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A division problem in the space of entire
functions of exponential type

Siegfried Momm

Introduction

The surjectivity of convolution operators and in particular of linear partial
differential operators with constant coefficients is often equivalent to a problem of
division in an appropriate space of entire functions of exponential type. In this
frame Malgrange citel3 proved that for each convex domain G in RY each partial
differential operator on £(G) and each convolution operator on A(CY) is surjec-
tive. Ehrenpreis [4] characterized the surjective convolution operators on £(R™)
by means of lower bounds of its symbol. Hormander (7] extended this result to
convolution operators £(G2)—E&(G1) where Gy, i=1,2 are convex domains in RV.
Martineau [14] extended Malgrange’s result proving that for each convex domain
G in CV each partial differential operator of infinite order on A(G) is surjective.
After these early papers, in the sequel several authors extended Ehrenpreis’ re-
sult to convolution operators on spaces of ultradifferentiable functions &£,(RY),
Chou [2], Cioranescu [3], Meise, Taylor, Vogt [15], and Momm [18]. Others consid-
ered convolution operators A(G3)— A(G1) for convex domains G, i=1,2 in C¥,
Korobeinik [9], Epifanov [5], [6], Tkatenko [29], [30], Napalkov [23], [24], Meril,
Struppa [16], Morzhakov [21], [22], Sigurdsson [28], and recently Krivosheev [11]
with the complete solution of this problem. There are many further results on this
subject which cannot be mentioned here.

The aim of this paper is to present a systematic approach to division problems
which applies in particular to all cases mentioned above (see [19] and [20]). We
do this by extending Martineau’s result to partial differential operators of infinite
order on weighted spaces of analytic functions. Let G be a bounded convex domain
of CV. For >0 let A be the Fréchet space of all analytic functions f on G such
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that for each k€N there exists Cp >0 with

rer<onen(t(g) ) <o

where d(z) is the distance of z to the boundary of G. If F(2)=3qeny @az® is an
entire function such that for each k€N there is Ci >0 with

|F(2)| < Ck exp(%|z]ﬁ'), zeCV,

(3=38/(6+1)) then a continuous linear differential operator of infinite order
Lp:A —A is defined by Lr(f)=Y, aaf®. In this paper in a general setting
we characterize whether Lp is surjective. If H denotes the support function of G,
then by the Fourier-Borel transform, the dual space A’ of A can be identified with
the space of all entire functions g satisfying

o)l <Cemp(H()- LA ), zec”,

for some C, m>0 (Napalkov [25]). Let Iy denote the support of the Monge—Ampére
measure (dd°H)V, i.e., CN\T'y is the maximal open cone with vertex in the origin
on which H is an extremal plurisubharmonic function.

Theorem. If G satisfies a technical condition, which is in particular fulfilled
if G is a polyhedron, if 8G is of Holder class C** for some 0<A<1, or if G is
the Cartesian product of such domains, then for F#0 the following assertions are
equivalent:

(i) Lr: A— A is surjective.

(ii) FA’ is a closed subspace of A’.

(iii) Whenever g€ A’ and g/F is entire, then g/FeA’.

(E) For each k€N there is R>0 such that for each z€l'y with |2|>R there
ezists weCN with [w—2|<|2|? /k and |F(w)|>exp(—|w|® /k).

The organization of the paper is as follows: In a preliminary section we intro-
duce the spaces involved and the differential operator. Here we state the equivalence
of (i) and (ii). In the second section we proceed as follows. By the open mapping
theorem, (ii) implies certain norm estimates, i.e., the validity of a quantitative ver-
sion of (iil). A careful use of the solution of the Dirichlet problem for the complex
Monge-Ampere equation on balls U(z, R) with boundary values H(¢), (€8U(z, R),
and the application of Hérmander’s O-technique shows that this norm estimates
imply a weak version (E’) of (E). In the case of a polyhedron both coincide. In
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the other cases we use the technical condition of the theorem’s hypothesis to prove
that (E') implies (E). It is standard that (E) implies (ii) and (iii), since by [19]
(see Krivosheev [11]), an appropriate Phragmén—Lindeldf theorem is available. In
section three we evaluate the technical condition on G and apply the results of
the previous sections to characterize the surjective differential operators of infinite
order. Section four is devoted to a discussion of the criterion (E). In particular we
prove that for the space A presented above there are also non surjective differential
operators on A.

I like to thank R. W. Braun for interesting conversation and helpful comments
on the topic of this paper.

1. Preliminaries

For the sequel let NeN be fixed. We will use the abbreviation R;:={z€
R|z>0}. For 26 CV we put |z|::(2§\]=1 |2;2)}/2. For acCY and R>0 we put
U(a,R):={2€C" ||z—a|<R}, B(a,R):=U(a, R), S:={2€C" | |z|=1}.

Fix a bounded convex domain G in CV. Let H: C —R be its support function

H(z):=sup Re(z,w), zeCV,
weG

where <Z,w>::Z;\;1 zjw;, z,weCN. Note that H satisfies a Lipschitz condition
|H(2)—H(w)|<L|z—w|, z,weC¥, for some L>0. We put d(z):=inf{|z—w||we
0G }, z€G, which is concave as an infimum of affine functions.

For each open set QCCY let A(Q) denote the space of all analytic functions
on ). Furthermore we will apply the usual multiindex notation.

1.1. Definition. Let ¥=(1)ren be a sequence of continuous nonnegative non-
decreasing unbounded functions on |0, co[ such that ¥ (e*) is a convex function of
z€R for all k€N, and which satisfy the following conditions: For each n€N there
are k€N and x>0 such that for all z>zg

(@) Yrs1(z)<thr(z)

(8) 2¢(z) <¢bn(z)

(7) $1(22) < (a)

(6) logz=0(¢pn(x)) as z—o00..

We put P:=(py)ren where

pr(2) =g (%), 2€G, k€N,
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and define

AL :={fec AD)]||Ifllx :51612 17 (2)] exp(—pr(2)) < 0o for each k €N }.

Endowed with the topology induced by the norms (|| ||x)xen, the algebra A% is a
Fréchet space.

Remark. The Fréchet space AD is nuclear. This useful information will not be
applied in the sequel. Since the proof is folklore, we will only sketch it: Because of
1.1 (B) and (), A is the projective limit of the Banach spaces

Aci={f € AG) ||l <ooand__Jim __|f(2)|exp(~pu(=)) =0}
Fix neN. By 1.1, there are k€N and z( >0 such that
Ye(22)+2Nlogz <9, (xz) for all z>=zg.
For each z€G let §, be the functional in A} defined by §,f=f(z), f€ Ag. The set
M :={0}u{ 6, exp(—pi(2)) |2 €G } C A

is obviously essential in A} (see Pietsch [26, 2.3.1]). By the definition of A}, the
mapping z+—8, exp(—pr(z)) for 2€G and co—0 maps the one point compactifi-
cation of G continuously onto M endowed with the weak* topology. Hence M is
weak* compact. Since G is bounded, a Radon measure peC(M) is defined by

u(g) = /G 8(6. exp(—pr(2))) dA(z), beC(M),

where A denotes the Lebesgue measure. By the choice of k, there is C'>0 such that
by the subaveraging property of |f|, for each f€ A, and weG

() exp(—pa(w)) SXBlw,d(w)/2) ™ [ |1 A\ exp(—pa(w))

B(w,d(w)/2)

<c |l exp(—pi) A< C / |Flexp(—pi) dA.
B(w,d(w)/2) G

Hence ||fl|ln<C [, |{f,a)| du(a), which proves that the inclusion map Ap— A, is
absolutely summing (Pietsch [26, Theorem 2.3.3]). By Pietsch [26, Theorem 3.3.5],
the projective spectrum (A )ren is even nuclear and so is AD.
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1.2. Lemma. Let ¥ be as in 1.1. For k€N and reR we put
wi(r) = ir;%(wk(l/m)-l—rz).

Then Q:=(wg)reN 18 a sequence of continuous nonnegative nondecreasing unbound-
ed concave functions on R4, such that wi(e”) is a convex function of z€R. for each
keN. Moreover for each n€N there are k€N and 19 >0 such that for all r>rg

(1) wnta(r)<wa(r)

(2) log (1+4r)=0(wn(r))

(3) wn(r)=o(r)

(4) 2wi(r)Swn(r)

(5) wr(2r)<wn(r).

Proof. Obviously for each k€N, the function wy is concave (as an infimum
of affine functions), nonnegative and nondecreasing. Since vy is unbounded, so
is wy. By Napalkov [25, Lemma 5], the function z+—wy(e®) is convex. (3) follows
directly from the definition of w,. Next note that for each r>0 there is z(r) >0 with
wi(r)=vx(1/z(r))+rz(r); because of (3) we have lim,_, o, z(r)=0. This shows that
1.1 (o) implies (1), () implies (2), (3) implies (4), and (7y) implies (5).

Remark. If vice versa a system Q=(wy)ren with the properties stated in 1.2
is given, then defining ¥ (x):=sup,~o(wr(t)—t/z), >0, kEN, we get a system
U= (1 )ren which is equivalent to one (see 1.4) which satisfies the conditions of 1.1.
This correspondence is one to one (up to equivalence, see [17, 1.9, 6.9, 6.10]).

Convention. In the sequel let P and Q be as in 1.1 and 1.2, respectively.
1.3. Definition. We extend the definition of wy, to the whole of CV by wi(z):=
wi(]z]), 26 CN, keN. We define

Ag_q:={fcACM)||flx= sup |f(z)|e"HE®+wr(®) < o6 for some ke N}
zeCN

and denote by A, the algebra of all entire functions F€ A(C") such that for each
k€N there is some C'>0 with

|F(2)] < Cexpwi(z), zeCN.
We endow Ap_q with the inductive limit topology induced by (| |x)ren- Obviously
we have A?Z‘AH_QCAH_Q.

Remark. By a similar reasoning as after Definition 1.1, one can show that
Ap_gq is the dual of a nuclear Fréchet space. (This will also follow from Proposi-
tion 1.6.)
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1.4. Remark. There is K>1 such that for each k€N there exists C;, >0 such
that

H(z)—wi(K2)—Ci < gug(Re(z, ¢)=pr(C)) < H(2)~wi(2)+Cr, z€CV,
€
(Napalkov [25, formula (25)], although only stated for N=1 there). In particular
there is a system (uy)xen consisting of plurisubharmonic functions on CV which is
equivalent to (H —wg)keN-

Here and in the sequel two systems (vg)ren and (O )xen are called equivalent
if for each n€N there are k€N and C'>0 such that vy <v,+C and 9, <v,+C.

1.5. Proposition. For each Fe A, F(Z)ZZaeNg;’ aq 2%, a continuous linear
operator is given by

Lp:Ap— Ay, Lr(f):= ) aaf®.

aeNY
Proof. Let keN. By Cauchy’s integral formula, there is Cj >0 with
lao| < Cy Tir;%r""‘l expwi(r), aeNY.
By the same reason, we get for fc AR
79I < flleel(d(z)/2)71 expyn(2/d(2)), 2€G, aeNG'.

Let z€G and a€NY. We apply the estimate for |a,| with r=4|a|/d(z). By the
definition of wy, we get

laallf @ (2)| < Cell flln(2lal) "ol exp{wr(4]al /d(2)) + i (2/d(2))}
< Cullflk(2la) ™% ot exp{yr(4/d(2))
+(4lel/d(2))(d(2)/4) +¢r(2/d(2))}
< CellflIs(2lal/e) ™™ot exp{wr(4/d(2)) +9r(2/d(2))}.
Hence by Stirling’s formula, there is C}, >0 not depending on f with

Y laallf(2) < CLlIfllx exp{wu(4/d(2)) +x(2/d(2))}, z€G.

By 1.1($) and (), for each n€N there are k€N and C}/>0 with

Y laallF () exp(—pa(2) <C{ I fllk, z€G, feAp.

This proves the assertion.
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1.6. Proposition. The Fourier-Borel transform F: AY' — Ay _q, F(u)(2):=
p(e® ), 2eCN | is an isomorphism. If we identify the strong dual space AOP' with
Ag_q by this isomorphism, then for each F €AY the transposed map LY (see 1.5)
is the operator Mp: Ag_q—>Ag—q of multiplication by F'. Hence by duality theory,
Ly is surjective if and only if FZ£0 and FAy _q is a closed subspace of Ag_q.

Proof. The assertion about the Fourier-Borel transform (although only stated
for N=1 there) can be found in Napalkov [25]. We have

F(Lp(W)(2) = (noLr)(e*)) = F(2)F(u)(z), neAp’, zeCV.

1.7. Ezamples. The following systems ¥=(vy)ren satisfy the conditions of
1.1. The associated functions Q= (wg)xen (see 1.2) are calculated up to equivalence
(see 1.4):

(1) Yr(z)=2"/k, wi(r)=r? [k, where 3>0 and 3":=8/(8+1).

(2) Yr(z)=xP*, wk(r)zrﬁllv, where 0< 8y, strictly decreases with k and §;:=
B/ (Be+1).

(3) vr(z)=(log(1+x))*/k, wi(r)=(log(1+7))°/k, where s>1.

To get (3) we note that direct computation gives for each r>0 that wy(r)=
(1/k)(log(141/z))* +rz, for some >0 with rz=(s/k)(log(1+1/z))*~!/(z+1). For
large r the value of z is small. This shows that the dominating part in the rep-
resentation of wy(r) is the first one. The equation for z implies the rough bounds
(s/(2k))(1/z)<r<(s/k)(1/z)* for large r>0. Inserting this, we obtain the desired
estimates.

2. Solution of the division problem

In view of 1.6, looking for a characterization of surjective operators L, we
have to characterize when FAg_gq is closed in Ag_q. We will apply a procedure
which is roughly that one which has been introduced by Ehrenpreis [4]. In order to
estimate more carefully we use the following notation.

2.1. Definition. For acC" and R>0 we consider the real-valued function
h=h(H;a, R) which equals H on C¥\U(a, R) and with h(z) for z€(a, R) given by

sup{u(z) | u psh. on U(a, R), limsup u(w) < H(¢) for { € 0U(a, R)}.
w—¢

Then h is continuous and plurisubharmonic (psh.) (see [19, Lemma 2]). We put

A(H;a,R):= EZIZPR)(h(H;a,R)(Z)—H(z))-
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Then A(H; a, R)>0 because H is plurisubharmonic. Since H is positively homoge-
neous, so is A(H;-,+), i.e. A(H; a, \R)=MA(H;a, R) for all A>0.

By S} we denote the set of all a€S, such that A(H;a,R)>0 for all R>0. It
is easy to see that S}; is compact. We consider the cone I'y:={Xa|A>0,a€5% }.

Remark. By Bedford and Taylor [1, §9], 'y is the support of the Monge—
Ampére measure (dd°H)N

2.2. Proposition. For each a€l'y the function A(H;a,-):]0,00[—]0, 0],
R—A(H;a, R) is continuous, strictly increasing and surjective. By A~Y(H;a,") we
denote the inverse function. The function A~1(H;-,-) is positively homogeneous.

Proof. For all a,a€C" and R, R>0 we have

A(H;a,R)= zesBu(}O) 1)(h(H(a-{-R'); 0,1)(2)—H(a+Rz))

< sup (h(H(a+R-);0,1)(z)—H(a+Rz))

z€B(0,1)

+2 sup |H(a+Rz)—H(a+Rz2)]
2€B(0,1)

=A(H;a,R)+2 sup |H(a+Rz)-H(a+Rz)|
z€B(0,1)

and thus

|A(H;a,R)—A(H;a,R)| <2 sup |H(a+Rz)—H(a+Rz)|.
z€B(0,1)
In particular, A(H;a, R) is a continuous function of (a, R)€ C" x ]0, co|.
If aeCN and 0<R<R we put A: =(|la|+R)/(|la|+R). We then get U(Aa, AR)
CU(a,R) and AA(H;a,R)<A(H;a,R). If acly, this shows that A(H;a,") is
strictly increasing and unbounded. Since limg_,0 A(H;a, R)=0, A(H;a,-) is onto.

Our theorem is prepared by the following lemmas of which the first one contains
the essential idea.

2.3. Lemma. Let Fe A%\ {0}. Then (i) = (ii):

(i) For each k€N there are n€N and C>0 such that for all f€ Ag_q we have
I <CIFfli.

(ii} For each k€N there is R>0 such that for each z€T'y with |z|>R there
ezists we€ B(z, AT (H; z,wx(2))) such that |F(w)|>exp (—wi(w)).

Proof. For k€N we put

or(2) = AT (H; z,wi(2)) = 2| A7 (H; 2/ 2], wi(2)/12]), 2 €Tr\{0}.
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Since limg_,o A~!(H;a, R)=0 uniformly for a€ S}, by 1.2, we may assume that
ok (2)<|z|/2, zeTx\{0}, keN.

Assume that (ii) does not hold. Then there are k€N and a sequence (z/);en
in I'g with lim;_, [27|=00 such that

(1) |F(w)| < exp(—wj (w)) for all we B(z7,04(27)) and jeN.

Since H is Lipschitz continuous, by 2.1, there is L>0 such that for each 2€I'y we
have A(H;2,R+1)<A(H;z2,R)+L for R>0. Thus we obtain AYH; z,z)+1<
AY(H;z,z+L), z>0. Hence by 1.2, we can choose m>k and to>0 such that

2) wm(22 Sw-z),zGCN, and o,(2)+1<0;(2), €y,
& E

if |2|>t9. We are going to derive a contradiction to (i). Fix €N with |27|>2¢;.
Put hj:=h(H;2*,0m(27)) (see 2.1). Choose z’ € B(2?,0;(2’)) with

3) hj(z?) = H(z?)+ A(H; 27, 0 (27)) = H(27) +wm(2).

According to 1.2 and 1.4, we choose a psh. function u with
4) H(2)—wm(%2) <u(z) < H(z)-wa(z)+C, z€CV,
for some €N and C'>0. We consider the psh. function ¢;:=(h;+u)/2. By Theo-
rem 4.4.4 of Hérmander [8] and standard arguments, we get f; € A(CY) such that
(5) fi(@?) =exp ¢j(z7)

and

6  If@IsC)exp{ sup ;(w)+C(W)log1+lo)}, zeCY,
weB(z,1)

where C(IN)>0 only depends on N. Since H is Lipschitz, applying (3) and (4) we
get
(7)

sup ¢;(w) <

{ H(z)+L' —wa(|z|-1)/2 for 2¢ B(2?, 0 (27)+1)
w€B(z,1)

H(2)+ L ~wa(|z|=1)/2+wm(2?) for z€ B(z?,om(27)+1)
with some L'>0 not depending on j. In particular f;€ Ag_q.
We now estimate Ff;. If 2€B(27,0m,(27)+1), then |2—29|<|27|/2 and |z|>
|27]/2>t0, and by (1), (2), (6), and (7), we obtain
|F(2)£;(2)] < C(N)e exp{H(2)+C(N)log(1+|z[*) ~ws(|2| —1)/2
+wm(22)—wi(2)}
<C(N)e" exp{H(2)+C(N)log(1+|2*) ~wa(]2|-1)/2}.

8 Arkiv fér matematik
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Hence by (6), (7), and 1.2, there is some k€N with

(8) sup sup |F(2) f;(2)] exp(—H (2)+wk(2)) < 00.

Since |27 —27|<|27|/2 and |27|>2|27|, on the other hand, we obtain from (5), (3)
and (4) that
I£i(27)] > exp{ H(z?) +wm(27) /2~ wm (327) /2} > exp(H (27)).

Since |z7|>|27|/2, we have lim;_, |#7|=0c0. Hence by 1.2, we conclude that for
each neN
lim |f;(27)] exp{—H(z?)+wn(z’)} = o0.
j—o0
Together with (8) this is a contradiction to (i).
2.4. Lemma. For 0<A<1 and z€ CV\{0} let 0<7(2)<0o(z)<|2| with o(z)=
7(2)*|z|*~>. Let F be analytic in B(z,|z|). Let w,@: B(z, |2])— Ry with
1 1-X . ~
(9) Y sup ww)+——1log sup |F(w)|< inf &(w).

wEB(z,0(2)) A wEB(z,|z|) ~ weB(2,7(2))

If there is we B(z,0(2)) with |F(w)|>exp(—w(w)) then there is w€ B(z,7(z)) with
|F(w)| > exp(—&(w)).

Proof. We prove the contraposition. Assume that for all we B(z,7(z)) we have
|F(w)|<exp(—&(w)). We fix weB(z,0(2))\{z}, put h:=w—2z, and

M(r):=max{ |F(z+Ch/|R)I¢€C,[{|=r}, r>0.

Put ry:=7(z), r2:=0(z), and r3:=|z|. For |[(|<r and z:=z+(h/[h|, we have
|z —z|<7(2). For |¢|<rs and z:=z-+(h/|h|, we have |z—2|<]|z|. We apply Hada-
mard’s three-circles-theorem to r1, 72, and r3, and we obtain by (9)

log | F(w)| <log M(r2)

log(r3/r2) r 10%( 2/T1 )0 r
= Tog(ra/r) M) Tog(rg ) 8 M
=Mlog M(r;)+(1— )\)log (r3)
<_AzeBl<Izl,fr(z>>w(x) (=Xl ze;?ﬁzan(x)l
<— sup w(z)<-w(w).

z€B(z,0(2))

We will apply the following lemma from Hoérmander [7, Lemma 3.2.]
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2.5 Lemma. Let g, F and g/F be entire. Then we have for allr>0 and z€ CY

l9(2)/F(2)| < sup Ig(C)I| sup IF(C)I/(| sup |F(¢)])*.

|z—¢|<4r z—(|<4r z—(|<r

We are now ready to state our main result.

2.6. Theorem. Let Q=(wg)reN be as in 1.2. Assume in addition that H and
Q satisfy the following condition: There is some A>0 such that for each n€N there
are keN and ro>0 with

wi(2)/12l S A(H; 2/ 2], (wn(2)/I2])*),  2€Tm, |2l 2o.

Then for each Fe A%\{0} the following are equivalent:

(i) Whenever g€ Ag_q and f:=g/F€A(CV), then feAn_q.

(ii) FAp_q is a closed subspace of Ag_q.

(i) For each k€N there are n€N and C>0 such that for all fEAg_q we
have | f|n <C|F k.

(iv) For each k€N there is R>0 such that for each z€T'y with |2|>R there
ezists wE€ B(z, ATV (H; z,wi(2))) such that |F(w)|>exp (—wi(w)).

(v) For each k€N there is R>0 such that for each z€l'y with |z|>R there
exists wE B(z,wg(z)) such that |F(w)|>exp (—wi(w)).

Without the additional condition for H and Q, we still have (i) = (i) =
(iii) = (iv) end (v) = (i).

Proof. (i) = (ii): Ag—gq is continuously embedded in A(CV).

(ii) = (iii): Since FAgz_gq is closed, indg—oo(Ag—w,NFAg_gq) is an (LF)-
space, where Ag_,.'={f €Ag_q||f|k<oo}. Hence we can apply the open map-
ping theorem for (LF)-spaces to the continuous and bijective map Mp: Ag_q—
indg—oo(Ag—w,NFAp_q), Mp(f)=Ff, which shows that Mg is a linear topo-
logical isomorphism onto FAy_q endowed with the topology of indg—,e0(Ag—w, N
FAp_q). Thus (iii) follows from Grothendieck’s factorization theorem (see e.g.,
Kéthe [10, § 19, 5.(4)]).

(iii) = (iv): Lemma 2.3.

(iv) = (v): We may assume that 0<A<1. Let keN. Since A(H;-,-) is ho-
mogeneous, by the extra hypothesis on H and 2, there are k€N and R>0 with
A7V H; z,wi(2))<wi(2)*|2|' 7, 2€TH, |2|>R. We may assume that R is so large
that (iv) holds. We put 7(2):=wj;(z). By 1.2 we may furthermore assume that &
and R are chosen so large that for all [z|>R we have o(z):=7(2)*|2|'"*<|2|/2 and

that 1 1=
@)+ log s [F(w)] Swi/2).
- weB(zz))
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Applying 2.4 with w=wj and I=wy, we get (v) from (iv).

(v) = (i): Let g€ Ag—_q with f:=g/F€A(CV). Let neN with |g|,<oc. For
k>n (which will be determined later) we choose R>0 according to (v). We may
assume |F(¢)|<expwi(¢), ¢€CY, and that 0<wi(2)<|z|/8, |z2|>R. Fix zely
with |z|>R. We choose w€ B(z,w(2)) according to (v) and apply Lemma 2.5 with
r=wg(z) to obtain

If(2)|<lgln sup exp{H(()~wn(()} sup exp(wi(())/(exp(—wk(w))*.
|z—¢{|<4r lz—¢|<4r

If |z—(|<4r<|2|/2 then |z|/2<|¢|<3|z|. Since H is Lipschitz continuous, there is

a constant L>0 depending on H such that |H(z)—H(¢)|<L|z—¢] for all {(€CN.

Hence we obtain

1£(2)] < |gln exp{ H(2) +4Lwi(2z) —wn(2/2)+wi (3 2) +2wi (32) }.
By 1.2 we may choose k so large that there is C'>0 with
Wi (28)+3wk(3s) Swn(s)+C forall se Ry.
Therefore we obtain
log | f(2)|+wk(z) < C+log|gln+H(z), 2€Tly.

By 1.2, z+wy(e®) is convex. Hence the function wy is plurisubharmonic on C¥V.
On the other hand it is well known that f is a function of exponential type. Thus we
can apply the Phragmén-Lindelof theorem [20, Thm. 7], to the plurisubharmonic
function log|f|+wr—C—log|g|, to obtain the preceding estimate on the whole
of C¥. So we are done.

2.7. Corollary. For N=1 let Q=(wi)ken be as in 1.2. Then for each F¢&
AQ\{0} the assertions (i), (ii), (iil) and (iv) of Theorem 2.6 are equivalent.

Proof. By Theorem 2.6, we have only to prove that (iv) implies (i). Let g€
Ap_q with f:=g/Fe€ A(C). Let neN with |g|, <oo. For k>n (which will be deter-
mined later) we choose R>0 according to (iv). We may assume |F(¢)|<expwi((),
¢e€C, and furthermore that A~ (H;z,wi(2))<|z|/(2(4e+1)), z€lH, |z|>R, be-
cause A~1(H;-,-) is homogeneous. Fix z€T'y with |z|>R. Choose weC according
to (iv). Note that for |(—w|<(4e/(2(4e+1)))|z| we have

|2| < |z —w|+w—(]+IC] < |2/(2(4e+ 1))+ (4e/ (2(4e+ 1))z +[C] < 2]/2+]¢,
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hence |z|<2|¢|; on the other hand |¢|<|z|+|z—w|+]|w—(|<3[z].

We may assume that w#2z. We apply the minimum modulus theorem from
Levin [12, Thm. 11 of Chapter I}, with n=(2—-1)/(2-16) and R=3|w—z| and get
|w—z|<r1<3|w—2z| and absolute constants a, A>0 such that

Q)12 1F@w)|*( IF(2)]) " 2 exp(—Awr(AQ), [(—w|=r1.

z—w|<2eR

We choose (o€ C with |(o—w|=r1 and |(o—2|<|w—2z|/4. We apply [12, Thm. 11],
again, with =2 and R=2|w—2|/4 and get |w—2|/4<7; <|w—2z|/2 and an absolute
constant A>0 such that

|F(¢)] > exp(—Awr(AQ)),  [¢—Col =71

and

171 =19(0)/F(O)] < Igln exp{H(Q)~wn(¢)+ Awr(AQ)},  [¢~Col =1
Since z€ B(Co, 1) CB(z, A™Y(H; z,wk(2))), we get from 2.1

log|f(2)| <log |g|ln+h(H; 2, A™Y(H; 2, wk(z)))(z)—wn(z/3)+ﬁwk(3}1vz)
<log |g|n+H(2)+wi(2) —wn(z/3)+ Awi(342).

If k is chosen sufficiently large, by 1.2, there is C>0 such that
log | f(2)|+wk(2) < C+loglgln+H(2), z€Tln.

Arguing as in 2.6, from the classical Phragmén-Lindel6f theorem for cones, we get
that the preceding estimate holds on the whole of C.

2.8. Remark. If G is the Cartesian product of N bounded convex domains in
the plane (see 3.4), then in 2.6(iv) and (v) we can achieve that in addition wely.
Since (with the notation of 3.4) in this case I' Hzﬂllil Ty, by standard arguments
applying the minimum modulus theorem N-times (see the proof of 2.7) one gets
wel'y with |W—2z|<|w—2z| and |F(®)| >exp(— Awr(AwW)), where A>0 is a constant

- which depends only on N.

3. Surjective differential operators

Before we rephrase the assertion of Theorem 2.6 for differential operators Lp,
we will discuss the extra hypothesis on H and Q which is given in terms of the
function A(H;-,-) of 2.1.

9 — Arkiv for matematik
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3.1. Lemma. If G is a bounded open convex polyhedron in C¥, then there

exists >0 with
A(H;a,R)>eR, R>0, aely.

Proof. We will modify the proof of [20, Lemma 4]. With G also its polar
set Q:={2€CN|H(z)<1} is a polyhedron. Hence by [20, Prop. 9], we have 'gy=
U{Aa|1>0, a€ F} where the (finite) union is taken over all real exposed faces F' C 92
of Q. We only need to know that this implies that for each a€I'y there is a face
F with a€{A\a|A\>0,a€ F} and there is the support function H of a suitable affine
transformation of G such that

A(H;a,R)=A(H;a,R), ac{acC¥|H(a)=0}CR",

and H >0. Since H is the maximum of finitely many linear functions, this shows
that there is some e=e(F)>0 with H(z)>e|Imz| for all zeCN. We define v:=
h(|Im-|;a,R). According to 2.1, v is psh. on CV with v(z)=|Imz| for all z¢
OU(a, R). In [19, the proof of Lemma 3], a plurisubharmonic function » has been
constructed (denoted by v there), with u<|Im | on 8U(a, R) and u(a)=2R/(7vV'N).
That is why we obtain v(a)>2R/(7V/N ). Thus

2¢

A(H;a,R)=A(H;a,R) > h(e|Im -|; a, R)(a)— H(a) > —i

R.

Taking the minimum over all F' we finish the proof.
3.2. Lemma. If G is the ball U(0,1) then H(z)=|z| and there are Ry,e>0
with
h(H;a,R)(z)—H(2)>eR?, 0<R<Ry, acS, z€ B(a,R/2).

Proof. Fix a€S and 0<R<Rgp<1, where Ry>0 will be chosen later. Fix z€
B(a, R) and put t:=z—a. By the Taylor series expansion, we have

N
H(z)=H(a)+Y_ Bgz(:)tﬁz oia)y

N N
8%H(a) 8%H(a) . -
+Re (j%::l . tjtk) +j2 AR tiTk 4 Ral(t),

k=1

where | R, (t)] <O(|t]®) (see Hérmander [8, page 51]). We abbreviate the four leading
terms of this expansion by P(z) and note that P is a pluriharmonic function of
z€CN. Hence

h(H;a,R)=P+h(H-P;a,R)=H+h(H-P;a,R)—-(H—-P).
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‘We now estimate H — P. Note that

N

Qalt) = Z GZH(a)t't_k =—z

2

11412 1412
e szazk 7 +§It| Zzltl )
J7 =

N
> _ajt;
i=1

We now choose 0< Ry <1 only depending on H such that |R,(t)|<|¢[2/10 if 0<R<
Ry. Thus we get

(10) H(2)~ P(2) = Qu(t)+ Ra(t) < (1+ ) 14
and
(1) H(2)~P(2) > Qult) - [Ra(®)] > (- 1) %

By the definition of h(H — P;a, R), (11) implies that h(H — P;a, R)(z)> (1 - &) R?
for all z€ B(a, R). This and (10) give for each z2€ B(a, R/2)

h(H—P;a,R)(z)—(H-P)(z) > (- & - (2 + &) ()R> =¢R>.

3.3. Lemma. If the bounded convexr domain G has a boundary of class C*,
then Ty =C¥. If the modulus of continuity of the Gaufi map N':8G— S is bounded
by the strictly increasing function D: R —R., then there are Ro,e>0 such that

A(H;a,R)>eR?*D™Y(R/2), 0<R<Ry, a€S.

Proof. The idea of proof that Ty =C?" if 0G is of class C! is essentially con-
tained in the proof of Thm. 7 of Morzhakov [22].

If 8G is of class C? there are L, >0 such that for each w€8G there is a motion
A, of R?M which maps R2Y ! x {0} onto the supporting hyperplane of 8G at w,
which maps 0 to w and (0,1) to the inner normal N (w) of G at w and such that
A, BCG, where

B ={£I) € R2N |L|(£I)1, ceey sz_1)| <zon <1 }
By the hypothesis, we have
INM(w)-N(2)| < D(lw—2z|), w,z€dG,

where N': 0G— S is the Gau8 map. Fix a€ S and 0< R<2D(l). Put w:=N"'(a) and
r:=D71(R/2)<I. To simplify the notation we assume A, =id. BNU(0,r) contains
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a ball U of radius s»>r/(2+ L) which is symmetric to the axis through (0,1). This
shows that there is a ball U(w, ) CU(w,r) symmetric to the axis through N(a)
which touches 0G at some wo€dGNB(w,r). Put z9:=N(wo). We get

|20 —a| = |N(wo) —N(w)| < D(r) = R/2.
Since z+ s5|z|+Re{w, ) is the support function of U(w, x), we get
s|z|+Re(,z) <H(z) on CV, and  s|zo|+Re(@, 20) = H(zo).
Choose >0 and 0< Ry<2D(l) according to 3.2. Let 0< R<Ry. We obtain
h(H;a,R)(z) > xh(|-|; a, R)(z)+Re(w, 2), z€U(a,R),
and by 3.2

D-Y(R/2)

2
24+L eR”.

A(H;a, R) > h(H; a, R)(20)— H(20) > (h(]-]; a, R)(20) —|20]) >

Remark. The same arguments show that 'y #0 for each bounded convex do-
main G.

The following lemma shows how to deal with the Cartesian product of sets as
considered in Lemmas 3.1, 3.2, 3.3.

3.4. Lemma. Let the open bounded convex set be of the form G=[]-, Gi,
where G;CCM, S Ny=N. Then H(z)=Y"|, Hi(z), 26 C¥N =[]}, CM, where
H; is the support function of Gy, 1=1,...,n. Then Tg=[[]_, Tn, and the following
holds

1Ignli£nA(Hl;al’ R/\/n)<A(H;a,R) < lxsnlxéxn A(Hy;a,R), acCV, R>0.

Proof. Fix acC" and R>0 and choose 0<7n<1 with (here we put 0/0:=0)

1-m_ min (A(Hlo;alo,R/\/ﬁ)/iA(Hl;al,R/\/E)) =:1m.

1<l <
no iSkesn I#l

Put d(Hy;-,-):=h(Hy;-,-)—H;, =1, ...,n, and consider the psh. function

n

w(z):=H(2)+ Y _(d(Hi;a1, R/v/n)(z1)-nA(Hy a1, R/v/n)), zeCV.

=1
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If [(—a|=R, there is some 1<lg<n with |{,—ai,|>R/y/n. Thus we obtain
d(Hlo;almR/\/ﬁ)(Clo) =0 and

u(¢) S H(Q)+(1-n) Y A(Hj; a1, R/v/n)—nA(Hiy; aiy, R/v/A) < H(Q),
1£lo

by the choice of . By the definition of A(H;a, R) and since 1—n=m/(m+1), we
get

A(H;a,R) > SupR)(U(Z)—H(Z))=(1—77)ZA(HL;GL’R/\/T_L)
=1

z€U(a,

2 min A(Hy; a1, R/vn).
<n

1<

To prove the upper estimate, fix 0<g<1 and choose z€U(a, R) so that the
inequality d(H;a, R)(z) >qA(H;a,R) holds. Fix 1<lp<n and consider the psh.
function

w(ziy) :=h(H;a, R) (%1, ..., 21gs -y Tn) — Z Hy(z), z,€CNo.
1#lo

If {1, —ai,|> R also |(z1, ..., Cigs -y Tn) —a| >R and
h(H;a, R) (%1, .., Clg» -y Tn) = H(Z1, o, Clgy o0y Tn),
which gives u((i,)=Hi,({i,)- By the definition of A(H,y; ay,, R), we get

qA(H; a, R) < h(H; a, R)(:B)—H(.’L‘) = u(xlo)_Hlo (mlo) < A(Hlo 3 Qg R)

We are now ready to state our main result concerning surjective partial differ-
ential operators of infinite order.

3.5. Theorem. Let P be as in 1.1 and Q=(wi)ren as defined in 1.2. Let G
be a bounded convez domain which is a polyhedron or smooth of Hélder class C1*
for some 0<A<1 or which is a Cartesian product G=[];_,; Gi of such domains.
Then for each Fe A%\ {0} the following assertions are equivalent for the operator
Lp defined in 1.5:

() Lp: AL — AL is surjective.

(i) Whenever g€ An_q and g/F is entire, then g/FE€An_q.

(ili) For each k€N there is R>0 such that for each z€l'y with |2|>R there
exists weCN with |w—z|<wi(z) and |F(w)|>exp(—wik(w)).
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Proof. If G is a polyhedron or smooth of Hélder class C*, then the assertion
follows directly from 1.6, 2.6 and from 3.1 and 3.3, respectively. If G is a Cartesian
product, we apply 3.4 to claim that there are Ry, C, >0 such that

A(H;a,R)>eR°, 0<R<Ry, acTynNS=Sy.
For R>2 and a;€ 5%, I=1,...,n, we have U(a;, R)DU(0, R—1) and

AH o1, B) > A(H0,R=1) = R(1- 1 ) AGHi;0,1) 2 ACH 0, DR/

Hence by 3.1 and 3.3 (we may assume Ry=2), there are >0 and C'>1 with
A(Hj;a, R)>emin{R,R°}, R>0, ai€Sy, l=1,..,n.
Let aeS} and 0<R<1. Since A(Hy;-,-) is positively homogeneous, if a;#0 we

have

. R°
A(Hy; a1, R) = |ag|A(Hy; ai/ |, RS \ar]) > emln{R, W}

C
Zemin{R, R }zeRC,

la]C—1
If a;=0, we have
A(Hy;a;,R)=RA(H;;0,1)>eRC.
Hence we get from 3.4

A(H; a,-R) > 11<nl12 A(Hl;al,R/\/ﬁ) an—C/ZRC'

Thus the assertion follows as above.

4. Discussion of the Ehrenpreis condition

In this last section, assuming that the extra hypothesis on H and § of 3.5
holds, we investigate under which restriction on € there are non surjective partial
differential operators of infinite order. First of all we note the following;:

4.1. Remark. Let P be as in 1.1. If P is a nonzero polynomial on C%, it is

obvious that P€ A, and it is well known that there is £>0 such that
sup |P(w)|>e, zeCN.
lw—z|<1

Hence by 3.5 “(iii) = (i)” (without any extra assumption on H and Q) the partial
differential operator Lp: A}, — A% is surjective.

We recall the minimum modulus theorem from Levin [12] in a somewhat more
general form.
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4.2. Proposition. Let F' be analytic in o neighborhood of { z€C||z|<25}
(0<S8), F(0)=1. For each 0<R<S and 0<n<3e there is a set SCC which is a
union of finitely many discs with sum of radii less or equal 4nR such that for all
z2€C with |z|<R and 2¢S we have

log |F(2)] > —2M(2R)—log(3e/(2n))%))_
Here M(t):=max, <; |F(2)], t>0.

Proof. Although Levin [12, Theorem 11], proves the assertion only for S=¢R,
his proof gives the desired result if we apply Jensen’s formula to estimate the number
n of zeros of F in the disc |2|<2R by n<log M(2S5)/log(S/R).

We will apply the following consequence of a theorem of Rubel and Taylor [27].

4.3. Proposition. Let Q=(wi)ren be as in 1.2 (possibly without 1.2(3) and
the convezity assumption). Let (a;)jen be a sequence in C\{0} with lim;o |a;j|=
00. Put n(t)::Z|aj|St 1 for t>0. Assume that for each k€N there is ro>0 with

N(r):= /OT @ dt <wg(r), r>rp.

Then there exists a nonzero entire function F€ A%, of one variable which has at least
the zeros (a;)jen (with respect to multiplicities).

Proof. Note that by the concavity of wy, there is R=R(k)>0 with wy(2r)<
Cuwyi(r) for all r>R, where C>2 does not depend on k. Consider the function
p:R;— R defined by

p(r):= i(?C’)_lN(2lr), r>0.
1=0

Then it is trivial that N(r)<p(r) and p(2r) <2Cp(r) for all r>0. By the hypothesis
on N(r), we claim that for each k€N there is R>0 such that

(12) p(r) < Z(ZC)_lwk(er) < i(20)_l01wk(r) =2wi(r), r>R.
=0 =0

By Rubel and Taylor [27, Thm. 5.2 and Prop. 3.5], there exists a nonzero entire
function F’ on C which has at least the zeros (a;) e~ and satisfies an estimate

log |F(2)| < Bp(Blz]), z€C,
with some B>0. By (12) and 1.2, F belongs to AY.
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4.4. Lemma. Let Q=(wi)ren be as in 1.2 (possibly without 1.2(3) and the
concavity and convezity assumptions). Let (or)ren salisfy the conditions of 1.2
(possibly without 1.2(2), (5), and the concavity and convezity assumptions). Assume
that for each k€N there are meN and Ro>0 with

inf wm(S) < wi(R) )

5>R log(S/R) ~ log(R/ok(R))
Then for each FeA{\{0} the following condition holds: For each k€N there is
Ry >0 such that for each z€ CN with |2|> Ry there evists we CN with |w—z|< o (2)
and |F(w)| > exp(—wp(1)).

Proof. We may assume tha~t Wi+1(r) Swilr) and 41 (r) <or(r)<r/2 for all
k€N and r>0. For an arbitrary k€N, according to the properties of  and (gx)renN,
we choose k>k and 7r9>0 such that

R>Rg.

(13) Bwr(2r) Swi(r/2) and 12e04(r) < i(r), 7 >ro.
By the hypothesis and 1.2(5), there are m>k and Ry>rg such that
(14) i (25) wr(R) R>Ry.

in ,
5>R log(S/R) ~log(R/ok(R))
Since Fe A%, we can choose ﬁozRo such that

M(r):= II?IiX |F(¢)| < expwm(r), T3> Ry.

Fix 2 CV with R:=|z|>R,. By (14), there exists S> R with

wm(2S) < wi(R)

log(S/R) ~ log(R/ex(R))”
We put n:=$epr(R)/R< $e and apply Proposition 4.2 to the function (> F(z/2|),
¢€C. Then there is a union § of discs with sum of radii less or equal 4nR such
that for all (€ C with |{|<R and (¢S

M(2S)
> - i Sl
(15) log [P(¢2/|2)| > ~2M (2R) ~log(R/ o (R) oo
Since 2-4nR=12e gx(R)< g;(R), there exists (€ C with |(—R|<g;(R) and |{|<R
which satisfies (15). For w:=(z/|z| we obtain |w—z|=[{—R|<pj;(%) and
wm(25)
>_ - Hmisd) s - )
log |F(w)| > —2wn,(2R) log(R/gk(R))log(S/R) > —2wm(2R)—wi(R)
Since pg(2)<|2|/2, we have |w| > |z| —|w—z|>|z| —|z|/2=|z] /2. By (13), we conclude

log | F(w)] 2 —w(|2]/2) 2 —wg (w)-
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4.5. Lemma. Let Q be as in 1.2 (possibly without 1.2(3)). Let (ok)ren be
as in 4.4. Assume that there is some a€S such that for each function Fe A%\{0}
and each k€N there is Ry>0 such that for each z€ { Aa|A>0} with |2|> Ry there
exists weCN with |lw—2|<gr(z) and |F(w)|>exp(—wik(w)). Then for each keN
there are meN and Ro>0 with

. wm(9) wi(R)
3 Toa(S/R) = Tog(R/ae(®)’ 2T

Proof. We may assume that a=(1,0,...,0), that we41(r) <wi(r) and gr11(r)<
ok(r)<r/2 for all k€N and r>0. In particular by 1.2(5), we may replace “|F(w)|>
exp(—wg(w))” by “|F(w)|>exp(—wi(2))” in the hypothesis. Thus we obtain that
for N=1 each function F€A%\{0} satisfies the hypothesis with a=1 (consider
F(2):=F(z), 2zeCV).

Assume that there is k€N such that for each meN and Ry>0 there is a> Ry
with

inf wm(r) wi (@) .

r>a log(r/a) = log(a/exr(a))
We will derive a contradiction to the hypothesis. Inductively we can choose a strictly
increasing unbounded sequence (a;);jen of positive real numbers such that

i := min (1) (3;)
(16) mj " r>a; log(r/a;) ~ log(a;/ex(a;))

for all jeN. To simplify the notation, we assume that m;€N for all jeN. Put
n(t):=3_,,<; My, t>0. Since log t=0(w;(t)), moreover, we may assume that

n(a;j—1)log(a;/a1) <wj(a;) and nlaj_1)<m;, jEN.

For jeN and a;j<r<a;i1, we obtain from the definition of m;

/()T@dtz/oajn—gzdw/a:@dt

<n(a;-1)log(a;/a1)+(n(a;-1)+m;)log(r/a;)
Swj(aj)+2m; log(r/a;) < w;(r)+2w;(r) < 3w;(r).
By 4.3, there is a function F€ A%\ {0} of one variable which has at least the zeros

a; with multiplicities m;, j€N. To show that F' does not satisfy the condition in
the hypothesis of the lemma let Rq>0 be given. Choose k>k and B> Ry with

lrrllgéc log |F(z)|+wi(2r) <wi(r), r> R.
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Choose j>k so large that a; >R. We put z:=a; and w:=z+re", where 0<r<p;(2)
and 0<@<2r. By (16) and by the Jensen—Poisson formula (with R:=z=a;), we
obtain (each term of the sum is nonnegative):

R%—(a—2)re¥
R(re?®—(a—2z))

1 27 X
10g|F(w)|:Er—/0 P, n(0—t)log |F(z+Ret)|dt— 3 log

|z—a|<R

F(a)=0
< ‘ r|n<az)|( llog|F(w)|—mJ log(R/r) < ma)l( llog|F(x)l—mJ log(|2|2/ 0k(2))
< Juax log |F(z)| —wr(2) < —w;(22) < —wi(w).

4.6. Theorem. Let P be as in 1.1 and Q as defined in 1.2. Assume that G

satisfies the extra hypothesis of 3.5. Then the following assertions are equivalent:
(i) For each Fe AQ\{0} the differential operator Lp: Ap— A is surjective.
(ii) For each k€N there are meN and Ry >0 with

o wm(S) wi(R)
Il o (S/R) S TogRjan(®))’ =T

Proof. Combine 3.5, 4.4, 4.5.

4.7. Ezamples. (1) If Q=((1/k)w)ken satisfies the conditions of 1.2, and there
are A>1 and r¢>0 with 2w(r)<w(Ar) for r>ry, then 4.6(ii) does not hold. For
in this case, there is C'>0 such that w(R)/C<infg g w(S)/log(S/R)<Cw(R) for
large R>0. See Example 1.7(1).

(2) Let Q=(wg)ren be a weight system such that for each k€N there are
meN and ro>0 with w,,(r) logr <wg(r) for all r>r¢ (this condition on € has been
communicated by S. N. Melikhov). Then, choosing S=2R in 4.6(ii), one gets that
Q) satisfies the condition 4.6(ii). See Example 1.7(2).

(3) For Q=(wy)ren where wi(r}=(log(1+r))*/k (s>1), the condition 4.6(ii)
holds. See Example 1.7(3).
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