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1~ 

A real valued function f defined on the positive integers is additive if it satisfies f(rs)= 
f(r)+f(s) whenever r and s are coprime. Such functions are determined by their values 

on the prime-powers. 

For an additive arithmetic function f ,  let Ch denote the frequency amongst the 

integers n not exceeding x of those for which h<f(n)<<.h+l. Estimates for Ch that  

are uniform in h, f  and x play a vital r61e in the study of the value distribution of 

additive functions. They can be employed to develop criteria necessary and sufficient 

that  a suitably renormalised additive function possess a limiting distribution, as well as 

to elucidate the resulting limit law. They bear upon problems of algebraic nature, such 

as the product  and quotient representation of rationals by rationals of a given type. In 

that  context their quantitative aspect is important.  

It is convenient to write a<<b uniformly in a if on the values of a being considered, 

the functions a, b satisfy la(a)l <~cb(a) for some absolute constant c. When the uniformity 

is clear, I do not declare it. 

Let 
1 

min(1, If(p) - A logpl)2~, W(x)  = 4+min  ( )~2 + E p 
} 

where the sum is taken over prime numbers. Improving upon an earlier result of Hal~sz, 

Ruzsa proved that Ch<<W(x) -I/2, uniformly in h, f and x~>2 [15]. This result is best 
possible in the sense that for each of a wide class of additive functions there is a value of 

h so that the inequality goes the other way. 
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From a number theoretical point of view it is desirable to possess analogs of Ruzsa's 

result in which the additive function f is confined to a particular sequence of integers of 

arithmetic interest. In this paper I consider shifted primes. 

Let a be a non-zero integer. Let Qh denote the frequency amongst the primes p not 

exceeding x of those for which h<f(p+a)<~h+l. 

THEOREM 1. The estimate Qh <<W(x) -1/2 holds uniformly in h, f and x>~2. 

If for an integer N/> 3 we define Sh to be the frequency amongst the primes p less 

than N of those for which h<f(N-p)~h+l ,  and set 

( 1 min(l '  'f(P)-- A l~ P')2) r ( N ) = 4 + m ~ n  $2+ Z p 
p<N 

(p,N)=l 

then there is an analogous result. 

THEOREM 2. The estimate Sh <<Y(N) -1/2 holds uniformly in h, f and N>~3. 

The estimates given in these two theorems are of the same quality as Ruzsa's, and 

again best possible. In particular, Theorem 1 improves the bound 

Qh << W(x)-l/2(log W(x)) 2 

of Timofeev [17]. 

Following Ruzsa, Timofeev gave a number of important applications of his bound. 

Qualitative applications are typified by a second proof of the following result, conjectured 

by ErdSs and Kubilius, and first established by Hildebrand using a quite different method 

[14]. The frequencies 

Vz(p; f(~"l"a)  ~< Z) = 71"(Z) -1 Z 1 
p~<z 

f(p+a)<~z 

converge weakly to a distribution function as x---~oo if and only if the three series 

Z 1, Z Z 
If(p)[>l P P P W(p)I~<I II(p) l~l 

converge. The latter is the classical condition of Erd6s and Wintner, appropriate to the 

weak convergence of the frequencies vx(n; f(n)<, z) on the natural numbers [10]. 
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As a quantitative application of his estimate, Timofeev shows that if 

E(x)=4+ ~ 1, 
p<~ :c p 

l(p)r 

then the number of primes not exceeding x for which f(p+a) assumes any (particular) 

value is <<r(x)E(x)-!/2(log E(x)) 2. Employing the present Theorem 1, the logarithmic 

factor may be stripped from this bound. The improved inequality is then analogous to 

an estimate of Hal~sz concerning additive functions on the natural numbers [12] and, in 

a sense, best possible. 

The concentration function estimate of Theorem 2 also has many applications, in 

particular to the study of the value distribution of additive functions. These are new and 

of a new type. They involve not only the primes but also the length of the interval on 

which the additive function is considered. Thus the frequencies 

vN(p;f(Y--p)<<.z)=(~r(g--1)) -1 ~ 1 
p<N 

f(N-p)~<z 

converge weakly to a distribution function as N--*oo, if and only if the three series condi- 

tion of Erd6s and Wintner is satisfied. More complicated examples involving unbounded 

renormalisations can be successfully treated, but I leave the details to another occasion. 

Also left to another occasion is the application of the method of this paper to the 

study of the representation of rationals by products and quotients of shifted primes. 

To gain an upper bound for the frequency Qh, Timofeev counts those integers m, 

not exceeding x, which have no prime factor in an interval (zz, z2], and for which h< 

f(m+l)<~h+l. By Fourier analysis he reduces himself directly to estimating sums of 

multiplicative functions over the sequence re+ l ,  m<~x. Such sums he treats by the 

dispersion method of Linnik. 

The dispersion method becomes unwieldy if small prime factors of numbers are to be 

considered. To avoid this Zl is to be taken perhaps up to a power of log x. Moreover, in 

his application of the dispersion method, Timofeev employs asymptotic estimates for the 

frequency of integers m, up to x, which satisfy various non-trivial side conditions. These 

estimates he derives from a result in the present author's book [2, Chapter 2, Lemma 

2.1, pp. 79-89] which in turn is obtained by applications of the Selberg sieve. For this 

methodology to effect reasonably small error terms, it is practically necessary that z2 be 

appreciably smaller than a power of x, possibly down to exp(log x(log log x)-2). Owing 

to such restrictions upon Zl and z2, the method of Timofeev tends intrinsically to the 

loss of two logarithms in the final bound. 
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My present method also applies Fourier analysis, but is otherwise conceptually dif- 

ferent. It makes no application of the dispersion method. It is of interest for itself. 

The probability device of stepping between a distribution function and its characteris- 

tic function allows concentration functions to be estimated using integrals derived by 

Fourier analysis. I start by regarding a suitable such integral as the action of a linear 

operator which is real non-negative on exponential functions. This non-negativity allows 

the application of Selberg's sieve method, and the operator will then commute with the 

summations that  arise in connection with the sieve. 

Several features of the overall method call for comment. Lemmas 3, 4, 6 and 7 repre- 

sent analogs of the Bombieri-Vinogradov theorem for multiplicative functions. Typical is 

Lemma 7. What  is important in the present context is not only the condition D<<.x 1/2-e 
on the moduli, but the quality of the error term. Over an interval of length x an ar- 

bitrary power of a logarithm is saved. In order to gain this the estimate applies not 

to the multiplicative function g, but to a modified function g-f~l-f~2,  with functions 

f~j defined immediately preceding the statement of Lemma 6. This makes manifest a 

remark in [7, p. 408] already in view in [5], that  the construction of such analogs for 

unrestricted multiplicative functions would involve a change in form. The function f~ is 

largely supported on the primes and without further information concerning the value 

distribution of g(p) on residue classes cannot be generally removed. It is as if there were 

an underlying spectral decomposition, whose first eigenfunction gives rise to/32. The 

effect of successive eigenfunctions might be generated from flz by induction. 

Another feature, arising in connection with the functions j3j, is the casting of Selberg- 

sieve square func t i ons  (Zdlrn .~d) 2 on the multiplicative integers in a r61e which on the 

additive group of reals is usually played by the Fej~r kernel. In part, five simultaneous 

applications of the Selberg sieve are contrived. 

It will transpire that  in the definition of W(x) we may confine A to the range IA[ ~< 

(log x) 2, and in the definition of Y(N), to [A[ ~<(log N) 2. 

Unless otherwise stated g will denote a complex valued multiplicative function of at 

most 1 in absolute value. Only in the specific application to the proofs of Theorems 1 

and 2 will g have the form exp(itf(n)) and depend upon the additive function f under 

consideration. 

The proof of Theorem 1 is given in complete detail in four stages, the first three 

summarized by the inequalities (2), (10) and (14). The proof of Theorem 2 follows the 

same lines, and only significant changes are described in detail. I close the paper with 

a discussion of several examples to indicate senses in which Theorems 1 and 2 may be 

viewed best possible. 

I thank the referee for a careful reading of the text. 
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For every real u, 

2. P r o o f  of  T h e o r e m  1, beginning 

~/1 (sin l u  ~2 
(1-btl) lu ] 

is non-negative. Moreover, for ]u[<l this integral is as large as 4/~ 2. Let 3Ial<.y<.z<~x. 
Those primes in the interval (z, x] for which h<f(p+a)<~h+l certainly lie amongst the 

integers n in the same interval which have no prime factor in the range (y, z] and satisfy 

h < f(n+ 1) < h+ 1. Define the multiplicative function g(m) =exp(itf(m)). Then 

3 l z Qh ~< 7r(x----) ~ (1 - [ t [ )e ' i thg(n+a)  dr+ ~kTrrx----- 7 , (1) 
n ~ x  1 

(n,Pu,z)=l 

where Py,z denotes the product of the primes in the interval (y, z]. In the subsequent 

argument z will be chosen a fixed power of x not exceeding x 3/4, y to be a (small) 

constant. It is convenient to introduce a further parameter w, y~w<~z, which will 

ultimately be chosen a power of logx, and the corresponding products Pu,~, P~,~. The 

condition (n, Py,z)=l will be introduced in two stages; (n,P~,z)=l by one method, 

(n, Py,~) = 1 by another. 

Since the integrals are non-negative, the direction of the inequality (1) is preserved 

if we replace the condition (n, Py,~)=l by (n, Py,~)=l, and introduce real numbers Ad, 

1 <~d~z, with A1--1, in the style of Selberg's sieve method. The first of the two terms in 

the bound for Qh does not exceed 

Ad (1-[t[)e-i thg(n+a) dt 
n < ~  d l (  . . . .  ) 1 

(n ,Pu ,w)=l  d~z 

so that 

Z 
Qh<~(X )3 1(1-- Itl)e-~th ~ Ad~Ad~ ~ g(n+a)dt+Tr(x ) - .  

djlP,~,,z n~x, (n ,Py ,w)=l  
dj ~z  n ~ 0  (rood [dl,d2]) 

(2) 

We are reduced to the study of multiplicative functions on arithmetic progressions with 

the adjoined condition (n, Py,~)=l. Estimates for their sums will be developed in the 

next section. In the interests of clarity of exposition, the best possible values of various 

parameters arising will not be pursued here. It will be convenient to denote log x by l, 

log log x by log l. 
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It may seem curious to split the condition (n, Pu,z)=l.  However, an expected esti- 

mate of the type 
Z g(n)= 1 '~<= ~b(D) n~<=Z g(n)+'small', 

n----a (mod D) ( n , D ) = l  

certainly fails if g is (near to) a non-principal character defined (rood D), as may be 

the case. In [4], [6], [9] I showed that the modnli for which such an estimate fails are 

effectively multiples of a single modulus Do. In the present situation it will be arranged 

that any such Do may be assumed to divide Pu,~- 

3. Large moduH 

LEMMA 1. The inequality 

�9 M + N  ]2 M + N  

Dd Z Z anx(n) <<(N+DQ 2) Z la~12 O(Dd) 
d~Q X (mod Dd) n = M  n = M  

is valid for integers M , N  and D, N>~I, D>~I, all complex a,, n=M, ...,M + N, and real 
Q >~I. Here * denotes summation over primitive characters. 

Proof. This version of the Large Sieve may be found as Lemma (6.5), on p. 111 

of [3] 
A multiplicative function g is exponentially multiplicative if it satisfies 9(pk)= 

g(p)k/k! on the powers of primes. This is only a new requirement if k~>2. 

For b/> 2 define 

kx(n)--- y ~  g(m)g(p)logp, k2(n)--- ~ g(r)g(p)logp, (3) 
p m = n  pr----n 

p<~b r<~b 

and set a(n) =g(n) log n -  kl (n) - k2 (n). 

LEMMA 2. If A >>.O, 0<6<�89 b=(log x ) cA+iS, V~ <~y<~ x 6, and e is sufficiently small 
in terms of 6, then for exponentially multiplicative g 

Y<d~Y TM X d) v<<.x 

n~<~va(n)x(n) << y-lx/2A+S +xl -A. 

The implied constant depends at most upon A and 6. 

Proof. This is Theorem 2, p. 178 of [5]. 
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LEMMA 3. In the notation of Lemma 2 

I 1 I E (r,DtD2)=l 
DID26z* n<~z n<~z 

n--r (mod DID2) n=r (rood DI) 
(n,D2)=l 

<< Xl 1-A (log 0 2 +w-lxl2A+9(log 0 2 +W-1/2Xl 7/2 log l, 

where D1 is confined to those integers whose prime factors do not exceed w, and D2 to 
integers whose prime factors exceed w. The implied constant depends at most upon A. 

Proof. Without loss of generality w<<.x 6, otherwise there will be no D2. If (D1, D2)= 

1, then the characters (mod D1D2) may be uniquely expressed in the form X1X2 where 

Xj is induced by a character (rood Dj), j = l , 2 .  For if Xj is induced by a primitive 

character (mod mj), then for j = l , 2 ,  mj[Dj and so (ml ,m2)= l .  From the orthogonal 

properties of Dirichlet characters 

E a(n) 1 
r E a(n) 

n~<x n~<~ 
n=r (mod DID2) (n,DI D2)=I 

1 

r XxX2 n<~z 
n o t  principal 

The difference 1 (  1 ) 
,(o2) E E o(n) ~b(Dx) n<~z n<~x 

n ~ r  (rood Dx) (n ,Dt)=l  
(n,D2)=l (n,Dz)=l 

has a similar representation with the characters restricted by: X2 principal, X1 not prin- 

cipal. Subtraction gives 

a(n)- 1 

n<<.x n<~x 
n ~ r  (mod D1D2) n~-r (rood DI) 

(n,D2)=l 

~(D1D2) x .<~ 

where X runs through the characters XIX2 (mod DID2) with X2 induced by a non- 

principal character (mod D2). In particular, if XIX2 is induced by a primitive character 

(rood d), then d has at least one prime factor in common with D2, and so satisfies d>w. 

The sum to be estimated does not exceed 

DI D2 ~<z 6 
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Collecting up terms according to the primitive characters by which the X are induced, 

we see that this multiple sum does not exceed 

l n~<~za(n)x(n) V =  Z ~-'~* r ' 
w<d<<.x 6 X1 (mod d) DxD2--=0 (mod d) 

where the sum ~ runs over the characters X to the various moduli D1D2 which are 

induced by X1. Here x(n)=xl(n ) if (n, D1D2)=I, and is zero otherwise. A typical 

innermost sum has the representation(s) 

a(n)xl(n)= ~ a(n)xl(n) ~ #(m) 
n~<z 

(n,D2)=l 
n~<x ml(n,D2) 

= E ~t(m) ~ o!(rt))(~l(n ). 
m i D  2 n<<. z 

n_=0 (rood m) 

If miD 2 and m > l ,  then m>w. Thus 

V~< ~ y ~ f  r Z a(n)xl(n) 
w<d<~x '~ X1 (mod d) D1D2=--O (rood d) n~<x 

w<d<~x 6 X1 (mod d) D1D2=--O (mod d) m i D 2  rt<~x 
r n > w  n=--O (mod m) 

I call these two multiple sums Vx and V2, respectively. 

The innermost sum in V1 no longer depends upon any induced characters X- Since 

r >>n(log 0 -1 uniformly for all integers n<~x, 

1 o,(n)Xl(rt) . V1 <</log/ E d ~"~'~* n~<z 
w<d<~x 6 X1 (mod d) 

This sum may he decomposed into O(log l) pieces in each of which the moduli d are 

confined to a range y<d<.y l+e. Apphcations of Lemma 2 now yield the first two of the 

upper bound terms in the statement of Lemma 3. 

The sum V2 is estimated by changing the order of summation, bringing the summa- 

tion over m to the outside. Any modulus D1D2 counted in ~ will then be a multiple of 

d and m, and therefore of [d, m]. Hence 

d<.x 6 X1 (mod d) 

 (n)Xl(n) 

n=0 (mod rn) 

_ _  1 d) a(n)xl(n). <</log/ ~ #2(m) ~-'~ h Z -d ~'~f Z 
w<m<~za m h i m  d<'z t X1  (mod n~<x 

( d , m ) = h  n--=0 (mod m) 
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For a typical pair m, h let F denote the inner (triple) sum over d, X1 and n. 

Applying the Cauchy-Schwarz inequality several times 

1 a(n)xl(n) 2. r2< E E* E 
d ~ z  6 d ~ c  6 X1 (mod d) n~x 

(d,m)=h (d,m)=h n----O (mod m) 

The factor sum involving the reciprocals of d is <<h-ll. The remaining multiple sum is 

estimated by Lemma 1, using the representation 

E c~(n)xl(n)=xl(m) E xl(t)a(tm). 
t<~x/m 

n--0 (rood m) 

In this way we obtain the bound 

-; (x+x26  
F2<<h \ m  h ] 

Then 

where the sum is 

E ]~ 1 +  1) 
" 

t<~x/m 

#2(m) d(m) 172 << xl 5/2 log l E m3/2 
w<m<~x ~ 

2J >w/2 m ~ 2 J +  x 2J >w/2 

This completes the estimation of V, and the proof of Lemma 3. 

Integrating by parts we obtain from Lemma 3: 

LEMMA 4. Let A~O, b=(logx) 6A+15. Then 

(r,D1D2)=I a(n) 1 ~-~ c~(n) 
E max E logn r D1D2~x6 2~n~x 

n~--r (rood D1D2) n~--r (mod D1) 

<< xl-A(log i)2 +w-lxl2A+S(log /)2 + w-1/2 xl5/2 log l, 

where D1 is confined to those integers whose prime ]actors do not exceed w, and D2 to 
integers whose prime ]actors exceed w. The implied constant depends at most upon A. 

Proof. Since the terms of Lemma 3 involving c~(1) contribute O(x 6) t o t h e  sum, we 

are reduced to the estimate of 

(r,D, D2)=l logx r E a(n) 
DID2~x 6 n~x n~x 

n - - r  (mod D1D2) n - - r  (mod D1) 
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and 

E max ~ a(n) 1 dy (4) 
(,-,DzD,)=I ~b(D2) "-" y(logy) 2" 

Dz D2~z 6 n~y  n~y  
F t r  --= (rood DID2) = (rood DI)  r 

The first of these expressions may be estimated directly by Lemma 3. Lemma 3 will 

also apply to the terms in the second expression which involve the range (x 45/(26+1), x] of 

the integral, since over that range DID2 ~ x  ~ ~y(~+1/2)/2 where �89 �89 �89 Otherwise 

we argue crudely that 

=~,6/(2,~+1) I 
J2 .~<y ~b(D2) 

---- (rood DID2) r~ r 

I dy 
c~(n) y(log y)2 

n~y  
n ~ r  (rood Dz) 

_x26/(2~+1) 

y(log y)2" 

The corresponding contribution to the expression at (4) is then 

<</ D~<~6~ . ~ 2  - -  / x 2 ~ 1 ( 2 6 + 1 )  t-1)<<x 261(2~+~) 

This completes the proof of Lemma 4. 

Remarks. We have a(n)(logn)-Z=g(n)-kl(n)(logn)-l-k2(n)(logn) -1. It follows 

from the definition (3) that each function kj(n)(logn) -1 is at most one in absolute 

value, but is not generally multiplicative. Since b is small compared to x, kl (n)(log n) -z 

is comparable to g(n)(logx) -1. The function k2(n)(log n) -1 is largely supported on the 

primes, where it is essentially bounded. Whilst we might treat k; using an argument by 

induction, k2 remains an obstacle to forming a simple general analog of the well-known 

theorem of Bombieri and Vinogradov concerning primes in arithmetic progression. 

Consider now a multiplicative function g which satisfies Ig(n)l ~< 1. Define an expo- 

nentially multiplicative function gl by gz(p)=g(p), and the multiplicative function h by 

convolution: g=h*gz. 

LEMMA 5. 

uniformly in g, and x>~2. 

Proof. 

r-1/2]h(r)] << (log x) 3/2 
r e x  

By examining Euter products we see that 

h0,")= u! 
u+v=k 
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with the understanding that 0-powers are to be replaced by 1. In particular, h(p)=0, 
h(p2)=g(p2)_ 1 2 ~g(p) , Ih(pk)l<~e for k>~3. The sum to be estimated therefore does not 
exceed 

p~x x k=l  p~x k=l 

3 1 
<< exp(~ ~ -~  << (logx) ~/'. 

For B t> 0 define 

(m)g(p) log ~(n)= ~ h(.) gl P 
amp=, logmp , ~ ( n ) =  ~ h(u) gl(r)g(p)l~ 

t irp~n ~ ) 
u~lB,p~b u~lB , r~b  

and set ~(n)=g(n)-~l(n)- f l2(n) .  Clearly 

I~j(n)l ~< ~ Ih(u)[ << l (s+s)/z 
uln 

u~l v 

uniformly in n, j. 

LEMMA 6. Let B>~O, A>~O, b=(logx) eA+15, 0<6<�89 Then, for any multiplicative 

function which satisfies Ig(n)l <~ 1, 

I 1 I max ~ Z(n) r ~ Z(n) 
(r, DI D2)=I 

DID~<~z ~ n~z n~z ,  (n,D2)=l 
n--=r (mod DID=) n=r (mod D1) 

<< xl-A(log /)2 + w-lzl2A+S(log 1)2 +w-1/2xls/2 log l +xl 5/2-B/2, 

where D1 is confined to those integers whose prime factors do not exceed w, and D2 to 
integers whose prime factors exceed w. The implied constant depends at most upon A, B. 

Proof. Since g=h*gl 

z(n)= ~ h(.) ~ ~(.)0og,) -1 
n~= u~! ll v<~ =lu 

n--r (mod DID2) uv--r (mod DID=) 

+ Z Z 
uv=--r (rood DID2) 

g~(v). 
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The (multiple) sum which we wish to estimate does not exceed 

E E [h(u)[ max E 
(r, D1D~)=I 

D1D2<~x ~ u<~l B v < x / u  
uv- -r  (mod D1D~) 

a(v) ( log  v) -1 

1 E Ol(v)(log V)-I 
~b(n2) v<<.z/u, (v,D2)=l 

uv=_r (mod D1) 

(r ,D1D2)=I  1 + ~ ~ Ih(u)l max E gl(~)) r 
D 1 D 2 ~ x  8 1B < u ~ x  v ~ x / u  

uv- -r  (rood D1D2) 

The second of these expressions is estimated crudely to be 

x 1 

D ~ x  6 IB < u ~ x  

<<xt ~ u-~lh(u)l+x 6 ~ Ih(u)l, 
lB < u < z  IB <u<~x 

E gl(V) " 
v ~ x / u , ( v , D 2 ) = I  
uv----r (mod D1) 

(5) 

which by Lemma 5 is <<xl 5/2-B/2. 

Let 6 '=  1 1 5 (5+5) .  To estimate the first multiple sum at (5) we change its order of 

summation. For all sufficiently large x the restriction u <. l B in the summation conditions 

ensures that  D1D2 <~x~< (x/u) ~' �9 Temporarily fixing u we apply Lemma 4. The multiple 

sum is 

<< ~ Ih(u)I(u-lxl-A(log/)2 q _ w - l u - l x l 2 A + 8 ( l o g / ) 2  q_W--1/2u--lxl5/2 log l). 
U~l B 

The proof of Lemma 6 is completed by a further appeal to Lemma 5. 

The next lemma is specialised to the present situation. 

LEMMA 7. In the notation of Lemma 6 set B=2A+5. Let 

(log x) 3A+s ~< w ~< exp( lox/lx/lx/lx/lx/lx/i~ ). 

Let P be a product of primes which do not exceed w. Then 

D ~ x  ~ (n - -a ,P)=l  ~(D) 
p [ D ~ p > w  n--a (rood D) 

E ~(n) <<x(logx) 1-A. 
n<~x, ( n - a , P ) = l  

(n,D)=l 

The following well known result will play an auxiliary r61e in the proof of Lemma 7. 
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LEMMA 8. Let 2<.r~x. The number of  integers, not exceeding x, which are com- 
prised only of primes up to r is << x e x p ( - l o g x / l o g r ) + x  14/15. 

Proof of Lemma 8. A proof of a stronger result, using sieve methods and argu- 

ment from Probabilistic Number Theory, may be found in Lemma 13 of [9]. In fact the 

weaker bound <<x exp(- log  x/(2 log r)) will suffice, and this may be rapidly obtained by 

Rankin's method, as demonstrated by Tenenbaum [16, III.5, thdor~me 1, p. 396]. 

Proof of Lemma 7. The condition ( n -a ,  P ) = I  may be incorporated into the sums 

involving ~(n) by means of the MSbius function: 

Z ~(n)= Z ~(n) E .(m) 
n~x ,  ( n - a , P ) = l  n ~ x  m l ( n - a , P  ) 

n:_a (rood D) n=a (mod D) m~x+[a I 

= E .(m) E ~(n) 
mlP n=a (rood roD) 

m~x+la  ] n ~ x  

The multiple sum to be estimated in Lemma 7 is therefore at most 

1 ~(n) 
E I#(m)] E E ~(n) r Z 
rn]P DUx 6 n ~ x  n~x ,  (n,D)=l 

m~x+la  I plD=C~p>w n~a  (mod roD) n----a (rood ra) 

The contribution arising from the range m ~ x  (1/2-6)/2 is estimated using Lemma 6. The 

remaining contribution, estimated Crudely, is 

x IA+ 4 
<< Z I.(~)l Z mr <<xIA+5 E I.(m)tm 

m]P D ~ x  8 m]P 
xO/2-6)/2 (m~xW]al  plD:=>p>w x(1/2-8)/2 <m~x+lal  

Note that the conditions n ~ x ,  n - a  (mod mD) can only be simultaneously satisfied if 

m D < x + l a  I. The last sum is covered by disjoint intervals of the form (U, 2U], on each of 

which Lemma 8 is applied: 

IogU~+u_a/15 
E lm <<exp l o - ~ ]  <<exp(-(l~ 
mlP 

U<m~2U 

Since there are <<log x such intervals, the proof of Lemma 7 is complete. 

Remark. It is possible to introduce an extra uniformity into Lemma 3. In the 

statement of that lemma the expression maximized over : the reduced residue classes 

(mod D1D2) may be replaced by 

max ~ ~ ( n ) - ~  ~ ~(n) 
y<x n~y  r  n~y ,  (n,D2)=l 

n--r (mod D1D2) n ~ r  (rood D1) 
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To effect this improvement we replace Lemma 1 by a maximal version of the Large Sieve: 

E O(Dd) E* max a,x(n) <<(N+DQ2(logN) 2+e) E la"12' 
d<~ Q X 'n<~y ' n<~ N (mod Dd) II<~N 

valid for each fixed e>0. A proof of this inequality for D = I  is given as Theorem 1 of [8, 

p. 149]. The general ease may be obtained in the same way if Lemma 1 of [8, p. 150] is 

replaced by Lemma 1 of the present paper. 

The extra uniformity gained in Lemma 3 carries forward to give corresponding extra 

uniformities in Lemmas 4 to 7. 

4. P r o o f  of  T h e o r e m  1, cont inua t ion  

Returning to the integral at (2) we introduce the functions 19j(n). Thus 

1 1 
Qh "-< ~ fl(1-1tl)e-'' ~ )~dl)~d2 E 19(n+a)dt 

dh<,Z ,~x, (n,P~.,)=I 
dk]P~,z n~O (mod [dl,d2]) 

+~.._..~=x~r(z)]_ (1-1tl)e-'th ~ Ad, Ad, ~ /~j(n-l-a)dt+O(x-i/41ogx). 
- dh ~<z .<~x ,  ( . , P v , ~ ) = l  

dklP~;z n=--O (rood [d,,d~]) 

I denote these integrals by I0, Ij, j = l ,  2, respectively. With a view to the application of 

Lemma 7 we write 

i f  i I0= ~ O-Itl)e-'th E AdlAd2 r E /9(n+a)dt 
1 dk~z n<~z,(n,P.,~)=l 

dh [Pto,z (n+a,[d, ,d~])=l 

1 f f  (l_ltj)e_ithE(t)dt, +-~(-(-(~ ~ 

(6) 

where 

( 1 ) 
E ( t ) =  E )~d')~d2 E ~(n+a) ~b([dl,d2]) ~ /9(n+a) . 

dk <~ z n<~ z, (n ,Pu; . )=I  n<.z, ( . ,Pu, . )=1 
dklPw,z n----O (mod [d,,d2]) (n+a,[dl,d2])=l 

Assuming that )~d<<l uniformly in d (as is usually the case) and noting that for squarefree 

integers D there are at most 3 ~(D) pairs dl, d2 for which [dl, d2]=D, we see that 

1 I E(t)<< y ~  3 ~(v) E ~(n)-r E ~(n)+O(z21A+4)" 
D<<. z 2 n~z, (n-a,Pv,,. )=l n<~ z, (n--a,P~,,. )=I 

plD~p>~ n--a (rood D) (.,D)=I 
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An application of the Cauchy-Schwarz inequality gives 

IECt)l 2 

<< E 32"(D) 
O<~2 ~b(D) 

I 1 12 E r E l~(n)- r E ~(n) . 
D<~z ~ 'n<<.z, (n--a,Pu,~)=l n<~z, (n-a ,Pu,~)=l  

plD:op>w n=-a (mod D) (n ,D)= l  

The first sum over D is 

< < H ( l + 9 ) < < ( l o g w )  ' .  
p~<z -q 

Since fi(n)<<l on average, assuming that z<<.x 1/6 and that w satisfies the conditions of 

Lemma 7, the remaining sum over D is 

D~<z' n<~*, (.-a,F.,w)=l ~b(D) E n<~z, (n--a,P~,))=l 
plD=~p>w n=_a (mod D) (n ,D)=l  

which by Lemma 7 is <<x(log x) x-a. Thus E(t)<<x(log x) 5-a/2, and the second integral 
at (6) is <<(logx) 6-A/2. 

Separating B(n+a) into its component parts we reach the estimate 

= (1-ltl)e-ith E )~dl)~d, dp([dl,d2] ) E 9(n+a)dt Io 
, ,  1 dk<~z n<z,  (n,Pu,,n)=l 

d~ IP,~,, (n+a,ld, ,d2])=l (7)  

2 

- ~  rj+O(Oogx?-A/'), 
j----1 

where 

= (1-1tDe -ith ~ Ad~,~d,d~([dl,d2] ) ~ ~(n+a)dt. Kj 
�9 " ~ d~.<~ . .<~,  ( , , ,P. ,~,)=l 

dklP~,,, (n+G,[da,d~])=l 
My next aim is to show that in the estimation of Qh the integrals Ij,Kj, j = l , 2 ,  con- 

tribute a negligible amount. The main contribution to Qh will come from the first of the 

integrals representing I0 at (7). 

The treatment of/1 is a paradigm. For ease of notation let P=Py,,~, R=P~,,~. Then 

reforming the square: 

1/: ( ) (1-1tl)e -"h ~ /~(n+a) ~ ,Xd dt 
la = ~ 1 n<~z "dl(n,R) 

( n ,P )= l  d<~ z 

<~ ~ max E 1,6~(n+a)l ,Xd  
It(x) Itl~<l n~<x dl(n,R) 

(n,/:')=l d~<z 
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We note that t~l(n)<<l A+4 always, and that  if for fixed e>O, n>x% then 

ill(n) ~/--1 E [h(u)ll~ E ho(u)logp, 
ump=n ump=n 

u<<l B , p<<.l eA+15 u<<l B , p<~l 6A+15 

where ho(u) is the multiplicative function defined by ho(p)=0, 2 3 ho (p ) = 3, ho (pk) = e if 

k/> 3. The implied constants depend upon e. If we denote this upper bound for/31 (n) by 

7(n), then 

I1 << 7r(x)-I E ")'(92) )~d "l -x-I+2s" 

n<~x dl( - ,R) 
d<~z 

This is a wasteful step, since the condition ( n - a ,  P ) =  1 has been thrown away. With 

a little more effort the condition may be retained, but the consequent improvement in 

the bound for I1 would not be significant here. Once again unwinding the square, and 

changing the order of summation, 

II<~(7"f(X)--I Z Adl/~d2 Z "~(n)"~-x--l+2e" 
dj <.z n<~x 
d j lR  n--a (mod [dl,d2]) 

Here the innermost sum has the alternative form 

l--1 2 ho(u)logp E 1. 
u~ l  B rn<~ x /up  

p~leA+15 mup=a (mod [dl,d2]) 

(8) 

If w>/6A+15 (>/B), then (up, [dl, d2])= 1, and this double sum has the estimate 

( t~tx d2] ) [dl,M l-1 E ho(u) logp upf97, +O(1) - d2] ~-O(17A+lS)' 
u<~ l B 

p~16A+ 15 

with 

M _  x ho(u) E logp 
log x E u p 

u<~l B p~16A+ la 

In particular M<<x1-1 log/. It follows that  

M Ad~ Ad2 

dr 
dj IR 

_ _  +x-2/3. 

We now choose the Ad to minimize the quadratic form, which by its derivation is non- 

negative definite. An account of a suitable version of Selberg's argument may be found 
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in [2, Chapter 2, pp. 79-89]. For a more elaborate account of sieve methods, including 

that of Selberg, see Halberstam and Richert [13]. The particular choice of Ad is not 

important here save tha t  I,~dl ~< 1 and that the quadratic form reaiises its minimum value 

L -  1, where 
~,2(m) 

L= ~] r 
m<~ z 
m l R  

Formally speaking we are following Selberg's classical method of obtaining an upper 

bound for the number of primes in an interval. The lower bound L>~r  -1 logx is 

vouchsafed by Lemma 3.1, p. 102 of Halberstam and Richert [13], and 

loglogx ( ~ ) - 1  (log log X)2 
11 << log------~ H 1 -  "-~X--2/3 << logx 

y<p<~w 

provided we choose w to be a fixed power of log x. 

The treatment o f /2  is similar, employing 

In2(~)l<<t -1 ~ ho(u)logp 
~Tp~n 

tt <lB , r<l  6A+15 

over a range x ~ <n<<.x, and/32(n)<<1 A+4 otherwise. The appropriate analog of (8) is 

1--1 2 ho(u) E logp. 
u<~ l B p<~ z lur 

r<<16A+ 15 pur=a  (rood [dl,d2]) 

It is not currently possible to deal with individual moduli [dl, d2], but  we can successfully 

treat their average. We write 

X 
s2<<x -1 ~ h0(u) ~ ~dl~d~urr 

u <~ l B dj <~z 
r~</6AA-15 dj IR 

+x-1 ~ ho(u) ~ :,<,l:,d~{ ~ (9) 
u<~ l B dj <. z p~zlur 

r~</fA+ 15 dj in  

x ) 
l o g p -  urr  d2]) 

pur=a (mod [di,d2]) 

+0(z-1+2~). 

Assuming that z<~x 1/6, the second of these multiple sums may be shown to be <<l - A  in 

the way that the earlier estimate E(t)<<x(log x)  2-A/2 was obtained. In place of Lemma 7 

the validity of 

c log  �9 I << x(log X) - C  

p=a (mod D) 

2--945203 Acta Mathematica 173. Imprim~ le 5 octobre 1994 
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for a certain positive C will suffice, and this readily follows from the well known theorem 

of Bombieri and Vinogradov [1, th~or~me 17, p. 57]. 

In the first of  the two multiple snms used to bound 12, it is convenient to replace 

~bC[dz, d2]) by [dz, d2]. Since for D =  [dz, d2] 

O . < m  
4,(D) 

1 
D 

p>ut 

this introduces an error of 

x 1 
<<z-z E h0(u) E 3~(D)ur~(D)~ p 

u<l v D<~ z 2 
r~leA+15 p>ttl 

1 1 3 ~(d) 

u ~  lB l~ r~leA+le d~z2 

<< 13 log l E p-2 << (log X) -A. 
p>w 

With this replacement 

'~dl ~d~ << log t 
[dl, d~_] 

dj ~<z 
d./IR 

+ l  - A  << 1-1 (log 02, 

the same bound as for I1. 

It is not difficult to show that the integrals K1 and Ks satisfy the stronger bound 

Kj<<1-1 log/. It suffices to remove the condition (n, [dz,d2])=l in the sums over the/~j, 

and again replace ~b([dl,d2]) by [dl,d2]. 

Within a permissible error we may effect these same changes in the first of the 

integrals representing Io at (7). We so reach 

Qh << (~r(x)L) -1 f11 (1 -  ]tl)e-Uh Z g(n+a)dt+l-Z(l~ 
- n~<z, (n,P~,w)=z 

(z0) 

I fix z at x 1/~, A at 2 and w at a suitably large power of logx. Then (Ir(x)L)-l<< 

x -1 log w. Further progress depends upon information concerning the distribution of 

general multiplicative functions on arithmetic progressions with differences of moderate 

size. 
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5. Middle  modul i  

I begin this section by considering how often a multiplieative function can be near to a 
(generalized) character. 

LEMMA 9. Let B>~O. There is a c so that i-f 2<.Q<.M, then those Dirichlet charac- 
ters to moduli not exceeding Q, which for some real T, IrI<~Q s,  satisfy 

1 (logM'~ 
E p,X(l_Re g(p)x(p)p 'r) < -~ log \ ~ ] - c  (11) 

Q <p<~ M 

are all induced by the same primitive character. 

For the purposes of this statement all principal characters are regarded as induced 
by the function which is identically one on the positive integers. 

LEMMA 10. Let 0</3<1, 0<e< 1, 26logM<<.Q<<.M. Then 

E 9 ( n ) :  1 ( ) n~<. r .~<a~E g(n)+O ~ x  k l--~gx](l~ 

n--r  (mod D) (n,D)=l 

uniformly -for Ma<~x<~M, all r prime to D, and all moduli D not exceeding Q save 
possibly-for the multiples of a single modulus Do > 1. For each of these exceptional moduli 
D there is a pair (X,~-), with X non-principal (rood D), IrI~<Q ~, so that (11) holds with 
c+ 1 in place of c. 

Proofs of Lemmas 9 and 10. Except for the final assertion, Lemma 10 is Theorem 1 
of [9]. Both the final assertion and Lemma 9 follow readily from the estimates for Dirichiet 
series given in w of that work, and in particular from Lemmas 3 and 4 there. The modulus 
Do in Lemma 10 is the modulus to which the primitive character is Lemma 9 is defined. 

Set M=x,  Q=exp((loglogx)3). Let P be the product of the primes in the interval 

(v, wl. 

LEMMA 11. Either 

E g(n)= H (1-p_--11) 
n<~z y<p<~w 

(n - -a ,P )=l  

or there is an extra term 

I I ( 1 - 1 )  " w ~  ( 1 -  Ex(n,g ,n ,H(-p-- - -_2)  " " - ~ 0  p ~  0 2--) --1 ~'1 (a '  9 - 1  
y<p<<, w n<~z pl n 

P>Y 

p - 1  
E g(n) n (-p-'--2) +O(x(l~176 
n<~z pin 

p>y  
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on the right hand side, where X (rood Do) is the primitive character defined via Lemmas 
10 and 9. Moreover, Do divides P, and does not exceed log x. 

Proof. Suppose first that  for a given x~>2 in Lemma 10 there are no exceptional 

moduli relative to g. In terms of the MSbius function, the sum which we wish to estimate 

has the representation 

n<.x d l ( n - a , P  ) d ip  n 4 x  
d~xT]a] n--a (rood d) 

In view of Lemma 10, the moduli d<.Q contribute 

di•p r r  ( logx)  1/9 " 
n~x 

d ~ Q  (n,d)~-I d ~ Q  

(12) 

Here the sum in the error term is 

<< H <<loglogx. 
p<~ w 

The moduli in the range Q<d<~x+la [ contribute 

<<x ,'(d) ( << lx exp - -  
air 

Q<d~x+[a] 

log Q'~ << x exp( - ( log  log x)3/2), 
log w ] 

these last two from an application of Lemma 8. Within an error of the same size the 

condition d<~Q may be removed from the double sum at (12), and the first estimate of 

Lemma 11 is established. 

Suppose next that  inequality (11) of Lemma 9 holds for a character induced by 

the primitive character X (mod Do), with Do<~Q, DolP. Each character to a squarefree 

modulus D can be factorised XIX2 where X1 is induced by a character defined (mod DI),  

X2 by a character (rood D2), D=D1D2, DI=(D, Do). There is a corresponding repre- 

sentation 

Z g(n) -  1 Z ~ a ( a )  Z g(n)xa(n). 
n<~z r x, n<~z 

n--a (rood D) n--a (mod D2) 

A formality of this type occurs in the proof of Lemma 3. Since Do, D2 are mutually 

prime, gXIX' cannot satisfy inequality (11) of Lemma 9 for any non-principal character 
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X' (mod D2). We may therefore apply Lemma 10 to estimate the sum over gX1. We so 

reach 

1 1 p-1 
E g(n)= H ( - p - - ~ ) )  E g ( n ) H  (~ -2 )  
n <~ x y<p<~ w n<~ x pln,P>y 

( n - a , P ) = l  (p,Do)=I (n--a ,Do)=l  (p,Do)=l 

+O(x(log x)-l/l~ 

Moreover, again introducing the M6bius function, in order to represent the condition 

( n -  a, D0) = 1, we consider 

P - 1  

diD o n<~ x Pln,p>y 
n--a (mod d) (p,Do)=l 

Since Do is minimal, for moduli d<Do no exceptional character of the type needed to 

fulfill (11) of Lemma 9 can occur. For such moduli we may again apply Lemma 10. For 

d=Do a term 

0;0/  (;---21)} 
n--a (rood Do) p>y (n,Do)=l p>y 

is separated off. The remaining terms combine to give the first estimate of Lemma 11. 

The separated term is not significant unless Do <~ log x. It has the representation 

#(Do) ( p - l )  
r  E Xl (a )  E X l ( n ) g ( n )  H ~ - - 2  " 

X1 non-principal n<~x pin 
P>Y 

For X1 distinct from X, the inequality (11) fails. We may apply a method of Hal~sz, e.g., 

in the form [4, Lemma 3], to show that an innersum here is then 

<< x e x p ( - ~  min ~" ~(1-Reg(p)xl(p))) <<x(logx) -1/9 . 
I "l'-<(l~ x)2 

The factor II((p-1)/(p-2)), pin, p>y, may be carried through the argument of [4, 

Lemma 3]; or represented as a Dirichlet convolution l , h ,  and stripped off, using the fact 
that ~ [h(n)[n -1/2 converges. 

Lemma 11 is established. 
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6. P r o o f  of  T h e o r e m  1, end  

In his treatment of additive functions on the natural numbers, Ruzsa (loc. cit.) has a 

division into effectively two cases: There is a real ~, [~[~<(logx) 2 so that 

U = ~ p -1 min(1, If(P) - ~ log 9[ 2) < ~ log log x, (13) 
P 

or there is not. In fact I have changed to ~ the factor ~ in his account, and noted that 

his argument needs only I~l~<(logx) 2, rather than ~ unrestricted. These changes do not 

affect his argument beyond changing the value of certain implied absolute constants. 

Assume that U< i-~ loglogx for some )~, [~l~(logx) 2. If g(n)=exp(itf(n)), [t[~<l, 

then I1- g(9)9-~nt[= [1-exp(it{f(P)- ~ log 9})[~< rain(2, I f (P) -  A log91). Then by an ap- 
plication of the Cauchy-Schwarz ineq, allty 

Ep- l (1 -Reg(P)p  -'nt) <. ~-~9-1[1-g(P)p-'nt[ <. (4U ~ 1-~1/2 
p<~x p<~x , p<~,9) ' 

which does not exceed (}+o(1))loglog x as x--~oo. Bearing in mind the small size of Q, 

we see that 
1 (Iog,  

p - l ( l - R e g ( P ) 9  "i~t) < ~ log ~ )  - c  
Q<p~<x 

for all sulliciently large x, and that [~[~<(Iogx)2<Q. The inequality (11) of Lemma 9 is 

valid (with B=I ) ,  and the asymptotic estimate of Lemma 10 is available for all moduli 

D up to Q without exception. 

Consider the integral 

'~(1-1tl)e -''h ~ g(.+a) dt 
I n~z 

(n,P)=l 

appearing in the upper bound for Qh given at (10), where P=P~,w. I set y:3[a I. For 

each g (parametrized by t) we may apply the first estimate of Lemma 11, to obtain 

/'__ (P-1)dt+O((logx)-l/12).  (14) Qh <~<~ X--I (1-ltl)e -''h ~ g(n) 1-I 
1 n~x pin 

p>31al 

We then come to an integral which apart from the factor l-I((p-1)/(p-2)) over p[n, 
p>3[al, is of the type considered by Ruzsa in his study of the concentration function of 

additive functions on the natural integers, [15, w pp. 218-219]. The extra factor may 
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either be carried through his entire analysis, or included at  a later stage by means of 

a convolution argument. A convolution argument o f  a related type already appears in 

w pp. 230-231 of Ruzsa's paper. In this way we obtain the estimate of Theorem 1; a 

bound of the same quality as Ruzsa's. I shall reduce myself to this case. 

We may therefore suppose that  (13) falls for every ~, IXl~<(logz) 2. For real u, a 

Dirichlet character X (rood D), real t, define 

m(u'x't)= Z l (1-Reeitf(')X(P)P-i~)" 
p<~z 

( p , D ) = l  

Denote by M(t) the minimum of re(T, X, t) taken over all characters to moduli not ex- 

ceeding log x, and real r ,  Iris<log x. From Lemma 11 

g(n)<<x~exp(-cM(t)), Itl ~< 1, 
n~<z 

( n - - a , P ) = l  

for a positive absolute constant c. The value of c may need to be depressed in order to 

absorb various error terms involving a negative power of log x. From what we established 

in w we see that  

For each positive imeger k, let Ek denote the set of (real) t in the interval Itl~<l for which 

M(t)<<.k, and let [Ekl denote its Lebesgue measure. I shall elaborate ideas from Rtmsa 

(loc. eit.) to show that  IEkl<<kl/2(loglogx) -1/2 uniformly in k. As a consequence 

Oh << ~ e'~ << (log log x) -1/2 << W(x) -1/2 
k=0  

will follow. 

According to a theorem of Raikov, of. [2, Lemma 1.6], if E is a measurable subset 

of [-1,  1], symmetric with respect to the origin, and r is a positive integer, then those 

reals in [-1,  1] which are representable as a sum of r members of E have measure at least 

min(2, rlE[). Assuming that  Ek has a positive measure, we shall have t=tl +...+tr with 

r= l+[2 lEkt -1] .  Corresponding to each tj will be a character Cj, to a modulus Dj not 

exceeding logx, and a real uj,  ]ujl~<logx , for which m(uj,r 
An application of the Cauchy-Schwarz inequality shows that  the inequality 

I" 

1 - R e  zx ... zr ~< r ~ ( 1 - R e  zj) 
j = l  
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holds for all unimodular complex zj. It continues to hold if any zj is replaced by 

zero. Accordingly, there is a character Xt=r ... Cr viewed (mod [D1, ..., Dr]), and a real 

u(t)=Ul+...+ur, for which m(u(t),xt,t)<.r2k. The modulus of Xt is at most (logx) r, 

moreover, lu(t)l<~r log x. 

Let tl, t2 and tl+t2 lie in [-1, 1]. A simpler version of this last step shows that 

re(v, X, t)<<. 9r2k, with v=u(tl+t2)-u(t l)-u(t2),  X:Xtx+t2Xt~Xt2. Let A be a defining 

modulus for X- We have arrived at 

Z ~ (1 -ReX(p)p-~)  <'9r2k" 
p<~ x 

(v,A)=l 

If X is non-principal, then a consideration of Euler products shows the sum in this bound 

to be 
L(a, Xo) +O(1), 

log L(a+iv, X) 

where a-- 1 + (log x) -  x, X0 is the principal character (mod A). 

Let 0<7<1 .  We may assume 9r2 k <.'y log log x, otherwise the asserted bound for 

lEvi is immediate. The standard bounds 

L(a+iv, x)<<logA([v[+2), IL(a, X0)l >>r162 A-1 

together with r<<(loglogx) 1/2 show that r2k>>loglogx. We again have the asserted 

bound on [Ek[. 

We can therefore assume Xtl +t2 Xtl Xt2 to be principal for every permitted pair tl, $2. 

Let H be the product of the primes up to logx, h=r Let Xt be the character 

(mod H) induced by Xt. Then Xt~+t2 =XtiXt2 for all permitted tj. In particular, Xt= 
(Xt/h)h=l. Every Xt is principal. As a consequence 

Since 

w<z 
(p,H)=l 

Z 1 1 eeitf(p) -iu(t) r2k <~ ~Tloglogx. p( - a  p )<. 

1 
Z p ~< log log log H + O (1) ~< log log log x + O (1), 
p}H 

with 3' in place of !~, 9 we may omit the requirement that (p, H ) =  1. 

Non-principal Dirichlet characters and their associated L-series play no part in 

Rusza's treatment of additive functions (lot. eit.) but the bounds involving u(t), without 
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the condition (p, H ) =  1, are of exactly the type studied by Ruzsa. We may now directly 

follow his argument to reach 

Z ~ (1-Ree~tf(p)p-i;~t) <<71oglogx, A=u(1). 
p<~ x 

For all sufficiently large x the implied constant depends at most upon a. Moreover, 

IAl<<.rlogx<(logx) 2. With a suitable initial choice of % integration over the interval 

- 1  ~< t~< 1 shows (13) to be satisfied by A, contradicting our temporary assumption. The 

bound on IEkl is indeed satisfied, and our proof of Theorem 1 complete. 

With a little more effort we can show that within an error of O((log log x) -1/2) over 

the interval (0, x], the concentration function of f on the shifted primes is dominated by 

the concentration function of f -  A log on the natural numbers, for some A, IAI ~< (log x) 2. 

7. P r o o f  of  T h e o r e m  2, beginning 
The proof begins with 

Sn << ~ l ~  n<uY~ 9(N_n)dt 4 zlogNN ' 
(n ,PR)=I  

where R denotes the product of the primes in the range w<p<.z which do not divide 

N, and P denotes the product of the primes in the range y<p<~w. The first part of the 

proof of Theorem 2 follows that of Theorem 1 until we reach 

Sh << ~l~ fl(l_ltl)e_,th n<u ~ 9(N-n)dt+ 
(,~,p)=1 

(log log N) ~ 
log N ' 

which is the analog of (10). 

quadratic form becomes 

In the notation used for the estimation of /1,  the relevant 

Adl )td2 
[dl,d2l d~<~z 

dk [R, (du,N)=I 

The condition (dk, N ) = I  may be retained, so that the analog of L has lower bound 

r  H p  ( 1 - ~ ) l o g z ,  
w<p<~z 
(p ,N)=l  
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or removed before the quadratic form is minimized, the removal costing 

1 <<X X 
<<E E Eid ,d,] 

pin dl <~z d,',<~= pIN D<~ z" 
dl ~0 (mod p) D=O (mod p) 

<< E 1 H (1+~) << (l~ l~ << --!- 1 
pIN p q<~z W logz'  

3~(o) 
D 

provided w~>(log N) 5. The extra condition (d~, N)=I has negligible effect. 

In the section on middle moduli the condition n~<z is replaced by n<N; (n-a, P ) = I  

by (N-n, P ) = I .  The latter is equivalent to (n, Nx)=l ,  where N1 is the product of the 

prime divisors of N in the interval (y,w], and (N-n, PN~I)=I. The first of the sums 

to be estimated in the analog of Lemma 11 is therefore 

E gCn) E #(d)= Z /zCd) E g(n). (16) 
n<N dj(N_n,PNtX) dlPN~ -1 n<N,(n,Nl)=l 

(n,Nl)=l d<N n=N (mod d) 

Here (N ,d )= l  for each d. Let Q=exp((loglogN)3). We apply Lemma 10 to the multi- 

plicative function which coincides with 9 except on the powers of the primes which divide 

N1, where it is zero. Assnming that there are no exceptional moduli, the contribution 

arising from the d~Q, will be 

Z /~(d) 
dIPN~-a (#(d) n~<N , ( r t ) + O (  ~ 

"dlPN~ -] 
d<~ Q (n,Ntd)=l d~Q 

#2(d)N (logQ) 1/s-,~ 
$(d) ~ ]  ] 

(17) 

for any fixed e>0. Here the error term is 

Applying Lemma 8 we can show that the contribution to the double sums at (16) 
which arises from the moduli Q<d<N is <<Nexp(-(loglogN)3/2). Within the same 

expense the condition d<~Q may be removed in the double sum at (17). In this way we 

obtain 

Z g (n )=  H ( 1 - ~ _ 1 1 )  Z g(n) H (~-12)+O(N(l~ 
n<N y<p<~ w n<N pin 

(N-n,P)=I (p,N)=l (n,N)=l p>y 
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If there are exceptional moduli in the relevant version of Lemma 10, we introduce 

an auxiliary term, exactly as for the second estimate of Lemma 11. Fixing y at 3 we 

reach an analog of (13): 

f 
l 

Sh << d~(N) -1 (1-1tl)e -ira 
- 1  n< N 

(n ,N)=l  

p - 1  
g(n) l-I 

pin 
p>3 

with attendant modifications corresponding to any auxiliary terms. 

It is tempting to declare that we may again follow our earlier treatment, and this 

is possible except in one regard. The analog of Hal~sz' bound for the mean value of 

multiplicative functions is not immediately available. There are many variant proofs of 

the original result of  Hal~.sz, but without modification they appear only to deliver 

g(n) << N exp-  
n < N  

(n ,N)=l  (p,N)=l 

~( 1-Reg(p)piU)) 

with (absolute) constants d>0, and c in the interval (0, 1). If we could choose c=1 we 

would be done, but this is not currently possible even in the formulation (15) without 

the condition (n, N) = 1. The following result is therefore of independent interest. 

LEMMA 12. 

depending at most upon % so that 

. 

Let % if be positive numbers. Then there is a further positive number c, 

n~3g 
(n ,N)=l  (p,N)=l 

uniformly in g, T >/2 and all real x >~2, integral N >/1 which satisfy 

( N ) ~  P 

In particular we may set z = N  for all sujtl~ciently large N. 

Remark. It is not difficult to show that 

( ~ N )  Y vl~N l~ <<< (l~ l~ N)~+~" p 
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Proof of Lemma 12. I do not give a detailed proof, only the key step. We largely 

follow the method of Hal~sz [11], as exhibited in [2, Chapter 6]. Let 1</3~<2, S=a+iT. 
An important ingredient of Hal~z' proof is an inequality of the type 

f 
l I oc  i/3 

Zg(n)n-S dT<<(a--1)/3-', a >  1, 
- 1  n = l  

which he derives from Plancherel's formula. He considers only the case/3= 3 but his 

argument works generally. In place of his inequality I use 

~ g(n)n-S/3dT<<(C----(~-)-)/3(a--i)/3-z, a > i ,  (18) 
n = l  

( n , N ) = l  

valid whenever 

N ~ - }  logp ~< co (19) 
r ] Z p a - l '  

pin 

the implied constant of (18) depending upon the (arbitrary positive) constant co appear- 

ing in (19). It is the proof of (18) which I give here. 

To this end we may employ either the inequality 

a,n - ~  <~ bnn_ 8 dT 
.=1 IsP 

valid whenever la, I ~<b, for all n and the series ~ b,n -~ converges, or a finite version 

fT  ann_Sl dT fT 2dT, T O. (20) _TL= 1 2 <<.3 -T ,=l b"n-s >I 

The former may be obtained by applying Plancherel's formula in the style of Hal~sz (ef. 

[2, Chapter 6, pp. 228-229]), the latter is due to Montgomery, given in Tenenbaum [16, 

Lemma (6.1), pp. 373-374]. In either case we begin with an appeal to the representation 

Z g(n)n-8 = (1 +h)Gi(s) exp g(p)p-" (21) 
n ~ - I  ~ p / > 3  

where 
oo 

= g ( 2 k ' ) 2  
k = t  

and G1 (s) analytic in the half-plane a >  �89 bounded by e -5 ~< ]Gl(s)l ~<e 5 in the half-plane 

a~>l. This is Lemma (6.6) of [2, pp. 230-231], established by means of Euler products. 
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It holds for all complex multiplicative functions of modulus at most 1. In particular, if 

G(s) denotes the sum function of the series ~ g(n)n -~ taken over the natural numbers 

prime to N, then in the half-plane a>  1, 

,G(S),~/2<< exp ( y~ 13g(p)2 ; )  " 
p>~3 

(p ,N)= l  

We can expand the exponential as a Dirichlet series 

H (1-~ /3g(p) 1 
2 p* 

p ) 3  
(p,N)----1 

1+ ) 
+\  2 ] 2[p 2. 

and it is clear that a typical coefficient of n -8, which I shall denote by d,~, does not 

exceed in absolute value the expression kn obtained from it by replacing every g(p) by 1. 

It is also convenient to note that from a further application of (21) 

~n~=lknn-S = exp( ~ 2 - ~ - ) l < < l p l l - I N ( 1 - ~ 7 ) ~ ( s ) r / 2  

(p ,N)= l  

in the half-plane a >  1, where ~(s) denotes the standard Riemann Zeta function. 

After these preliminary remarks we may argue that 

t e l  t oo ~2 f l  I or 12 

1 --1 n = l  [ --1 n = l  

fl << 
J--11pl N 

the second step by (20) with T--1. We are reduced to the particular case that g is 

identically one on the integers prime to N. 

Since ~(s) is analytic in the disc I s - l l < 2  except for a simple pole at s = l ,  this last 

integral is 

<~< 1 ( I - - p - S )  I s - l l  f t '  

which after the change of variable r=(a-1)t, with w=a+it(a-1), becomes 

<< ( a - l )  1-e I I ( 1 - p - ~ ) l  e l dt 
a-(~-l)-~ PN ' (1+t2)~/2" 

(22) 
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Let M 1> 1. The contribution to this integral which arises from the range M <ltl~< ( a -  1)-1 
is estimated crudely, to be 

( < < H  1+ ~<< ~b(N------)- 
pin 

Over the range Itl ~<M, 

r ~ ( 1 - ~ ) = e x p ( ~  ( 1 - ~ )  +O(1)) 

<< e x p ( ( a -  1)M L~/V ~ - P ) "  

The corresponding contribution towards the integral at (22) is 

- pIN 

If N>I ,  then choose M to satisfy (a-1)MY]~pllvP-llogp=l. Otherwise set M=I .  
Provided the condition (19) is satisfied, 

r = r  ( a - I )  << 
p i n  

and the inequality (18) is established. 
Using (18) together with the estimate 

G(s)((a) -1 << r -1 exp ( -  p•>•3 p-~'(1-Reg(P)p-i~)) 
(p,N)----1 

which may be derived without dimculty from (21), the proof of Lemma 12 can be com- 
pleted along the lines of Lemma (6.10) in [2, Chapter 6]. 

9. P r o o f  o f  T h e o r e m  2, end 

There are no new difficulties and the proof of Theorem 2 may be completed along the 
lines of the proof of Theorem 1. 
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10. 

The study of lower bounds for the concentration function of additive functions on se- 

quences of arithmetic interest is worthy for itself. To illustrate that Theorems 1 and 2 

are in certain senses best possible, I furnish two examples. L will denote log x. 

The first example concerns functions of the form 'logarithm § small'. 

Let h be an additive function which vanishes on the primes in the interval (xl/2,x] 
and satisfies h (Pk) = h(p) with I h (P) I ~< 1 when k/> 1 and the prime p does not exceed x 1/2. 

Define A = ~  h(P)p -1, B = ( ~  lh(p)12p-X)l/2>~O, the snms taken over the primes up to 

x 1/2. The variant of the Tur~n-Kubilius inequality given as Lemma 4.11 in [2], shows 

that for a certain absolute constant cl 

]h(p-l-1)-A[2 ~c1B21r(x), x~ 2. 
p-l-l~x 

For at least half of the primes p up to x, Ih(p+l)-Al~(2cl)l/2B. 
The function 

V()t) : )t2-~t- Z p -1  rain(l, Ih(p)- A logp] 2) 
p<~z 

is continuous in A. With A0 a value which minimizes U, define the additive function 

f = h-I- ~o log. 

The number of primes up to ~x is asymptotically (l+o(1))x(51ogx) -1 as x--*eo, 

and so does not exceed �88 for all large enough x. For the remaining primes up to x, 

IAo(log(p+ 1)- log x)l ~< 51)~01. Altogether there are at least �88 primes p not exceeding 

x for which 

If(P+ 1) - A -  ~0 log x[ ~< (2cl)1/2B-~- 5]~t0]. 

Covering the interval which has centre A+~01ogz, and length 2((2cl)1/2B+5()~o]), by 

adjacent intervals of length 1, we see that the concentration function of f is at least 

c2W(x) -1/2 for a certain positive absolute constant c2. 

The lower bound in this example loses its precision if the restriction Ih(P)l~<~ is 

removed. I give a further example, of the form 'logarithm + large and lattice valued'. 

Let J be the set of primes in the interval ( e x p ( v ~ - x ) ,  exp(L(log L)-2)], and define 

E(x)=~'~p -1, p in J .  Define an additive function w by w(qk)=k if the prime q belongs 

to J,  w(qk)=0 otherwise. Let N be a positive integer exceeding 1. 

The frequency o f  those primes p, not exceeding z, for which Nw(P+ l )  has the 

integral value t, is zero unless t is a multiple of N, when it is the frequency of the p for 

which w(p+l)=tN -1. The maximal frequency for which Nw(P+l )  assumes a value is 

the maximal frequency for which w(P+l)  assumes a value. 
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Let c 3 > 0. Let h be an additive function which is zero on the primes p not belonging 

to J. The methods of Probabilistic Number Theory as expounded in Chapter 3 of [2] 

furnish a representation 

vz(p; h(p+ I ) E F) = PI ( E  Xlq E F) +O( (log x) -c3 ) 
"qEJ 

uniform in sets F,  the implied constant depending at most upon c3. Here vz(p; ...) 

denotes the frequency amongst the primes p not exceeding x -  1 for which h(p+ 1) belongs 

to F. The independent random variables Xlq, one for each prime q in J, are distributed 

according to 
= ~ 1 with probability 1 / (q - l ) ,  

Xlq [ o with probability 1 - 1/(q- 1). 

There is a similar representation 

vz(n; h(n) E F) = P~ ( E  X2q E F) +O( (log x)-C3 ), 
"qEJ 

where the frequency is among the positive integers not exceeding x, and the independent 

random variables X2q are distributed according to 

1 with probability 1/q, 
X2q = 0 with probability 1-1/q.  

The relevant particular references are Lemma 37 and Lemma 3.4 of [2], respectively. 
Although the distribution functions Pj(~Xsq<<.z ) can be individually treated, it 

suffices in the present circumstances to step between them. We may then estimate the 

frequence v~(p; h(p+ 1)~< z) using results already in the literature. 

If Fs(z ) has characteristic function r j=1 ,2 ,  then the concentration function 

Qs(h)=sup(Fs(z+h)-Fs(z)) taken over all real z, satisfies 

I 1 Q2(1) << Ol(1)+ It.l(r162 dr. 
--1 

This is almost immediate from Lemma 1.47 of [2]. With F 5 (z)=PS( ~ Xsq <~z), an easy 

computation shows that 

= I I ( 1 §  1. q~J \ q-  t / 

There is a similar representation for r the weight (q-1) -1 being replaced by q-1. 

In view of the inequality 

1-I_l a5 - <<. lay -bjI,  
_ 5 = 1  5 = 1  
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valid for all aj, bj in the complex unit disc, 

tr162 ~< E 1 le,t 11 << itle_,/~. 
q~j q(q- 1) 

Hence 

Q2(1) << Q1 (1) §  Ix/L ) . 

There is a similar inequality with the rSles of the Qj(1) interchanged. 

A theorem of Hals an exposition may be found in [2, Theorem 21.3], shows that 

x-1 E 1 - 1 (1+O(E(x)_i/2)). 
~i2<,~ 2v~-~(x) 

~o(~)=[E(~)] 

The concentration function of Nw on the shifted primes is therefore >>E(x) -1/2. 
Let N=[(logx)l/2]. Choose A0 to minimize 

A 2 + E  p-1 rain(l, [ N -  A logp[ 2) 
p~<x 

and define f=Nw+Ao log. Then for a certain f~, 

us(n; n > ix,  I f-Ao log n-/31 ~< I)>> S(x) -U2. 

The numbers A0 are bounded uniformly in x. Indeed, if Ao~0, then there must be 

a prime q in J for which IN-Aologq[<l;  otherwise A ~ + ~ p  -1 rain(l, IN-A0 logpl 2) is 

decreased by replacing Ao with (A=) 0. Assuming IAo log q - N  I <<. 1, our restrictions upon 

q and N ensure that Ao << 1. 

For any (positive) value of A, IN-Alogpl~<l if and only if e(lV-~)/a<p<e (N+I)/x. 
Either A<N and 

Z =lOgkN_l]+O 
e(N--1) / )~<p~e(N+l) / ;~ 

or A/> N and this sum over the reciprocals of primes is trivially bounded. Thus 

p-1 min(1, INw(p) - A logpl 2) = E(x)+ O(1) 
p<~ x 

for all A. It follows that W(x)=E(x)+O(1). 
I x Since Aolog(n/x)<<l uniformly for integers n in the interval (5 ,x], and since 

Ao log n- f l=A0 log(n/x)- (/3-A0 log x), the concentration function of f is >>W(x) -1/2. 

3-945203  Acta Mathematica 173. Imprimd le 5 octobre 1994 
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In this example both f (p)  and f (P)-)~o logp are often large. If [)~ol~L -1/4, then 

f ( p ) = N  + O ( L  3/s) =(1+0(1))51/2 uniformly for exp( V ~  )<p<. exp(L5/S). If I)~01 > i -U4,  

then for exp(L 7/s) <p~<exp(L(log L)-2) ,  If(P) I >-t)~ol logp-N>~ ( l+o(1 ) )L  5/s. In partic- 

ular~ 

Z p - i  f(p)2 > log X, 
pE J 

p - ' l / ( p )  - log p l > log x,  
Pfi J 

for all sufficiently large x. The argument given for the first example would not here yield 

a sufficiently strong lower bound. 

It will have been observed that  the second example does not lie particularly near to 

the surface. 

We cannot directly tackle a general frequency ux(p; f ( p +  1)<~z) using the represen- 

tation by Pl(~Xxq<~Z),  since we begin with no control over the values of f on primes 

in the interval (exp(L(log L)-2) ,  x]. 
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