(B(z, 2−n+1)) is a connected set whose diameter is comparable to

2−n|g′τn,z
(z)|,

and whose distance from the real axis is also comparable to

2−n|g′τn,z
(z)|.

Hence, there exists c<∞ such that

E[Nn,u(D)]6 cD22n sup
dist(z,D)62−n

P{τn,z <∞; |g′τn,z
(z)|> c2−n(u−1)}.

In the remainder of this section we will show that there exists c=cD<∞ such that,
for all sufficiently large n and all z with dist(z,D)62−n,

P{τn,z <∞; |g′τn,z
(z)|> c2−n(u−1)}6 2−n%(u), (6.7)

where

%(u) =
(

1
8a

+2a−1
)(

u− 1
2

)
+

(
1
2
− 1

8a

)
+

1
32a

(
u− 1

2

) .
Then from the above arguments we know that, with probability 1,

dimH(D∩Vu) 6 2−%(u) =Ftip(u).

The second equality is a straightforward calculation. The remainder of this section is
devoted to establishing (6.7).
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6.3. Weighting by the martingale

The local martingale Mt is not a martingale because it “blows up” on the event of
measure zero that z is on the path γ((0,∞)). However, if we choose stopping times τ
such as τn,z which prevent the path from getting too close to z, then the stopped process
Mt∧τ is a martingale. Let P∗ and E∗ denote probabilities and expectations with respect
to the measure obtained by weighting by (the stopped martingale) M . The Girsanov
theorem implies that

dBt =
rXt

|Zt|2
dt+dWt, 0 6 t< τ,

where Wt is a standard Brownian motion with respect to the measure P∗. In particular,

dΘt =
(1−2a−r)XtYt

|Zt|4
dt− Yt

|Zt|2
dWt.

It is useful to use a “radial” parametrization σ(t). We write Ẑt=Zσ(t), X̂t =Xσ(t),
etc. The radial parametrization is defined by

Υ̂t :=Υσ(t) = e−2at.

Note that

−2aΥ̂t = ∂tΥ̂t =−2aΥ̂t
Ŷ 2

t

|Ẑt|4
∂tσ(t),

which implies that

∂tσ(t) =
|Ẑt|4

Ŷ 2
t

.

Note also that

dΘ̂t =(1−2a) cot Θ̂t dt+dB̂t,

and the local martingale Mt satisfies

dM̂ t =−rM̂ t cot Θ̂t dB̂t.

Moreover, we have that

dΘ̂t =(1−2a−r) cot Θ̂t dt+dŴt. (6.8)

In the above, B̂t and Ŵt are standard Brownian motions with respect to P and P∗,
respectively. Since 1−2a−r> 1

2 , we compare with a Bessel process to see that in the
measure P∗, Θ̂t never reaches {0, π}; see [8, Chapter 1]. It follows that M̂ t is actually a
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martingale. Also, the invariant probability density for the stochastic differential equation
(6.8) equals

f(θ) = c sin2(1−2a−r) θ.

Since r<1−4a<3−4a, it follows that sinr θ is integrable with respect to f(θ) dθ. The
important fact for us is that there is a c such that, if Θ̂t satisfies (6.8) with sin Θ̂0>c1,
then, for all t>0,

E∗[Ŝr
t ]6 c. (6.9)

Let

τs = inf{t : Υt = e−2as}.

For r< 1
2−2a, we have for all s,

P∗{τs<∞}=1.

Then, using (6.9), we have

E[|g′τs
(z)|λ+r; τs<∞] = E[Mτs

Sr
τs

Υ−ξ−r
τs

; τs<∞] = e2as(ξ+r)E[Mτs
Sr

τs
; τs<∞]

= e2as(ξ+r)M0(z)E∗[Ŝr
s ]6 ce2as(ξ+r).

Since λ+r>0, if ε=e−2as, then

P{τs<∞; |g′τs
(z)|> εu−1}6 ε−(u−1)(λ+r)E[|g′τs

(z)|λ+r; τs<∞]6 cε%(u),

where

%(u) =−(u−1)(λ+r)−(r+ξ).

Doing the algebra, we get

%(u) =
(

1
8a

+2a−1
)(

u− 1
2

)
+

(
1
2
− 1

8a

)
+

1
32a

(
u− 1

2

) .
This proves (6.7) which concludes the proof of Theorem 3.3.

Appendix A. Proof of Proposition 5.8

In this appendix we will discuss the proof of the lower bound for the moments of the
derivative. We shall use the notation from §5. Our goal is to prove the following result.
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Proposition If r<rc, there exist a subpower function ψ and c>0 such that, for
all n>1 and all j=1, 2, ..., n2,

E
[∣∣∣∣f̂ ′j,n(

i

n

)∣∣∣∣λE(j, n)
]

> cn−ζ ,

where E(j, n) is the indicator of the event that T=1+(j−1)n−2 is ψ-good at 1/n.

Since the proof has essentially appeared in [9], we shall be rather brief and cite several
results. Let ht be the reverse-time SLE� flow. Scaling implies that the distribution of
(|h′t2(δi)|, t∈[δ, 2]) is the same as that of (|h′(t/δ)2(i)|, t∈[δ, 2]), so it will be sufficient to
study E[|h′s(i)|λ] for 16s6t, as t!∞. We fix a>0 and r<rc and let all constants in the
appendix depend on these parameters.

A.1. Setup

Let Vt be the driving Brownian motion for h and define

Zt =ht(i)−Vt, Xt =ReZt, Yt =ImZt and Kt =
Xt

Yt
.

The Loewner equation implies that we can write

|h′t(i)|λ =exp
[
aλ

∫ t

0

(
1− 2

1+K2
t

)
dt

|Zt|2

]
. (A.1)

Itô’s formula shows that, if λ, ζ and r are as in §3, then

Mt = |h′t(i)|λY
ζ
t (1+K2

t )r/2

is a martingale; see [9, Proposition 2.1]. Note that the Loewner equation implies that
d log Yt/dt=a/|Zt|2, and so the right-hand side of (A.1) suggests that we perform a
time-change t 7!σ(t) so that log Yσ(t) grows linearly. Set

σ(t) = inf{s : log Ys = at},

and let X̂t=Xσ(t), ĥ′t=h
′
σ(t), etc. Differentiating both sides of Yσ(t)=e2at shows that

σ(t) =
∫ t

0

e2at(1+K̂2
t ) dt.

The equation for K̂ is

dK̂t =−2aK̂t dt+
√

1+K̂2
t dB̂t, (A.2)
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where B̂ is standard Brownian motion and a time change of V :

B̂t =
∫ σ(t)

0

dVt

|Zt|
.

It is now useful to consider a change of variable. Recall that

rc =2a+
1
2

=
4
�

+
1
2

and let
dĴt =−rc tanh Ĵt dt+dB̂t. (A.3)

Then Itô’s formula implies that K̂t=sinh Ĵt satisfies the stochastic differential equation
(A.2). Define

L̂t = t−
∫ t

0

2 dt

1+K̂2
t

= t−
∫ t

0

2 dt
cosh2 Ĵt

, (A.4)

so that |ĥ′t(i)|=eaL̂t . One can check that

Nt =Mσ(t) = eaλL̂teaζt(1+K̂2
t )r/2 = eaλL̂teaζt coshr Ĵt

is again a martingale and
dNt = r(tanh Ĵt)Nt dB̂t;

see [9, Proposition 6.2].

A.2. Change of measure

The martingale property implies that

E[eaλL̂t coshr Ĵt] = e−aζt.

The idea is to show that this integral is, roughly speaking, supported on an event on
which coshr Ĵt�1 and L̂t=βt+O(

√
t ), where β=β(r) is as in §5. We shall use Girsanov’s

theorem to change measure and compute probabilities in the new measure obtained by
weighting by N . For an event E measurable with respect to the σ-algebra generated
by B̂s, 06s6t, define the measure P∗(E)=E[1ENt]; note that N0=1. By Girsanov’s
theorem, if Wt is standard Brownian motion under P∗, then

dĴt =−q tanh Ĵt dt+dWt, (A.5)

where q :=rc−r. The key observation is that Ĵ satisfying the last equation is a positive
recurrent process whenever q=rc−r>0, and therefore has an invariant density.



tip multifractal spectrum for sle 317

Lemma A.1. Let q>0, assume that Ĵt satisfies the stochastic differential equation
(A.5) under the measure P∗ and let L̂t be defined by (A.4). Then the following holds:

(i) The process Ĵt is positive recurrent with invariant density

vq(x) =
Cq

cosh2q x
, −∞<x<∞,

where Cq=Γ
(
q+ 1

2

)
/Γ

(
1
2

)
Γ(q). Moreover,∫ ∞

−∞

(
1− 2

cosh2 x

)
vq(x) dx=

1−2q
1+2q

=β.

(ii) There exists a constant c<∞ depending only on q such that, if Ĵ0=0, k>0 and
u>1, then

P∗{there exists t∈ [k, k+1] with cosh Ĵt >u}6 cu−2q.

(iii) There exists c<∞ such that, for 06s6t,

E∗
[
exp

(
(2q+1)|L̂t−L̂s−β(t−s)|√

t−s

)]
6 c.

Proof. By the stochastic differential equation for Ĵt, we have that the invariant
density v solves the equation

1
2v

′′(x)−((−q tanhx)v(x))′ =0;

see, e.g., [7, §15.5]. A solution is given by v=vq, and one can check that this is an
invariant density for Ĵt. Next, we note that we get an upper bound for the probability
in (ii) by considering the same probability but with Ĵ0 having the law of the invariant
distribution. Indeed, this follows by coupling the two processes. Let x>1, suppose that
Ĵ0 has the law of the invariant distribution and, for k>0, set

Y =Yk,x =
∫ k+2

k

1{|Ĵt|>x−1} dt.

Then,

E∗[Y ] = 2
∫
|y|>x−1

vq(y) dy6
c

cosh2q x
.

Using the strong Markov property and the fact that the drift tanh Ĵt is bounded when
Ĵt is close to x (and the fact that Ĵt has continuous paths) it follows that there exists a
δ>0 such that

E∗[Y | there exists t∈ [k, k+1] with |Ĵt|>x]> δ,
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and consequently

P∗{there exists t∈ [k, k+1] with |Ĵt|>x}6 δ−1E∗[Y ].

Using the estimate on E∗[Y ], this completes the proof of (ii).
We now turn to (iii). Since |L̂t−L̂s−β(t−s)|62(t−s), it is enough to prove the

bound for t−s sufficiently large. We shall assume that 4/
√
t−s6q. For r∈R, let

δ= r
(

1
2q+

1
4

)
− 1

4r
2 and η= r

(
1
2q−

1
4

)
− 1

4r
2.

Then Itô’s formula shows that the process

Ot = eδ(L̂t−βt)e(η+δβ)t coshr Ĵt

is a martingale and so, for s<t,

E∗[eδ(L̂t−L̂t−β(t−s))e(η+δβ)(t−s) coshr Ĵt] = E∗[coshr Ĵs]. (A.6)

It follows from (ii) that there is a constant c<∞ such that E∗[coshr Ĵs]<c. We combine
this with (A.6) with the choice r=4/

√
t−s which was assumed to be at most q. We can

therefore Taylor expand δ and η to obtain

E∗
[
exp

(
±b L̂t−L̂s−β(t−s)√

t−s

)
(cosh Ĵt)±4/

√
t−s

]
6 c, (A.7)

where b:=2q+1. From this it follows directly that

E∗
[
exp

(
b
L̂t−L̂s−β(t−s)√

t−s

)]
6 c.

The remaining case, when b is replaced by −b, can be easily verified using (A.7) and
condition (ii).

The next lemma defines the event corresponding to a “good time” (for the time-
changed process) in terms of Ĵ and L̂. The proof is a consequence of the estimates in
Lemma A.1 and the Chebyshev inequality.

Lemma A.2. ([9], Proposition 7.3) For each u, t>0, let Et,u be the event that the
following estimates hold for 06s6t:

|Ĵs|6u log min{s+2, t−s+2},

|L̂s−βs|6u
√
s log(s+2),

|L̂t−L̂s−β(t−s)|6u
√
t−s log(t−s+2).

Then,
lim

u!∞
inf
t>0

P∗(Et,u) = 1.
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It remains to transfer these estimates to the processes in their original time-param-
etrizations. Using the lemmas proved in §5, Proposition 5.8 follows from the next result.

Proposition A.3. There exists a subpower function ψ such that if

ψt,s =ψ(min{eas, ea(t−s)}), t> 0,

and Et is the event that the following estimates hold for 06s6t:

Ye2as > easψ−1
t,s ,

|Xe2as |6 easψt,s,

ψ(eas)−1easβ 6 |h′e2as(i)|6 easβψ(eas),

ψ(ea(t−s))−1ea(t−s)β 6
|h′e2at(i)|
|h′e2as(i)|

6 ea(t−s)βψ(ea(t−s)),

then
E[|h′e2at(i)|λ1Et

]� e−aζt.

Proof. We shall use ψ to denote a subpower function that may change from expres-
sion to expression. In the end we choose the maximum of those that we have used. First
note that Lemma A.2 implies that we can find a u∗<∞ such that inft>0 P∗(Eu∗,t)> 1

2 .
Let Et=Eu∗,t and write E(t) for the indicator of Et. Note that on Et we have that
16cosh Ĵt6c∗, where c∗ is a constant depending only on u∗; in the sequel we will allow
constants (and subpower functions) to depend on u∗. Consequently,

E[|h′σ(t)(i)|
λE(t)]� e−aζt. (A.8)

It remains to relate σ(t) to the original time parametrization. When s<t, cosh Ĵs is not
uniformly bounded on Et, but if F (s, t)=2+min{s, t−s}, then taking exponentials gives

1 6 cosh Ĵs 6 cF (s, t)u∗ , 0 6 s6 t,

on Et. Hence, there is a constant c∗<∞ such that, on Et,

e2as−1
2a

6
∫ s

0

e2as cosh2 Ĵs ds=σ(s)6 c∗F (s, t)2u∗e2as, 0 6 s6 t, (A.9)

where the first inequality is immediate. We wish to use this to show that the bounds on
|h′σ(s)(i)| from Lemma A.2 also hold for |h′e2as(i)| with suitable subpower corrections. It
is enough to consider s so large that σ(s)>e2as/4a. Indeed, |h′e2as(i)|�1 for s bounded
by a constant. In terms of Y, (A.9) implies that there is a constant c<∞ such that

eas−c log F (s,t) 6Ye2as 6 ceas, 0 6 s6 t. (A.10)
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Write

σs =σs,t =σ(s−c logF (s, t)),

where c is as in (A.10) and, for a given subpower function ψ, set

ψt,s =ψ(min{eas, ea(t−s)}).

Then we see that there is a subpower function ψ and r∈[0, e2asψt,s] such that

e2as =σs+r.

Next, note that

|h′e2as(i)|= |(hσs
r )′(Zσs

)| |h′σs
(i)|,

where r 7!hσs
r solves the reverse-time Loewner equation driven by Vσs+r as in §5. Since

Yσs
>easψ−1

t,s and r6e2asψt,s, it follows that

ψ−1
t,s 6

|h′e2as(i)|
|h′σs

(i)|
6ψt,s, (A.11)

and we can use Lemma A.2 to conclude that, on Et,

ψ(eas)−1easβ 6 |h′e2as(i)|6 easβψ(eas), 0 6 s6 t, (A.12)

and

ψ(ea(t−s))−1ea(t−s)β 6
|h′e2at(i)|
|h′e2as(i)|

6 ea(t−s)βψ(ea(t−s)), 0 6 s6 t. (A.13)

A similar argument shows that
|h′σ(t)(i)|
|h′σt

(i)|
� 1,

which combined with (A.11) and (A.8) shows that

E[|h′e2at(i)|λE(t)]� e−aζt.

Finally, recall that cosh2 Ĵs=1+e−2asX2
σ(s), and so it follows that

X2
e2as 6 ce2asψt,s, 0 6 s6 t.

This completes the proof.
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