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A division problem in the space of entire 
functions of exponential type 

Siegfried Momm 

In troduct ion  

The surjectivity of convolution operators and in particular of linear partial 

differential operators with constant coefficients is often equivalent to a problem of 
division in an appropriate space of entire functions of exponential type. In this 
frame Malgrange citel3 proved that for each convex domain G in R N each partial 
differential operator on E(G) and each convolution operator on A(C N) is surjec- 

tire. Ehrenpreis [4] characterized the surjective convolution operators on E(R N) 
by means of lower bounds of its symbol. HSrmander [7] extended this result to 
convolution operators ~(G2)----~(G1) where G~, i--1, 2 are convex domains in R N. 
Martineau [14] extended Malgrange's result proving that  for each convex domain 
G in C N each partial differential operator of infinite order on A(G) is surjective. 
After these early papers, in the sequel several authors extended Ehrenpreis' re- 
sult to convolution operators on spaces of ultradifferentiable functions $~(RN), 
Chou [2], Cioranescu [3], Meise, Taylor, Vogt [15], and Momm [18]. Others consid- 
ered convolution operators A(G2)----~A(G1) for convex domains Gi, i=1,  2 in C N, 
KorobeYnik [9], Epifanov [5], [6], Tka~enko [29], [30], Napalkov [23], [24], Meril, 
Struppa [16], Morzhakov [21], [22], Sigurdsson [28], and recently Krivosheev [11] 
with the complete solution of this problem. There are many further results on this 
subject which cannot be mentioned here. 

The aim of this paper is to present a systematic approach to division problems 
which applies in particular to all cases mentioned above (see [19] and [20]). We 
do this by extending Martineau's result to partial differential operators of infinite 
order on weighted spaces of analytic functions. Let G be a bounded convex domain 
of C N. For ~ > 0  let A be the Fr~chet space of all analytic functions f on G such 
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that  for each k C N  there exists Ck > 0 with 

If(z)l<_Ckexp -s , z e a ,  

where d(z) is the distance of z to the boundary  of G. If  F ( z ) = ~ C N o ~  a~z ~ is an 
entire function such tha t  for each k E N  there is Ck>O with 

( ~ ' = ~ / ( ~ + 1 ) )  then a continuous linear differential operator of infinite order 

LF: A -+A is defined by L F ( f ) = ~  a~f (~). In this paper  in a general setting 
we characterize whether LF is surjective. If H denotes the support  function of G, 
then by the Fourier-Borel transform, the dual space A ~ of .4 can be identified with 
the space of all entire functions g satisfying 

Ig(z)l< C e x p ( H ( z ) - l l z [ / ) ,  z C  C N, 

for some C, m > 0 (Napalkov [25]). Let FH denote the support  of the Monde-Ampere 
measure (ddCH) N, i.e., cN\['H is the maximal open cone with vertex in the origin 
on which H is an extremal plurisubharmonic function. 

T h e o r e m .  If G satisfies a technical condition, which is in particular fulfilled 
if G is a polyhedron, if OG is of Hdlder class C 1'~ for some 0<)~<1, or if G is 
the Cartesian product of such domains, then for F~O the following assertions are 
equivalent: 

(i) LF: A--* A is surjective. 
(ii) FA I is a closed subspaee of A p. 
(iii) Whenever gcA'  and g /F  is entire, then g /FEA' .  
(E) For each k E N  there is R > 0  such that for each z e F u  with Izl>_R there 

exists w e C  N with I w - z l < l z I /  /k  and IF(w)l>exp(-Iwl /  /k). 

The organization of the paper  is as follows: In a preliminary section we intro- 
duce the spaces involved and the differential operator.  Here we state the equivalence 
of (i) and (ii). In the second section we proceed as follows. By the open mapping 
theorem, (ii) implies certain norm estimates, i.e., the validity of a quantitative ver- 
sion of (iii). A careful use of the solution of the Dirichlet problem for the complex 
Monde-Ampere equation on balls V(z, R) with boundary  values g (~ ) ,  ~ E OU(z, R), 
and the application of Hhrmander 's  0-technique shows that  this norm estimates 
imply a weak version (E') of (E). In the case of a polyhedron both coincide. In 
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the other cases we use the technical condition of the theorem's hypothesis to prove 
that  (E') implies (E). It is standard that  (E) implies (ii) and (iii), since by [19] 
(see Krivosheev [11]), an appropriate Phragm@n-LindelSf theorem is available. In 
section three we evaluate the technical condition on G and apply the results of 
the previous sections to characterize the surjective differential operators of infinite 
order. Section four is devoted to a discussion of the criterion (E). In particular we 
prove that for the space A presented above there are also non surjective differential 
operators on A. 

I like to thank R. W. Braun for interesting conversation and helpful comments 
on the topic of this paper. 

1. P r e l i m i n a r i e s  

For the sequel let N E N  be fixed. We will use the abbreviation R + : = { x E  
Rix_>0}.  For z c C  N we put ]zI :=(EjN1 ]zjl2) 1/2. For aEC N and R > 0  we put  

U(a,R):={ zECN I Iz-aI<R }, B(a,R):=U(a,R), S:----{ zECN I IzI=I }. 
Fix a bounded convex domain G in C N. Let H: c N  ---+R be its support function 

H(z) := sup Re(z, w), z e C  N, 
wEG 

where (z, N w):----}-]j= 1 zjwj, z, wEC N. Note that  H satisfies a Lipschitz condition 

]H(z)-H(w)l<_Liz-wl, z, wcC  N, for some L >0 .  We put d(z):=inf{ I z -wi iwE 
OG }, zEG, which is concave as an infimum of affine functions. 

For each open set ~ c C  N let A(~) denote the space of all analytic functions 
on ~. Fhrthermore we will apply the usual multiindex notation. 

1.1. Definition. Let ~-- ( r  be a sequence of continuous nonnegative non- 
decreasing unbounded functions on ]0, c~[ such that  Ck(e x) is a convex function of 
x C R  for all kEN,  and which satisfy the following conditions: For each n C N  there 
are k E N and x0 > 0 such that for all x_> x0 

Ck+l(x)_<r 
(/3) 

Ck(2x)<e (x) 
(5) logx=o(r as x--*cx~. 

We put P : =  (Pk)keN where 

(1), 
Pk(Z):=r  d - ~  zEG, kEN,  
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and define 

A ~ := { f E A(G)][[f][k = sup If(z)l exp(--pk(z)) < CO for each k E N }. 
zEG 

Endowed with the topology induced by the norms ([[ [[k)kEN, the algebra A ~ is a 
Fr~chet space. 

Remark. The Fr~chet space A ~ is nuclear. This useful information will not be 
applied in the sequel. Since the proof is folklore, we will only sketch it: Because of 
1.1 (/3) and (5), A ~ is the projective limit of the Banach spaces 

Ak := {f  E A(G)[[[f[Ik < oo and lim [f(z)[ exp(-pk(z)) = 0}. 
zEG,z---*OG 

Fix HEN. By 1.1, there are kEN and x0>0 such that  

r162 for all x>>_Xo. 

For each zEG let 5z be the functional in A~ defined by 5J=f(z),  fEAk. The set 

M := {0}U{ 5z exp(-pk(z))[z E G } C A~ 

is obviously essential in A~ (see Pietsch [26, 2.3.1]). By the definition of A~, the 
mapping ZHhz exp(--pk(z)) for zEG and oo~-*0 maps the one point compactifi- 
cation of C continuously onto M endowed with the weak* topology. Hence M is 
weak* compact. Since G is bounded, a Radon measure #EC(M)' is defined by 

f 
#(r := ]G r exp(--pk(z))) dA(z), r E C(M), 

where A denotes the Lebesgue measure. By the choice of k, there is C > 0  such that  
by the subaveraging property of If[, for each lEAn and wEG 

If(w)[ exp(-pn (w)) _< A(B(w, d(w)/2)) -1 f If[ dA exp(-pn(w)) 
JB(~,a(~)/2) 

< C / "  If[ exp(--pk) dA _< C [ If[ exp(-pk) dA. 
JB (w,d(w)/2) Jc 

Hence [[f[[~ << C fM [(f, a}[ dp(a), which proves that  the inclusion map Ak---~An is 
absolutely summing (Pietsch [26, Theorem 2.3.3]). By Pietsch [26, Theorem 3.3.5], 
the projective spectrum (Ak)kEN is even nuclear and so is A ~ 
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1.2. L e m m a .  Let �9 be as in 1.1. For k E N  and r E R +  we put 

wk(r) := inf ( r  (i/x) +rx). 

Then ~:= (02k)kE N i8 a sequence of continuous nonnegative nondecreasing unbound- 
ed concave functions on R+,  such that wk (e x) is a convex function of x �9 R for each 
k � 9  Moreover for each n E N  there are k � 9  and ro>O such that for all r>ro 

(1) 
(2) log(l+r)=o(wn(r)) 
(3) wn(r)=o(r) 
(4) 
(5) 
Proof. Obviously for each k � 9  the function wk is concave (as an infimum 

of affine functions), norm�9 and nondecreasing. Since ~k is unbounded, so 
is wk. By Napalkov [25, Lemma 5], the function x~-*wk(e x) is convex. (3) follows 
directly from the definition of w~. Next note that  for each r > 0 there is x(r)> 0 with 
wk(r)=r because of (3) we have limr__.~ x ( r )=0 .  This shows that  
1.1 (c~)implies (1), (5)implies (2), (•)implies (4), and (~,)implies (5). 

Remark. If vice versa a system ~=(02k)kc N with the properties stated in 1.2 
is given, then defining Ck(X):=supt>o(Wk(t)--t/x), x>0 ,  kEN,  we get a system 
~=( r  which is equivalent to one (see 1.4) which satisfies the conditions of 1.1. 
This correspondence is one to one (up to equivalence, see [17, 1.9, 6.9, 6.10]). 

Convention. In the sequel let P and ~ be as in 1.1 and 1.2, respectively. 

1.3. Definition. We extend the definition of wk to the whole of C g by wk(z):= 
02k(iz]) , z e C  N, k e N .  We define 

AH-~ := { f �9 A(CN) i]fik = sup ]f(z)I e-H(z)+~k(z) < c~ for some k �9 N } 
z E C  N 

and denote by A ~ the algebra of all entire functions F E A ( C  ~v) such that  for each 
k � 9  there is some C > 0  with 

IF(z)[ _< Cexpwk(z), z �9 C N. 

We endow AH-~ with the inductive limit topology induced by ([ [k)kEN. Obviously 
we have A~ 

Remark. By a similar reasoning as after Definition 1.1, one can show that  
AH-a is the dual of a nuclear Fr~chet space. (This will also follow from Proposi- 
tion 1.6.) 
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1.4. Remark. There is K > I  such that for each k � 9  there exists Ck>O such 

H(z) -wk(Kz)-Ck <_ sup(Re(z, ~)-Pk(~)) <- H(z)--wk(z)+Ck, z �9 C N, 
CEG 

(Napalkov [25, formula (25)], although only stated for N = I  there). In particular 
there is a system (Uk)kc N consisting of plurisubharmonic functions on C N which is 
equivalent t o  ( H--COk )kE N.  

Here and in the sequel two systems (Vk)kcN and (~k)keN are called equivalent 
if for each nEN there are kEN and C>0  such that vk<_~+C and ~k<vn+C. 

1.5. Propos i t ion .  For each F � 9  A ~ F(z)- - - -~cN y a~z ~, a continuous linear 
operator is given by 

LF:A ~ ~ L f ( f ) :=  ~ a~f (~). 
c~ENo N 

Proof. Let kEN. By Cauchy's integral formula, there is Ck >0 with 

lea[<_Ck inf r-]a]expwk(r), a e N  N. 
r>O 

By the same reason, we get for f �9 A ~ 

If(")(z)[ _< Hf[[ka!(d(z)/2) -I~1 expCk(2/d(z)), z �9 G, a �9 N g. 

Let z �9  and a � 9  N. We apply the estimate for [as[ with r--4[a[/d(z). By the 
definition of wk, we get 

[a~[[f(~)(z)[ <_ Ck[[f[[k(2]a])-]~la! exp{wk(4[a[/d(z) )+ r ) } 

_< Ck [[flle(2[~[)-I<~! exp{r 
+(41~l/d(z) )(d(z)/4)+ r ) } 

_< Ck Ilfllk(21~l/e)-I~l lal! exp{r +r 

Hence by Stirling's formula, there is C~ >0 not depending on f with 

~_, la~llf(~)(z)l <_ cs exp{r162 z �9 G. 

By 1.1(~) and (7), for each n � 9  there are k � 9  and C~'>0 with 

< C" ~-~la~llf(a)(z)]exp(-pn(z))_ kllfllk, z � 9  l e A  ~ 
Ot 

This proves the assertion. 
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0 ! 1.6. P r o p o s i t i o n .  The Fourier-Borel transform .,~: Ap ---+ AH-o, ~(#)(z):---- 
#(e(z")), z � 9  N, is an isomorphism. If we identify the strong dual space A ~ with 
AH-n by this isomorphism, then for each FEA ~ the transposed map Ltr (see 1.5) 
is the operator MR: AH-n---~AH-~ of multiplication by F. Hence by duality theory, 
LF is surjective if and only if F~O and FAH_n is a closed subspace of AH-n. 

Proof. The assertion about the Fourier-Borel transform (although only stated 
for N= 1 there) can be found in Napalkov [25]. We have 

~ (L t (# ) ) ( z )  -- (#onF)(e (z,)) = F(z)JZ(p)(z), # �9 A ~ z �9 C g. 

1.7. Examples. The following systems ~lJ----(~/)k)kc N satisfy the conditions of 
1.1. The associated functions ~ =  (wk)kcN (see 1.2) are calculated up to equivalence 
(see 1.4): 

(1) ek(x)=x~/k, wk(r)=r~'/k, where/3>0 and ~ ' : - -~/ ( f~§ 
(2) ek(x)=x ~k, wk(r)-=r ~'k, where 0<Zk strictly decreases with k and / ~ : =  

Zk/(&+l). 
(3) ek (X)----(log(1 § wk (r)---- (log(1 § where s > 1. 
To get (3) we note that  direct computation gives for each r > 0  that  wk(r)= 

(1/k)(log(l§247 for some x > 0  with rx--(s/k)(log(l§247 For 
large r the value of x is small. This shows that  the dominating part in the rep- 
resentation of wk (r) is the first one. The equation for x implies the rough bounds 
(s/(2k))(1/x) <_r<_(s/k)(1/x) ~ for large r>0 .  Inserting this, we obtain the desired 

estimates. 

2. So lu t ion  of  t h e  d iv is ion  p r o b l e m  

In view of 1.6, looking for a characterization of surjective operators LF, we 
have to characterize when FAH-n is closed in AH-n. We will apply a procedure 
which is roughly that  one which has been introduced by Ehrenpreis [4]. In order to 
estimate more carefully we use the following notation. 

2.1. Definition. For a c C  N and R > 0  we consider the real-valued function 
h=h(H; a, R) which equals H on CN\U(a, R) and with h(z) for zE (a, R) given by 

sup(u(z) lu psh. on g(a, R), limsup u (w)<  H(r for ~ �9 OU(a, n)}. 
w---*~ 

Then h is continuous and plurisubharmonic (psh.) (see [19, Lemma 2]). We put 

A(H; a, R) :---- sup ( h ( g ; a , R ) ( z ) - g ( z ) ) .  
zCU(a,R) 
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Then A(H; a, R)>O because H is plurisubharmonic. Since H is positively homoge- 
neous, so is A(H;.,  .), i.e. A(H; Aa, AR)=)~A(H; a, R) for all ),>0. 

By S~ we denote the set of all aES, such that A(H;a,R)>O for all R>0. It 
is easy to see that S~ is compact. We consider the cone FH :={ Aa ]/X~0, a E S~/}. 

Remark. By Bedford and Taylor [1, w FH is the support of the Monge- 
Ampere measure ( ddC H) N. 

2.2. Proposi t ion.  For each a e r .  the function A(H; a,-):]0, c~[--~]0, oo[, 
R~-*A(H; a, R) is continuous, strictly increasing and surjective. By A-I(H;  a, .) we 
denote the inverse function. The function A-I (H; . ,  .) is positively homogeneous. 

Proof. For all a, ~EC N and R, R>0 we have 

A(H;a ,R)  = sup (h(H(a+R.); O, 1 ) ( z ) - g ( a + R z ) )  
zEB(O,1) 

< sup (h(H(~+R.);0, 1)(z)-H(~+-~z)) 
zCB(O,1) 

+2 sup IH(a+Rz)-~I(~+Rz)] 
zEB(0,1) 

=A(H;~, I~)+2 sup [H(a+Rz)-~I(5+Rz)[ 
~cB(O,1) 

and thus 

]A(H;a,R)-A(~I;?t,R)] <2 sup ]H(a+Rz)-~I(?t+f~z)]. 
zEB(0,1) 

In particular, A(H; a, R) is a continuous function of (a, R) E C N x ]0, c~[. 
If aeC N and 0 < R < R  we put A:--(IaI+R)/(Ia]+R ). We then get U(Aa, AR) 

CU(a,R) and AA(H;a,R)-<A(H;a,R). If aCFH, this shows that A(H;a, .)  is 
strictly increasing and unbounded. Since limR-~0 A(H; a, R)--0, A(H; a, .) is onto. 

Our theorem is prepared by the following lemmas of which the first one contains 
the essential idea. 

2.3. Lemma.  Let F e A ~  Then (i) :=~ (ii): 
(i) For each k e n  there are nEN and C>0 such that for all f EAH-n we have 

Ifln <CIF flk. 
(ii) For each k c N  there is R>0 such that for each zeFH with ]zi>R there 

exists weB(z ,  A -I(H;  z, wk(z))) such that IF(w)l >exp (-wk(w)). 

Proof. For k C N we put 

~k(Z) :---- A-I(H;  z, ~k(z)) = IzlA-I(H; zllzl, ~k(z)llzl), z e PH\{0}. 
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Since limR~0 A-I(H;a,R)=O uniformly for aES~, by 1.2, we may assume that 
zero\{0}, k e N .  

Assume that (ii) does not hold. Then there are k E N  and a sequence (zJ)jeN 
in F t / w i t h  limj__,~ {zJ[=c~ such that 

(1) IF(w)l<exp(-w~(w)) foral l  weB(zJ,a~:(zJ)) and y e N .  

Since H is Lipschitz continuous, by 2.1, there is L > 0  such that for each ZEFH we 
have A(H;z,R+I)<A(H;z,R)+L for R>O. Thus we obtain A-~(H;z,x)+l< 
A-I(H;z,x+L), x>0.  Hence by 1.2, we can choose m > k  and to>0  such that 

(2) wm(2z)<_wk(z), zEC N, and am(z)+l<a~(z), ZEFH, 

if Izl>to. We are going to derive a contradiction to (i). Fix j E N  with IzJl>2to. 
Put  hj :=h(H;  z j, am(zJ)) (see 2.1). Choose x j EB(z j, aj(zJ)) with 

(3) hj(x j) = g ( x  j )  + A ( H ;  z j, am(ZJ)) = H(z j) +wm(zJ). 

According to 1.2 and 1.4, we choose a psh. function u with 

(4) g(z)-wm (~z) <_ u(z) < H(z)-wa(z)+C, z �9 C N, 

for some h � 9  and C>0 .  We consider the psh. function r :=(hi+u)~2. By Theo- 
rem 4.4.4 of Hbrmander [8] and standard arguments, we get fj �9 N) such that 

fj(x j) = exp ~j(x j) (5) 

and 

(6) [f~(z)[<C(Y)exp~ sup Cj(w)+C(N)log(l+iz[2)}, zEC N, 
"wEB(z,1) 

where C ( N ) > 0  only depends on N. Since H is Lipschitz, applying (3) and (4) we 
get 
(7) 

< ~ H(z)+n'-wa(Izl-1)/2 for z ~B(zJ,am(zJ)+l) 
s u p  

~oeB(z,1) - l H(z)+n'-w~(lzl-1)/2+~(zJ)  for zeB(zJ,~m(z~)+l) 

with some LI>0  not depending on j .  In particular fj EAH-~. 
We now estimate Ffj. If zEB(zJ, am(ZJ)+l), then Iz-zJl<lzJ]/2 and Izl> 

IzJl/2>to, and by (1), (2), (6), and (7), we obtain 

[F(z)fj(z)[ <__ C(N)e L' e x p { g ( z ) + C ( N ) l o g ( l +  Iz[ 2) -wa(I z ] - 1)/2 

< C(N)e L' exp{H(z)+C(N)log(1 + Izl 2) - w e  (Iz 1-1)/2}.  

8-Arkiv f'6r maternatik 
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Hence by (6), (7), and 1.2, there is some k e N  with 

(8) sup sup IF(z)fj(z)l exp(-H(z)+wk(z)) < oo. 
j 6 N  z E C  N 

Since IxJ-zJl<lzJl/2 and IzJl>_2]xJ], on the other hand, we obtain from (5), (3) 

and (4) that 

Ifj(xJ)l >_ exp{H(xJ)+OJm(ZJ)/2-w,~ (2xJ) /2}  >_ exp(g(xJ)). 

Since ]xJl>lzJ]/2, we have limj-~o~ IxJ]=c~. Hence by 1.2, we conclude that for 

each n 6 N  
lim Ifj(xJ)] exp{-H(xJ)+oJn(xJ) } = oo. 

j---* oo 

Together with (8) this is a contradiction to (i). 

2.4. L e m m a .  For 0 < / k < l  and z 6 c N \ { 0 }  let O<~-(z)<a(z)<lz I with a ( z ) =  
7(z)~lz] 1-~. Let F be analytic in B(z, ]zl). Let w,~: B(z, Iz])--*R+ with 

1 
sup w(w)+~-~A A log sup IF(w)l 

(9) -A wcB(z,~(z)) ~CB(z,lzl) <- wcB(z,r(z))inf 
~(w). 

If there is wEB(z, a(z)) with IF(w)l >exp( -w(w) )  then there is w6B(z,r(z)) with 

Proof. We prove the contraposition. Assume that for all wEB(z, "r(z)) we have 
IF(w)l <exp( -~ (w) ) .  We fix wGB(z, a(z) ) \{z} ,  put h:=w-z,  and 

M(r):=max{IF(z+Ch/lhL)l ICeC, lq=r},  r>0. 

Put  r l :=T(z) ,  r2:=a(z) ,  and r3:=]z]. For ]~]<rl and x:=z+~h/]h], we have 
Ix-z]<_T(z). For ]~l<r3 and x:=z+~h/[h], we have ]x-z[<_lz [. We apply Hada- 
mard's three-circles-theorem to rl,  r2, and r3, and we obtain by (9) 

log I F(w)l < log M(r2) 

< log(r3/r2)logM(rl)A log(r2/rl)logM(r3) 
-log(r3/rl) log(r3/rl) 
= )~ log M(rl) + (1 - A) log M (r3) 

< - ) ~  inf ~ (x )+(1 - )~ )  log sup IF(x)I 
xeB(z,r(z)) =CB(z,lzl) 

< -  sup  
x 6 B ( z , a ( z ) )  

We will apply the following lemma from Hhrmander [7, Lemma 3.2.] 
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2.5 L e m m a .  Let g, F and g /F  be entire. Then we have for all r > 0  and Z C C  N 

Ig(z)/F(z)l <_ sup Ig(r sup IF(r sup IF(r 2. 
Iz-r Iz-r Iz-r 

We are now ready to state our main result. 

2.6. T h e o r e m .  Let ~=(Wk )k~N be as in 1.2. Assume in addition that H and 
12 satisfy the following condition: There is some )~>0 such that for each n E N  there 
are kEN and r0>0 with 

•k(z)/Izl < A(H; z/Izl,  z �9 rH,  Izl > r0. 

Then for each F E A ~ \ { 0 }  the following are equivalent: 
(i) Whenever gEAH-a and f :=g lFEA(CN) ,  then f � 9  
(ii) FAH-a  is a closed subspace of AH-~. 
(iii) For each k E N  there are n � 9  and C > 0  such that for all f � 9  we 

have IfJn ~_ClF flk. 
(iv) For each k c N  there is R > 0  such that for each Z�9 with Izl>R there 

exists weB(z ,  A - I ( H ;  z, wk(z))) such that IF(w)l >exp (--wk(w)). 
(v) For each kEN there is R > 0  such that for each Z�9 with ]zl>R there 

exists weB(z ,  wk(z) ) such that IF(w)i_>exp (-wk(w) ). 
Without the additional condition for H and f~, we still have (i) ~ (ii) =~ 

(iii) ~ (iv) and (v) ~ (i). 

Proof. (i) ~ (ii): AH-a is continuously embedded in A(cN) .  
(ii) ~ (iii): Since FAH-a  is closed, indk__.~(AH_~kMFAH_a) is an (LF)- 

space, where AH-~k : = { f  � 9  }. Hence we can apply the open map- 
ping theorem for (LF)-spaces to the continuous and bijective map MR: AH-a---* 
indk--.~(AH_~MFAH_a), M F ( f ) = F f ,  which shows that  MR is a linear topo- 
logical isomorphism onto FAH-a  endowed with the topology of indk+m (AH-,~k M 
FAH_a). Thus (iii) follows from Grothendieck's factorization theorem (see e.g., 
Kbthe [10, w 19, 5.(4)]). 

(iii) ~ (iv): Lemma 2.3. 
(iv) ~ (v): We may assume that  0<)~<1. Let k � 9  Since A(H; . , . )  is ho- 

mogeneous, by the extra hypothesis on H and ft, there are k � 9  and R > 0  with 
A - I ( H ;  z, wk(z))<wk(z)~lzl 1-~, z e r H ,  Izl >R.  We may assume that  R is so large 
that  (iv) holds. We put r(z):=w~(z). By 1.2 we may furthermore assume that  k 
and R are chosen so large that  for all Izl>R we have a(z):=w(z)~Izll-~<izl/2 and 
that  

~ w k ( 2 l z l ) + ~ l o g  sup IF(w)l~_w~(lzl/2). 
wEB(z,lzl) 
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Applying 2.4 with W=Wk and ~=w~, we get (v) from (iv). 
(v) ~ (i): Let gEAH-n with f :=g/FEA(CN).  Let n E N  with ]g ln<~ .  For 

k>n (which win be determined later) we choose R > 0  according to (v). We may 
assume IF(~)i<expwk(r ~EC N, and that  O<wk(z)<_izl/8, Izt>R. Fix ZErH 
with ]z] >R.  We choose wEB(z, wk(z)) according to (v) and apply Lemma 2.5 with 
r=wk(Z) to obtain 

If(z)i<ig],~ sup exp{H(~)-wn(~)} sup exp(wk(~))/(exp(--wk(w)) 2. 
Iz--(~i<4r Iz--(~l<4r 

If ]z--~i<4r<izl/2 then tzi/2gir Since H is Lipschitz continuous, there is 
a constant L > 0  depending on H such that  ]H(z)-H(r162 l for all ~EC g. 
Hence we obtain 

If(z)I < Igln exp{H(z)+4Lwk(z)--Wn(Z/2)+Wk (3z) +2Wk (3Z) }. 

By 1.2 we may choose k so large that  there is C > 0  with 

Wk(2S)+3Wk(3S) < wn(s)+C for all s E R+.  

Therefore we obtain 

log If(z)l+~k(Z) ~ C+log  Igln+H(z), z E FH. 

By 1.2, X~--~Wk(e ~:) is convex. Hence the function wk is plurisubharmonic on C N. 

On the other hand it is well known that  f is a function of exponential type. Thus we 
can apply the Phragm6n-Lindelhf theorem [20, Thm. 7], to the plurisubharmonic 
function log I f i+w~-C-log Igin to obtain the preceding estimate on the whole 
of C N. So we are done. 

2.7. Coro l l a ry .  For N=I  let ~'~:(0dk)kES be as in 1.2. Then for each FE 
A~ the assertions (i), (ii), (iii) and (iv) of Theorem 2.6 are equivalent. 

Proof. By Theorem 2.6, we have only to prove that (iv) implies (i). Let gE 
AH-~ with f:=g/FEA(C). Let n E N  with Igin<c~. For k>_n (which will be deter- 
mined later) we choose R >  0 according to (iv). We may assume IF(~)I < exp Wk (~), 
( E C ,  and furthermore that  A- l (g ; z ,  wk(z))<izl/(2(4e+l)), zers ,  Izl>R, be- 
cause A - I ( H ; . ,  .) is homogeneous. Fix ZEFH with ]z I_R. Choose wEO according 
to (iv). Note that  for I~-wi<(4e/(2(4e+l)))izI we have 

Izl < I z - w l + l w - r 1 6 2  < Izl/(2(4e+l))+(ae/(2(4 +1)))lzl+lr < Izl/2+lr 
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hence Iz1_<21r on the other hand Ir247162 
We may assume that  wr We apply the minimum modulus theorem from 

Levin [12, Thm. 11 of Chapter I], with ~--(5-1)/(45-.16 ) and R:51w-zl  and get 
I w - z  I< rm < 51w-z  I and absolute constants a, A > 0 such that  

IF(~)I_IF(w)I ~+~( max IF(x)l] -~>exp(-Awk(A()), I(:-wl=r~. 
\]x-wl<_2eR / 

We choose ( 0 � 9  with I r  and Ir We apply [12, Thin. 11], 
again, with 7-- 1 and R=2]w-zl/4 and get Iw-zl/4<~l < Iw-zl/2 and an absolute 

constant A>0  such that  

IF(r > exp(-2~k(~r 

and 

Ic:-r = ~ :  

I f(() l--Ig(r162 <_ Igln exp{H(~)-Wn(~)+Awk(A~)), Ir162 = e~. 

Since z �9 B ((0, r l)  C B (z, A -1 (H; z, Wk (Z))), we get from 2.1 

log If(z)l <_ log Igl~ +h( H; z, A - I  (H; z, wk(z) ) )(z)-w~(z/3)+ Awk(3Az) 

< log Igln+H(z)+wk(z)-wn(z/3)+-Awk(3Az). 

If k is chosen sufficiently large, by 1.2, there is C > 0  such that  

log If(z)l+wk(z) <_ C+log  Igl~+H(z), z �9 FH. 

Arguing as in 2.6, from the classical Phragm6n-Lindelhf theorem for cones, we get 
that  the preceding estimate holds on the whole of C. 

2.8. Remark. If G is the Cartesian product of N bounded convex domains in 
the plane (see 3.4), then in 2.6(iv) and (v) we can achieve that  in addition w e r e .  

F g Since (with the notation of 3.4) in this case H=l--Ii=l FH~, by standard arguments 
applying the minimum modulus theorem N-times (see the proof of 2.7) one gets 
~�9  with I~-z  I < Iw-zl and IF(~)l >_exp(-Awk(A~)), where A > 0  is a constant 
which depends only on N. 

3. Sur jec t ive  d i f fe ren t ia l  operators 

Before we rephrase the assertion of Theorem 2.6 for differential operators LF, 
we will discuss the extra hypothesis on H and ~ which is given in terms of the 
function A(H; . ,  .) of 2.1. 

9 -  Arkiv f'6r matematik 
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3.1. L e m m a .  If G is a bounded open convex polyhedron in C N, then there 
exists ~ > 0 with 

A(H; a, R) >_ eR, R > O, a e ['H. 

Proof. We will modify the proof of [20, Lemma 4]. With G also its polar 
set ft:={zECYiH(z)<_l} is a polyhedron. Hence by [20, Prop. 9], we have F H =  
U{Aa ]), > 0, a c F} where the (finite) union is taken over all real exposed faces F C 0f~ 
of ft. We only need to know that  this implies that  for each aE['H there is a face 
F with a C {Aa I A > 0, a E F} and there is the support function H of a suitable affine 
transformation of G such that  

A(H;a,R)=A(~I;a,R) ,  d e { d e C  N ]~I(a)=O}CR N, 

and H > 0 .  Since H is the maximum of finitely many linear functions, this shows 
that  there is some e = e ( F ) > 0  with H(z)>e]  Imz] for all z e C  y. We define v:= 
h(lIm.];a,R ). According to 2.1, v is psh. on C y with v(z)=lImz] for all zC 
OU(a, R). In [19, the proof of Lemma 3], a plurisubharmonic function u has been 
constructed (denoted by v there), with u < [ Im.  Ion OV(a, R) and u(a)---2R/(Tcx/~). 
That  is why we obtain v(a)>2R/(Trv/-N). Thus 

2e R A(H; a, R) = A(/ t ;  a, R) > h(e] Im-1; a, R)(a)-~I(a) > ~ . 

Taking the minimum over all F we finish the proof. 

3.2. L e m m a .  If G is the ball U(0,1) then H(z)=]z] and there are R0,e>0 
with 

h (H;a ,R) ( z ) -g ( z )>eR  2, 0 < R < R 0 ,  aCS, zEB(a,R/2) .  

Proof. Fix dES and 0 < R < R 0 < I ,  where R0>0 will be chosen later. Fix zE 
B(a, R) and put t :=z-a.  By the Taylor series expansion, we have 

N N 
H(z) = H(a)+~-~ OH(a), +~-~ OH(a)r 

j=l OZj $j j = l  0Zj ~j 

+Re tjtk ) + tjt-k + Ra(t), 
j,kml j,k=l 

where IRo(t)l _<O(Itl a) (see Hhrmander [8, page 51]). We abbreviate the four leading 
terms of this expansion by P(z) and note that P is a pluriharmonic function of 
zEC N. Hence 

h(H; a, R) = P + h ( H - P ;  a, R) = H + h ( H - P ;  a, R ) - ( H - P ) .  
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We now estimate H - P .  Note that  

N 02H(a)ti~k --�88 ~=1 2 
~a(t)  := E OZjO~,k -~ ajtj +�89 2_> �88 2. 

j,k=l 

We now choose 0 < Ro < 1 only depending on H such that  [R~ (t)[< It[2/10 if 0 < R <  
R0. Thus we get 

(10) 1 1 2 H(z) -P(z )  =Qa(t)+ R~(t) < (5+~)[t[ 

and 

(11) H(z) -P(z )  > Qa(t)-[Ra(t)[ > ( 1 -  ~)]t[2. 

By the definition of h(H-P;  a, R), (11) implies that  h(H-P;  a, R)(z)> (�88 - 1-!6)R 2 
for all zeB(a, R). This and (10) give for each zeS(a,  R/2) 

h ( H _ P ; a , R ) ( z ) _ ( H _ p ) ( z ) > ( � 8 8  1 1 1 )̀ 2 )R 2 

3.3. L e m m a .  If the bounded convex domain G has a boundary of class C 1, 
then • H : C  N. If  the modulus of continuity of the Gaufl map Af : OG--~ S is bounded 
by the strictly increasing function D: R+--~R+, then there are Ro, ~ > 0 such that 

A(H;a,R)>_r 0 < R < R 0 ,  aCS. 

Proof. The idea of proof that  FH=C N if OG is of class C 1 is essentially con- 
tained in the proof of Thin. 7 of Morzhakov [22]. 

If OG is of class C 1 there are L, l>0  such that  for each wEOG there is a motion 
Aw of R 2N which maps R 2N-1 • {0} onto the supporting hyperplane of OG at w, 
which maps 0 to w and (0, 1) to the inner normal A/'(w) of OG at w and such that  
A~BcG,  where 

B =  { x e R 2N ]L[(xl , . . . ,x2y_l)[  < X2y < l } .  

By the hypothesis, we have 

I N ( ~ ) - N ( z ) I  <_D(Iw-z]), w, zeOG, 

where Af: OG--~S is the Gaut3 map. Fix aES and O<R<_2D(1). Put w:=Af- l (a )  and 
r:=D-l(R/2)<l. To simplify the notation we assume Aw=id. BAU(O, r) contains 
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a ball U of radius x>r/(2+L) which is symmetric to the axis through (0, 1). This 
shows that  there is a ball U(~, x)C U(w, r) symmetric to the axis through Af(a) 
which touches OG at some woEOGNB(w, r). Put z0:----A/'(w0). We get 

]zo-al = IAf (wo ) -A f  (w)l <_ D(r) = R/2. 

Since z~--~xIz I + a e ( ~ ,  z) is the support function of U(~, g),  we get 

x l z l + R e ( ~ , z  ) <H(z) on C N, and xlz01+Re(~,z0 ) = H(z0). 

Choose e>0  and O<Ro~2D(l) according to 3.2. Let 0 < R < R 0 .  We obtain 

h(H; a, R)(z) > xh(I. I; a, R ) ( z ) + a e ( ~ ,  z), z e U(a, R), 

and by 3.2 

A ( H ; a , R ) > h ( H ; a , R ) ( z 0 ) - H ( z 0 ) > x ( h ( I . I ; a , R ) ( z 0 ) - [ z o l ) _ > D  1RI2j - I / ~eR 2. 
- - 2 + L  

Remark. The same arguments show that FH#O for each bounded convex do- 
main G. 

The following lemma shows how to deal with the Cartesian product of sets as 
considered in Lemmas 3.1, 3.2, 3.3. 

3.4. L e m m a .  Let the open bounded convex set be of the form G--Htn=I Gl, 
n n N n where GIcC N~, ~i=1Nl=N. Then H(z)=~l=l Hl(zl), z eC  =I-It=l cNt, where 

F n H1 is the support function of Gt, l=l, ..., n. Then H=[L=I F H~ and the following 
holds 

min A(HI;al,R/v/-~)<A(H;a,R)< min A(H~;al,R), a e C  N, R > 0 .  
l < l < n  l~_l~_n 

Proof. Fix a c e  N and R > 0  and choose 0<7_<1 with (here we put 0/0:=0) 

1 - 7 _  m~n A(Hlo;azo,R/v/-n) A(Hl;al ,R/v~) =:m. 
7 1 _  _ n  l•lo 

Put d( Hl;., .):--h( Hl;., .)-H~, l=l, ..., n, and consider the psh. function 

n 

u(z) := H(z)-b~-~(d(Hl; az, R/v~)(zl)-TA(Hl; at, R/x /~) ) ,  z C C g.  
l : l  
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If I ( -a l=R,  there is some l<_lo<n with ](lo--alol>R/x/~. Thus we obtain 

d(Hlo; azo, R / v ~  )(~Zo) =0 and 

u(() < H(()  + (1 -  ~) ~ A(Hi; at, R/v/-n ) - ~A(Hz0 ; at o , R/x/-n ) < H((), 
l~lo 

by the choice of ~. By the definition of A(H; a, R) and since 1 - ~ = m / ( m + l ) ,  we 
get 

n 

A(H;a ,R)  > sup ( u ( z ) -H( z ) )=  (1-~)~-~A(Ht ;a t ,  R / v ~ )  
z e U ( a , R )  l = l  

> min A(g~;az,R/v/-n). 
- -  l < / < n  

To prove the upper estimate, fix 0 < q < l  and choose xEU(a,R) so that the 
inequality d(H; a, R)(x) >qA(H; a, R) holds. Fix l<lo<n and consider the psh. 
function 

u(Zlo) :=h(H;a,R)(Xl,.. . ,ZZo,... ,xn)-~-~ Hl(xl), zlo 6 C  N'~ 
l#lo 

If fCZo -a ,o  I_>R also ](Xl, ..., CZo,-.., xn)-al  >R and 

h(H; a, R)(Xl, ..., ~Zo, ..., Xn) = H(Xl, ..., (lo, ..., Xn), 

which gives u((lo)----Hlo(~lo). By the definition of A(Hlo; alo, R), we get 

qA(H; a, R) < h(H; a, R ) ( x ) -H(x )  = u(Xlo ) -  Hlo (xlo) < A(Hlo ;alo, R). 

We are now ready to state our main result concerning surjective partial differ- 
entiM operators of infinite order. 

3.5. Theorem.  Let P be as in 1.1 and ~t----(Wk)keN as defined in 1.2. Let G 
be a bounded convex domain which is a polyhedron or smooth of H61der class C 1'~ 
for some 0<A<I  or which is a Cartesian product G=l-Iln___l Gl of such domains. 
Then for each F c A ~  the following assertions are equivalent for the operator 
LF defined in 1.5: 

dO ~ AO (i) LF:~Ip _~p is surjective. 
(ii) Whenever gEAH-n and g /F  is entire, then g /FEAH-n .  
(iii) For each k E N  there is R > 0  such that for each ZEFH with Izl>R there 

exists w e C  N with ]w-z] <<wk(z) and ]F(w)l >exp(-wk(w)).  
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Proof. If G is a polyhedron or smooth of HSlder class C 1,~, then the assertion 
follows directly from 1.6, 2.6 and from 3.1 and 3.3, respectively. If G is a Cartesian 
product, we apply 3.4 to claim that there are R0, C, e > 0  such that  

A(H;a,R)>_eR c, 0 < R _ < R 0 ,  aeFHnS=S~I.  

For R > 2  and alES~i~,/=1, ...,n, we have U(az,R)DU(O,R-1) and 

A(H~;al,R) >_ A(H1;O,R-1)= R ( 1 - R ) A ( H I ; O ,  1) >_ A(Hz;O, 1)R/2. 

Hence by 3.1 and 3.3 (we may assume Ro--2), there are e>0  and C_>1 with 

A(Hl;al,R)>emin{R, RC}, R > 0 ,  aleS*H,, l=l, . . . ,n.  

Let aeS* H and 0 < R < I .  Since A(HI; . , . )  is positively homogeneous, if a lS 0  we 
have 

A(Hl;al,R) = lallA(Hl;al/lalI,R/lal]) > e m i n  R, lallC_ 1 

_>emin R , ~  = e R e  . 

If at =0,  we have 
A(H~; at, R) = RA(Hz; O, 1) > eRc. 

Hence we get from 3.4 

A(H; a, R) > min A(Hz; at, R/v/-n) >_ en-C/2RC. 
l ( l ( n  

Thus the assertion follows as above. 

4. D i scuss ion  o f  t h e  Ehrenpreis condition 

In this last section, assuming that  the extra hypothesis on H and ~ of 3.5 
holds, we investigate under which restriction on ~ there are non surjective partial 
differential operators of infinite order. First of all we note the following: 

4.1. Remark. Let P be as in 1.1. If P is a nonzero polynomial on C N, it is 
obvious that  P C A ~ and it is well known that there is e > 0 such that  

sup IP(w)l>_e, z e C  N. 
I~o-zl<l 

Hence by 3.5 "(iii) ~ (i)" (without any extra assumption on H and ~) the partial 
differential operator Lp: A ~ A ~ is surjective. 

We recall the minimum modulus theorem from Levin [12] in a somewhat more 
general form. 



A divis ion  p rob lem in the  space of ent i re  funct ions  of exponen t i a l  t ype  231 

4.2. Proposi t ion.  Let F be analytic in a neighborhood of { z E C I  H<_2S } 
(0<S),  F(0)--1. For each 0 < R < S  and 0<~_<3e there is a set 8 C C  which is a 
union of finitely many discs with sum of radii less or equal 4~R such that for all 
zEC with Izl<_R and z~_S we have 

M(2S) log IF(z)l _> _2M(2R)_log(3e/(2,))ll g 
S/R)  

B 

Here M(t):=maxlzl<_t IF(z)l, t>0. 

Proof. Although Levin [12, Theorem 11], proves the assertion only for S=eR,  
his proof gives the desired result if we apply Jensen's formula to estimate the number 
n of zeros of F in the disc Izl<2R by n<_logM(2S)/log(S/R).  

We will apply the following consequence of a theorem of Rubel and Taylor [27]. 

4.3. Proposi t ion.  Let ~=(~2k)ke N be as in 1.2 (possibly without 1.2(3) and 
the convexity assumption). Let (aj)jeN be a sequence in C\{0} with l i m j - ~  lajl= 
c~. Put n(t):=~-~lar t i for t>_O. Assume that for each k c N  there is r0>0 with 

~o r n(t) N(r)  := dt <wk(r), r >ro. 
t - -  

Then there exists a nonzero entire function F c A ~ of one variable which has at least 
the zeros (aj)j~N (with respect to multiplicities). 

Proof. Note that by the concavity of Wk, there is R=R(k)>O with wk(2r)< 
Cwk(r) for all r>_R, where C>2 does not depend on k. Consider the function 
p: R+--*R+ defined by 

oo 

p(r) : - -E(2C)-IN(21r) ,  r > O. 
/=0 

Then it is trivial that N(r)<_p(r) and p(2r)_< 2Cp(r) for all r >0. By the hypothesis 
on N(r),  we claim that for each kEN there is R>0 such that 

(12) p(r) <_ E(2C)- lwk(21r)  <_ E ( 2 C ) - l C t w k ( r )  = 2wk(r), r > R. 
l=0  1=0 

By Rubel and Taylor [27, Thin. 5.2 and Prop. 3.5], there exists a nonzero entire 
function F on C which has at least the zeros (aj)jcN and satisfies an estimate 

log]F(z)l <Bp(B]zl),  z e C ,  

with some B>0. By (12) and 1.2, F belongs to A~. 
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4.4. Lemma.  Let ft=(wk)keN be as in 1.2 (possibly without 1.2(3) and the 
concavity and convexity assumptions). Let (0k)kcN satisfy the conditions of 1.2 
(possibly without 1.2(2), (5), and the concavity and convexity assumptions). Assume 
that for each k c N  there are m C N  and R0>0 with 

inf win(S) wk(R) 
s>R log(S/R) <- log(R/ok(R))' R >  Ro. 

Then for each F c A ~  the following condition holds: For each k e n  there is 
R0>0 such that for each z e C  y with Izl>_Ro there exists w E C  y with ]w--zi<_Ok(Z) 
and IF(w)l >exp(-wk(w)). 

Proof. We may assume that Wk+l(r)~wk(r) and Ok+l(r)~_ok(r)<r/2 for all 
kEN and r>0.  For an arbitrary ~:cN, according to the properties offt and (Ok)keN, 
we choose k > k and r0 > 0 such that 

(13) 3wk(2r) < w~(r/2) and 12e ok(r) < o~(r), r > ro. 

By the hypothesis and 1.2(5), there are m >  k and Ro_>ro such that 

(14) inf wm(2S) wk(R) R > Ro. 
s>• log(S/R) < log(R/ok(R))' - 

Since FEA~,  we can choose/~0_>R0 such that 

M(r):=maxlF(r r>_Ro. 
Ir 

Fix zEC N with R:=lzl_>-~o. By (14), there exists S > R  with 

 m(2s)  k(R) 
log(S/R) <- log(R/Ok(R))" 

We put ~:= 3eok(R)/R< 3e and apply Proposition 4.2 to the function ~--~F(~z/iz]) , 
CEC. Then there is a union ,S of discs with sum of radii less or equal 4~?R such 
that for all ~EC with I~I_<R and ~t~S 

M(2S) 
(15) log IF(~z/lzl) I > -2M(2R)--log(R/ok(R))iog-~-l~ ) . 

Since 2"4~R=12eOk(R)<o~(R), there exists ~EC with I~-RI<o~(R) and I~]<R 
which satisfies (15). For w:=~z/Iz I we obtain I w - z l = l ~ - R  I <<_os and 

 m(2s) 
log IF(w)] > -2a~m (2R)-log(R/ok(R))log(S/R--) > -2win (2R)-wk(R). 

Since 0~(z)_ Izl/2, we have Iwl > Izl- I w - z  I > Izl- ]zl/2= Izl/2. By (13), we conclude 

log IF(w)l > - k(Izl/2) > 
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4.5. L e m m a .  Let ~ be as in 1.2 (possibly without 1.2(3)). Let (Qk)keN be 
as in 4.4. Assume that there is some a e S  such that for each function FeA~ 
and each k e N  there is R0>0 such that for each ze{k.al)~>_0 } with Izl> Ro there 
exists w e C  N with Iw--zl<<_Qk(z) and IF(w)l>_exp(--Wk(W)). Then for each k e N  
there are m e n  and Ro>0  with 

inf w,~(S____)_)__) <_ wk(R) R>Ro.  
S>R log(S/R) log(R/Qk(R))' 

Proof. We may assume that  a=(1 ,0 ,  ...,0), that  OJk+l(r)~_O2k(r ) and Ok+l(r)<_ 
ok(r)<r/2 for all k E N  and r>0 .  In particular by 1.2(5), we may replace "lF(w)l> 
exp(--Wk(W))" by "lF(w)l>exp(--Wk(Z))" in the hypothesis. Thus we obtain that  
for N = I  each function F e A ~  satisfies the hypothesis with a = l  (consider 

zecN). 
Assume that  there is k e N such that  for each m e N and Ro > 0 there is a > R0 

with 
wm(r) wk(a) 

inf - -  > 
r>a log(r/a) log(a/Qk(a))" 

We will derive a contradiction to the hypothesis. Inductively we can choose a strictly 
increasing unbounded sequence (aj)jeN of positive real numbers such that  

(16) mj := min wj(r) wk(aj) 
r>aj log(r/aj) > log(aj/ok(aj)) 

for all j E N .  To simplify the notation, we assume that  m j c N  for all j E N .  Put  
n(t):=~a~<_t mj, t>0.  Since logt=o(wj(t)), moreover, we may assume that  

n(aj_l)log(aj/al)<_wj(aj) and n(a j_ l )<mj ,  j E N .  

For j c N  and aj <r<aj+l, we obtain from the definition of mj  

/0 /0.(,) n(t) dt---- a~ dt'~- dt 
t t ~ t 

<_ n(aj_l ) log ( a j / a l )  + (n(aj_l) +mj) log(r/hi) 

< wj(aj)+2mj log(r/aj) <_ wj(r)+2wj(r) <_ 3wj(r). 

By 4.3, there is a function F E A ~  of one variable which has at least the zeros 
aj with multiplicities mj, jEN .  To show that  F does not satisfy the condition in 

the hypothesis of the lemma let Ro>0  be given. Choose Ir and R > R 0  with 

max log IF(x) l+~(2r)  < wk (r), r >_ R. 



234 Siegfried Momm 

Choose j > k  so large that  aj >R. We put z:=aj and w:=z+re  ~~ where 0 < r < ~ ( z )  
and 0<0<2~r. By (16) and by the Jensen-Poisson formula (with R:--z=aj) ,  we 
obtain (each term of the sum is nonnegative): 

fo 2~ 1 R2-(5---i)re~e 1 P*/R(O- t l l~  Z og log [ F ( w ) i  = 

iz-~i<_n 
F(a)=0 

_< max log ]F(x)t - .~j  log(R/r) < max log iF(x)L-my log(Izlz/~k(z)) 
I~1_<21~1 1~l_<21zl 

< max log IF(x) l -~k(z)  < - ~ ( 2 z )  _< - ~ ( w ) .  
-1~l<21z I 

4.6. T h e o r e m .  Let P be as in 1.1 and f~ as defined in 1.2. Assume that G 
satisfies the extra hypothesis of 3.5. Then the following assertions are equivalent: 

(i) For each F e A ~  the differential operator LF: A~ ~ is surjective. 
(ii) For each k c N  there are m E N  and R0>0 with 

inf wm(S) < Wk(R) R > R o .  
S>R log(S/R) log(R/wk(R)) '  

Proof. Combine 3.5, 4.4, 4.5. 

4.7. Examples. (1) If f~=((1/k)w)keN satisfies the conditions of 1.2, and there 
are A > I  and r0>0 with 2w(r)<w(Ar) for r>_ro, then 4.6(ii) does not hold. For 
in this case, there is C > 0  such that  w(R)/C<infs>nw(S) / log(S/R)<_Cw(R)  for 
large R>0.  See Example 1.7(1). 

(2) Let f~=(Wk)keN be a weight system such that  for each kEN there are 
m E N  and r0>0 with Wm(r)logr<wk(r) for all r>ro (this condition on f~ has been 
communicated by S. N. Melikhov). Then, choosing S = 2 R  in 4.6(ii), one gets that  
ft satisfies the condition 4.6(ii). See Example 1.7(2). 

(3) For ~--~(02k)kc N where wk(r)=(log(l+r))S/k ( s> l ) ,  the condition 4.6(ii) 
holds. See Example 1.7(3). 
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