Relative vanishing theorems in characteristic p

Tohru Nakashima

Introduction

In [I], L. Illusie proved a decomposition theorem of the relative de Rham complex for a morphism $f: X \to Y$ of smooth schemes defined over a perfect field k of characteristic p>0, generalizing an earlier result of [DI] which treats the absolute case. He deduced from the theorem several vanishing results for the direct image of line bundles.

Let $f: X \to Y$ be a k-morphism and E a vector bundle on X. In this paper we introduce the p-cohomological dimension relative to f, which will be denoted by pcd(E, f), of E. By means of this notion, we extend some of the vanishing theorems obtained in [I] to the case of higher rank bundles. As in [I], we need the assumption that f is semistable along a normal crossing divisor $D_Y \subset Y$ and f is liftable to $W_2(k)$, the ring of length two Witt vectors.

In Section 1, we prove a vanishing of direct image sheaves of vector bundles for a semistable morphism. The cohomology vanishing of the Gauss-Manin systems will be considered in Section 2. In Section 3, we treat the case of open varieties and generalize a theorem in [BK2] to the relative situation.

1. Relative vanishing for semistable morphisms

Let k be a perfect field of characteristic p>0. Let X be a smooth scheme defined over k. We denote by $F_X: X \to X$ the absolute Frobenius of X. A vector bundle E on X yields a bundle E' on X'. Let $F^nE:=(F_X^*)^nE$ denote the bundle on X obtained by the nth iterated pull-back of E by F_X .

Let Y be a smooth scheme over k and $f: X \to Y$ a k-morphism. We define the p-cohomological dimension relative to f of E, which we denote by pcd(E, f), as the smallest integer $\alpha \ge 0$ such that for every coherent sheaf \mathcal{F} , there exists $n_0 = n_0(\mathcal{F})$ satisfying $R^k f_*(\mathcal{F} \otimes F^n E) = 0$ for all $n \ge n_0$ and all $k > \alpha$.

Remark. If $Y = \operatorname{Spec} k$, we simply write $\operatorname{pcd}(E)$ instead of $\operatorname{pcd}(E, f)$. We note that $\operatorname{pcd}(\mathcal{O}_X)$ is identical with $\operatorname{cd}(X)$, the cohomological dimension of X. Furthermore, if $f: X \to Y = \operatorname{Spec} k$ is a projective morphism, then $\operatorname{pcd}(E) = 0$ if and only if E is cohomologically p-ample (cf. [H], [K]).

In this section we prove a vanishing theorem for the direct image of vector bundles in terms of pcd(E, f). For this purpose, we recall the decomposition theorem of Illusie. We follow the notation of [I]. Let $f: X \to Y$ be a k-morphism of smooth schemes. Let $D_Y \subset Y$ be a normal crossing divisor and let $D_X = f^{-1}(D_Y)$. We denote by X' the scheme deduced from X by the Frobenius of Y and let $\omega^i_{X'/Y} = \omega^i_{X/Y} \otimes \mathcal{O}_{X'}$. We say that $f: (X, D_X) \to (Y, D_Y)$ is semistable if, locally for the etale topology on X, f is the product of the following k-morphisms:

- (1) $pr_1: \mathbf{A}_k^n \rightarrow \mathbf{A}_k^1, D_Y = \emptyset;$
- (2) $h: \mathbf{A}_k^n \to \mathbf{A}_k^1, h^*y = x_1 \dots x_n,$

where $\mathbf{A}_k^n = \operatorname{Spec} k[x_1, \dots, x_n]$, $\mathbf{A}_k^1 = \operatorname{Spec} k[y]$ and $D_Y = (y)$. If $f: (X, D_X) \to (Y, D_Y)$ is semistable, we define the sheaf $\Omega^1_{X/Y}(\log D_X/D_Y)$ to be the cokernel of the natural injection $f^*\Omega^1_Y(\log D_Y) \subset \Omega^1_X(\log D_X)$. Setting $\omega^i_{X/Y} = \bigwedge^i \Omega^1_{X/Y}(\log D_X/D_Y)$, we obtain the complex $\omega^i_{X/Y}$, which is called the relative de Rham complex with logarithmic poles along D_X .

We assume that f, together with D_X , D_Y , has a semistable lifting over $W_2(k)$, the ring of Witt vectors of length two over k. We denote it by $\tilde{f}: (\widetilde{X}, \widetilde{D}_X) \to (\widetilde{Y}, \widetilde{D}_Y)$. We also assume the existence of a lifting $\widetilde{F}_Y: \widetilde{Y} \to \widetilde{Y}$ of the absolute Frobenius of Y such that $\widetilde{F}_Y^{-1}(\widetilde{D}_Y) = p\widetilde{D}_Y$. The following result is due to L. Illusie.

Proposition 1.1. ([I, 2.8]) Under the assumptions above, there exists an isomorphism in D(X')

$$\phi(\widetilde{f},\widetilde{F}_Y) \colon \bigoplus_{i < p} \omega^i_{X'/Y}[-i] \stackrel{\sim}{\longrightarrow} \tau_{< p} F_* \omega^{\cdot}{}_{X/Y}$$

where D(X') is the derived category of the category of $\mathcal{O}_{X'}$ -modules.

Lemma 1.2. In addition to the assumptions above, suppose that f is purely of relative dimension d < p. Let M be a vector bundle on X. If

(*)
$$R^{j} f_{*}(F_{X}^{*} M \otimes \omega^{i}_{X/Y}) = 0 \quad \text{for } i+j=n,$$

then we have

$$R^{j}f_{*}(M\otimes\omega^{i}_{X/Y})=0$$
 for $i+j=n$.

Proof. We follow the argument in [DI, 2.9]. Let M' be the bundle induced by the Frobenius base change from M. We have $F^*M'=F_X^*M$. By the projection

formula,

$$R^{j} f_{*} \left(F_{X}^{*} M \underset{\mathcal{O}_{X}}{\otimes} \omega^{i}_{X/Y} \right) = R^{j} f_{*}^{\prime} \left(M^{\prime} \underset{\mathcal{O}_{Y^{\prime}}}{\otimes} F_{*} \omega^{i}_{X/Y} \right).$$

We have the spectral sequence

$$E_1^{ij} = R^j f'_* \Big(M' \underset{\mathcal{O}_{X'}}{\otimes} F_* \omega^i_{X/Y} \Big) \quad \Longrightarrow \quad \mathbf{R}^{i+j} f'_* \Big(M' \underset{\mathcal{O}_{X'}}{\otimes} F_* \omega^i_{X/Y} \Big)$$

where $\mathbf{R}^n f_*$ denotes the *n*th hyperdirect image and

$$\mathbf{R}^{n} f'_{*} \Big(M' \underset{\mathcal{O}_{X'}}{\otimes} F_{*} \omega^{\cdot}_{X/Y} \Big) = \mathbf{R}^{n} f'_{*} \Big(M' \underset{\mathcal{O}_{X'}}{\otimes} \tau_{< p} F_{*} \omega^{\cdot}_{X/Y} \Big).$$

By assumption (*), $R^j f'_*(M' \underset{\mathcal{O}_{X'}}{\otimes} F_* \omega^i_{X/Y}) = 0$ for i+j=n. Hence Proposition 1.1 yields

$$\mathbf{R}^{n} f'_{*} \left(M' \underset{\mathcal{O}_{X'}}{\otimes} F_{*} \omega^{i}_{X/Y} \right) = \bigoplus_{i} R^{n-i} f'_{*} \left(M' \underset{\mathcal{O}_{X'}}{\otimes} \omega^{i}_{X'/Y} \right)$$
$$= \bigoplus_{i} F_{Y}^{*} R^{n-i} f_{*} \left(M \underset{\mathcal{O}_{X}}{\otimes} \omega^{i}_{X/Y} \right) = 0.$$

Hence we obtain

$$R^{n-i}f_*\left(M \underset{\mathcal{O}_Y}{\otimes} \omega^i_{X/Y}\right) = 0$$

for all i. This proves the lemma. \square

Theorem 1.3. Let f be as above and assume further that f is proper. If E is a vector bundle on X with $pcd(E, f) \le \alpha$, then

$$(1.3.1) R^{j} f_{*}(E \otimes \omega^{i}_{X/Y}) = 0 for i+j > d+\alpha,$$

$$(1.3.2) R^{j} f_{*}(E^{\vee} \otimes \omega^{i}_{X/Y}) = 0 for i+j < d-\alpha.$$

Proof. Since $pcd(E, f) \le \alpha$, we have

$$R^j f_*(F^n E \otimes \omega^i_{X/Y}) = 0$$

for $i+j>d+\alpha$ and for sufficiently large n. If we apply Lemma 1.2 to $M=F^nE$, we obtain (1.3.1) by descending induction on n. Since Grothendieck duality yields

$$\mathbf{R}f_*(E^{\vee} \otimes \omega^{d-i}_{X/Y}) \xrightarrow{\sim} \mathbf{R}\mathcal{H}om(\mathbf{R}f_*(E \otimes \omega^i_{X/Y}), \mathcal{O}_Y)[-d],$$

(1.3.2) easily follows from (1.3.1). \square

Let $f: X \to Y$ be a proper k-morphism and $l \ge 0$ a nonnegative integer. A line bundle L on X is said to be l-ample relative to f if there exists $n \in \mathbb{N}$ such that

- (1) the canonical map $f^*f_*L^{\otimes n} \to L^{\otimes n}$ is surjective;
- (2) the fibers of the canonical Y-morphism

$$X \to \mathbf{P}(f_* L^{\otimes n})$$

are at most l-dimensional.

In the case when $Y = \operatorname{Spec} k$, the above notion coincides with the l-ampleness in the sense of Sommese. By [BK1, 5.2], we have $\operatorname{pcd}(L, f) \leq l$ if L is l-ample relative to f. Hence Theorem 1.3 yields the following result.

Corollary 1.4. Let f be as in Theorem 1.3 and $l \ge 0$. If L is a line bundle on X which is l-ample relative to f, then we have

(1.4.1)
$$R^{j} f_{*}(L \otimes \omega^{i}_{X/Y}) = 0 \quad \text{for } i+j > d+l,$$

$$(1.4.2) R^j f_*(L^{\vee} \otimes \omega^i_{X/Y}) = 0 for i+j < d-l.$$

2. Vanishing for Gauss-Manin systems

Let $f:(X, D_X) \to (Y, D_Y)$ be as in the previous section. We define the graded \mathcal{O}_Y -module

$$H = \bigoplus_{i} \mathbf{R}^{i} f_{*} \omega^{\cdot}_{X/Y}.$$

Then there exists the Gauss–Manin connection

$$d: H \to \omega^1_{\mathcal{V}} \otimes H$$

which leads to the following complex

$$\omega^{\textstyle{\cdot}}_{Y}(H) = (H \stackrel{d}{\longrightarrow} \omega^{1}_{Y} \otimes H \longrightarrow \dots \stackrel{d}{\longrightarrow} \omega^{i}_{Y} \otimes H \longrightarrow \dots).$$

The Hodge filtration on H can be extended to the following filtration of $\omega_Y(H)$:

$$\operatorname{Fil}^i\omega^{\boldsymbol{\cdot}}_Y(H) = (\operatorname{Fil}^iH \longrightarrow \omega^1_Y \otimes \operatorname{Fil}^{i-1}H \longrightarrow \ldots \longrightarrow \omega^j_Y \otimes \operatorname{Fil}^{i-j}H \longrightarrow \ldots).$$

We denote the associated graded complex by $\operatorname{gr}^{\cdot} \omega_{Y}(H)$. In this section we prove a vanishing for the cohomology of bundles of the form $E \otimes \operatorname{gr}^{i} \omega_{Y}(H)$. The following is a consequence of [I, 4.7].

Proposition 2.1. Assume that $f:(X, D_X) \to (Y, D_Y)$ is proper and semistable and admits a lifting $\tilde{f}:(\tilde{X}, \tilde{D}_X) \to (\tilde{Y}, \tilde{D}_Y)$ over $W_2(k)$ which is also semistable. If f is purely of relative dimension d < p, then there exists an isomorphism

$$\phi : \bigoplus_{i} \operatorname{gr}^{i} \omega^{\cdot}_{Y'}(H') \xrightarrow{\sim} F_{*}\omega^{\cdot}_{Y}(H).$$

Lemma 2.2. Let f be as above. If M is a vector bundle on Y, then we have for all n

$$\sum_{i+j=n} \dim H^{i+j}(Y, M \otimes \operatorname{gr}^i \omega^{\cdot}_Y(H)) \leq \sum_{i+j=n} \dim H^{i+j}(Y, F^*M \otimes \operatorname{gr}^i \omega^{\cdot}_Y(H)).$$

Proof. By the spectral sequence

$$E_1^{i,j} = H^{i+j}(Y', M' \otimes F_* \operatorname{gr}^i \omega_Y(H)) \implies \mathbf{H}^n(Y', M' \otimes F_* \omega_Y(H)),$$

we obtain

$$\dim \mathbf{H}^n(Y', M' \otimes F_* \omega^{\cdot}_Y(H)) \leq \sum_{i+i=n} \dim H^{i+j}(Y, F^* M \otimes \operatorname{gr}^i \omega^{\cdot}_Y(H)).$$

On the other hand, Proposition 2.1 yields

$$M' \otimes F_* \omega^{\cdot}_{Y}(H) \cong \bigoplus_i M' \otimes \operatorname{gr}^i \omega^{\cdot}_{Y'}(H).$$

Hence we have

$$\dim \mathbf{H}^{n}(Y, M' \otimes F_{*}\omega_{Y}(H)) = \sum_{i+j=n} H^{i+j}(Y, M \otimes \operatorname{gr}^{i}\omega_{Y}(H)).$$

Thus the desired inequality follows. \Box

Theorem 2.3. Let f be as above and assume further that Y is proper over k. Let $e=\dim Y$. If E is a vector bundle on Y with $pcd(E) \leq \alpha$, then we have

$$(2.3.1) H^{j}(Y, E \otimes \operatorname{gr}^{i} \omega_{Y}(H)) = 0 \text{for } i+j > e+\alpha,$$

$$(2.3.2) H^{j}(Y, E^{\vee}(-D_{Y}) \otimes \operatorname{gr}^{i} \omega_{Y}(H)) = 0 for i+j < e-\alpha.$$

Proof. By assumption and Lemma 2.2, we obtain (2.3.1) as in the proof of (1.3.1). Let d be the relative dimension of f. Then

$$\operatorname{gr}^i \omega^{\cdot}_{Y}(\mathbf{R}^j f_* \omega^{\cdot}_{X/Y})$$

is Serre dual (with coefficients in ω_V^e) to

$$\operatorname{gr}^{d+e-i}\omega_Y^{\cdot}(\mathbf{R}^{2d-j}f_*\omega_{X/Y}^{\cdot})[e].$$

Hence

$$H^n(Y, E \otimes \operatorname{gr}^i \omega_Y(\mathbf{R}^j f_* \omega_{X/Y}))$$

is dual to

$$H^{2e-n}(Y, E^{\vee}(-D_Y) \otimes \operatorname{gr}^{d+e-i} \omega_Y(\mathbf{R}^{2d-j} f_* \omega_{X/Y})).$$

Therefore (2.3.2) follows. \square

Corollary 2.4. Let f be as in Theorem 2.3. If L is an l-ample line bundle on Y, then we have

$$(2.4.1) H^{j}(Y, L \otimes \operatorname{gr}^{i} \omega^{\cdot} Y(H)) = 0 \text{for } i+j > e+l,$$

$$(2.4.2) H^{j}(Y, L^{\vee}(-D_{Y}) \otimes \operatorname{gr}^{i} \omega_{Y}(H)) = 0 \quad \text{for } i+j < e-l.$$

3. The case of open varieties

In [BK2], a vanishing theorem has been proved for line bundles on an open variety whose complement is a divisor with globally generated normal bundle. The purpose of this section is to generalize the result to the relative case.

Lemma 3.1. Let X be a scheme proper over k and L a line bundle on X which is globally generated. Let $f: X \to Y$ be a proper k-morphism to a scheme Y. Let E be a vector bundle on X with $pcd(E, f) \le \alpha$. Then for every coherent sheaf \mathcal{F} on X, there exists $n_0 = n_0(\mathcal{F})$ such that for all $n \ge n_0$ we have

$$R^{j}f_{*}(F^{n}E\otimes\mathcal{F}\otimes L^{\otimes m})=0$$
 for $j>\alpha$ and $m\geq 0$.

Proof. We proceed by induction on $(m, \dim X)$. Clearly the claim holds if m=0 or $\dim X=0$. Since L is globally generated, we can choose a section $\mathcal{O}_X \to L$ which is injective. Let Z be its zero scheme. We have the exact sequence

$$0 \longrightarrow F^nE \otimes \mathcal{F} \otimes L^{\otimes (m-1)} \longrightarrow F^nE \otimes \mathcal{F} \otimes L^{\otimes m} \longrightarrow F^nE \otimes \mathcal{F} \otimes L^{\otimes m}|_Z \longrightarrow 0.$$

By inductive hypothesis, we can find n_0 such that for all $n \ge n_0$ and $j > \alpha$, we have $R^j f_*(F^n E \otimes \mathcal{F} \otimes L^{\otimes (m-1)}) = R^j g_*(F^n E \otimes \mathcal{F} \otimes L^{\otimes m}_{|Z}) = 0$, where $g := f_{|Z}$. Hence $R^j f_*(F^n E \otimes \mathcal{F} \otimes L^{\otimes m}) = 0$. This proves the lemma. \square

Lemma 3.2. Let X be a scheme which is smooth and proper over k and let $f: X \rightarrow Y$ be a smooth and proper k-morphism to a scheme Y. Let $D \subset X$ be a divisor such that the normal bundle $N_{D/X}$ is globally generated and let $U:=X \setminus D$. Let E be a vector bundle on X with $pcd(E, f) \leq \alpha$. Then for every vector bundle \mathcal{F} on U, there exists $n_0 = n_0(\mathcal{F})$ such that for all $n \geq n_0$ we have

$$R^{j}(f|U)_{*}(F^{n}E\otimes\mathcal{F})=0$$
 for $j>\alpha$.

Proof. Let \mathcal{I} be the ideal sheaf of D and let $g:=f_{|D}$. By [BK1, 5.4], for every vector bundle \mathcal{F} on X, we have an isomorphism

$$\mathcal{E}xt^j_f(\mathcal{I}^m/\mathcal{I}^{m+1},\mathcal{F}) \cong R^{j-1}g_*(\mathcal{F}_{|D} \otimes (\mathcal{I}^{m+1}/\mathcal{I}^{m+2})^\vee)$$

for all j>0 and $m\geq 0$. Therefore, by Lemma 3.1, we can find n_1 such that

$$\mathcal{E}xt_f^j(\mathcal{I}^m/\mathcal{I}^{m+1}, F^nE\otimes\mathcal{F}) = 0$$

for all $n \ge n_1$, $j > \alpha + 1$, m > 0 since we have $(\mathcal{I}^m/\mathcal{I}^{m+1})^{\vee} \cong N_{D/X}^{\otimes m}$.

This implies, by Grothendieck duality,

$$R^{j} g_{*}((\mathcal{I}^{m}/\mathcal{I}^{m+1}) \otimes \mathcal{F}^{\vee} \otimes (F^{n}E)^{\vee} \otimes \omega^{d}_{X/Y}) = 0$$

for all $n \ge n_1$, $j < d-\alpha-1$, m > 0. Putting $\mathcal{G}_n := \mathcal{F}^{\vee} \otimes (F^n E)^{\vee} \otimes \omega^d_{X/Y}$, we see that the natural map

$$R^j g_*(\mathcal{I}^{m+1} \mathcal{G}_n) \longrightarrow R^j g_*(\mathcal{I}^m \mathcal{G}_n)$$

is bijective for $n \ge n_1$, $j < d-\alpha-1$ and m > 0. By [BK1, 3.1], for some m_0 , we obtain a bijection

$$R^{j}(f|U)_{*}(\mathcal{F}\otimes F^{n}E)\cong R^{d-j}g_{*}(\mathcal{I}^{m_{0}}\mathcal{G}_{n})^{\vee}$$

for $j > d + \alpha + 1$ and a surjection

$$R^{d-j}g_*(\mathcal{I}^{m_0}\mathcal{G}_n)^{\vee} \longrightarrow R^j(f|U)_*(\mathcal{F}\otimes F^nE)$$

for $j=d+\alpha+1$. Then by duality and the assumption on pcd(E,f), we can find n_2 such that

$$R^j f_*(\mathcal{F}(m_0 D) \otimes F^n E) = 0$$

for $n \ge n_2$, $j > \alpha$. If we set $n_0 = \max(n_1, n_2)$, we have for all $n \ge n_0$,

$$R^{j}(f|U)_{*}(F^{n}E\otimes\mathcal{F})=0\quad\text{for }j>\alpha.\quad\Box$$

Applying Lemma 1.2 and Lemma 3.2 to $\mathcal{F}=\Omega^{i}_{U/Y}$, descending induction on n yields the following result.

Theorem 3.3. Let $f: X \to Y$ be a k-morphism which is smooth and proper. Let $D \subset X$ be a divisor such that the normal bundle $N_{D/X}$ is globally generated. Let $U:=X \setminus D$. Assume that $f|U:U \to Y$ is smooth, purely of relative dimension d < p and liftable to $W_2(k)$. If E is a vector bundle on X with $pcd(E, f) \le \alpha$, we have

$$R^{j}(f|U)_{*}(E\otimes\Omega^{i}_{U/Y})=0$$
 for $i+j>d+\alpha$.

As a consequence, we obtain the following generalization of a theorem of Bauer-Kosarew [BK2, 6.3].

Corollary 3.4. Let $f: X \rightarrow Y$ be as in Theorem 3.3. If L is a line bundle on X which is l-ample relative to f, then we have

$$R^{j}(f|U)_{*}(L\otimes\Omega^{i}_{U/Y})=0$$
 for $i+j>d+l$.

References

- [BK1] BAUER, I. and KOSAREW, S., On the Hodge spectral sequences for some classes of non-complete algebraic manifolds, Math. Ann. 284 (1989), 577–593.
- [BK2] BAUER, I. and KOSAREW, S., Some aspects of Hodge theory on noncomplete algebraic manifolds, in *Prospects in Complex Geometry* (Noguchi, J. and Ohsawa, T., eds), pp. 281–316, Lecture Notes in Math. 1468, Springer-Verlag, Berlin–Heidelberg, 1991.
- [DI] Deligne, P. and Illusie, L., Relèvement modulo p^2 et décomposition du complexe de de Rham, *Invent. Math.* **89** (1987), 247–270.
- [H] HARTSHORNE, R., Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94.
- ILLUSIE, L., Réduction semi-stable et décomposition de complexe de de Rham à coefficients, Duke. Math. J. 60 (1990), 139–185.
- [K] KLEIMAN, S., Ample vector bundles on algebraic surfaces, Proc. Amer. Math. Soc. 21 (1969), 673–676.

Received September 5, 1994

Tohru Nakashima Department of Mathematics Tokyo Metropolitan University Minami-Ohsawa 1-1, Hachioji-shi Tokyo 192-03 Japan email: nakasima@math.metro-u.ac.jp