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1. I n t r o d u c t i o n  

A basic question in the theory of nonlinear partial differential equations is: when can a 

singularity form and what is its nature? The typical well-posedness result (see e.g. [23]) 

asserts that  either a solution of a PDE exists for all time or else there is a time T < o c  

such that  some norm of the solution becomes unbounded as t T T; the latter phenomena 

is called (finite-time) blow-up. 

The behavior of the solution as the blow-up time is approached is of particular 

interest. A simple kind of singularity occurs when the solution itself becomes unbounded 

in a finite time. For models describing water waves we say that  wave breaking holds if 

the solution (representing the wave) remains bounded but its slope becomes infinite in 

finite time: the profile will gradually steepen as it propagates until it finally develops a 

point where the slope is vertical and the wave is said to have broken, cf. [35]. 

Blow-up techniques are quite particular to each type of equation; there is no general 

method [34]. We present now a quite representative sample of methods to accomplish 

blow-up for nonlinear wave equations; see also the recent surveys [2], [3], [34]. 

The functional method (see [17], [22]) consists in introducing an appropriate func- 

tional F of a solution, depending on time, and using the PDE to get a (first- or second- 

order) differential inequality for F which implies finite-time blow-up for well-chosen initial 

data; surveys can be found in [21], [34]. 

A more sophisticated method than the functional method is the averaging method: 

introducing appropriate coordinates it is sometimes possible to prove the breakdown of 

certain averaged quantities (see [2], [33]). 

For semilinear equations it is possible to define the maximal domain of existence of a 

solution and to t ry  to understand the behavior of the solution near the boundary of this 

domain; for the equation u t t - U x x -  I~tlP=0 with l < p < e c ,  any solution which blows up 
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in fact becomes infinite on a noncharacteristic Cl-curve in the (t, x)-plane [5]: near this 

blow-up curve the solutions are governed by the ODE utt=lu]P (see also [2]). 

By analyzing the behavior of solutions of the scalar conservation law ut+f(u)x=O 
along characteristics and using blow-up results for ODE's, a proof of the blow-up of the 

first derivative (even if the initial data  are C a )  was given by Lax [26] and developed in 

[20] and [27]; a somehow similar idea was used in [25]. 

Another well-established method refers to the search of blow-up for solutions of a cer- 

tain given form containing undetermined coefficients or functions and a small parameter 

(see [2], [18], [19]). 

We need a different approach to prove blow-up (in the form of wave breaking) for 

some physically relevant equations modelling shallow water waves and for which wave 

breaking was conjectured. Let us first present the equations under consideration. 

The problem of long water waves dates back to the experimental work of Russell 

(1844). The Korteweg-deVries equation (KdV) was introduced in 1895 to model the 

behavior of long waves on shallow water in close agreement with the observations of 

Russell: 
ut +6uux-+-Uxxx = O, 

(1.1) 
u(0, x) = uo(*), 

with u(t, x) representing the wave height above a flat bottom. The KdV model admits 

solitary waves which present soliton interaction: two solitary waves keep their shape and 

size after interaction although the ultimate position of each wave has been affected by 

the nonlinear interaction (see [35]). KdV has a bi-Hamiltonian structure which permits 

to obtain very precise information about the structure of the equation by the inverse 

scattering method, the equation being integrable (see [28]). 

However, as soon as u0CHI(R) ,  the solutions of (1.1) are global, cf. [24], and it is 

known that  some shallow water waves break! Whitham [35] emphasized that  the breaking 

phenomena is one of the most intriguing long-standing problems of water wave theory, 

and since the KdV equation can not describe breaking, he suggested the equation 

ut+uuz+ f Ko(x-~)u~(t, ~) d~ = O, 
art (1.2) 

u(o, x) = uo(x), 

with the singular kernel 

Ko(z) = 

as a relatively simple model equation combining full linear dispersion with long wave 

nonlinearity, and conjectured that  it describes the effect of breaking of waves. 
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It seems quite natural to generalize (1.2) by replacing Whitham's integral operator 

by an arbitrary pseudodifferential operator, considering instead of (1.2) the equation 

ut+uuxq-K[u] = O, 

=u0(x), 
(1.3) 

where the operator K is given by 

1s 
K[u](x) = ~ x(~)g(t,~)ei~Xd~, 

g(t, 4) being the Fourier transform of u(t, x). The function x, defining the operator K,  

is called the symbol of the operator. In general, if x is a polynomial then K will be a 

constant-coefficient differential operator, while if x is not a polynomial then K will be 

nonlocal, in the sense that  a change in the values of a function g inside an open set U 

will affect the values of K[g] at points outside U. For x({)=i ({( tanh  4)) 1/2 we obtain 

Whitham's original equation (1.2). With this approach the Whitham-type equations 

(1.3) represent, as particular cases, many equations that  are of great interest in problems 

of modern mathematical physics. For an outline of a number of physical problems leading 

to nonlinear equations of type (1.3) we refer to [29]. 

If, in contrast to KdV, the equation (1.2) describes the phenomenon of wave break- 

ing, the numerical calculations carried out for the Whitham equation do not support any 

strong claim that  soliton interaction can be expected, cf. [13]. 

Recently (see [7]), R. Camassa and D. Holm derived an equation modelling the same 

phenomena as KdV and Whitham's equation: 

Ut  - -  U t x x  q- 31 tUx  = 2~t x u x x  q- ~ t l t x x x  , 

u(0,x) :u0(x). 
(1.4) 

Unlike KdV (which is an approximation to the equations of motion), equation (1.4) 

is obtained by approximating directly in the Hamiltonian for Euler's equations in the 

shallow water regime, el. [8]. It is a good approximation for the full inviscid water wave 

equation just as consistent in the small-amplitude shallow water regime as KdV or 

Whitham's equation, ef. [4], [8]. 

Actually, equation (1.4) was obtained formally more than 15 years ago by Fuchs- 

steiner and Pokas (see [15], [16]) as a bi-Hamiltonian generalization of KdV; they also 

proved that  (1.4) is formally integrable. As noted in [31], the novelty of Camassa and 

Holm's work was that  they gave a physical derivation of (1.4) and found that  the equation 

has solitons. This led to numerous papers devoted to the study of (1.4), see [1], [4], [6], 

[11], [31], and the citations therein. 
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In [7] Camassa and Holm conjectured that  an initial profile having a sufficiently 

negative slope steepens and verticality develops in finite t ime--wave breaking occurs. 

w will provide the key result to prove this conjecture in w 

As noted by Whitham [35], it is intriguing to know what mathematical models for 

shallow water waves could include both the phenomena of soliton interaction and wave 

breaking. The Camassa-Holm equation reconciles these properties which have been 

known for different models (KdV and Whitham's equation, respectively) and has the 

potential to become the new master equation for shallow water wave theory, cf. [16]. 

The formal approach to prove wave breaking for Whitham's equation (1.2) and 

the Camass~Holm model (1.4) originates in an idea of Seliger [32]. For the nonlinear 

nonlocal equation of type (1.3), 

{ u +uux + fR (1.5) 
u(0 ,  x)  = 

where K is a regular (continuous and integrable over R), symmetric kernel, monotonically 

decreasing on R+,  Seliger [32] was able to formally show wave breaking by a rather in- 

genious argument: consider ml (t):=minx~rt [Ux(t, x)], m2(t ) :=maxx~a [ux(t, 5)] attained 

at X=~l(t) and x=~2(t), respectively. By differentiating (1.5) and setting x=~i(t),  i=1,  2, 

he obtained formally differential inequalities for ml and m2 which yield the desired wave 

breaking. A similar idea was used recently in [29] to settle the long-standing conjecture 

of Whitham [35] regarding wave breaking for the equation (1.2). This formal analysis 

is however not mathematically rigorous: it is impossible to guarantee the smoothness of 

the curve ~l(t) on which minxcR [u~(t, x)] is attained. Therefore, it seems that  one has 

to assume in addition that the curves ~l(t) and ~2(t) are smooth (see the results for wave 

breaking in [29, Chapter 1], for example). 

The aim of the present paper is to show how one can avoid this additional strong 

assumption and therefore to prove rigorously the breaking of waves property conjectured 

for various models of type (1.3). We also apply the method to the Camassa-Holm 

equation. 

2. T h e  a b s t r a c t  key  r e su l t  

The result in this section regards the time evolution of the slope (in x) at an inflection 

point for a function v(t,. ) cH  2 (R) with a Cl-dependence on the time parameter t; later 

on, v(t, x) will be a solution of a Whitham-type equation (1.3) or of the Camassa-Holm 

equation (1.4). 
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THEOREM 2.1. Let T>O and vE C 1 ([0, T); H 2(R)). Then for every t~ [0, T) there 

exists at least one point ~(t)ER with 

,~(t) := in~  Ivy(t, x)] = ~ ( t ,  ~(t)), 

and the function m is almost everywhere differentiable on (0, T) with 

dm 
dt (t)=vt~(t,~(t)) a.e. on (O,T). 

Proof. Let c>0 stand for a generic constant. 

Fix te[0, T) and define m(t):=infxcR[v~(t,x)]. If m(t))O we have that  v(t , . )  is 

nondecreasing on R and therefore v(t,. ) - 0  (recall v(t,. )cL2(R)) ,  so that  we may as- 

sume re(t)<0. Since vx(t,. ) c H I ( R )  we see that  limlxl~ ~ Vx(t, x)=0 so that  there exists 

at least a ~(t) e R  with re(t) =v~(t, ~(t)). 

Let now s, tC [0, T) be fixed. If re(t) <~rn(s) we have 

0 < re(s) - .~(t)  = i n f  [~x (~, x ) ] - ~ ( t ,  ~(t)) <. ~=(~, ~(t)) -~x(t, ~(t)), 

and by the Sobolev embedding HI(R)  C L ~ ( R )  we conclude that  

Im(8)-.~(t)l ~< Ivx(t)-v~(s)lL~(~) < c Iv~(t)-v~(8)l.l(R). 

Hence the mean-value theorem for functions with values in Banach spaces- -Hi(R)  in 

the present case--yields (see [12]) 

jm(t)-m(s)l<~clt-s  j m a x  [IVt~(T)JHI(R)], t, se[O,T). 
O~T~max{s,t} 

Since vt~cC([O,T), Hi(R)) ,  we see that  m is locally Lipschitz on [0, T) and therefore 

Rademacher's theorem (cf. [14]) implies that  m is almost everywhere differentiable on 

(0,T). 
Fix tC(0, T). We have that  

v~(t+h)-vx(t)h vt~(t) Hl(R) ---~0 as h--*O, 

and therefore 
vx( t+h ,y ) -vx ( t , y )  

sup vtx(t,y) --~0 as h---~O, (2.1) 
ycl~ h 

in view of the continuous embedding H 1 ( R ) c L  ~ (R). 
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By the definition of m, 

m(t+h) = v~(t+h, ((t+h)) <. v~(t+h, ((t)). 

Consequently, given h>0 ,  we obtain 

m( t+h) -m( t )  <<. 
h 

Letting h--~O + and using (2.1), we find 

lim sup m(t+h) -m( t )  
h~_~0 + h 

On the other hand, 

and thus 

v.(t+h,~(t))-v~(t,r 

<<. vt,~(t,~(t)), tE (O,T). (2.2) 

. ~ ( t -  h) = ~x ( t -  h, ~ ( t -  h)) < vx ( t -  h, ~(t)), 

m ( t ) - m ( t - h )  >lv~(t ' ( ( t ) ) -v~(t -h '~( t ) ) ,  h > 0 .  
h h 

Letting h---~0 + and using (2.1), we find 

lim inf rn(t) - rn(t-  h) 
h---*O + h >~vtx(t,~(t)), tE(O,T). (2.3) 

Since rn is almost everywhere differentiable, relations (2.2) and (2.3) enable us to conclude 

drn 
(t)=vt~(t,~(t)) a.e. on (0, T), 

and the proof is complete. [] 

Remark 2.2. In addition to the hypotheses of Theorem 2.1, let v be of class C 2 in the 

space variable x and assume that  there is a Cl-curve ~(t) on which re(t):=infxea [v~(t, x)] 

is attained. We would have 

~/(t) = V~x(t, ~(t))+vx~(t, ~(t)) (t) = V~x(t, ~(t)) 

since v~(t,{(t))=O, m(t) being a minimum for Vx(t ,-)cC 2. However, cf. [29], it is 

impossible to guarantee the smoothness of such a curve ~(t). Moreover, it is not hard 

to see (by means of some pictures) that  there is no reason why the minimum should be 

at ta ined along a curve. In this context, Theorem 2.1 shows that  the general si tuation is 

not far from the optimal  one described be fo re - -wha t  we are really interested in is the 

t ime evolution of the slope at the inflection point: drn(t)/dt=vt~(t, ~(t)) a.e. [] 
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3. B r e a k i n g  o f  waves  for  W h i t h a m - t y p e  e q u a t i o n s  

Various results of wave breaking for equations of Whitham type (1.3) were recently 

obtained in [29] under the assumption that  the minimum of the slope of the solution 

is attained along a smooth curve. We will show now how Theorem 2.1 enables us to 

eliminate this assumption. 

We want to emphasize the method and not the technicalities. For this reason we 

focus on the case of a regular kernel (Seliger's formal approach); it is not hard to see 

then how the method applies to the more complicated cases handled in [29] (including 

Whitham's  equation (1.2)). 

Let us now give a rigorous mathematical proof of the occurence of wave breaking 

(for formal proofs see [32], [35]) for the equation (1.5). 

The method of successive approximations yields the following result regarding the 

Cauchy problem for the initial value problem (1.5): 

THEOREM 3.1 [29]. Assume that KE C(R)  n L  ~ (R) is symmetric and monotonically 

decreasing on R+,  K~O,  and let u 0 E H ~ ( R ) .  Then for some to>0  there is a unique 

solution u(t, x) of (1.5) in the class C~([0,  to]; H a ( R ) ) .  The solution can destruct only 

as a result of breaking of waves. 

The destruction of the solution as a result of breaking of waves should be under- 

stood as follows: if the maximal existence time T > 0  of the solution is finite, we have 

suP(t,~)c[o,T)• l u ( t , x ) l < ~  while suppe r  [u~(t,x)l--~c~ as tTT.  
We will now prove the following blow-up result for (1.5): 

THEOREM 3.2. A sufficiently asymmetric initial profile yields wave breaking. More 

precisely, if u o c H ~ ( R )  satisfies 

inf [u~(x)] + sup [u~(x)] <~ - 2 K ( 0 )  < 0, 
x c R  x E R  

then for the solution of (1.5) with initial data uo we observe wave breaking. 

Proof. Let T > 0  be the maximal existence time of the solution u(t, x) of (1.5) with 

initial data  u 0 c H ~ ( R ) ,  as given by Theorem 3.1. Define for tE[0, T),  

ml( t )  :---- infR[UX (t, x)] ---- Ux(t, ~l(t)), 

m2(t) := sup [ux(t, x)] = ux(t, r 
xCR 

where ~i(t), i=1 ,  2, are some points in R; see Theorem 2.1 for the existence of ~l(t) 

an analogous result clearly yields the existence of ~ (t). 
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Differentiating (1.5) with respect to x and evaluating the resulting equation at 

x = ~ i t ) ,  i=1,  2, we obtain 

drnidt + m ~ + / R  K(~?)Uxx(t, ~ii t)-~7) d~ = 0 a.e. on (0, T), (3.1) 

taking into account Theorem 2.1 and the fact that uxx(t, ~ ( t ) ) = 0  for i=l, 2. 
By Lebesgue's dominated convergence theorem we have that 

lim f n  giTl)uxx(t,~i(t)_~)d~=/RK(~)uxxit,~i(t)_~l)d~?" (3.2) 

If [a,b]CR is an interval where K is monotone and f:  [a,b]---~R is continuous, by 

the second mean-value theorem (cf. [30]) there is some cE[a, b] such that  

~bKix) f(x) dx= Kia ) ~Cf(x) dx + K(b) ~bf(x) dx. 

We therefore find, for n~> 1 and i=1,  2, points c~E I -n ,  0], /~E  [0, n] such that 

K(rl)u~x(t,(~(t)-rl)drl=-K(-n)[ux(t,(~(t)-cr (3.3) 
n 

-K(O) [~  it, ~ ( t ) ) -  ~ (t, ~ ( t ) - ~ ) ]  

and 

fo n K(r/) (t, ~ (t) - rl) dr/= - g ( 0 )  [u~ (t, ~ it) - r - u~ (t, ~ (t))] Uxx 
(3.4) 

-K(n) [ux(t, ~i(t)-n)-ux(t, ~i(t) - / ~ ) ] ,  

respectively. Recalling the definition of rnl(t) and rn2(t) we deduce by adding (3.3) and 

(3.4) that 

f ~KiT/) uzx (t, ~i (t) -~/) d~? = (0)[uz (t, ~i (t) - c~) - u z  (t, ~ (t) - K Z?)] 
~t  

+ K(-n) [ux(t, ~i(t)+n)-u~(t, ~i(t) - ~ ) ]  

+ K(n) [Ux(t, ~(t)-/~) -Ux( t, ~(t)-n)] 
K(0) Ira2( t ) - m l ( t ) ] + 2 K i n  ) [m2(t)--ml(t)], n ~> 1, 

since K is nonnegative on R as a consequence of the monotonicity of K~  L ~ (R) on R+,  

K being also symmetric. ~ r the rmore ,  the conditions on K force l i m n - ~  K i n ) = 0 .  

Letting n--+oo in the previous inequality we therefore obtain in view of (3.2) the estimate 

/RK(?~) i t, (t)--~) d~ ~< g (0)  [rn~(t)- (t)], t �9 ( 0, T), i = 1, 2, Uxx m l  
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and from (3.1) we infer the inequalities 

drnl 
d~- <~ -~n~ + K(~ 

drn2 
d ~  ~< -m22 + K ( 0 ) ( m 2 - m l )  

Summing up, we get 

a.e. on  (0, T) ,  

a.e. on  (0, T) .  

d ( m l + m 2 )  ~< (m2-m1)[2K(O)+(ml+rn2)]-2m22 a.e. on (0, T). 

Since ml(O)+m2(O)<.-2K(O) at time t=0,  we see from the previous relation that  it 

remains so for all time (the proof of Theorem 2.1 shows that  ml is locally Lipschitz and 

therefore also absolutely continuous, cf. [14], and the same is true for m2). We obtain 

that  
drnl 
d~  <~ -(ml+K(O))2-K2(O) <~ - ( m l + K ( 0 ) ) 2  a.e. on (0, T). 

Defining m(t):=ml(t)+K(O), te[0, T), we see that  m(0)<0 and 

dm ~<-,~2(t ) a.e. on (0, T). (3.5) 
dt 

l o o  As noted before, ml  is locally Lipschitz so that  m is too, and therefore rnCWlo ~ (0, T), 

cf. [14]. Since rn(t)<0 on [0, T), it is not hard to check that  1/rn is locally Lipschitz, and 

thus 1/m . . . . .  e ~locL~(0, T)' Differentiating the relation m.(1 /m)=l ,  we see that  

d l 1 dm 
- -  a . e .  on (0, T). 

dt m m 2 dt 

Prom relation (3.5) we find now 

d 1 
- - - - / > 1  a . e .  on(0,  T), 
dt m 

and integration yields 
1 1 

so that  r n ( t ) ~ - o e  before t reaches 1/Im(0)l. This proves that  the wave u(t,x) breaks 

in finite time. [] 

4. Wave  b r e a k i n g  for t h e  C a m a s s a - H o l m  e q u a t i o n  

In this section we will use Theorem 2.1 to prove the wave-breaking result for the model 

(1.4) conjectured in [7], [8]. 

We first recall the following result regarding the Cauchy problem for the initial value 

problem (1.4): 
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THEOREM 4.1 [9]. Given u0EH3(R),  there exists a maximal T=T(uo)>O and a 

unique solution 

u = u( . ,  u0) e C([0, T); H 3 (R))A C 1 ([0, T); H2 (R)) 

to problem (1.4). Moreover, the solution depends continuously on the initial data, i.e., 

the mappin 9 uo~-*u( . , Uo): H3(R)--*C([0, T); H3(R))NCI([0,  T); H2(R)) is continuous. 

The solution can destruct only as a result of breaking of waves. 

For the precise meaning of wave breaking throughout this section we refer to the 

definition of this term given in the context of Whitham-type equations (see w 

At this point, let us note for further considerations an important conservation law 

for (1.4): if u0EH3(R),  then 2 2 2 lu(t)IH1(R)=fR(U +U~)dx is conserved in time as long as 

the solution exists (see [7], [10]). 

To prove wave breaking, it is convenient to write equation (1.4) in the form 

ut +uu~ + K [ f ( u ,  u~)] = 0, (4.1) 

where K is the pseudodifferential operator with symbol k (~)=( - i~ ) / ( l+~  2) and 

f (u ,  v):=u2+ ~va 2. Note that  the nonlocal term in (4.1) is nonlinear in u and u~ whereas 

in the Whitham-type equations (1.3) the nonlocal term is linear in u. 

With p(x):=exp(-Ix]) , the resolvent (1-02)  -1 can be represented as the convolution 

operator 

Q - l f : = ( 1 - O ~ ) - l f = � 8 9  / e  L2(R), 

where Q denotes the operator 1-0~ acting in L2(R) with dom(Q)=H2(R) .  

Assume now that  uoeH 3 and let ueV([0, T); H3(R))N Cl([0, T); H2(R)) be the 

corresponding strong solution of (1.4). We write (1.4) as 

(1-02)(ut+uu~) = - 2 u u ~ - u z u z ~  = - 0 z ( u 2 +  1 2 ~Ux). 

Applying (1-0~) -1 to both sides, we get 

ut+uu~ =-O~(~p*(ul 2 +~ux))l 2 in C([O,T);HI(R)).  

Differentiating this relation with respect to x, we find 

2 2 1 2 1 2 

( Q _ i ) ( � 8 9  2 1 2 = 

2-- 1 2_�89 2 1 2 
= U  2-~U x (U + ~ U x )  , 

that  is, 
1 2 2 1 2 1 2 u tx+uuz~+~ux=u  - ~ p * ( u  +~ux) in C([O,T),L2(R)). 

We prove now the following blow-up result for (1.4): 

(4.2) 
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THEOREM 4.2. Assume that the initial profile u0CH3(R)  has at some point a slope 

which is less than -(1/X/~)iU01H~(m. Then wave breaking for the corresponding solution 

of (1.4) occurs. 

Proof. Let Xo E R wit h v ~  u~ (x0) < -luolHl(~) and consider the corresponding solu- 

tion uE C([0, T), H 3 (R))N C 1 ([0, T), H2(R))  of the initial value problem (1.4). In addi- 

tion, choose ~E(0, i) such that 

(2_2r ~> 2 luo IH~(P,.) �9 (4.3) 

First, note that 

(f i- 2u 2(t, x) = 2 uux - uu~ 
O 0  J S  / 

< (u2+u + u2+u =lu ,(R) luol 2 = H i ( R ) ,  
OO J X  

(4.4) 

for all (t, x) C [0, T) • R,  since f a ( u  2 §  2) dx is a conservation law for (1.4). The fact that 

for u ( t , . ) c H 2 ( R ) ,  u ( t , . ) ~ 0 ,  we can not have u = •  on R (as one can easily check) 

justifies the strict inequality in (4.4). 

Define now rn(t):=inf~ea [us(t, x)] and let ~ ( t )ER be a point where this infimum 

is attained (see Theorem 2.1). Clearly u~(t ,~( t ) )=O,  by the definition of ~(t) since 

u ( t ) c H 3 ( R ) c C 2 ( R ) .  Hence, setting x=~(t)  in (4.2), we obtain from Theorem 2.1 the 

relation 

dm ~ liR d~+ m2=u2(t,~(t))-~ p(~(t)-u)[u2(t,~?)+�89 d~? a.e. on (0, T). (4.5) 

Observe that the inequality 

J: J: e -S en [u 2 (t, ~?)+U2x (t, 7)] d~/> 2e-"  enu(t, 77)us (t, ~?) d~ 

= e _ S i :  en d [u2(t, 7)] an 

=u2(t ,z ) -e  -S e%2(t,n)ev 

yields 

e -x e n [2u 2 (t, ~?) + u~ (t, ~?)] d~? ~> u 2 (t, x), 
OO 

(4.6) 
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whereas 

leads to 

ff ff e ~ e-n[u2(t,l?)+u~(t,7)]d~?>~ -2e ~ e-~u(t,7)u~(t, 7)d7 

(X3  

- - - e  ~ [ e- '=d I~(t,7)]d7 
Jz a7 

s = u 2(t, x ) - ~  ~-~u 2(t, 7) d7 
J X  

e ~ f ~ e - , [ 2 u ~ ( t ,  7)+u~(t, 7)] d7 >~ u~(t, x). 
J X  

Since p(x)=e -I~1, xcR, we obtain from (4.5) (4.7) that 

d m  --dt <~-~ml 2+lu2(t,{(t)) a.e. on (0, T). 

On the other hand, (4.3) and (4.4) imply 

1 2 u2(t, {(t)) < ~ It0 .< IHI(R) (1--E)[u~(x0)] 2 ~< (1--c)m2(0), 

recalling the definition of m. 

(4.7) 

(4.8) 

mZ(t)>(1-�89 tC[0,  T). (4.10) 

If this would not be true, there is some t0C (0, T) with m2(t)> (1 - i s ) rn2 (O)  on [0, to) 

and m2(to)= (1-�89 by the continuity of m: note that m(0)<0.  But in this case, 

a combination of (4.8) and (4.9) would give 

d m  
~<-�88162 a.e. on (0, t0). 

d-T 

An integration--recall that m is absolutely continuous on (0, T) yields m(O)>~m(to). 
On the other hand, m(0 )<0  and m2(t)>(1-1c)m2(O) on (0, t0) force m to be nega- 

tive on (0,t0), and therefore we would obtain rn2(to)>~m2(O), in contradiction with our 

assumption rn2(to)= ( 1 - 1 ~ )  m2(0). This proves that (4.10) holds. 

Combining (4.10) with (4.8) and (4.9), we obtain 

d m  "t) ( <<---�88 a.e. on (O,T). 

Observe that m is continuous on [0, T) and absolutely continuous on (0, T) since 
l o c  rnEl4~o' ~ (0,T), cf. the proof of Theorem 2.1 and [14]. We now claim that 

t c (0, T), (4.9) 
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The same approach used in the last part  of the proof of Theorem 3.2 enables us to 

conclude from here tha t  re(t)--~-c~ in finite time. [] 

Example 4.3. Let fn(x):=exp(-nx 2) for n ~ l ,  x E R ,  and note tha t  

inf [fn'x(X)] -x/2-nne-1/2 and 2 (-~2 ~nn) = Ifnlnl(R)  = v / - ~  x / ~ +  - x C R  

Choosing n sufficiently large and setting u0:=fn ,  an application of Theorem 4.2 shows 

tha t  the corresponding solution of (1.4) blows up in finite time. [] 

Remark 4.4. In [9] we obtained a wave-breaking result for (1.4) for certain antisym- 

metric initial data. The method of the proof was different from the one we use here: 

it relied on the fact that  ant i symmetry  is preserved by the Camassa -Holm flow, cf. [7]. 

The above example shows that  symmetric  initial profiles can also yield wave breaking. [] 
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