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1.  I n t r o d u c t i o n  

Let 1~ be an inhomogeneous lattice of determinant A =  A (t:) in the ~, ~-plane, 

i.e. a set of points given by 

~ =  ~o + ~r + fly,  
(1.1) 

~ = ~ 0 + ~ x + ~ y ,  

where ~0, T0, ~, fl, Y, (~ are real, A = I ~ ($ - fl 71 # 0, and x, y take all integral values. 

In  vector notation, s is the set of points 

P = P o + x A + y B ,  

where the lattice vectors A = (~, ~) and B =  (fl, 0) are said to generate s I t  is clear 

that  s has infinitely many  pairs A, B of generators. Corresponding to any such pair 

and any point P0 of /:, we call the parallelogram with vertices Po, P o + A ,  P 0 + B ,  

P o + A + B  a cell of s  a parallelogram with vertices at points of s is a cell of s 

if and only if it has area A. 

A cell is said to be divided if it has one vertex in each of the four quadrants. 

Delauney [5] has proved tha t  if s has no point on either of the coordinate axes 

~ = 0 ,  ~ = 0 ,  then s has at  least one divided cell1; we outline his proof in w 2. We 

then develop an algorithm for finding a new divided cell from a given one, thus ob- 

taining in general 2 a chain of divided cells A,~BnCnDn ( - c~ < n <  ~ ) .  The analytical 

1 This result fills the gap, noted by CASSELS [3], in the very simple proof of Minkowski's 
theorem on the product of two inhomogeneous linear forms given by SAWYER [6]. 

The condition that  the chain does not break off is simply tha t  /~ shall have no lattice-vector 
parallel to a coordinate axis. 
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formulation of the algorithm leads uniquely to a specification of s in terms of a 

chain of integer pairs hn, kn. 

In w167 3, 4 and 5 we apply these results to the problem of evaluating the critical 

determinant Dm of the asymmetric hyperbolic region 

Bin: - l < ~ / < m  (m> 1), 

i.e. the lower bound of the determinants of lattices s having no point in the in- 

terior of Rm. 

The value of Dm has been established for infinitely many values of m by 

Blaney [1], who also gives estimates valid for general m 1. His main results are: 

D m > 4 V ~  if r e > l ,  (1.2) 

with equality if and only if m is of the form 1 + 2 ( r = l ,  2, 3 . . . .  ); and 
r 

Dm>_V(m+l)(m+9) i f  m _ > 3 ,  (1 .3)  

with equality if and only if m is of the form 4 r -  1 ( r=  1, 2, 3, ...). An alternative 

proof of these inequalities will be given in w167 3 and 4. 

The eomplete evaluation of Dm appears to be extremely difficult. Defining a 

lattice 1~ as admissible for Rm if it has no point in the interior of Rm, and critical 

f o r  Rm if it is admissible and has A (s  we prove in w 4 that  all critical lattices 

Of R m are o I the /orm 2 

= :r ( x -  ~) + ~ ( y -  '.) I .  (1 ,4) 
J = r ( x  - ~) + ~ (y  - -~) 

This reduces the problem to that  of the admissibility of lattices of the type (1.4), 

which are discussed in w 4. Using the results obtained there, it would be possible to 

evaluate Dm for any particular value of m, though the arithmetical labour involved 

1 B l a n e y ' s  resu l t s  are  f o r m u l a t e d  in t e r m s  of i n h o m o g e n e o u s  b ina ry  quad ra t i c  formsl  T h u s  

(1.2) is equ i va l en t  to s ay i ng  t h a t  if ](x, y) is a quad ra t i c  fo rm of d i s c r im inan t  D > 0 ,  x 0, Y0 are  a n y  
real n u m b e r s ,  a n d  m _> 1, t h e n  the re  ex i s t  in tegers  x, y sa t i s fy ing  

l V~<_/(X+xo, y+yo)<]/m~/D. 
4V~ 4 

I t  is suff icient ,  by  h o m o g e n e i t y ,  to consider  Rm in place of t he  more  genera l  reg ion:  

-ml<_~rl<mz (ml > 0 ,  mz >0) .  

2 T he  ex is tence  of a cri t ical  la t t ice  of Rm follows f rom a genera l  t h e o r e m  of SWI~ERTOX- 
DYER [7]. 
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might well be excessive. We illustrate the method in w 5, where we find all critical 

lattices of Rm for a small range of values of m. 

The last two sections, 6 and 7, contain some results on the isolation of Dm and 

an example (quoted by Swinnerton-Dyer [7]) of an automorphic star-body none of 

whose (inhomogeneous) critical lattices has more than one point on the boundary. 

The methods of this paper  may  be applied to other problems involving inhomo- 

geneous lattices, e.g. to those considered in parts  I and I I  of this series. One of us 

hopes to publish further applications in the near future. 

2. The divided cells o f  a lattice 

We first sketch the proof given by Delauney [5] of 

Theorem 1. I /  F~ is a two-dimensional inhomogeneous lattice having no point on 

either o] the coordinate axes ~= O, ~ = 0 ,  then F~ has at least one divided cell. 

Since the origin 0 is not a point of 1:, we can draw a square, with diagonals 

lying along the axes, containing no point of E. We now expand the square homo- 

thetically until a point P of E first appears on some side. By symmetry ,  we may  

suppose tha t  P has positive coordinates t0, ~0. 

Suppose first that  there is no point (~, ~) of s with 0 < y  < %; then it is easy 

to see tha t  there is another point of E with 7 = 70. For, by Minkowski's fundamental  

theorem, E has a point Q (~, 7) other than P satisfying 

I ~ - ~ 0 1 < g ,  ] ~ - 7 0 ]  <70,  

if K is sufficiently large. Since neither Q nor 2 Q - P  (its image in P) satisfies 

0 < 7 < 70, it follows tha t  ~ = % .  Thus there is a lattice-step P Q  parallel to  the f-axis. 

I f  now we take the least such steps A B ,  CD which intersect the 7-axis and lie 

nearest the origin on either side, it is clear tha t  A B C D  is a divided cell. 

Suppose next tha t  1: contains some point with 0 < 7 < %.  We deform the square 

into a rhombus by  continuously moving the corners on the f-axis away from the 

origin and those on the y-axis towards the origin, keeping the point P on one side 

of the rhombus throughout. We continue this deformation until for the first t ime a 

lattice-point Q (~z, 7J), other than P, appears on a side. There are now three  cases 

to distinguish : 

(a) Q and P lie on the same side, so tha t  ~1 > 0 , T x  > 0 .  The next  line of l: 

parallel to PQ and on the same side of it as 0 must  be beyond O and a t  least as 
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far from it as P Q; for otherwise the rhombus would cut off from it a segment of 

length greater than [PQ] and so would have a lattice-point in its interior, contrary 

to the construction. Hence the segment of this lattice-line in the quadrant  ~ < 0, ~ < 0 

has length greater than [PQ[ and so contains a lattice-point. Take on this lattice- 

line and on PQ the unique lattice step intersecting the z/-axis; the four lattice points 

so determined form a divided cell. 

(b) Q and P lie on adjacent sides. By  symmet ry  it is sufficient to suppose tha t  

S1<0, ~/1>0, so tha t  PQ intersects the ~-axis. Let  A B  be the lattice-step which 

intersects the ~-axis, is parallel to PQ, and lies nearest to PQ on the same side of 

PQ as 0 is. By an argument  similar to tha t  in (a), the points P, Q, A, B form a 

divided cell. 

(c) Q and P lie on opposite sides, so tha t  ~i < 0, ~j <0 .  Take the next  parallels 

to PQ in the lattice on each side of PQ. The segments of these intercepted by the 

sides of the rhombus on which P and Q lie (produced if necessary)have length ]PQ[, 

and so each contains a lattice-point. Since these points lie outside the rhombus, they 

must  lie one in each of the second and fourth quadrants;  and it is then easy to 

see that,  with P and Q, they form a divided cell. 

Let  now s have no point on S = 0  or ~/=0, so tha t  by  Theorem 1 it has a 

divided cell AoBoCoD o. I t  is convenient to choose the notation so tha t  the points 

A 0, B0, Co, D o are respectively eit/ter in the first, fourth, third and second quadrants, 

or in the third, second, first and fourth quadrants. 

We now define non-zero integers It0, k 0 as follows: 

(i) I f  AoD o and BoC n are parallel to the ~-axis, we write conventionally 

/ to= k o =  - ~ .  

(ii) I f  AoD o and BoCo, produced either way, intersect the S-axis, we define /t 0 

as the unique integer for which the ~-coordinates of the lattice points 

A I=  Ao § (ho § 1) (Do- Ao) 

B 1 = A o + ~to (Do - Ao)  

have opposite sign. (Thus A1B J is the unique lattice step of the line AoD o which 

intersects the ~-axis.) 

of the lattice-points 

have opposite sign. 

Similarly k 0 is the unique integer for which the ~-coordinates 

el=co+ (ko§ l) (B o - Co) 

D, = Co + k0 (B0 - Co) * 
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Since ~(Ao) and ~(D0) have the same sign, it is clear tha t  h0#0 ;  similarly 

k0~0.  Also h o and k o have the same sign, since ~ ( D  o - A o )  and u ( C o - B o )  do. 

Finally, i t  is easy to see from the construction tha t  AIBxC1D 1 is again a divided 

cell, where A1, C1 lie one in each of the first and third quadrants, and B1, D 1 lie 

one in each of the second and fourth quadrants. 

In  a precisely similar manner we may  define non-zero integers h-x, k_x by  con- 

sidering the intersections of the lattice-lines CoD o and AoB o with the q-axis, and 

obtain a divided cell A_,B_xC_ID_I. Clearly these may  be defined so as to coincide 

with the integers h-x, k_l obtained from A_xB_xC_ID_~ by the above process. 

We may  continue this process indefinitely, obtaining an infinity of divided cells 

A~B~C,~D,~ and of integer pairs hn, kn ( -  c~ < n <  co), unless some pair h,, kn is in- 

finite (when the process terminates in one direction). The relation between successive 

cells is, as above, 

An+x=An+(hn+l)(Dn-A,~) I 
Bn+l = A,~ + h~ (Dn - An) 

Cn+x =On +(kn+ l)(Bn-- C~) [" 
I Dn+I = Cn A- kn (Be -- On) 

(2.1) 

Writing Vn for the lattice vector An-Dn,  we have 

Vn = An - D,~ = B,~ - Cn = Bn+l - A,~+I = Cn+l - D=+I, (2.2) 

and (2.1) may be written as 

A,,+l=An-(hn+l) g.  ] 

Bn+l = An - hn Yn 

C~+l=Cn+(kn+l) y,~ { 

Dn+l = Cn + kn Yn 

(2.3) 

Thus, taking n = 0  as a reference, (2.3) gives the expressions 

A~ = A o - (h o + 1) Yo - (h~ + 1) y~ . . . . .  (h~_~ + 1) _V~_I } 

Cn=Co+(ko+l) Yo+(k~+l)y~+...+(kn_.~+l)V_n_ ~ (n->l)  
(2.4) 

A-n--A~ V--t+(h-~+l)V'-2+'"+(h-n+l)V--" } (n>_l) 

C_~ =Co - (k_~ + 1) _V_~- (k_2+ 1) Y-2+  . . . .  {k_~+ 1) _v_~ 
(2.5) 

We have also from (2.1) and (2.2) 
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i.e. 

gn+x =An+~ - Dn+~ = A .  + (h. + 1) (Dn - An) - Cn - k. (Bn - Cn) 

=On - Cn - h n  (An - D . )  - k n  (Bn - C . ) ,  

v . ~  = - (h. + k.) F .  - v._~. (2.6) 

Now suppose the coordinates A,,, Bn, C,,, D,, are given by 

On=(~n,~.) ,  B . = ( # n + a n , ~ . + T n ) ,  D n = ( # . + ~ . , ~ . + ~ n ) ,  

An=(~n +~n +fin, r/n + 7n +0n). 
(2.7) 

Since these points, for any n, form a cell of s s is given by 

~=~ln +Tnx +~ny, 
(2.8) 

where x, y run through all integral values; and A = A ( E ) = [ ~ , 6 n - / ~ , T n [ .  Also, by 

(2.2), Vn has components 

Vn-~-{(Xn, 7n)={--fin+l,  --On+l)- 

Writing now for all n 

an+t = hn + k,~, 

so that  an~l is integral (possibly infinite) and 

and (2.10) 

V n+l = - a n + l  V n - _Vn-1 , 

0~n+l ~ - - an+l  O~n- O~n-l~ I " 

v .  = {~., rn} = ( -  1)" {%p. -~oq . ,  r i p .  -~o q.}, 

Setting 

we therefore have 

(2.9) 

(2.10) 

Jan : l ]>2 ,  we have by (2.6), (2.9) 

p_l=O,q  1 = - 1 ;  po=l ,  qo=O; p l=a l ,  q l = l ;  

(2.11) 

(2.12) 

(2.13) 

P n ~ l : a n + l  pn -- pn -1  t .  

! 
q n ~ l ~ a n + l q n  -- qn-1 

(2.14) 

I t  follows that,  for n ~  1, p,/qn is the continued fraction 

1 I 1 
a 1 - - ,  

a 2 - a a . . . .  a n  

which we shall write as 

P--~ =[ax, as, ..., an] ( n ~ l ) .  
qn 

(2.15) 
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Similarly, since 

~ n - l ~ a n + l P n  -- p n + l ,  

qn-1 =an+lqn - - q n e l ,  

we have 

(-- q:"~) = [a o, a-a . . . . .  a-~+2] (n P_ 2). (2.16) ( -p_s)  

In order to justify a passage to the limit in the formulae so far established, we 

need two lemmas. 

Eemma 1. I t  is impossible, either /or all n > _ n o or ]or all n < -  no, that either 

(i) hn= - 1  or (ii) k~= - 1 .  It  is also impossible that hn~176 either/or all 

r >_O or /or all r<_O. 

ProoL If for example h , = - 1  for all n>_no, (2.1) shows that A ~ = A n = A ,  say, 

for all n>_n o. Since the triangle A=B=C~ has the constant area ~A and , / ( A , ) =  

= 7 ( A ) # 0 ,  it is easy to see that  B~ and C= must lie in abounded  part  of the plane 

(since 7 (Bn) and 7 (C~) are of the opposite sign to U (As), and B~, C~ lie in different 

quadrants). Hence there can be only a finite number of distinct points B~, C~ for 

n_> n 0. We show that  this is impossible. 

By (2.2), 

7 (B=+I) - 7 (A.+~) = 7  (C~+~) - 7 (D= +~) = 7 (V.). 

Since U (B~+I) 

this gives 

whence 

and ~)(As,1) have opposite signs, as do also 7 (Cn+l) and 7(D" il), 

17 (A~){<[7(~V~){,  {7 (D~+~)I < IU ( _V=)[, 

since 7 (As il) and 7 (Dn~ 1) have the same sign. I t  follows that 17 (V=)I= [7 ( B n ) - 7  (C~)l 
is strictly decreasing, so that  there cannot be only a finite number of distinct points 

B~, C~. 

Next, if h,o<2r=k=o+2r+, for all r>_0, two applications of (2.1) give 

Dno+2r+2~ Bn0~2r+l  = Dno+2r 

so that  D~,+2~=D, say, for all r>_0. We may now deduce a contradiction precisely 

as above. 

The other cases of the lemma are provided similarly; for n _ < -  n 0, we use the 

fact that  I~(_V_~)I is strictly decreasing. 
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Lemma 2. As n ~ + o o ,  each o/ 

~(g~), ~(A.), ~(B~), ,~(C.), v(D.) 
and 

$(V_.), $(A_.), $(B_.), ~(C_.), $(D_.) 

tends to zero (or is unde]ined ]or large n) 1. 

Proof. Supposing that  h., k. are defined for all large n, we have as in Lemma 1 

[~ (~Vn+l) [ < {~ (~Vn) [ ; (2.17) 
and by (2.11) 

]v(~V,+i){->la,+l{ {n(Y,)I-I~(Y.-1)i. 
Combining these, 

1 
[~/(V,)[< la,,+,{_ 1 [~(V,_I){. (2.18) 

If  now lan+ll_>3 for arbitrarily large values of n, (2.18)shows that  ~(Vn)-->0 as 

n - + + ~ .  Otherwise, l a n + , l = 2  for all large n; since a ~ + , = •  if and only if 

h,~=k,~= +1, Lemma 1 shows that  a,+~ must change sign for arbitrarily large values 

of n. Now by two applications of (2.11) we have 

Y-+2= (an+, a.+2 - 1) V. +a .+2  Yn-, ,  
whence 

{a,,+,a,,~2- I l l~ (_V.)l-<l~ F.+,)I + la.+~{ [.y(_v.-,)[ ; 

using (2.17) this gives 

la.+, a,,+2 - I I {~ ~v.)l < (l ~.+~ l+ 1)l~ (.v._,) I. 

Thus, for any n for which {an+l {= {an+2{= 2, an+l an+~_ < O, we have 

I~(F.)I< ~l~(.v.-o{. 

Since this inequality holds for arbitrarily large n, it follows again that  ~(V~)-+0. 

From the relations 

(V._ ~) =z/(B.)  - ~/(As) =~/(C.) - ~ (D.), 

where ~ ( A . ) ~ ( B . ) < 0 ,  ~ ( C . ) q ( D . ) < 0 ,  we see that  ~(V.)-+0 implies that  each of 

7I(A= ), ~?(B.), ~(C.) and z/(D.) tends to zero as n - + + o o .  

The fact that  ~e(V_n)~0 as n-+ + oo may be proved in a precisely similar way. 

I This  h a p p e n s  when  some hn and  kn become infinite, i.e. when  there  is a l a t t i c e ,vec to r  pa ra l l e l  

to  a coord ina te  axis .  
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Theorem 2. Suppose  that no an is infinite,  and set 

(flo = [al, ag., a s, ...], 

Then  

Oo=[a O, a_ l ,  a-2 ,  . . , ] .  

(2.19) 

n = l  n = l  

~o = ~ - (k~ + 1)~ (g~)~- ~ ( -  i) "-1 (kn + 1)(rop~ -aoq~) 
n~O n~O 

(2.20) 

where pn, qn are defined by (2.13) and  (2.14). 

I f  further we define /or each n 

~n ~--- fan+l, an+2, ...], 

On = [an, an - l ,  an-2 . . . .  ], 
(2.21) 

then 

8 - n - 1  

n=O 0-1 0-2 "'" O-n 

2Zio+7o+t3o=yo ~ ( - 1 )  n 
s 

=~o 9oj 902 "'" (P= 

(2.22) 

(2.23) 

Proof. By (2.12) and Lemma 2, 

Also it follows easily, by induction, from (2.14) that  I qn+l I->lq, l+ 1, so that  Iqn [ ~ cr 

Hence 

q~o = lira P_2 ~o 
,~oo q,~ Yo 

and the second relation of (2.19) follows similarly. 

The formulae {2.20) are now immediate consequences of (2.12) and {2.4), (2.5), 

since by Lemma 2 

~](C.)-+0, ~ (C_n) -+0  as n -~  + ~ ,  

and 

~:o = ~ (0o), ~o = ~ (Co). 
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Next,  by  adding the two relations of (2.4), we obtain 

whence 

n - 1  

A o + C o = A , , + C . +  ~ . ( h ~ - k , )  V_r, 
r ~ O  

n - 1  

2 rio + ~o + 6o = ri (An) + ri (Cn) + ~ ( - 1) r er (~'o Pr - 6 o  qr), 
r~0  

using the definitions (2.12) and (2.22). By  L e m m a  2, 

and so 

Now 

whence 

ri(An)-+0, ri(Cn)-+0 as n - + + o o .  

2 rio + ~,o + 6o = ~ ( - 1)" en ()'oPn - 6oqn). 

~0 0 = [ a  1 , a 2 . . . .  , an, a n  + l . . . .  ] = [ a  x . . . . .  an, ~ n  ] - -  ~ n  P n  - P , - 1  
Cfn qn -- qn-~ 

pn-1 - 9% qn-1 = q~n (pn - q~o q"); 

since P0 - ~0 qo = 1, it follows tha t  

_ 1 ~'o 
Pn - ~o qn ~x ~2 ~n 70 Pn - 6o q~ = 

"'" % ~2 "'" ~ 

This establishes the second formula of (2.23); and the first fornmla m a y  be proved 

similarly. 

3 .  A s y m m e t r i c  H y p e r b o l i c  R e g i o n s  

Suppose now tha t  an inhomogeneous lattice 12 of de terminant  A is admissible 

for the region 

Rm: - l _ < ~ r i _ < m  ( m _  1). 

This implies, in particular,  t ha t  12 has no point  on either of the coordinate axes 

~ = 0 ,  r i = 0 ,  so tha t  the theory  of w 2 applies. Wi th  the notat ion of w 2, we now 

establish the following inequalities: 

(i) I f  any  pair  hn, kn is negative or infinite, then 

A _ > 2 ( m + l ) ,  (3.1) 

where equali ty is possible only if hn =/cn = -  ~ .  
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(ii) If,  for any n, ha > 0, ka > 0, hn # ka, then 

A > _ l / ~ - + l ( 2 + l / ~ 5 )  if h ~ = l  or k a = l ;  (3.2) 

A _ > ( I + V 2 ) ( m + I )  if m_<3; (3.3) 

A > - ( ~ + l / 2 ) ( m + l )  if m>_a, ha>_2, ka>_2. (3.4) 

(iii) We have always 

& >_ 4 t/m, (3.5) 

m + l  
where equality is possible only if ha = ka = - -  for all n. 

m - 1  

(iv) I f  m>-3 and ha=ka>_2 for any n, then 

&>-Vim+ 1)(m + 9). (3.6) 

For the proof it is convenient, in order to avoid enumeration of cases, to suppose 

tha t  ~ has no point in the interior of the region 

R: - m l < _ ~ < _ m  2 ( m l > 0 ,  m 2 > 0  ). (3.7) 

Suppose tha t  P1 and P2 are two vertices of any divided cell of 1:, where P1 

lies in the second quadrant  and P2 in the first; suppose also that  P1 P2 produced 

intersects the ~-axis. Then there exists a unique lattice-step Pa P4 cutting the ~-axis, 

where Pa lies in the first quadrant  and P4 in the fourth. For some integer h >_ 1 we 

n o w  h a v e  

P4 = P1 + (h + 1) (P~ - P1) 

Pa = P1 + h (P2 - P1), 
so that  

Ip1p~] IP2P3l 
h-1 -IPzP4I" 

The lattice-line PiP, PaP4 has an equation of the form 

~ c o s 0 + ~ l s i n 0 = ~ .  0 < 0 < } , ) , > 0  �9 

For the intersections of this lattice line with any hyperbola ~r~=r we find the 

equation 
(~ cos 0 - r/sin 0) ~ -- ~2 _ 4 #  sin 0 cos O, 

so tha t  the intersections have coordinates 

1 4 -  543808. Acta 3lathematica. 92. Impr im6 le 29 d6cembre 1954. 
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= ~t + ]/2 ~ - 4/~ sin 0 cos 0 2 ~ U~t 2 - 4/~ si: 

2 cos 0 ' ~ = 2 sin 0 

sin 0 cos 0 

The length of the intercept  made  on the  line by  the  hyperbola  is therefore 

]/~v~- 4]~ sin 0 cos 0 

sin 0 cos 0 

Now since s is admissible for R, P1 and P4 satisfy ~/_< - m l ,  and P2 and P3 

sat isfy ~/~> m 2. We deduce tha t  

[ P I  P4[ >- V~2 + 4 m I sin 0 cos 0,  
sin 0 cos 0 

V). 2 - 4 m s sin 0 cos 0 
] P2 Phi -< sin 0 cos 0 

(the radicals being necessarily real). 

we have 

whence 

Since 

[PIP4[ = h+ 1 
[P2Pa[  h - l '  

h + 1] 2 > ~2 + 4 m I sin 0 cos 0 

h L - i ]  - ~- - 4 m 2 sin 0 cos 0 '  

22~ ml ( h -  1)2 + m~ (h+  l) 2 sin 0 cos 0, 
h 

i p I p a l >  (h + 1) l/m1 + m s ,  
- V h ~ n  0 cos 0 

[P, Po[ ]P1Pa[> ~/ ml+m2 (3.8) 
" h + l  - h s i n 0 c o s 0  

Now suppose tha t  the opposite side of the divided cell has equation 

cos 0 + 7? sin 0 = - 2' ()V > 0), 

and tha t  an integer k_> 1 is similarly defined for it. I t  is convenient to suppose, as 

we m a y  by  symmet ry ,  t ha t  k_>. h. 

As above, the intercept made on this lattice line b y  the hyperbola  ~ / = m  2 has 

length 

V~t '2 - 4 m s sin 0 cos 0 

sin 0 cos 0 
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This intercept contains ( k - 1 )  lattice-steps and so has length at least (k -1) [PIP ,~I .  

Inserting the bound (3.8) for IP1P21 we deduce that  

~ '2>{ 4m~+ - (k-1)---~ (ml + m~)} h sin 0 cos 0. 

Finally, since A = (~ + ~') I P1 P2 [ (the area of a cell), we derive the inequality 

A >_ - - h  h + - -  (ml + ms) ' (3.9) 

from which we shall deduce the inequalities (3.1)-(3.7) above. 

(a) Suppose that  i: is admissible for Rm and that,  for some n, h, and k, are 

negative. The above analysis now applies with h =  - h , ,  k = - k s ,  ml = 1, m2= m, and 

so by (3.9) 

A > - r  h h + 4 m + - - - ~ - ( l §  �9 

Using k> h, mE 1, we easily obtain the estimate 

] / l+m { V h - ~ - 1 ) +  ]/h(m+ 1)} =2  (m+ 1). 

If any pair hn, kn is infinite, we may proceed to the limit h-+ ~ ,  k-~ ~ in the 

above and obtain A >_ 2 (m + 1). 

This proves (3.1) under the given hypotheses. 

(b) Suppose now that  1: is admissible for Rm and for some n, hn > 0, kn > 0. The 

above analysis applies (supposing k,~>_h,~ without loss of generality) with h=h~, 
k = kn, m 1 = m, m 2 = 1 : as is most easily seen by considering the lattice s  derived from 

s by changing the sign of either ~ or ~. 

If now h~:k, we have k>_h+ l ,  and so (3.9) gives 

A >_ . ~  h + V4+h( . ~+  l) �9 (3.10) 

For h =  1, this gives 

which is (3.2) 

Next, writing (3.10) in the form 

A > V 1  2 m - 1  1 ~/ 4 
r e + l -  h m + l + ~ +  h + m +  1, (3.11)~ 



212 E. S. BARNES AND H.  P.  F. S W I N N E R T O N - D Y E R  

we observe t h a t  the  r ight  h a n d  side is a decreas ing funct ion  of m. F o r  m _  3 we 

therefore  have  

A > , / _  1 1 
m +-~ _ [ l  - 1~ + )~ + Vh + i 

which is a t  least  1 +] /2 ,  i ts  va lue  a t  h =  l ,  for a n y  posi t ive  in tegra l  h: this  gives (3.3). 

:For m_>3, we let  m - + c ~  on the  r ight  of (3.11) and  ob t a in  

A > 1  1 , -  
m + l  - ] + [ ' h .  

Thus,  for h_>2, 
A> (~+ V~)(m+ 1), 

which gives (3.4). 

(c) I t  is eas i ly  ver if ied t h a t  (3.5) holds if a n y  of (3.1)-(3.4) are  true.  Hence  for 

the  proof  of (3.5) i t  suffices to consider  the  case hn = kn > 0 for all  n. Tak ing  m 1 = m, 

m 2 = 1, hn = k~ = h in (3.9) gives 

A _ >  h h , T 

_> 4 I 'm ,  

wi th  equa l i ty  on ly  if h = -  
m + 1 

m - 1  

(d) I f  m_>3, h_>2, we have  

(3.12) now gives 

m + l  m + l  m - 3  
m - 1  . . . . .  _>m-  1 -- _>0. 

h '2 2 

A~>2 4 m +  = ] " ( m +  1) (m + 9), 

which es tabl ishes  (3.6). 

Def ining the  cr i t ical  d e t e r m i n a n t  Dm of Rm, as in w 1, as the  lower bound  of 

the  de t e rminan t s  of Rm-admissible lat t ices,  we deduce  

Theorem 3. (i) For all m, 
Dm> 4]m,  (3.13) 

m + l  

m - 1  
where equality is possible only i[ - - -  is integral (or in[inite). 
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(if) I] m >  3, then 

Dm>-~(m+ l ) ( m + 9 ) .  (3.14) 

Prool .  (i) (3.13) follows f rom (3.5), with the equali ty clause. 

(if) To prove (if), we first note tha t  the est imates (3.1), (3.2) and (3.4) imply  

tha t  A > ]/(m + 1 ) ( m +  9--) for m >_ 3. Since it is impossible t h a t  hn = kn = 1 for all n it 

follows that ,  for any admissible IZ, either one of (3.1), (3.2) or (3.4) is true, or 

h~ = k~ >_ 2 for some n;  in this lat ter  case, (3.6) gives the result. 

We note  t ha t  Theorem 3 gives the bounds (1.2), (1.3) quoted in w 1 f rom 

Blaney [1], which are known to be precise for infinitely m a n y  m. We see from the 

proofs of (3.1)-(3.7) t ha t  the inequali ty is strict  unless h ~ = l e ~ > 0  for each divided 

cell of L:, which suggests tha t ,  in order to  evaluate Din, it will suffice to  consider 

only such lattices. We shall examine these lattices in detail in the  following section. 

4. Symmetrical Lattices 

We suppose now tha t  t: has determinant  A and tha t  h~ = k~ > 0 for all n. For  

such lattices, the  sequenc e {an) therefore consists of positive even integers; and  by  

Lemma 1, the inequali ty an > 2 mus t  hold for arbitrari ly large n of each sign. 

We first establish some fundamenta l  properties of the  cont inued fractions 1 

[aa, a2, aa, ...], and obtain inequalities, which will be useful in wha t  follows, for frac- 

t ions with positive part ial  quotients. 

The successive convcrgents p,/q~ are defined by  (2.14), i.e. 

p n - l = a n + l p n - p ~  
1}/ (n>- l )  (4.1) 

qn+l  ~ a n + l  qn --  q n - 1  ] 

with 

p o = l ,  q o = 0 ;  P x = a t ,  q ~ = l .  (4.2) 
The ident i ty  

Pn-1 q, - Pn q,-1 = 1 (n >_ 1) (4.3) 

follows immediately  by  induction on n. 

1 The continued fraction [al, as, ...] is easily transformed into a semi-regular continued fraction 

/t~ it3 

"'+la, I +1".1+"" (.,= +1). 
whose convergents have the same value (though the signs of pn and qn may be different). Hence 
some of our results below follow from the cla.usical theory of semi-regular fractions; see for example 
PERRON [8]. 
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Lemma 3. For all n >_ 1, 

Ipnl .+l, Iqnl n, (4.4) 

I[  [urther ~ > 0 [or i = 1, 2 . . . .  , n, then pn > O, qn > O. 

Proof. Since [a~[>_2, (4.1) gives 

I p . + , l - i p n l - - l p n l - l p .  11, Iqn+,l-lqni>-Iqnl-lq.-ll. 
The first two inequalities of (4.4) follow at once by induction. 

since 
qn-1  qn qn-1 qn -a n ( n -  1) 

Now (4.3) gives 

(n_>2); 

= [a1[->2, 

the last inequality of (4.4) follows at once by induction. 

If all a~>0, so that  a~_>2, (4.1) gives 

p n + l - - p n > p n - - p n _ l ,  qn+l--qn> qn--qn_a (n_>l) 

provided that  pn > 0, qn -> 0; since in fact Po = 1, q0 = 0, Pl = at > 2, qa = 1, it follows by 

induction that  pn and qn are positive. 

Lemma 4. The in/inite continued /raction [al, a2, aa, ...] converges to a real number 

satis/ying I ~ [ >- 1 ; and i/ an is not constantly equal to 2 or to - 2 / o r  large n, we have 

I~ I> 1. I[  /urther an > 0 [or all n, then o~ is positive and the convergents p , / qn  /orm a 

strictly decreasing sequence. 

Proof. (i) By (4.3) and (4.4), 

]P--~ -- Pn-~l = - -  
qn q,-1 

(P" Pn-l t  i s so that  the series ~ qn qn-a] 

by (4.4), I~l -> 1. 

1 1 
< - -  ( n > 2 ) ,  

I q n q . - l l  - n ( n - 1 )  

convergent. I t  follows that  ~= l im  p~ exists; and 
qn 

(ii) If a n > 0  for all n, Lemma 3 sho~,s that  pn and qn are positive, so that  

is positive. Also, by (4.3), 

Pn Pn- 1 1 Pn- 1 

qn q. a qn qn- x qn- 1 
since q. is positive. 
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(iii) I f  ax>_ 3, we have  

= [ a l ,  as,  . . . ]  = [ a l ,  ~ s ] ,  

where, b y  (i), ]~sl >- 1 ; hence 

1 
0r  1 -  - -  > a 1 - 1 > 2 .  

cr 2 

Next ,  if a 1 = 2 ,  a ~ _ -  2, we have  

= [2 ,  a ~ ,  ~], I~  [ >- 1 ; 

so t h a t  

215 

1 1 1 
~ .=2  1 - - 2 +  > _ _ 2 + - - - > 2 .  

a~ - - -  I ' ~  I + i I a~ I + 1 
~3 ~3 

I n  the  same way  we m a y  show t h a t  e < _ - 2  e i ther  if a t_< - 3  or if a 1 = - 2 ,  

a 2 >  2. 

Thus  f inal ly  if a l = a  2 . . . . .  ar = +_2 # ar~l ,  i t  follows t h a t  

~ = [ a  1 . . . . .  a t - l ,  OCr], [~1>2, 
So t h a t  b y  L e m m a  3 

I~1>1+ 1 _ - > 1 .  
r 

This completes  the  proof  of the  lemma.  

L e m m a  5. The continued #ac t ion  

= [ a l  , a 2  , a s  . . . .  ] 

with positive partial quotients is increased i /  any  an is increased and an+l, an+s, . . .  are 

replaced by any  integers exceeding 1. 

Proof.  Le t  

fl = [a l ,  a 2, . . . ,  a n - l ,  b , ,  ba+l . . . .  3, 

where bn>am, b~>-2 for i > _ n + l .  W e  m a y  wri te  

r162 = [a 1, as, . . . ,  a n - l ,  xn], fl = [a 1 , a 2 . . . . .  a n - i ,  y , ] ,  

where 

x n = [ a n ,  an+l, .. .] 

yn = [bn, bn+l, �9 ..] =bn  - a,~ + [an, bn+l, . . . ] .  
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B y  L e m m a  4, each of [an, an+l, .-.],  [an, bn+l, . . . ]  lies between a n - 1  and  an and is 

s t r ict ly less t han  an ; and  by  hypothesis  b n -  an-> 1; hence 

F r o m  the iden t i ty  

Xn _~ 1, 

y n  - x n  > 1 + ( a n  - 1) - a n  = O. 

f l - c r  y n p n - l - - p ~ - 2  x n p n - 1 - - P n - 2  

ynqn 1 -- qn-~ xnqn-1 -- qn-z 

Yn -- Xn 

(ynqn 1--qn-2)  (Xnqn- I - -qn -2 )  

where both  n u m e r a t o r  and  denomina to r  are positive, it follows t h a t  f l > ~ ,  as re- 

quired. 

Corollary. F o r  any  n > _ 1, 

[al,  az, . . . ,  an - l ,  an - 1] < ~ <  [al,  a2, . . . ,  a n - l ,  an]. (4.5) 

The second inequal i ty  follows f rom the last  sentence of L e m m a  4. The first  

follows f rom L e m m a  5, by  compar ison of cr wi th  [a 1, a 2, .. . ,  an, 2, 2, 2, . . .],  on not ing 

t ha t  [2, 2, 2, . . . ]  = 1. 

We note  finally t h a t  any  irrat ional  ~ has a unique expansion as 

= [ax, a2, aa . . . .  ] 

where an-> 2 for n > 2 and  an > 3 for some arbi t rar i ly  large n. This  m a y  be described 

as its continued fract ion expansion ' b y  the  neares t  integer above ' .  On the other  hand,  

if the  an are res t r ic ted only by  the conditions t h a t  l an I _  > 2 and  t h a t  an shall no t  be 

cons tant ly  2 or - 2  for all large n, any  i rrat ional  0r has infinitely m a n y  expansions.  

Re turn ing  now to the  lat t ices s with hn = k n > 0  for each n, we see t h a t  

e n ~ h n - k n = O  and so, by  (2.23) of Theorem 2, 

2 ~ o + % + f l o = 0 ,  2 ~ o +  ~0 + ~ o - - 0 .  

Since the  results of Theorem 2 are clearly independent  of the  enumera t ion  of the 

sequence {an}, we have  for all n 

where 
--  ~, ( ~ .  + f ln) ,  ~'1. l ( m  + '~n), (4.6) 

~ n  (In 
On=[an,  an 1 , a n - 2 , - . . ] ,  ~ n = ~ n  [ a n +l ,a n +~ ,a n +3 , . . . ] .  (4.7) ~. 
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Thus s is defined for any n by 

= ~n (x --~) + f t .  (y - i ) / .  
(4.8) 

W = y , ( x  1 ) + ~ n ( y  i) j '  

we therefore describe it as symmetrical. Since 0a > 1, ~n > 1 for all n (by Lemma 4) 

and I~ has determinant A, (4.8) gives 

A 
~ :  0n ~n - 1 {0n (x - 1) + (y _ :}  { (x  - 1) + ~on (y - �89 (4.9)  

Theorem 4. A symmetrical lattice s is admissible/or R,, i /and  only i/the inequalities 

A_>_4(0n~0n--1) = A  + say, (4.10) 
m -  (0n+ 1) (~n+ 1) n, 

4(0,~0~- 1) 
A _> (On - 1) ( ~  - 1) = A~, say, (4.11) 

hold /or all n. 

This theorem is a corollary of the following general result: 

Theorem 5. Let !: be an inhomogeneous lattice with no point on the coordinate 

axes ~=0, ~=0,  and let the chain o/ divided cells AnBnC~Dn be defined /or ~ as in 

w 2. Suppose there exists a point o] ~ in the region 

- m : < ~ < m  2 (mi> O, m2>O ). 

Then there exists some cell o/ the chain which has a vertex in this region- 

Proot. For each n, let Pn denote tha t  one of A~, Cn which is in the first quad- 

rant :  ~ > 0, W > 0. Then it is clear by the construction of one cell from the next that  

no point of l: lies in the interior of the triangle formed by the positive ax~s and the 

line PnPn+: produced. I t  now follows from the strict convexity of the region ~ > _ m  2 

that  all first quadrant points of s satisfy ~W>~ m s if and only if this equality holds 

for all P~. This argument may clearly be applied to each of the four quadrants. 

For the proof of Theorem 4, we note that  the points An, Bn, C,, Dn correspond 

to the values x = 0  or 1, y=O or 1 in (4.8) and (4.9). The conditions that  ~w>_m 

for A~, Cn and that  ~ - 1  for Bn, Dn are thefore just (4.10) and (4.11). 

We now consider some general classes of symmetrical lattices and thus obtain 

upper bounds for D~. 

(i) Suppose that  
a n = 2 a > _ 4  for all n. 
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By (4.7) we have 
x 

0n = ~v. = [2  a ]  

(the cross denoting infinite repetition). Thus On =~on is a root of the equation 

and so 

1 
x = 2 a  - - ,  

gg 

O. =cpn=a + ~ -  l , 

4(0. qn--1) ~a--1 
An+ (0n+l)(qg.+l) ~ a~l 

4(0n ~Vn-- 1) ~ / a + l  
A ; = ( O n _ l ) ( q ~ n _ l ) = 4  a--1 

By theorem 4, the corresponding symmetrical lattice, ~ say, is admissible for Rm if 

(ii) 

A( / : a )=max{4mVa  ~ ,  

Suppose that for all n 

l / a +  11 4 a--L~ t �9 (4.12) 

Then, by (4.7), 

whence 

a2n=2a,  a-~n+l=2b, a > b > l .  

x x x x 

02n=[2a, 2b]=q~2n+l, q2n=[2b, 2a]=02.+1, 

ab + Vab (ab - 1) ab + Vab (ab - 1) 
O.~n= , ~ 2 n =  

b a 

A simple calculation gives, for all n, 

A + _ S V a b ( a b - 1 )  A ; = 8 V a b ( a b - 1 )  
2 a b + a + b  ' 2 a b - a - b  

By Theorem 4, the corresponding symmetrical lattice, Ca, b say, is admissible for Rm if 

A(i~a,b)=max t 8m~aab-(ab--1) 8 V a b ( a b - 1 ) l  (4.13) 
( 2 a b + a + b  ' 2 a b - a - b  i" 

(iii) Suppose that p >  1 and 

a . = 4  if p divides n, 

a. = 2 otherwise, 
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s o  

with an obvious notation, 

• • 

that  {a~} is the periodic sequence {4, 2, 2, . . .  2} (with p -  1 elements 2). Then, 

• • 

0 0 = [ 4 ,  (2 )v -1 ]  2 p §  Vp2§  
P 

3 p - 2  
whence 

A~ 4V~, 2p A~=4Vp~§ 2p. (4.14) 
4 p - 1  ' 

We now show that  
+ + max A ~=A 0 ,  max A ~ = A o .  (4.15) 

Clearly A + and A;  are, like an, periodic with period p, and so it suffices for the 

proof of (4.15) to consider only n = 0 ,  1 , . . . ,  p - 1 .  Since ~V,_l=O o, 0p- l=~o,  we have 

A~:I=  A~ ; in particular (4.15) is trivially true if p _  2. Supposing then that  p_> 3 and 

0 < n < p - 1  we see that  the continued fraction for at  least one of On,~n begins 

[2, 2, ...], while the other begins [2, 2 , . . . ]  or [2, 4, ...]. Hence 

min (On, ~ )  < [2, 2] =~, max (0~, ~n) < [2, 4]=~, 

4 (~1_ _ 1) 52 
A~+ ~. (~+ 1) (~+1) = ~ <  1 < A~, 

which proves the first equation of (4.15). The second is an immediate consequence 

of the following simple lemma, which shows that  AV, is in fact constant for our 

special sequence : 

Lemma 6. I/ a n = 2  and A; is de]ined by (4.11), then An_I=A;. 

w h e n c e  

Proof. We have 
1 

~gn_ 1 = [ 2 ,  an+l,...] = [2, ~gn] = 2 --  - - ,  
qn 

1 
On = [2, an-1 . . . .  ] = [ 2 ,  O n - l ]  = 2 - -  ~ - - ,  

(Tn_ l 

1 

1 A ~ _ I  = On-1  ~On-1 - -  1 __ ~)n-1  On-1  (1) (0~__~- 1) ((Pn-~- 1) 1 ~ ((p~-~- 1) 

1 
n m -  

o2n 



220 E. S. B A R N E S  A N D  H.  P.  F. S W I N N E R T O N - D Y E R  

From (4.14), (4.15) and Theorem 4 we see that  the symmetric lattice, 12~ say, 

A (12a, a ~1) 

A (12~.~+1) = m a x  18mVa(a+ 1)(aZ+a - 1) 

and so if 

A(12a, a+x) 8 V a ( a + l ) ( a 2 + a - 1 )  for m <  2 ( a + l ) z - 1  
2a  ~ - 1 - 2a  ~ - 1 

1 +_2<m_<l_~ 2 (4.18) 
a a - 1  

By (4.13), 12a, a+l is admissible if 

8m Va(a+ 1)(a2+a -- 1) for m >  2 (a+ 1) ~ -  1 
2 ( a +  1) 9 -  1 2a  2 - 1  

Also, by (4.12), 12~ and 12a+1 are admissible if 

V a ~  1 ~/ i  a A (12a)=4 ta----'--l' A (12a+l)=4m + 2  

for m in the range (4.18). Hence to establish (4.17) we need only prove that  

8Ua(a+ 1 ) ( a ~  + a - -  1 ) /  

2a ~ -  1 ~ ' 

corresponding to the given sequence {a,} is admissible for Rm if 

A ( s  (/4m~4p_ 12p' 4 1 / ~ }  " (4.16) 

These results now enable us to prove: 

Theorem 6. Suppose that s is admissible /or Rm (m > 1) and is not a symme- 

trical lattice. Then there exists a symmetrical lattice 12" which is R,~-admissible and has 

A (s < A (12). 

We shah take 12' to be a suitable chosen one of the special lattices 12a, 12a.b, 12~ 

discussed above. 

(i) Suppose first that  1 < m < 3. 

By (3.1) and (3.3), any R~-admissible s which is not symmetrical has A(12)> 

>_2(m+ 1), and so for the proof of Theorem 6 it suffices to establish the inequality 

A (12') < 2 ( m +  1) (4.17) 

for a suitable symmetrical s We define an integer a >  2 by 
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I qo min 4 m  a T 2 '  2 a 2 - 1  

2 < 2 ( a + l ) ~ - I  
if l + - < m  (4.19) a - 2a  z - 1 ' 

rain { 8m]Fa(a+l)(a2+a-1) V ~ l t  
~ (--~i-)-i= i , 4 " a -  1) < 2 ( m + l )  

if 2 ( a + 1 ) 8 - 1  2 - < m <  1 + - - .  (4.20) 
2a u -  1 - - a -  1 

m 
Since m +  1 increases with m, we need only verify that  (4.19) and (4.20) hold at the 

particular values of m for which the two expressions to which the 'rain' refers are 

equal. Thus, for (4.19) we have to show that 

a 
4 m  V a ~ <  2 (m+ 1) 

2 W(a + 2) (a + 1) (a s + a - 1) 
at m-- 2a~_  1 ml, say; (4.21) 

Now 

so that 

Hence 

] / a ~ - I  2 ( m + l )  at m =  2 ( a + 1 ) 8 - 1  
4 t a - 1  < 2V(a__l)a(a2+a_l)=ma, say. (4.22) 

(a+2)  (a+ 1) (aS+a - 1)=ar + 4aa +4a2-a -2  

< a  4 + 4 a  a + 4 a  S=(a  s + 2 a )  2, 

2 a ( a + 2 )  
m l <  2 a 2 _ 1  

~ ( 1 +  1 )  4 a 2 + 4 a - - 1  a2+a-~ V a 
> 4 a ( a + 2 ) = ~ / ~ ( a + 2 )  a + 2  

V a 
> a + 2 '  

this last inequality being equivalent to 

(a S + a - 1 )  2 = a  4 + 2 a  a+�89 2 - ~ a +  

> a  ~ + 2 a  ~ = a  a(a+2) ,  

which is trivially true. This proves (4.21). 
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Next, 

whence 

( a -  1) a (a  2 + a -  1 ) = a  4 - 2 a  ~ + a  

1 
< a 4 - 2 a S + a +  l - - + - -  

a 

2 (a + 1)u _ 1 
m s ~ 

1 
4 a ~ + 4 a - l + -  

a 
(m s + l) > 

2 
4 a ~ - 4 + -  

a 

1 
4 a 2 

We s-'~pose a >  3, since (4.22) can be simply verified for a =  2; then we can replace 

this last i,mquality by 

1 (ms + 1) > 

This gives 

as required, since 

4 a S + 4 a - 2  aS + a-~  ~/-~1 
4 a ~ - 4  ~/(a--l) (a+l) 8 a-~--I 

V a +  1 
~(ms+ 1)> ~ - - 1 '  

(a2+a-1)2=a4+2aa-a+l>a4+ 2a 8- 2 a -  l = ( a -  1) (a+ 1) 8 . 

This completes the proof of Theorem 6 for 1 < m_< 3. 

(ii) We next consider the range m_>3. From the estimates (3.1), (3.2)and (3.4), 

we see that  it suffices to give a symmetrical s  with 

A (/~') < min {(~ + V2) (m + 1), Vm-+ 1 (2 + VmVmVmVmVmVmVmVmVmVm~ 5)} (m_> 3). 

We note that  

m + l  / ~ + 1  ( 2 + W + 5 )  I/;~--+-/(2 + W + 5) 
- - ,  and 

m m + l  m 

(4.23) 

are all decreasing functions of m. 

By (4.12), s is Rm-admissible if 

A(i~2)=max - ~ ,  4 j =  }~ for m_>3; 

and by (4.13), s and s are Rm-admissible if 
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[4m~/6 } 4mV~ for m>_5, A(l:l.3)=max 5 , 4 V 6 -  5 

A,~l .u ,=max {82V~, 8V2}_87 l /2  for m>7.  

It  is easily verified that (4.23) holds in 3 _< m_< 8 by taking 

I~' = 1~ if 3_<m_<5, 

1~'=1~1.3 if 5_<m_<7, 

s if 7<_m_<8 
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(since the inequalities need be tested only at m=5, m =  7 and m=8 respectively). 

For m>  8, (4.23) becomes 

A ( s  (m>8). (4.24) 

Define an integer p_> 2 by 
4 p -  l _ < m < 4 p + 3 .  (4.25) 

By (4.16), s is admissible for R~ if 

A (F~'~+l)=max { 4mVp2 +4p+ ~ 4Yp 2 +4p+ 3}=4Vp ~ + 4 p + 3 .  for m < 4 p + 3 .  

4 Vp ~ + 4 p +  3< ~/4pp (2 + V4 p + 4). 

On squaring twice, this last inequality reduces to 

4 p ( p 2 -  3) > 9, 
which is obviously true if p_> 3. 

If p=2 ,  we need only verify that (4.26) holds for m> 8, i.e. that 

4V <a(2+Vi ). 

Thus (4.24) is established, and the proof of Theorem 6 complete. 

As an immediate deduction from our inequalities (3.1)-(3.7) and our results for 
P the special lattices s s we have 

i.e. that 

Taking s =s for m satisfying (4.25), we shall have established (4.24) when we 

show that 
4Vp2+4p+3<Vm+l(2+Vm+5) for m>_4p-1, (4.26) 
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Theorem 7. (Blaney [1]) 

Dm = 4  Vm. 

(ii) I /  m is o/ the /orm 48--1  ( s = l ,  2, 3,. . .) ,  then 
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(i) I[ m is o/ the [orm 1 + 2  ( r = l ,  2, 3,. . .) ,  then 
r 

Proof. (i) 

missible for 

Dm = V(m + 1) (m + 9). 

If m =  1 + 2  (r> 1), the symmetrical lattice s is, by (4.12), Rm-ad- 
r 

T A(Cr+l)=max { 4 m ] / ] r ~ ,  

so that  Dm <- 4 Vm. By Theorem 3 (i), Dm >- Vm. 

(ii) If m = 4 s - 1  (s_> 1), the symmetrical lattice s is, by (4.16), Rm-admissible for 

A (s = max ( 4 8 -  1 ' 
and so 

nm<-4 sVs~2s=V(m+l) (m+9) .  
By Theorem 3 (ii), 

Dm>U(m + 1)(m+9~. 

+2s ,  

5. The evaluation of  Dm 

The foregoing analysis provides a 'local' method for the evaluation of Dm ana- 

logous to that  provided by ordinary simple continued fractions for corresponding 

problems connected with homogeneous binary quadratic forms. Here we apply the 

method to determine Dm for the range 

21 1 1098 V]o + 6750 
11 = .9090... _<m<_ =2.1251- . - .  (5.1) 4810 

We first establish some simple inequalities: 

Lemma 7. Suppose that 0n > 1, ~0n > 1, and 

4 ( 0 , 9 , - 1 )  
A~ <_ D, (5.2) 

( o .  - 1) ( ~ .  - 1) 

4(0 .9 , , - -1  ) < D  
A+" = (0. + 1) (9. + 1 ) - - s  (5.3) 
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where D < 2 (k + 1). Then 
D 

D(0,~- 1 ) - 4  4 + ~ -  (0n+ l )  
< ~n< D ( O n - 1 ) - 4 0 . -  - D 4 o . -~ - (o .  + 1) 

and 

(5.4) 

I 2_(k- 1) 1/~-- 16k (5.5) 
On - -2(k  + l ) - D  - < 2 ( k + l ) - D  

These inequalities also hold i/ 0~, q~ are replaced by q~, 0~. 

Proof. We note that  A;  is a decreasing function of 0. and ~v., while A~ + in- 

creases with 0. and ~ .  In particular, from (5.2), 

40 .  
D >  A; > 0 ~ - ~ "  (5.6) 

Now (5'.2) and (5.3)give 

(5.4) implies that  

i.e. 

(5.4), noting that  D (0, - 1 ) -  4 0~ > 0 by (5.6). Also 

D ( 0 ~ -  1 ) - 4  
D(O~-  l ) - 4 0 ~ -  

D 
4 + ~ ( 0 . + 1 )  

D 
40~-k- .  (0~ § l) 

O~ (2k + 2 -  D ) - 4 ( k - 1 ) O , ~  § D +  2k + 2<O. 

Since D < 2 k +  2, by hypothesis, this holds if and only if (5.5) is satisfied. 

Finally it is clear by symmetry that  we may interchange 0~ and ~ in the above 

argument. 

Theorem 8. We have 

16 m ~/15 21 7 V30 
- -  < _ ~ < - - - - ,  ( 5 . 7 )  D~ 21 i/ l l  20 

71/3o 
D~= 4 V2 i/ 20-- -~m<2' (5.8) 

Din: 2mV~ i~ 2 <_m<121"--~ (5.9) 
13 

D,n-  24V10 i/ ----_12["5<m<27_ -- ,  (5.10) 
13 13 13 

8m l,/10 27 1098 [,/~ + 6750 
--  <_m< (5.11) 

Dm 9 i/ 13 4810 

All critical lattices are given by the symmetrical lattices corresponding to the sequences 
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• • 

(4, 16) /or 21_ < m < 7 V ~ _ _ ,  (5.12) 
11 - 20 

• 

(6) [or 7[/~_<m_<12~/5-- , (5.13) 
20 13 

• • 
(4,10) /or --_12V5<m<lO98V~§ , (5.14) 

13 4810 

1098 Vi5 + 6750 
(oz (4, 10), 4, 8, (4, 10) oo) /or ~ m= 4810 (5.15) 

Proof. B y  Theorems 6 and  4, we have  only to show t h a t  the  sequences in 

(5.12)-(5.15) are the  only sequences of posit ive even integers for which the  inequal i ty  

m a x  (A~, m A  +)_<Din (5.16) 

holds for each n, where D~ is defined by  (5.7)-(5.11); and tha t ,  for some n, equal i ty  

holds in (5.16) for each of the given sequences in the  s ta ted  range of values  of m. 

(i) Thus,  we begin by  considering sequences {an} satisfying 

16m V~ 
mA~_< - -  

21 
• 

for each n, and prove t h a t  the only such sequences are (4, 16) and  (6). 

The hypotheses  of L e m m a  7 are satisfied, for each n, with 

(5.17) 

(5.18) 

D =  4~/2 = 5 - 6 5 6 8 5 . . . ,  

D 16 V~ 
k 21 

-- 2.  95084 ....  

k = 1 .91702 .. . .  
20 

Working  with sufficient accuracy  to foul  places of decimals, (5.5) gives, for any  n, 

I 1. 8340 1. i530 
0n 0 . 1 ~  < 0 . 1 7 7 2 '  

1 The suffixes c~ imply infinite repetition to the left and right respectively. Thus this is the 
sequence (... 4, 10, 4, 10, 4, 8, 4, 10, 4, 10, ...). 
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whence 
3 .8<0~<16 .9 .  

By Lemma 5, Corollary, On=[an, an-1,. . .] lies between a n - 1  and an; since an is 

even, it follows tha t  an can take only the values 4, 6, 8, 10, 12, 14, 16. 

Suppose tha t  some a t = 4 .  Since all an-< 16, Lemma 5 gives 

and so, by  (5.4), 

Or ~ [4, 16, ..] < [4, 16] -- 6s = 3" 9375, 

(5. 6569) (2. 9375) - 4 
9r > (5" 6569) (2" 9375) - 4 (3" 9375) 

12.616 
> > 1 4 . 5 .  

0- 867 

Since ~r=[ar+],-..] <at+l ,  it follows tha t  a r+l=16.  By symmetry,  ar_l= '16 (since we 

may replace Or, ~0r by  9T-1, 0r-I in the above argument).  

Suppose next tha t  some a r=16 .  Then Or> 15 and (5.4) gives 

4 §  16 (2. 9509) 51. 2144 
~0r < 60 - 16 (2" 9509) = 12" 7856 < 5, 

whence at+l=4; by symmetry,  at-l=4. 
I t  follows at once from these last two results tha t  either the sequence {an} is 

• x 

(4, 16) or 6 < an <-14 for all n. We now show that  the second alternative can hold 
x 

only for the sequence (6). For suppose that  some an >-8. Then, using Lemma 5, we havo 

whence 
0 n _ > [ 8 , 6 ~ ] = 5 + 2 ] / 2 ,  9n>_[6oo]=3+2]/2,  

4 [ ( 5 + 2 V ~ ) ( 3 + 2 V ~ ) - l ]  8 + 9 / ~  16Vi~ 
A + > - -  = 2 . 9 6 1 . . .  > , 

-- (6 + 2 V2) (4 + 2 ]/2) 7 21 

contradicting (5.18). 
x • 

Thus the only sequences which can satisfy (5.17), (5.18) are (4, 1~6) and (6). 

Also (using the results of w 4, (4.12), (4.13)) we have 

x 
+ An = 2 Vi, a ;  = 4 Vi for (6), 

A+ 1 6 ] / ~  1 6 ] / ~  for (4, 16), 
n--  ~ , A ; =  11 

This proves (5,7) and (5.8), and establishes the assertions on critical lattices for the  

range n_m~< _<2. 
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(ii) 

sat isfying 
A~ + _  2V2 = 2 - 8 2 8 4 2 . . .  

A ;  < 24__~/~ = 5- 83805 ... 
13 

for each n are (6) and (4, 1 . 

The  inequalities (5.19), (5.20) imply  t ha t  the  hypotheses  of L e m m a  7 are satis- 

fied, for each n, with 

To prove  (5.9) and  (5.10). we begin by  proving t h a t  the  only sequences 

(5.19) 

(5.20] 

24 Vi5 
D 5 .83805  . . . .  

13 

--_D- 2 i ~  = 2 . 8 2 8 4 2  . . . .  
k 

k = - -  2 - 0 6 4 0 6 . . .  
13 

Hence  (5.5) gives, with sufficient accuracy,  

2- 1281 < 1 " 0 2 9 0  
o. o:~bb6 0.2900' 

i.e. 
3 . 7 9 <  0n < 10.89.  

Thus  a~ can take  only the values  4, 6, 8, 10. 

Now if a ~ = 4  and a,,~l ~ 8, we have  0~ < 4 ,  ~ < 8 and so 

4 •  124 
A ~ >  - > 5 . 9 ,  

3•  7 21 

contradic t ing (5.20). Hence  if an 4, we require an=l= 10; and, b y  s y m m e t r y ,  also 

a n - 1  = 1 0 .  

Next ,  if a ~ = 1 0  and a n ~ l ~ 6 ,  we have 0 ~ > 9 ,  ~ n > 5  and so 

4 •  44 
An > i 0 ; ~ - : : 1 5  > 2.9, 

contradic t ing (5.19). Hence  if a ~ = 1 0  we require a~+1=4 ;  and, by  symnaetry,  also 

a n _ l ~ 4 .  
• • 

The results of the last  two paragraphs  show tha t  either {a~} is (4, 10) or 6 <_ an ~ 8 
• 

for each n. The second a l te rnat ive  call hold only if {a,} is (6). For  otherwise we 

8 §  
,obtain A~';> . . . .  2 -961 , precise]y as in (i), and this contradicts  (5.19). 

7 ' ' "  
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• 

Thus the only sequences satisfying {5.19) and (5.20) are (6), for which 
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• x 

and (4, 10), for which 

A~+=2V2, A ; = 4 l / 2 <  2 4 V ~  for all n, 
13 

24 Fib A ~ -  , A + n 
13 

v ~  8 
- - ~  < 2 V~ for all ~, 
9 

This proves (5.9) and (5.10) and establishes the assertions on critical lattices for the 

range " -  ~ < 27 

(iii) For  convenience, we set 

1098 Vi5 + 67~0 
m ~  4810 = 2 .  12519 . . . .  

For  the proof of (5.11) we have first to  show tha t  the only sequences satisfying 

8 V i b  
A~ < ~ - - - 2 . 8 1 0 9 1 . . .  

9 
(5.21) 

~;  _< 8 moVi5 976 + 600 Vi5 = 5 . 9 7 3 7 3 . . .  
9 481 

• 

for all n are (4, 1()) and (:r 10), 4, 8, (4, 10)~).  

Using Lemma 7 with 

D 
~ - = 2 " 8 1 0 9 1  . . . .  k = m o = 2 -  12519.. .  D = 5 .  97373 . . . .  

we have to sufficient accuracy 

]0~ 2. 2504] 1.6827 
�9 2767 �9 2767 

i ~  

Hence 4<_a~ ~ 14 for all n. 
x 

Since a~ ~ 4 for all n, 0~ _> [4] = 2 + V3 > 3 .  732. 

2.05 < 0n< 14.22.  

I f  now 9~_>11 we have 

(5.22) 

An+> 4 ( 4 1 " 0 5 2 - 1 ) - 4 0 " 0 5 2 ~ 2 . 8 2 ,  
4 . 7 3 2 •  14. 196 

contradict ing (5.21). I t  follows tha t  f f ~ < l l  for all n and so tha t  a~_<10 for all n. 

Now if an=6 for some n, we have 

o~<_[6,1~o]=1+F~, 0~>_[6,~]=4+V~. 
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Now (5.4) gives, to sufficient accuracy, 

(5. 9738) (4. 8990) - 4 4 + (2. 8110) (6. 8990) 
(5. 9738) (4. 8990) - 4 (5. 8990) < qn < 4(5 .  8990) - (2. 8110) (6. 8990) ' 

whence 
4 - 4 < r  

and so an+1~6 .  By symmetry,  also an_l=6. By repeated application, it follows that  

a n = 6  for all n. But  this involves A~ + = 2 V 2 = 2 . 8 2 8  . . . .  contradicting (5.21). Thus 

an 4= 6 for all n. 

No two consecutive elements of the sequence {an} can be 4. For if a n = a n + l = 4  

we have 0n <4 ,  Cn <4 ,  
4• 15 20 

3 •  3 

contradicting (5.22). Also no two consecutive elements can be 8 or 10. For if an---8, 

an.;t>8 we have 0 , > 7 ,  ~ n > 7 ,  
4•  

A + n > - - ~ 3 ,  
8 •  

contradicting (5.21). Thus the sequence must  be of the form 

... , 4, a_2, 4,  %, 4, a2, . . . ,  
where each aan is 8 or 10. 

• x 

I f  a2n=10  for all n, the sequence is (4, 10). Otherwise some a2,=8; then 

whence 

• • 

0 ~ n = [ 8 , 4 ,  a~,_2 . . . .  ]_<[8,4,10] 6 + 3 V 1 0  
2 

q~2n=[4, a.z.+2, .]_<[4,1~)] 1 0 + 3 [ / ~  
"" 5 

4['0+3  ''10+3V '1]10 
As >.  

976 + 600 1/~ 
481 

this is consistent with (5.22) only if the equality sign holds throughout, i.e. if the 

sequence is tha t  given in (5.15). 

We must now consider the values of A+n, A~ for the sequences of (5,14), (5,15). 
• 

I f  {an} is (4, 1~)) we have, as in (ii), 

8,no V16 A+= -sj/i5 Ax-24 / =5.83 < - -  5-97. . .  for . i l  
n 9 ' 3 "'" 9 
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For  the sequence (5.15), choose the enumerat ion so tha t  a o =  8. As in the above 
x x x x 

calculation, we have 0o=90_1= [8, 4, 10], 900= 0_1= [4, 10], 

For n > 0, 

whence 

also 

whence 

Thus  

A ~  = A -  1 
976 + 600 V ~  8 m o ~-0  

481 9 

x 

90a n = [4, = 900, 

02n = [10, 4 . . . .  ] >  0o, 

• • 

90.2n ~1 = [10, 4 ] - -  1 0 +  3 V i o >  9 . 7 4  
2 

02n+1 = [4, 10 . . . . .  4, 10, 4, 8, 4, 10 . . . .  ] 

• ' i o  _> [4, 8, 4, 1~)] = 38 - ]/ 0 > 3 .87 ,  
9 

A~n+ 1 < 4 ((9" 74) (3" 87) - 1) 146" 7752 8 m  o l/iO 
( 8 . 7 4 ) ( 2 . 8 7 )  -- ~ . - ~  = 5 �9 85 ... < - - - ~ - - - -  �9 

~ V 8  m o 
m a x  A~-- - - ~ ,  

9 

for n >  0 and so, by  symmetry ,  over all n. 

Finally, the values of 0n and 90n at  any  point  of the sequence (5.15) are less 
• • 

than  or equal to  the corresponding values of 0n and 90n for the sequence (4, 10), 

with strict  inequali ty for one of 0n, 90n, so t h a t  

sVi5 
A + < -  for all n. 

9 
x x x x 

Since 0n, 90n tend to [4, 10], [10, 4], in some order, as n ~  + ~ ,  it follows tha t  

8 (~6  
lim A + = -  

n~oo  9 

The above results establish (5.11) and the assertions on the critical lattices for 

~ < m < _ m  o. 

6. I t  is clear from the proof of Theorem 8 that ,  for the range (5.1) of values 

of m with the exception of the end-point  

1098 ~/1-0 + 6750 
m = m ~  - -  4810 ' (6.1) 
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any  admissible lattice s either is a multiple of a critical lattice (essentially unique) 

or satisfies an  inequal i ty  
A (s >_ Dm (1 + (~m), ~}m > 0. (6-2) 

Thus  we m a y  say tha t  D,, is isolated. 1 For  any  part icular  value of m it is not  

difficult to  obtain an  explicit value for (~m- As an  example we prove 

Theorem 9. I[ m :  2 and 1~ is Rm-admissible, then either A (C)>--V33 or I: is a 
• 

symmetrical lattice corresponding to the sequence (6). 

Proof.  The result will follow if we show tha t  the only sequence {a,} satisfying 

A ;  < I,/~ / (6.3) 

2A <V J 
• 

for all n is (6). 

The hypotheses  of L e m m a  7 are satisfied, for each n, with 

D=V33,  k = 2 ,  
and so we find from (5.5) 

2 < 1 

i.e. 

[4,  21= 6+ (6.4) 

I t  follows easily f rom (6.4) t ha t  4_<an _< 12 for each n, and t h a t  if any  element of 
• x 

the sequence is 4 or 12 then the  sequence is (4, 12). 

Fo r  this sequence we have 

for each n, and (6.3) is not  satisfied. 

Thus (6.3) implies t h a t  6 <  an -< 10 for all n. I f  now some an ~> 8 we have, pre- 

cisely as in the  proof of Theorem 8 {i), 

A+_> 8 + 9 V ~  

• 

contradict ing (6.3). I t  follows tha t  the sequence must  be (6), as required. 

On the  other  hand,  it is easy to see tha t  Din, (where m o is defined by  (6.1))is 

not isolated. We can approximate  to the sequence (5.15) by  sequences of the type  

. . . .  4, 8, (4, 10)n., 4, 8, (4, 10) . . . . . .  (6.5) 

1 The existence of such a result for m = 2 was first established by Davenport [4], Lemma 14. 
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where the  n~ are arbitrari ly large positive integers. For  such sequences the  values of 

max  A~ and max  A~ + are arbi trar i ly close to  those for the sequence (5.15). Hence 

these sequences yield admissible symmetr ical  lattices of determinant  arbitrari ly close 

to  Din,. 

We have been unable to evaluate Dm for general m near (but greater  t h a n ) m  0. 

I t  is not  difficult to  show that ,  for m sufficiently close to m 0, all critical lattices 

are derived from sequences of the type  (6.5); and there is good reason to  believe tha t  

the  subscripts ~ behave in a similar way  to  those occurring in Markoff 's  classical 

papers on the  (homogeneous) min imum of a b inary  quadrat ic  form. 1 T h i s  type  of 

difficulty arises for infinitely m a n y  values of m in the range 1 < m < 3 .  

7. We conclude by  giving the region K referred to in Swinner ton-Dyer  [7], 

which satisfies the conditions of Theorem 4 of t h a t  paper  and whose critical lattices 

have either no or one point  on the boundary  of K.  We define K by  the inequalities ~ 

xy> -1,  

xy<2 if x, y are both  ncgative,  

x y < 2 + 2 e cos ~ g (log (x/y)/log 2} if x, y are both  positive, 

where e is a fixed constant  satisfying 

0 < e <  3~/,3~ - 1. 

K is automorphic,  since it admits  the au tomorph  

x'=2nx, y'=2-ny 

for  all integral n ;  and  it is easily seen to  satisfy the  other  conditions of [7] Theorem 4. 

Since K lies inside - 1 - e < x y  < 2 + 2 ~ and contains - 1 < x y < 2, we deduce from 

Theorem 8 t h a t  

4 V2_< A (K)_<4 (1+  e) ]/2 < ] / ~  

(where A (K) is the  inhomogeneous critical de terminant  of K).  I t  now follows from [7] 

Theorem 4 tha t  there are K-admisssible lattices A with d(A)___4 (1 +e ) | / 2 ,  and from 

Theorem 9 tha t  all such lattices are of the  form 

1 See also L. E. Dickson, Studies in the Theory of Numbers (Chicago, 1930), 79-107. 
2 This body is an obvious analogue of that given by Cassels [2] in order to prove a corresponding 

result for the homogeneous critical lattices of an automorphie star body. 
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x = 2 ((~/2 + 1) (u - 91--) + (1/2 - 1) (v - I)} 

y =/~ {(V2 - 1) (u - 1) + (V2 + 1) (v - ~)}, 

where u, v run th rough  all integral values and  2 , / t  satisfy 

d ( A )  < l  +e.  

1<_2~= 4V~ - 

W e  now examine what  fur ther  conditions on 2,/~ are needed to make  A K-ad-  

missible. The only doubtful  points of A are those which lie in the first quadrant  

and have x y = 2 2 # ;  for x y / 2 #  is an integer for every  point  of A. These points are 

given by  x = 2 ( V 2 + l ) ~ n V 2 ,  y = # ( ] / 2 - 1 ) 2 n V 2  for any  integer n. For  these points to 

lie outside K we require 

2 /x>  1 + e  cos ~ ~t {log 
(2/~) + 4 n  log (v~+ 1)/ 

log 2 

for all n" and since log (~/2+ 1) ' log 2 - is irrational we can choose n so tha t  the expression 

in curly brackets is arbi trar i ly near an  integer. Thus  A is K-admissible if and only 

if ~ t # > l + e ,  and critical for K if and only if 2 ~ t = l + e ;  while A ( K ) = 4 ] / 2 ( 1 + ~ ) .  

I t  is easy to  see tha t  a critical lattice A cannot  have more than  one point  on 

the boundary  of K,  and has one if and only if 

/z 
for some integers, m, n. 
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