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FORMS (III)
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1. Introduction

Let £ be an inhomogeneous lattice of determinant A=A(L) in the &, »-plane,
i.e. a set of points given by

E=¢ytax+ Py,
(1.1)

n=notyz+0y,
where &, 75, , B, y, & are real, A=|ad—fv|=+0, and z, y take all integral values.

In vector notation, £ is the set of points
P=P,+xA+yB,

where the lattice vectors 4=(x,y) and B=(f, §) are said to generate L. It is clear
that £ has infinitely many pairs 4, B of generators. Corresponding to any such pair
and any point P, of L, we call the parallelogram with vertices Py, Py+ 4, Py+ B,
Py+A+B a cell of £: a parallelogram with vertices at points of £ is a cell of L
if and only if it has area A.

A cell is said to be divided if it has one vertex in each of the four quadrants.
Delauney [5] has proved that if £ has no point on either of the coordinate axes
£=0, =0, then L has at least one divided cell!; we outline his proof in § 2. We
then develop an algorithm for finding a new divided cell from a given one, thus ob-

taining in general? a chain of divided cells 4, B, C, D, ( — o0 <n< o). The analytical

i This result fills the gap, noted by Cassers [3], in the very simple proof of Minkowski’'s
theorem on the product of two inhomogeneous linear forms given by SawyEer [6].

? The condition that the chain does not break off is simply that L shall have no lattice-vector
parallel to a coordinate axis.
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formulation of the algorithm leads uniquely to a specification of £ in terms of a
chain of integer pairs k,, k,.
In §§ 3, 4 and 5 we apply these results to the problem of evaluating the critical

determinant D, of the asymmetric hyperbolic region
Ry: —1<éfnp<m (m=1),

i.e. the lower bound of the determinants of lattices £ having no point in the in-
terior of R,,.
The value of D, has been established for infinitely many values of m by

Blaney [1], who also gives estimates valid for general m!. His main results are:

D,>4Vm if m=>1, (1.2)
with equality if and only if m is of the form 1+§ (r=1,2,3,...); and

Dp=2V(m+1)(m+9) if m=3, (1.3)

with equality if and only if m is of the form 4r—-1 (r=1,2,3,...). An alternative
proof of these inequalities will be given in §§ 3 and 4.

The complete evaluation of D, appears to be extremely difficult. Defining a
lattice £ as admissible for R, if it has no point in the interior of R,, and critical
for R, if it is admissible and has A (L)=D,, we prove in § 4 that all critical lattices
of R, are of the form?

E=ale-D+ly—D|
n=y@E—-}H+o(y—i

(1.4)

This reduces the problem to that of the admissibility of lattices of the type (1.4),
which are discussed in § 4. Using the results obtained there, it would be possible to

evaluate D, for any particular value of m, though the arithmetical labour involved

1 Blaney’s results are formulated in terms of inhomogeneous binary quadratic forms. Thus
(1.2) is equivalent to saying that if f(z, y) is a quadratic form of discriminant D> 0, x,, y, are any
real numbers, and m >1, then there exist integers z, y satisfying

1 m, /-
_VBsf(x+xo,y+yo)S—4‘ VD.

4 Vm

It is sufficient, by homogeneity, to consider R, in place of the more general region:
—my<&n<smy,  (my>0, my>0).

% The existence of a ecritical lattice of R, follows from a general theorem of SWINNERTON-
Dyer [7].
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might well be excessive. We illustrate the method in § 5, where we find all critical
lattices of R, for a small range of values of m.

The last two sections, 6 and 7, contain some results on the isolation of D,, and
an example (quoted by Swinnerton-Dyer [7]) of an automorphic star-body none of
whose (inhomogeneous) critical lattices has more than one point on the boundary.

The methods of this paper may be applied to other problems involving inhomo-
geneous lattices, e.g. to those considered in parts I and II of this series. One of us

hopes to publish further applications in the near future.

2. The divided cells of a lattice

We first sketch the proof given by Delauney [5] of

Theorem 1. If L is a two-dimensional inhomogeneous lattice having no point on
either of the coordinate axes £=0, =0, then £ has at least one divided cell.

Since the origin O is not a point of £, we can draw a square, with diagonals
lying along the axes, containing no point of L. We now expand the square homo-
thetically until a point P of £ first appears on some side. By symmetry, we may
suppose that P has positive coordinates &, 7,.

Suppose first that there is no point (&, %) of £ with 0<% <m,; then it is easy
to see that there is another point of £ with =1,. For, by Minkowski’s fundamental
theorem, £ has a point Q (£, n) other than P satisfying

|&—&| <K, |n—mn|l<no,

if K is sufficiently large. Since neither @ mnor 2@Q— P (its image in P) satisfies
0<n<mny, it follows that 5=7,. Thus there is a lattice-step P¢ parallel to the {-axis.
If now we take the least such steps AB, CD which intersect the #-axis and lie
nearest the origin on either side, it is clear that A BCD is a divided cell.

Suppose next that £ contains some point with 0 < <#,. We deform the square
into a rhombus by continuously moving the corners on the £-axis away from the
origin and those on the #-axis towards the origin, keeping the point P on one side
of the thombus throughout. We continue this deformation until for the first time a
lattice-point @ (&,,#,), other than P, appears on a side. There are now three cases
to distinguish:

(3) @ and P lie on the same side, so that & >0, #,>0. The next line of L
parallel to PQ and on the same side of it as O must be beyond O and at least as
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far from it as PQ; for otherwise the rhombus would cut off from it a segment of
length greater than |PQ| and so would have a lattice-point in its interior, contrary
to the construction. Hence the segment of this lattice-line in the quadrant £<0, <0
has length greater than |P@| and so contains a lattice-point. Take on this lattice-
line and on PQ the unique lattice step intersecting the #-axis; the four lattice points
so determined form a divided cell.

(b) @ and P lie on adjacent sides. By symmetry it is sufficient to suppose that
£, <0, 9,>0, so that P@Q intersects the z-axis. Let AB be the lattice-step which
intersects the 7-axis, is parallel to PQ, and lies nearest to PQ on the same side of
PQ as O is. By an argument similar to that in (a), the points P, @, 4, B form a
divided cell.

() @ and P lie on opposite sides, so that & <0, 5, <0. Take the next parallels
to P@Q in the lattice on each side of P@Q. The segments of these intercepted by the
sides of the rhombus on which P and @ lie (produced if necessary) have length | PQ)|,
and so each contains a lattice-point. Since these points lie outside the rhombus, they
must lie one in each of the second and fourth quadrants; and it is then easy to

see that, with P and @, they form a divided cell.

Let now L£ have no point on £=0 or =0, so that by Theorem 1 it has a
divided cell 4,B,CyD,. It is convenient to choose the notation so that the points
Ay, By, Cy, D,y are respectively either in the first, fourth, third and second quadrants,
or in the third, second, first and fourth quadrants.

We now define non-zero integers hy, k, as follows:

(i) If Ay,D, and B,C, are parallel to the £-axis, we write conventionally
hy=ky= — oc.

(ii) If 44Dy and B,C,, produced either way, intersect the £-axis, we define A,

as the unique integer for which the 7-coordinates of the lattice points
Ay =Ay+ (g + 1) (Dy— Ay)
By =Ay+ho (Dy— Ay)
have opposite sign. (Thus 4, B, is the unique lattice step of the line 4,D, which

intersects the £-axis.) Similarly k, is the unigue integer for which the #%-coordinates

of the lattice-points
Cy=Co+ (ko +1) (By— Cy)

D, =Cq+ky (By— Co) ¢
have opposite sign.
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Since #(4,) and % (D,) have the same sign, it is clear that hy==0; similarly
ky=#0. Also h, and k, have the same sign, since # (D, — 4,) and 5(C,— B,) do.
Finally, it is easy to see from the construction that A4, B,(, D, is again a divided
cell, where A,, C; lie one in each of the first and third quadrants, and B,, D, lie
one in each of the second and fourth quadrants. :

In a precisely similar manner we may define non-zero integers h_;, k_; by con-
sidering the intersections of the lattice-lines C,D, and A,B, with the 7-axis, and
obtain a divided cell 4_,B C_;D_;. Clearly these may be defined so as to coincide
with the integers h_;, k_, obtained from 4 ;B ;C.,D_, by the above process.

We may continue this process indefinitely, obtaining an infinity of divided cells
AnB,CrD, and of integer pairs hy, k, (— o0 <n< o), unless some pair h,, k, is in-
finite (when the process terminates in one direction). The relation between successive

cells is, as above,
Apy=As+(h,+1) (D, —4,)
Bn+1=An+hn (Dn'“An)

. (2.1)
Cri1=0, +{ky+1)(B,— Cp)
Dn+1:0n +kn (Bn“Cn)
Writing V., for the lattice vector 4, — D,, we have
Vi=A,—-Dy=B,—Cr=Bs 1~ An1=Cr1— Dr,1, (2.2)
and (2.1) may be written as
An+1=An* (hn+ 1) ~Vn
Bn+1=An“'hn Yn
(2.3)
Croi1=Crn+{n+1) ¥V,
Dy1=Cat+ kb, Va
Thus, taking =0 as a reference, (2.3) gives the expressions
Av=Ay— g+ 1) Vo= (b + DYV — - — (A r+ 1) Vol
o otV 1 Y1 (hn-1+1) 1} (n=1) (2.4)
Co=0+(ky+1)Vy+ (k1+ BV + o+ kp1+ 1)V
A=A+ h 1+ D)V  + e+ DV o+ + (b, + 1DV s
ot hatD Vot (bt Vo, ( )Y }nzl) 2.5)

Con=Ch—(ka+ DV y—(kot )V o+ —(kn+1)V_n

We have also from (2.1) and (2.2)
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I/n+l =An+1 “Dn+1 :An + (hn + 1) (Dn '_An) - Cn - kn (Bn - Cn)
=Dn - Cn _'hn (An "Dn) _kn (Bn - Cn);
ie.
,I,/n+1= - (hn+kn) .Vn'— I/u~1- (2.6)

Now suppose the coordinates 4,, By, Cs, D, are given by

Cr= (&, 77!1), B,=(&n+ an, Nn +a), Dy, = (¢ +ﬂn, Nn +dn),

(2.7)
Ay =(En+otn + P, n +Ya +04a).
Since these points, for any %, form a cell of £, £ is given by
E=¢£, +anx+ﬂn:’/,
(2.8)

77:'77n+7nx+6ny,

where z, y run through all integral values; and A=A (L)=|an 0, —Prya|. Also, by
(2.2), V., has components
Va={atn, yn} ={—Brs1s —0n:1}. (2.9)
Writing now for all »
U1 = ln + Fns (2.10)

so that a,., is integral (possibly infinite) and |an..]=2, we have by (2.6), (2.9)
and (2.10)

Yn«‘rl: —Qni1 Yn - Yn»»l ’
Knil = Qi) Ap — An-1, } (2.11)
Va1 = “Qni1Yn ~Yn-1
Setting
Va={n ya}=(~1)" {2 Pn — Bogn: Yo Pr — S0 1n} (2.12)
we therefore have
pa=0,¢1=—1; p=1,¢=0; p=a, ¢=1; (2.13)
n1 =& n—~ Pn-
Pr 1 n+1 P Prn-1 (2.14)

Gni1 =@n+19n — qn-1
It follows that, for n>1, p,/q. is the continued fraction

L

N
1
a - —  —
@y — Ay — " Gy

which we shall write as

;lrz[al,az, v @n]  (n=1). (2.15)
n
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Similarly, since
Prn-1=Cni1Pn— Pnti,
In-1 =Ani19n —qni1,

we have
(_'— q4n)
(—~P-n)

=[ay, @ 1, ..., 08_n12] (n=2). (2.16)

In order to justify a passage to the limit in thé formulae so far established, we

need two lemmas.

Lemma 1. It is impossible, either for all n=ny or for all n< —ny, that either

(i) hn=—1 or (il) ky= —1. It is also impossible that hy, or="Fkn2r,1=1 either for all
r=0 or for oll ¥r<0,

Proof. If for example h,= —1 for all n=n,, (2.1) shows that 4,=A4,=A4, say,
for all n=n,. Since the triangle 4, B,(C, has the constant area {A and 5(4,)=
=9{A4)+0, it is easy to see that B, and C, must lie in a bounded part of the plane
(since 7 (B,) and %(C,) are of the opposite sign to 7(4,), and B,, C, lie in different
quadrants). Hence there can be only a finite number of distinct points B,, C, for
tho. We show that this is impossible.

By (2.2),

7 (Brs1) =0 (An1) =9 (Cni1) =0 (Dna) =0 (V).

Since #(Bnps1) and 7(4,,;) have opposite signs, as do also 9(Ca.1) and 5 (Dy.1),
this gives

[ (4n) [ <|n ), (@) <n (V)]

whence

|77(erl)l:!??(An+1)“"7(Dn+1)‘< l’?([/n)"

since 7 (A, 1) and 7 (D, ;) have the same sign. It follows that |5 (V.)|=|%(B) — 7 (Cy)]

is strictly decreasing, so that there cannot be only a finite number of distinet points
By, O,.

Next, if hp.0r=Kkn, 2r+1 for all 20, two applications of (2.1) give
Dn0+2r+2:Bno+2r+1=-Dnu+2r,

so that Dy, .,,=D, say, for all +>0. We may now deduce a contradiction precisely
as above.

The other cases of the lemma are provided similarly; for n < —n,, we use the
fact that |&(V_,)| is strictly decreasing.
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Lemma 2. As n— + oo, each of

N{(Va)s 9(4a), 7(Ba), n(Cn), 1(Dy)
and

E(V_n), (A_s), E(B_), E(C_n), E(D )

tends to zero (or is undefined for large n)l.

Proof. Supposing that %,, k, are defined for all large n, we have as in Lemma 1

[9 (Ve <In (V)| (2.17)
and by (2.11)

I’?(Ynﬂ)lzlanul l"?(Yn)I“‘lﬂ(Yn—l)l-
Combining these,

1
ln(yn)l<m'n(Yn—l)'- (2.18)

If now |a@n.:[=3 for arbitrarily large values of n, (2.18) shows that 5 (¥.)—~0 as
n—>+ co, Otherwise, |@,,1|=2 for all large n; since a,,, =12 if and only if
hn=1Fk,= *+1, Lemma 1 shows that a,,, must change sign for arbitrarily large values
of n. Now by two applications of (2.11) we have

.I,/n+2= (@ri1@ni2—1) Vatanis Vg,
whence

lan+1anf2"1,lﬂ(yn)lSIﬂYn+2)'+'an+2lI’?(Yﬂ—l)'§
using (2.17) this gives
,an+lan+2_1”77 Yn)l<(lan+2'+1),ﬂ(Yn—l),~

Thus, for any n for which |@,.1|=|@ni2|=2, @n.1@42<0, we have

l’?(ljn”<§!73(1’n—1”'

Since this inequality holds for arbitrarily large n, it follows again that % (V.)—O0.
From the relations

W(Yn’l)zn(Bn) “n(An)z"?(On) "ﬂ(Dn)y

where #(4,)7n(Bn) <0, §(C,) 5 (Da)<0, we see that 7 (V,)—0 implies that each of
7 (4n), 7(Bn), n{(Cn) and % (D,) tends to zero as n— + oo.

The fact that £(V_,)—>0 as n— + o may be proved in a precisely similar way.

! This happens when some %, and k, become infinite, i.e. when there is a lattice-vector parallel
to a coordinate axis.
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Theorem 2. Suppose that no a, is infinite, and set

po=I[ay, 25, a5, ...],

By=lay, @_1,0_2, ...].
Then
N N
2=y, 2 =0,, (2.19)
Yo %o Bo °
Eoznzl(k-—n +1)§ (Vo= Z (- l)n {k_.+1) (otg p-n — .30 q-n)
» (2.20)
Ho ::ngo— (kn+ 1) n(Va) “"nzo( ~1)" 1 (ky + 1) (Yo Pn — S0 n)
where P, g, are defined by (2.13) and (2.14).
If further we define for each n

(Pn=[an+1: Anigs ey (2.21)

0n=[an; An_1; On-2; - ']’

en=hy—kn, (2.22)

then
had &on_
2Eg+ gt fy=Pp 2 (—1)" =
n=0 0_1 0..2 6-,1
- . (2.23)
&y
27+ Yo+ 0p= -t
Mo TVeT O 7’0720( ) @1 P P

Proof. By (2.12) and Lemma 2,

l')’opn“‘san'zl"?(Yn)]—?O as n—>+ o0,

Also it follows easily, by induction, from (2.14) that |gn.1]|=|gn|+ 1, so that |gs|—>oo.
Hence

n—so0 Qn ')—-/;’
and the second relation of {2.19) follows similarly.

The formulae (2.20) are now immediate consequences of (2.12) and (2.4}, (2.5),
since by Lemma 2

7{Cr)—~0, £(C_,)—=>0 as n—> + oo,
and '

§o=E8(Cq), no=mn{Cy)-
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Next, by adding the two relations of (2.4), we obtain
n-1
A°+C°=A"+C"+,Zo(h'“"’) v,,
whence
n-1
270+ o+ 00 =1(da) +7(Ca)+ 2 (= 1) &r (vo Pr — S0 &),
using the definitions (2.12) and (2.22). By Lemma 2,

W(An)"’O, 7](01:)_>O as n—> + oo,

and so
270+ o +80= 2 (= 1)" & (yoPn — 8o dn)-
Now
PnPn— Pr-1
=ldy, Qg crey Qny By oon] =[@gy ooy Qpy @] = ——>
@o =10y, aq 1 1=l ®al O n — Gn1
whence
Prn-1—@Qpqn-1=@n (Pn—%%)§
since py—q@,q,=1, it follows that
Yo
Pr— Pogn— > ~bogn= —.
P g T T

This establishes the second formula of (2.23); and the first formula may be proved

similarly.

3. Asymmetric Hyperbolic Regions

Suppose now that an inhomogeneous lattice £ of determinant A is admissible

for the region
R,: —1<ép<m  (mz=1).

This implies, in particular, that £ has no point on either of the coordinate axes
£=0, =0, so that the theory of §2 applies. With the notation of § 2, we now
establish the following inequalities:

(i) If any pair h,, k, is negative or infinite, then
A>2(m+1), 3.1)

where equality is possible only if h,=k,= — co.
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(il If, for any =, A, >0, k>0, b, + k,, then

AZVm+12+Vm+5) if ha=1 or k,=1; (3.2)
A=A +V2)(m+1) if m<3; (3.3)
A=G+V2) (m+1) if m=3, by =2, k=2 (3.4)

(ili)) We have always
A=4Vm, (3.5)

where equality is possible only if h,=Fk,= :ii

(iv) If m=3 and h,=k,>=2 for any =, then

for all n.

A=V(m+1) (m+9). (3.6)

For the proof it is convenient, in order to avoid enumeration of cases, to suppose

that £ has no point in the interior of the region
R: —my=EnsSm,  (my>0, my>0). (3.7)

Suppose that P, and P, are two vertices of any divided cell of £, where P,
lies in the second quadrant and P, in the first; suppose also that P, P, produced
intersects the £-axis. Then there exists a unique lattice-step P, P, cutting the £-axis,
where P lies in the first quadrant and P, in the fourth. ¥or some integer 2>1 we

now have

P,=P +(h+1)(P,—P,)

P,=P +h(P,—P),
so that

The lattice-line P, P, P; P, has an equation of the form
ScosO+nsinl=2 (0< 6< g, l>0)'

For the intersections of this lattice line with any hyperbola &7 =y, we find the
equation
(& cos §—x sin )? =A*—4 y sin 6 cos 0,

so that the intersections have coordinates

14 — 543808. Acta Mathematica. 92. Imprimé le 29 décembre 1954.
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=liV12~4,usinﬁcosﬂ Zliﬂz—tiusinﬂcosﬂ_

¢ 2 cos 0 K 2sin 6

The length of the intercept made on the line by the hyperbola is therefore

V22—4,usin900s9.
sin 8 cos §

Now since £ is admissible for R, P, and P, satisfy &9 < —m,, and P, and P,
satisfy &7=>m,. We deduce that

VA2 + 4 m, sin 6 cos 6
1 —_— 2

|P, Pz sin 0 cos ¢

V2% — 4 m, sin 6 cos 0
sin 0 cos @

| P, Py <

(the radicals being necessarily real). Since

|P,P,| h+1
|P,P| h—1

3

we have

;

h+1\*_ A*+4msinfcost
(h——l = 2 —4m,sinBcos

whence
my (h— 12+ my (h+1)
h

2> sin 0 cos 6,
(h+1)Vm, +m,

P, P,|2 ——————
Rehel Vh sin 6 cos 6

P1P4|> mytmy
h+1 T ¥ hsinOcos B

| Py Py|= | (3.8)

Now suppose that the opposite side of the divided cell has equation
Ecosf+pmsinf=—4 (A'>0),

and that an integer £>1 is similarly defined for it. It is convenient to suppose, as
we may by symmetry, that k> h.

As above, the intercept made on this lattice line by the hyperbola & =m, has
length

VA — 4 m, sin 6 cos 6
sin @ cos 0
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This intercept contains (k—1) lattice-steps and so has length at least (k—1)|P,P,|.
Inserting the bound (3.8) for | P, P,| we deduce that

(k—1)®
h

A= {4 my + (m, + mz)} sin 6 cos 0.

Finally, since A=(A+2")|P,P,| (the area of a cell), we derive the inequality

— 12
AZVmI;;mz{ my (h—1)* +my, (b + 1) N l/4m2+ (k—1) (my +my) | > (3.9)

h h

from which we shall deduce the inequalities (3.1)—(3.7) above.
(a) Suppose that £ is admissible for R, and that, for some », k, and k, are

negative. The above analysis now applies with A= —h,, k= —ky, m; =1, my=m, and
so by (3.9)
1 +m l/( — 1% +m (h+1) V (k—1y
>
AzY— { 3 dmy T (LEm)y

Using k=h, m=1, we easily obtain the estimate

A> 1—%’@{Vh(m+1)+Vh(m+1)}=2(m+l).

If any pair hy, k, is infinite, we may proceed to the limit h—oco, k—>oco in the
above and obtain A=2(m+1).
This proves (3.1) under the given hypotheses.

(b) Suppose now that L is admissible for R, and for some n, h, >0, &k, >0. The
above analysis applies (supposing k,>h, without loss of generality) with h=h,,
k=k,, my=m, my=1: as is most easily seen by considering the lattice £ derived from
L by changing the sign of either & or 7.

If now h==k, we have k=h+1, and so (3.9) gives

A> Vm;—l { m(h~1)2h+ (R 17 VWT)}' (3.10)

For h=1, this gives

AZVm+1@2+YVm+5),
which is (3.2)

Next, writing (3.10) in the form

A V 2m 1 V
= > s 2 ‘
=17 h2+ Bt - +1 (3.11)
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we observe that the right hand side is a decreasing function of m. For m<3 we

therefore have

—>V1~—+-—+Vh+1

m+1

which is at least 1+ V2, its value at k=1, for any positive integral 4: this gives (3.3).
For m>3, we let m—cc on the right of (3.11) and obtain

A
p——— >1- ;& +Vh.
Thus, for A=2,
A=(E+V2) (m+1),
which gives (3.4).
(c) It is easily verified that (3.5) holds if any of (3.1)-(3.4) are true. Hence for
the proof of (3.5) it suffices to consider the case k, =k, >0 for all n. Taking m;=m,

my=1, hy=k,=h in (3.9) gives

A>l/m+l“/m(h~l (h+1)* V‘i_*_l)z +1)}

, s
=2V4m+ (m—lf—'f’—l) (3.12)

with equality only if A= m—
(d) If m=3, h=2, we have

m«l—ﬁ»;—l> - 1wfrfil=m—3

{(3.12) now gives
o\
AZ2V4m+ (@—2—2) =}(m+1) (m+9),
which establishes (3.6).

Defining the critical determinant D, of R, as in §1, as the lower bound of

the determinants of R,.-admissible lattices, we deduce

Theorem 3. (i) For all m,

Dy=4Vm, (3.13)

where equality is possible only if g—i—; is integral (or infinite).
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(il If m=3, then
D,=V(m+1)(m+9). (3.14)

Proof. (i) (3.13) follows from (3.5), with the equality clause.

(i) To prove (i), we first note that the estimates (3.1), (3.2) and (3.4) imply
that A>VW—W—F9) for m>3. Since it is impossible that h,=k,=1 for all n it
follows that, for any admissible L, either one of (3.1), (3.2) or (3.4) is true, or
hp=Fk,=2 for some #; in this latter case, (3.6) gives the result.

We note that. Theorem 3 gives the bounds (1.2), (1.3) quoted in §1 from
Blaney [1], which are known to he precise for infinitely many m. We see from the
proofs of (3.1)-(3.7) that the inequality is strict unless h,=k,>0 for each divided
cell of £, which suggests that, in order to evaluate D, it will suffice to consider

only such lattices. We shall examine these lattices in detail in the following section.

4. Symmetrical Lattices

We suppose now that £ has determinant A and that k,=k,>0 for all n. For
such lattices, the sequence {a,} therefore consists of positive even integers; and by
Lemma 1, the inequality a,>2 must hold for arbitrarily large n of each sign.

We first establish some fundamental properties of the continued fractions?
[ay, @5, @3, ...], and obtain inequalities, which will be useful in what follows, for frac-
tions with positive partial quotients.

The successive convergents p,/g, are defined by (2.14), i.e.

Prr1=0Cni1Pn — Pn-1

In1 =Uni1qQn — Gn-1
with

pe=1, ¢=0; p,=a;, ¢,=1. 4.2)
The identity

Prn-19n — Pn Qn—lzl (nZl) (4-3)
follows immediately by induction on n.

1 The continued fraction [a,, @,, ...] is easily transformed into a semi-regular continued fraction
Ma M3
o e A (m==1),
" af |+

whose convergents have the same value (though the signs of p, and g, may be different). Hence
some of our results below follow from the classical theory of semi-regular fractions; see for example
Prrrox [8].
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Lemma 3. For all n=>1,
Pn

1
|palzn+1, |ga|=n, |= Z1+ (4.4)

If further ;>0 for i=1,2,...,n, then >0, ¢=>0.
Proof. Since |a;|=2, (4.1) gives

[Pl =1Pal 2| pal =1 Pns]s 1gnsi] —1gnl 2] gn] =] g0l

The first two inequalities of (4.4) follow at once by induction. Now (4.3) gives

Py _ g";l__i_ > Pn1 ___1___ (n=2);
qn gn-1 gnqn-1 qn-1 n(n—1)
since
Pl =a,|22,
1

the last inequality of (4.4) follows at once by induction.
If all ¢,>0, so that a; =2, (4.1) gives

Prnil = PnZPn—Prn-1r qns1— 9 Zqn—qn-1 (nz=1)

provided that p,=>0, ¢, >0; since in fact py=1, ¢,=0, p, =a, =2, ¢; =1, it follows by

induction that p, and ¢, are positive.

Lemma 4. The infinite continued fraction [a,, a,, a5, ...] converges to a real number
« satisfying |«|=1; and if a, is not constantly equal to 2 or to —2 for large n, we have
|| >1. If further a,>0 for all n, then « is positive and the comvergents p,/qn form a

strictly decreasing sequence.

Proof. (i) By (4.3) and (4.4),

_ b L ey,

&1 . Prn-1 —
IQnQn—ll - n(n_l)

qn gn-1

so that the series > (&’ - p"—”l) is convergent. It follows that oc=lim? exists; and
qn Gn-1 n
by (44), |a|=1.
(i) If a,>0 for all », Lemma 3 shows that p, and ¢, are positive, so that «
is positive. Also, by (4.3),
Po_Pnoy 1 Pa

qn qn-1 gnqn-1  gn-1
since g, is positive.
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(iii) If a@,=3, we have
a={ay, @y, ...]=[ay, a,],
where, by (i), || =1; hence

1
a=a,— —=a,—1=2,
%2

Next, if a,=2, a, < —2, we have

a=[2’ a2y 0(3], ld3|21;
80 that

1 1
=2 — = = — >2,
=2 a_l 2-}-‘a‘+l 2+|“2|+1>
2 &3 : a3

In the same way we may show that a < —2 either if 4, < ~3 or if a,=

ay = 2.
Thus finally if ¢,=a,=-=a,= £2+a,,,, it follows that
w=[ay, ..., 1, %), |0r|=2,
so that by Lemma 3
le|=1+ % >1.

This completes the proof of the lemma.
Lemma 5. The continued fraction

oc=[a1,a2,a3, "']

with positive partial quotients is increased if any a, is increased and @y .1, Qriz, -.-

replaced by any integers exceeding 1.

Proof. Let

ﬂ=[a1,a2, seey A1, bTan-!—l, "']:
where b,>a,, b;=2 for i=Zn+1. We may write

a=[ay, @y, ..o, Gn_1, Tn], f=[a;, a9, .. s Gn_1, Ynl,
where

Xy = [an, an+1: . "]

?/n=[bn7 bn+1, ---]=bn—an+[dn, bni1s ...].

215

-2,

are
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By Lemma 4, each of [a,, a,.q, --.], [@n, bss1, ...] lies between a,—1 and a, and is
strictly less than a,; and by hypothesis b, —a,=1; hence

x,=>1,

Yn—Tn>1+(ap—1)—a,=0.
From the identity

p—o= YaPn1—"Pn-2  ZTaPn-1~ Pn-2
YnGn-1 — Gn-2 Taqn-1— qn-2

_ Yn —Zn ,
(YnGn-1—qn-2) (Taqn_1— qn_2)

where both numerator and denominator are positive, it follows that f>a, as re-

quired.

Corollary. For any n=1,
[ay, @y, oy @n_q, 0 —1]<a<[a;, @y, ..., Gn_1, Cn]. (4.5)

The second inequality follows from the last sentence of Lemma 4. The first
follows from Lemma 5, by comparison of « with [a;, a,, ..., as, 2, 2, 2, ...], on noting
that [2,2,2,...]=1.

We note finally that any irrational « has a unique expansion as
a=[a;.a,,as, ...]

where @¢,>2 for n>2 and a,>3 for some arbitrarily large n. This may be described
as its continued fraction expansion ‘by the nearest integer above’. On the other hand,
if the a, are restricted only by the conditions that |a,|=2 and that a, shall not be
constantly 2 or —2 for all large n, any irrational « has infinitely many expansions,

Returning now to the lattices £ with %k, =k,>0 for each n, we see that
&n=hn—k,=0 and so, by (2.23) of Theorem 2,

2& Fag+Bo=0, 295+ py+0,=0.

Since the results of Theorem 2 are clearly independent of the enumeration of the

sequence {a,}, we have for all n

bn=—~3(antpn), Nu=—3(ya+3n) (4.6)
where

' 8 671
i en:[am @n_1, An-g, -.], — =¢n=[an+1a @ni2, Qnigy oe)- (47)

ﬂn VYn
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Thus £ is defined for any n by

E=an(@—3+Paly—3%

4.8)
N=ya(@—H+0.(y—}

we therefore describe it as symmetrical. Since 0,>1, ¢,>1 for all n (by Lemma 4)
and £ has determinant A, (4.8) gives

A
EWZW{%(%—%) +y-H{e-P+e.y—9} (4.9)

Theorem 4. A symmetrical lattice £ is admissible for R,, if and only if the inequalities

A> 4(0npa—1)

—_— —_— e — + .
m= (0,+1) (gt 1) Az, say, (4.10)

4(0nlpn_12__ —
A zm%(gn_l) ((pn—~l)—A"’ say, (4.11)
hold for all n.

This theorem is a corollary of the following general result:

Theorem 5. Let £ be an inhomogeneous lattice with no point on the coordinate
axes £=0, n=0, and let the chain of divided cells A, B,C,D, be defined for £ as in
§ 2. Suppose there exists a point of L in the region

—my<{np<my, (my>0, my>0).

Then there exists some cell of the chain which has a vertex in this region-

Proof. For each n, let P, denote that one of 4,, ¢, which ig in the first quad-
rant: £>0,7>0. Then it is clear by the construction of one cell from the next that
no point of £ lies in the interior of the triangle formed by the positive axes and the
line P, P,,, produced. It now follows from the strict convexity of the region £5=m,
that all first quadrant points of £ satisfy £n=>m, if and only if this equality holds
for all P,. This argument may clearly be applied to each of the four quadrants.

For the proof of Theorem 4, we note that the points A4,, By, Cyn, D, correspond
to the values =0 or 1, y=0 or 1 in (4.8) and (4.9). The conditions that £n=m
for 4,,C, and that £%< —~1 for B,, D, are thefore just (4.10) and (4.11).

We now consider some general classes of symmetrical lattices and thus obtain

upper bounds for D,.

(i) Suppose that
a,=2a>4 for all n.
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By -(4.7) we have
bn=g@n=[2a]

(the cross denoting infinite repetition). Thus 6, =g, is a root of the equation

x==2a—1’
x

and so

b,=@.=a+Va®-1,

. 401 41/07——1

T Ot 1) (@atl) Vat1’
—_ 40 ) _ yfat]
" (0a—1) (@a—1) a—1

By theorem 4, the corresponding symmetrical lattice, £, say, is admissible for R, if

A (L;)=max {4m VZ—_]_——;, 4 Z—ir—i} . 4.12)

(ii) Suppose that for all n

azn=2a, a3,,1=2b, a>b>1.
Then, by (4.7),
02n:[2a,2b]:¢’2n+1: ¢2n:[2b:2a]:02n+1,
whence

0 _ab+l/ab(ab—l) . _ab+Vab(ab-1)
N 1

A simple calculation gives, for all =,

A+:8Vab(ab~l) A__SVab(ab— )

—

2ab+a+b’ " 2ab-a-b

By Theorem 4, the corresponding symmetrical lattice, £, » say, is admissible for R, if

8mVab(ab—1) 8Vab(ab— 1))

2ab+a+b ’° 2ab-a—b )

A (L, »)=max { (4.13)

(iii) Suppose that p=1 and
a,=4 if p divides =,

a,=2 otherwise,
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so that {a,} is the periodic sequence {4,2,2,...2} (with p—1 elements 2). Then,

with an obvious notation,

X x 2p+ Vp2+2
Bo=[4, (2)p_1]=-L— L =L,
P
% x  9p+ VpP+2p
=@y, 4= ESE
whence
4 2
A;=%ﬂ, A =4Vp T 2p- (4.14)
We now show that
max A} =A§, max A, =A;. (4.15)

Clearly A; and A, are, like a,, periodic with period p, and so it suffices for the
proof of (4.15) to consider only n=0,1,...,p—1. Since @,_1=10, 0,-1=¢,, we have
Aj ;=A% in particular (4.15) is trivially true if p<2. Supposing then that p=>3 and
O0<n<p—1 we see that the continued fraction for at least one of 0,, ¢, begins
[2,2,...], while the other begins [2,2,...] or [2,4,...]. Hence

min (0, @a) <[2,2]=% max (0., ¢n) <[2,4]=1],

21
1@ -1) =2<1<Ag,

+ ——— e P
S <gngn ¥

which proves the first equation of (4.15). The second is an immediate consequence
of the following simple lemma, which shows that A7 is in fact constant for our

special sequence:
Lemma 6. If a,=2 and A; is defined by (4.11), then A;_;=A;.
Proof. We have
Pror—=[2, Gnsr - ]1=[2, ¢n]=2-%,

1
0.=1[2, @n_1,...]1=1[2, 6n—1]=2_ ’
0n—1
whence
1
1A = Bn_ﬂpn-l—l _ Pnt 01
T Oy — 1) (@ — 1) 1
( 1 )(‘P 1 ) (1 _ )((Pn‘l_l)
n-1
1
On——
= Pr o ——1A;
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From (4.14), (4.15) and Theorem 4 we see that the symmetric lattice, L, say,
corresponding to the given sequence {a,} is admissible for R, if

4m 2+2p 4V_2+2p}

A (L) =max (4.16)

These results now enable us to prove:

Theorem 6. Suppose that L is admissible for R, (m>1) and is not a symme-
trical lattice. Then there exists a symmetrical lattice L' which is R,-admissible and has

ALY <A(L).

We shall take £’ to be a suitable chosen one of the special lattices C,, L5, Cp
discussed above.

(i) Suppose first that 1<m<3.

By (3.1) and (3.3), any R,-admissible £ which is not symmetrical has A (C)>
=2(m+1), and so for the proof of Theorem 6 it suffices to establish the inequality

A(L)<2(m+1) (4.17)

for a suitable symmetrical £’. We define an integer ¢ >2 by

2
1+2<m<1+——1 (4.18)

By (4.13), £;,041 is admissible if

’

A(Caa+1)—max{Smy"'(“+1)(“2+a 1 8Va(a+1)(a®+a—1)]

2(a+1)®-1 2a% -1
and so if
8Va(a+1)(@+a—1) 2(a+1)2—1
A(Laas1)= 91 for m<——-5—
_8mVa(a+1)(@*+a—1) S2(@+1)P-1,
Aean) =5y for m = @1
Also, by (4.12), £, and C,,; are admissible if
a+1 a
A(Ca) 4 ——_"—1‘, A(Ca+1)=4m l/a-l——2

for m in the range (4.18). Hence to establish (4.17) we need only prove that
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min {4m‘/a_7_2, SV“(“;}l)z(i‘iJ’“_l)}d(mﬂ)
if 1+§<ms2(‘;—;r21_)—21_—1; (4.19)

min {Sm Vo;(zaill))(fija_ D 4 l/z—j_?} <2(m+1)
if %ESWLSI+%~ (4.20)

Since ml increases with m, we need only verify that (4.19) and (4.20) hold at the

particular values of m for which the two expressions to which the ‘min’ refers are

equal. Thus, for (4.19) we have to show that

4m V$<2(m+l) at m=2V(“+2)(“+1)(a2+a—1)

=m,, 8ay; (4.21)

202 —1
— .
4[/ﬂ~<2(m+1) S 1) st N (4.22)
a—1 2V@-1a(@+a—1)
Now
(@a+2)(@a+1)(a*+a—1)=a*+4a®+4a®—a—2
<a*+4a®+4a?=(a®+2a),
so that
2a(a+2)
Y
Hence

l( 1) 4a*+4a—-1 d®+a-—1 V @
~{1+—)> =— "
2 m, 4a(@+2) Va*a+2) ) a+2

N
at2’

this last inequality being equivalent to

(@*+a—12=d"+2a%+1a’~La+ g
>at+2a=a’(a+2),

which is trivially true. This proves (4.21).
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Next,
(a—Da(@+a—1)=a*-2a®+a
1 1
<a4—2a2+a+1—;+m
1 2
= 2 _ 1 >
(a, 1+2u)
whence
2(a + 1)*—1
my> ——— >

1
2_ _

1
4a2+4a—1+(;
F(my+1)>

4(12—4+g
a

We snmpose a> 3, since (4.22) can be simply verified for a=2; then we can replace

this last inequality by

4a’+4a-—-2 a*+a—} Va+1

my+1)> = “Vie-1)@+1PVa=1"

This gives

at+l
1 1 ]/ ,

as required, since

(@®+a—})P=a*+2a*~a+1>a'+2a*-2a—1=(a—1)(a+1)

This completes the proof of Theorem 6 for 1 <m<3.

(ii) We next consider the range m=3. From the estimates (3.1), (3.2) and (3.4),

we see that it suffices to give a symmetrical £ with

AC)<min {G+V2)(m+1), Vm+1@2+Vm+5)} (m=>3). (4.23)
We note that

m+1 Vm +1(2+Vm +5) and Vm +1(2+Vm +5)
m ’ m+1 m

are all decreasing functions of m.
By (4.12), £, is R,-admissible if

4 4
A (L,) =max {7%"“, 4V§}=7_73f for m>3;

and by (4.13), £;,5 and L, are R,-admissible if
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A (£y,3) =max {4 W:.)Vﬁ, 41/(—3} =ém5—‘/é- for m>5,
A (£4,5) =max {8 ”;Vz, 81/5}:8””/2 for m=>17.

It is easily verified that (4.23) holds in 3<m<8 by taking
=L, if 3<m=<5,
£,=Cl,3 lf 5Sm§7,
L= if 7T<m<8

(since the inequalities need be tested only at m=>5, m=7 and m =8 respectively).
For m>8, (4.23) becomes

AL)<Vm+12+Vm+5) (m>8). (4.24)

Define an integer p=>2 by
4p—-1<m<4p+3. (4.25)

By (4.16), £,., is admissible for R, if

4ml/p2+4p+3

A(CI’+1)=maX { 4p+3

) 4L/P2+4P+3}=4Vp2+4p+3. for m<4p+3.

Taking L£'=L;.; for m satisfying (4.25), we shall have established (4.24) when we
show that

4VpP+4p+3<Vm +1(2+Vm +5) for m=4p—1, (4.26)
i.e. that

4V +ap+3<Vap(2+Vap+4).
On squaring twice, this last inequality reduces to

4p(p°—-3)>9,
which is obviously true if p>3.
If p=2, we need only verify that (4.26) holds for m>8, i.e. that

4115 <3(2+V13).

Thus (4.24) is established, and the proof of Theorem 6 complete.
As an immediate deduction from our inequalities (3.1)-(3.7) and our results for

the special lattices C,, £, we have
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Theorem 7. (Blaney [1]) (i) If m is of the form l—i—% (r=1,2,3,...), then
Dp=4Vm.
(ii) If m is of the form 4s-1 (s=1,2,3,...), then
Dp=Y(m +1) (m+9).

Proof. (i) If m=1+~?— (r=1), the symmetrical lattice C,.; is, by (4.12), Rp,-ad-

missible for

A (Lr:1)=max {4m VF"Q , 4 ch;z} =4Vm,

so that D,<4Vm. By Theorem 3 (i), D, > Vm.
(ii) If m=4s—1 (s>1), the symmetrical lattice £; is, by (4.16), R,-admissible for

AmVs+2s

A(Cs)=max{ 4o 1

, 4Vs2+ 2s;=41'82+25,

and so

D,<4Vs*+2s=V(m +1) (m +9).
By Theorem 3 (ii),

Dp=V(m +1)(m+9).

5. The evaluation of D,,

The foregoing analysis provides a ‘local’ method for the evaluation of D, ana-
logous to that provided by ordinary simple continued fractions for corresponding
problems connected with homogeneous binary quadratic forms. Here we apply the

method to determine D, for the range

21 1098 V10 + 6750
— =1 eae < . =9.1Y ces
1 1-9090---<m =< 4310 2-1251---, (5.1)
We first establish some simple inequalities:
Lemma 7. Suppose that 0,>1, ¢,>1, and
_ 4(6.9n—1)
Ap=—2¥r72) < p, 5.2
"D (ga=1) 62
40, 9.—1) D
+ <, 5.3
"G ) (@t D)k &3
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where D<2(k+1). Then

D
4+=-(6,+1)
D(6,—~1)—4 - k 64)

DO, —1)—46,~ 7= D
(021 " 49“?”"“)

and -
_ 201 |_ VD -16k
" 2(k+1)—D| 2(k+1)—D

(5.5)

These inequalities also hold if 0,, ¢, are replaced by @, Ox.

Proof. We note that A, is a decreasing function of 0, and @,, while A} in-
creases with 0, and ¢,. In particular, from (5.2),

40,
0,1

D=A; > (5.6)
Now (5.2) and (5.3) give (5.4), noting that D(6,—1)—40,>0 by (5.6). Also
(5.4) implies that
D
DO, ~1)—4 _ Frp@-td
D(6,-1)—-40, D

49,1—%(0"'1'* 1)

i.e.
2 2k+2-D)~4(k—1)0,+D+2k+2<0.

Since D <2k+2, by hypothesis, this holds if and only if (5.5) is satisfied.
Finally it is clear by symmetry that we may interchange ¢, and ¢, in the above

argument.

Theorem 8. We have

16mV1s . 21 730
—— — < m<——, 5.
O I AR T L 6.7)
s . 7 I//gT)
= 4} <m< .
D, V2 4 20 <m <2, (5.8)
_ 1 /=
Dn= 2mV2 if 2 §m§%§7 (5.9)
24 110 1215 27
N gf S lam<l, 10
D, 13 4 o3smegg (5.10)
8m 10 27 1098 110 + 6750
== G e — . 5.11
Dn=""g— 4 13 =™="" 40 G.11)

All critical lattices are given by the symmeirical lattices corresponding to the sequences
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X % 21 7130
e, .
(4,16) for T3 Sm<-— (5.12)
x 7V30 12V5
DV am< , .
(6)  for 50 S™mST3 (5.13)
X x 12V5 1098 /10 -+ 6750
< < —
(4, 10) for 13 <Em=< 4810 (5.14)
) _
(o0 (4,10), 4,8, (4,10) oo) for? 1098710+ 675¢ V10 + 6750, (5.15)

4810

Proof. By Theorems 6 and 4, we have only to show that the sequences in

(5.12)—(5.15) are the only sequences of positive even integers for which the inequality
max (A, mAL) < Dn (5.186)

holds for each n, where D, is defined by (5.7)—(5.11); and that, for some n, equality

holds in (5.16) for each of the given sequences in the stated range of values of m.

(i) Thus, we begin by considering sequences {a,} satisfying

As<4V2, (5.17)
mA:sw—’;‘l—@ (5.18)

for each n, and prove that the only such sequences are (4,16) and (6).

The hypotheses of Lemma 7 are satisfied, for each n, with

D= 4)2 =5-65685...,
D 16V15
e =2.95084 ...
¥ 21 95084 ...,
7130
= =1-91702....
k=0 9

Working with sufficient accuracy to four places of decimals, (5.5) gives, for any =,

On

_ 18340/ 1-1530
0-1772| "0 1772’

! The suffixes ©° imply infinite repetition to the left and right respectively. Thus this is the
sequence (... 4, 10, 4, 10, 4, 8, 4, 10, 4, 10, ...).
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whence
3.8<0,<186.9.

By Lemma 5, Corollary, 0,=[as, @n_1,...] lies between a,—1 and a,: since a, is
even, it follows that a, can take only the values 4,6, 8,10, 12, 14, 16.

Suppose that some a,=4. Since all a,<16, Lemma 5 gives

0,<[4,16,...1<[4,16]1=9%=3-9375,
and so, by (5.4),
(5-6569) (2-9375) — 4 12-616

14-5.
P~ (5-6569) (2-9375) — 4 (3-9375) 0-867

Since @, =[ay;1,...] <@y, it follows that a,,;=16. By symmetry, a,_; =16 (since we
may replace 0, ¢, by @, 1, -, in the above argument).

Suppose next that some a,=16. Then 0,>15 and (5.4) gives

__4+16(2-9509) 51-2144 _
#r=60—16(2-9509) 12-7856

whence a,.,=4; by symmetry, a,_;=4.

It follows at once from these last two results that either the sequence {a,} is

(4,16) or 6<a,<14 for all n. We now show that the second alternative can hold

x

only for the sequence (6). For suppose that some @, >8. Then, using Lemma 5, we have

0,=1[8, 6,,]=5+2V2, ¢,=[6,]=3+2V2,
whence
ars2lBr2V2)B+2V2)-1]_8+oV2_, oo 16V15
(6+2V2)(4+2V2) 7 21

contradicting (5.18).

Thus the only sequences which can satisfy (5.17), (5.18) are (4, 16) and (6).
Also (using the results of § 4, (4.12), (4.13)) we have

Ai= 2V2, A;=4V2 for (fxi),

=16V1—5
21

_16V15

[ for (4,16).

A3 Az
This proves (5.7) and (5.8), and establishes the assertions on critical lattices for the
range #<m<2.
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(ii) To prove (5.9) and (5.10). we begin by proving that the only sequences

satisfying
Ar< 2V2 =2-82842... (5.19)
A; < 241‘;1():5 - 83805 ... (5.20]

for each n are (6) and (4, 10).
The inequalities (5.19), (5.20) imply that the hypotheses of Lemma 7 are satis-

fied, for each 7, with

24 /10
- =K.
D=7 =5-83805...,
%: 2V2 =2-82842...,
12V5
k=15 =2-06406...

Hence (5.5) gives, with sufficient accuracy,

0x

72-128}‘<1~0290,
0-2900] 0-2900
ie.

3-79<0,<10-89.

Thus a, can take only the values 4, 6, 8, 10.

Now if a,=4 and a,.,<8, we have 0,<4, ¢, <8 and so

_ 4x31 124 _
S B TR A
contradicting (5.20). Hence if a,=4, we require a,.,=10; and, by symmetry, also
ankl'——lo.

Next, if a,=10 and a,.,>6, we have 6,>9, ¢,>5 and so

4x44 44
****** = >2.9,

contradicting (5.19). Hence if a,=10 we require a,,;=4; and, by symmetry, also
(ln“1:4.

The results of the last two paragraphs show that either {a.} is (4, 10) or 6<a, <8

4

for each nm. The second alternative can hold only if {a.} is (6). For otherwise we

Ca. 84912 . o . .
obtain A;{ZF—%L:ZQGI ..., precisely as in (i), and this contradicts (5.19).
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X

Thus the only sequences satisfying (5.19) and (5.20) are (6), for which

~ /10
Ai=2V2, A;=4V§<2411310 for all »,
and (4, 10), for which
4110 10 -
A;=2 llg O, A,J{=§Ky—)<2l/2 for all n,

This proves (5.9) and (5.10) and establishes the assertions on critical lattices for the

range 2<m<¥.
(ili) For convenience, we set

1098 V10 + 6750
my= g =2 12519,

For the proof of (5.11) we have first to show that the only sequences satisfying

An <

10
8V90 —=2-81091... (5.21)

S8m01/1_0=976+6001/16

—5. 5.22)
5 181 5-97373 ... (

An

for all n are (4, 10) and (o (4, 10), 4, 8, (4, 10)..).

Using Lemma 7 with

D=5-97373..., %=2-81091 cers k=my=2-12519...
we have to sufficient accuracy
0 _2-2504| 1-6827
".e167| -2767

ie.
2:05<0,<14.22,
Hence 4<a, <14 for all =,

Since a,>4 for all n, 6,>[4]=2+V3>3-732. If now @n =11 we have

4(41-052—1) 40-052

A} > =
4-732x12 14-196

>2-82,

contradicting (5.21). It follows that ¢, <11 for all » and so that a,<10 for all ».

Now if a,=6 for some n, we have

0,<[6,10]=1+ V24, 0,>[6,4]—4+V3.
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Now (5.4) gives, to sufficient accuracy,

(5-9738)(4-8990) —4  _ _  4+(2-8110)(6-8990)
(5-9738) (4-8990) — 4 (5-8990) ~ ¥" 4 (5 8990) — (2- 8110) (6 - 8990)

whence
4-4<@p,<5-6,
and 80 @,,;=6. By symmetry, also a,_,=6. By repeated application, it follows that
a,=6 for all n. But this involves A;—=2)2=2-828..., contradicting (5.21). Thus
a, 46 for all n.
No two consecutive elements of the sequence {a,} can be 4. Forif a,=a,.;=4

we have 0, <4, ¢, <4,
4 x 15_2_0

An>333 ~ 3

contradicting (5.22). Also no two consecutive elements can be 8 or 10. For if «, =8,
G,:1=>8 we have 0,>7, ¢,>7,
4%x48

+ —
A">8><8

3,

contradicting (5.21). Thus the sequence must be of the form

ooy 4s a_gz, 4) a’o: 4: azy ey
where each a,, is 8 or 10.
If a3, =10 for all n, the sequence is (4, 10). Otherwise some a;,=8; then

x x  6+3)10
02" =[8: 4, a2n—-2r---]£[81 4; 10]:__3*1/*’

2
Pin 14, a1 14, 107 120,
whence
4[(6+31/I6)(10+3Vﬂ))__ ] B
_ 10 976+ 60010
4+3V10) '5+3V1‘0) a8l
sl

this is comsistent with (5.22) only if the equality sign holds throughout, i.e. if the
sequence is that given in (5.15).
We must now consider the values of A}, A, for the sequences of (5,14), (5,15).
If {a,} is (4, 10) we have, as in (ii),
8V10 24 /10 8my V10

Aj=——, A= =5-83... <

3 9 =5-97... for all n.
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For the sequence (5.15), choose the enumeration so that a,=8. As in the above

calculation, we have 0,=¢_; =18, 4, 10], ¢,=0.,=[4, 10],

976+ 600110 _ 8m,/10

Ad=An="4 9
For n>0,
@20 =4, 10]=g,,
b2, =[10, 4, ...1> 0,,
whence
o A2_n<A(-)A
also .
x x  104+3/10
@an1=[10, 4]=L2V-—>9-74
021!1'-1:[4) 10”-- ] 4, 107 4; 8: 4: 10;'--]
>[4, 8,4, 10]=M>3-87,
whence .
_ 4{(9-74)(3-87)—1} 146-7752 8my /10
Benni <874 2.8 ~ 250838 0 B¢
Thus -
o A;=8moV10’
n 9

for n=0 and so, by symmetry, over all n.
Finally, the values of 0, and @, at any point of the sequence (5.15) are less

than or equal to the corresponding values of 6, and @, for the sequence (4, 10),

with strict inequality for one of 0,, @, so that

810

+
At < 9

for all .

X x

Since 0,, ¢, tend to [4, 10], [10, 4], in some order, as n— + oo, it follows that

The above results establish (5.11) and the assertions on the critical lattices for
H<m<m,

6. It is clear from the proof of Theorem 8 that, for the range (5.1) of values
of m with the exception of the end-point

__1098//10 + 6750
° 4810

(6.1)
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any admissible lattice £ either is a multiple of a critical lattice (essentially unique)

or satisfies an inequality
AL)2Dr(1+6m), 6m>0. (6-2)

Thus we may say that D, is isolated.! For any particular value of m it is not

difficult to obtain an explicit value for d,. As an example we prove
Theorem 9. If m=2 and L i3 R,-admissible, then either A(C)ZV@ or £ is a
symmetrical lattice corresponding to the sequence (B).

Proof. The result will follow if we show that the only sequence {a,} satisfying

IR ot
A"<}§} (6.3)
2A%<V33
for all n is (6).
The hypotheses of Lemma 7 are satisfied, for each », with
D=V33, k=2,
and so we find from (5.5)
2 1
0, — == =
, 6——V33~ 6133
i.e.
t 12- 838 g —6vm_i 4 (6.4)

3
It follows easily from (6.4) that 4<a, <12 for each », and that if any element of

the sequence is 4 or 12 then the sequence is (4, 12).

For this sequence we have
A7=V33, A;=}V33
for each %, and (6.3) is not satisfied.

Thus (6.3) implies that 6<a,<10 for all n. If now some a,=>8 we have, pre-

cisely as in the proof of Theorem 8 (i),

8+9V2

At = >1V/33,

contradicting (6.3). It follows that the sequence must be (6), as required.
On the other hand, it is easy to see that D,, (where m, is defined by (6.1)) is
not isolated. We can approximate to the sequence (5.15) by sequences of the type

s 4,8,(4,10),, 4,8, (4,10),, ... (6.5)

1 The existence of such a result for m=2 was first established by Davenport [4], Lemma 14.
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where the »; are arbitrarily large positive integers. For such sequences the values of
max A; and max A; are arbitrarily close to those for the sequence (5.15). Hence
these sequences yield admissible symmetrical lattices of determinant arbitrarily close
to Dy,.

We have been unable to evaluate D, for general m near (but greater than) m,.
It is not difficult to show that, for m sufficiently close to m,, all critical lattices
are derived from sequences of the type (6.5); and thers is good reason to believe that
the subscripts »; behave in a similar way to those occurring in Markoff’s classical
papers on the (homogeneous) minimum of a binary quadratic form.t 'This type of

difficulty arises for infinitely many values of m in the range 1<m<3.

7. We conclude by giving the region K referred to in Swinnerton-Dyer [7],
which satisfies the conditions of Theorem 4 of that paper and whose critical lattices
have either no or one point on the boundary of K. We define K by the inequalities?

xy> —1,
zy<2 if x, y are both ncgative,

2y <2+2¢ cos® w{log (x/y)/log 2} if x, y are both positive,

where ¢ is a fixed constant satisfying
33
O<e< Vgé -1.

K is automorphic, since it admits the automorph
x'=2"x,‘ yl=2—ny

for all integral ; and it is easily seen to satisfy the other conditions of [7] Theorem 4.
Since K lies inside —1—s<a2y<2+2¢ and contains —1<zy<2, we deduce from
Theorem 8 that

4V2<A(K)<4(1+¢)V2<V33

{where A (K) is the inhomogeneous critical determinant of K). It now follows from [7]

Theorem 4 that there are K-admisssible lattices A with d(A)<4(1+¢) l/ 2, and from
Theorem 9 that all such lattices are of the form

1 See also L. E. Dickson, Studies in the Theory of Numbers (Chicago, 1930), 79-107.
% This body is an obvious analogue of that given by Cassels [2] in order to prove a corresponding
result for the homogeneous critical lattices of an automorphic star body.
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e=2{(V2+1) (- +/2-1) (v-})}
y=p{(V2-1) (@w-H+V2+1) (v-}},

where u, v Tun through all integral values and 4, u satisfy

_24

= —=<1+e.
4V2

1<iu

We now examine what further conditions on 4, u are needed to make A K-ad-
missible. The only doubtful points of A are those which lie in the first quadrant
and have xy=2Ayu; for zy/Au is an integer for every point of A. These points are
given by z=A(V2+1)**V2, y=pu(/2—1)*"V2 for any integer n. For these points to
lie outside K we require

log (A/u) +4n log (V24 1)
log 2

Au=1l+ecos’n

log (/2 +1)

for all n; and since oz 2 is irrational we can choose » so that the expression
og

in curly brackets is arbitrarily near an integer. Thus A is K-admissible if and only
if Au=1+e, and critical for K if and only if Au=1+¢; while A(K)=4V2(1+e¢).
It is easy to see that a critical lattice A cannot have more than one point on

the boundary of K, and has one if and only if

for some integers, m, n.

Trinity College, Cambridge. The University, Sydney.
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