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I n t r o d u c t i o n  ~ 

1. We are concerned with equations in real variables of the form 

~] + l (y) ~j + g (y) = p (t), 

wt~re "I, g, P are smooth  functions of their arguments ,  and p has period ~ = 2.~///~ in 

t. Abou t  / we suppose tha t  l i m / > 0  as y - - > + o ~ ;  t ha t  is to say, we suppose the 

" d a m p i n g "  to be positive for large l yl. Abou t  g we suppose tha t  it has a "res tor ing"  

effect, i.e. has the  sign of y. The simplest case, and a specially impor tan t  one, to 

be covered in a ny  generalization, is g - a y  for positive a. We do in fact  assume 

always t h a t  g (0)= 0, and  tha t  g' exists and has a positive lower bound.  

There is some general theory  of such equations.  A t ra jec tory  (or " m o t i o n " ) w i t h  

initial conditions y ( to) -  ~, ~)(to)=~ (~, ~ real) at  some fixed t = t o is said to have the 

point  P =  (~, ~) as "representa t ive  poin t" .  I f  ~', 9 '  are the values of y, 9 at  t - t 0 + 2  

the t ransformat ion  T from P to P ' =  (~', ~]')= T P - T ( ~ ,  ~]) is 1 - 1  and continuous.  

Wi th  the  condit ion l i m / >  0 and suitable conditions on g (fulfilled for g -  y), 

every t ra jec tory  is bounded  as t -~oo ,  and T t ransforms a suitable large domain in 

the P space into a domain  contained in the original one. Fur ther ,  the vector  V, or 

P - ~ T P ,  makes exact ly  one revolut ion as P moves positively round the boundary .  

Then  a "f ixed poin t"  theorem holds, and the  " index number "  proof of it is valid. 2 

1 This paper  is based on joint  work  wi th  M. L. CAgTWl~IGHT. 

A paper  I ,  wi th  the  same general title, was  publ ished in the Journal London Math. Soc., 20 (1945), 

180-189, joint ly  wi th  M. L. CARTW~IGHT. This  was  wr i t t en  wi th  the  same aims as the present  In-  

t roduct ion,  bu t  in drast ical ly condensed form. We have borrowed some passages f rom it. 

:N. LEVINSOI% Journal o] Math. and Physics, 22 (1943), 41-48, and  Annals o] Math., 45 (1945), 

723-727. 
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There  is a t  leas t  one " f ixed  p o i n t "  (f.p. for  short)  of t he  t r a n s f o r m a t i o n  T, and  the re  

corresponds  a periodic motion {p.m. for short)  o/ period 2; th is  need not ,  however ,  

be s table .  

W e  m u s t  def ine our  voc a bu l a ry  in the  m a t t e r  of s t ab i l i ty .  A f.p. P0 (and i ts  

cor responding p.m.)  is cal led s tab le  if TraP converges  to  P0 as  m - ~  for  al l  P of 

a ne ighbourhood  of Po. I t  is cal led t o t a l l y  uns t ab l e  if t he  reversed  t r a j ec to r i e s  a re  

s table:  this  is equ iva len t  to  t he  s t a t e m e n t  t h a t  P ' s  near  and  no t  iden t ica l  wi th  P0 

recede f rom P0 under  i t e r a t i on  of T. f.p. and  p.m. t h a t  a re  ne i the r  s tab le  nor  t o t a l l y  

uns tab le  we shall  call  non-s tab le .  This  is no t  a t e r m  in genera l  use; b u t  t he  s t range  

fac t  is t h a t  our  "non - s t ab l e "  p .m.  are  for the  mos t  p a r t  in f in i te ly  s ingular  (or 

"mu l t i p l e " ) ,  a n d  there  is no po in t  in classifying them.  (The o rd ina ry  "co l "  does jus t  

occur  and  receive a pass ing  ment ion . )  

A periodic  t r a j e c t o r y  or mo t ion  (p.m.), of leas t  per iod  n2 ,  wi th  n > l ,  is called 

a subharmonic o/ order n. W e  are  in t e res t ed  in t he  class K of " l imi t i ng  t r a j ec to r i e s" ,  1 

t he  class whose r ep resen ta t ive  po in ts  are  t he  set  of l imi t  po in ts  of T m ($, 7) as 

m~->~;  th is  class as a whole is i n v a r i a n t  under  T, and  i ts  t r a j ec to r i es  are  al l  

b o u n d e d  in - ~  < t < ~ .  The  s imples t  poss ible  case is t h a t  in which K is a single 

point ;  t he re  is t hen  a s t ab le  p .m.  of o rde r  1 a n d  eve ry  t r a j e c t o r y  converges  to  i t .  

The  nex t  s imples t  case is t h a t  of a f ini te  n u m b e r  of p .m. ,  to  some one of which 

eve ry  t r a j e c t o r y  converges.  I n  the  genera l  topologica l  t heo ry ,  however ,  o the r  possi- 

bi l i t ies,  indeed  ve ry  " b a d "  ones, have  to  be con t emp la t ed ,  and  i t  can be ve ry  dif- 

f icul t  in a g iven case to  rule  t h e m  out.  

2. The  two s imples t  cases (in respec t  of the  func t ions  f and  g) are: 

(i) / >  c > 0 for  all  y, t oge the r  wi th  su i tab le  condi t ions  on g, va l id  when  g = y; 

(if) small depa r tu r e  f rom l inear i ty ,  / = ~ F ,  g = y + e G, wi th  f ixed F ,  G, and  smal l  s. 2 

W e  m u s t  no t  discuss here w h a t  is known  a b o u t  these  cases, excep t  to  observe  

t h a t  t h e y  differ  f rom each other ,  and  are  bo th  comple t e ly  un l ike  a n y t h i n g  in the  

p resen t  paper .  We  now ask: w h a t  is the  s imples t  equa t ion  no t  inc luded  in  e i ther  of 

these  cases? 

Since ] is no t  to  be  of cons t an t  sign, and  since i t  is pos i t ive  for large  l Yl, i t  

m u s t  have  two zeros a t  least ;  if we a d d  s y m m e t r y  a b o u t  y = 0, a n d  t ake  the  s imples t  

possible  g a n d  p, our  search leads  to  an  equa t ion  t h a t  can be  normal ized  as 

1 "Recurrent motions" of*BIRK~OFF, Dynamical Systems (New York, 1927), 198, and G. A. 
HEDLUNI), Amer. Journal o] .Maths., 66 (1941), 605-620. 

2 ] = a + e/~ for a > 0 is ruled out as a special case of (i). 



T H E  E Q U A T I O ~  y - -  ]~ (1 - -  y~) ~ + y = b/~/c cos (/~ t + ~.) 269 

9 - / c ( 1 - y ~ ) ~ ) + y = b # k  cos ( # t + ~ ) ,  / ~ = 2 ~ / 2 ;  (E) 

" v a n  der Pol 's  equa t ion" .  /c m u s t  not  be small, or we are in  case (ii), the  nex t  

possibil i ty of s implif icat ion is to suppose i t  large, which gives us the  equa t ion  of 

the title. 

3. The equa t ion  has a considerable l i terature,  1 a nd  exper iments  have suggested 

very in teres t ing behaviour ,  especially in  the case of large /c. Stable  mot ions  occur 

which are subharmonics  of large odd order (comparable with /c), decreasing as b in- 

creases. Fur ther ,  as b increases we have a l t e rna te ly  one set of periodic stable motions,  of 

order 2 n +  1, and  two  sets, of orders 2 n +  1 and  2 n -  1, the shorter  growing at  the  ex- 

pense of the  longer. I n  the exper iments  n can be of the order of 100 or 200. 

I t  can be foreseen tha t  the  theoret ical  s ta te  of th ings  behind  these f indings of 

exper iment  (two dis t inc t  stable periods ne i ther  a mul t ip le  of the other) m u s t  be of 

considerable complexity.  I f  there is a subharmonic  mot ion  of order m there  will be 

a "se t"  of m dis t inct  periodic trajectories,  with d is t inc t  representa t ive  P ,  ob ta ined  

by  shift ing the original one 0, 1 . . . . .  ( m - 1 ) - p e r i o d s  forward. Now between two ad- 

jacent  " s tab les"  (p.m., or their  representa t ive  P)  there mus t  exist  some sort  of 

"water  shed".  A stable f.p. P of order m has a "sphere of inf luence",  a n y  poin t  of 

which converges to P unde r  i te ra t ion  of Tin; the sphere of inf luence is a domain  

bounded  by  "l ines" of points  corresponding to watershed behaviour .  U nde r  i te ra t ion  

of T (as opposed to T ~) P and  its sphere of inf luence circulate th rough  a set m in  

number ,  the picture as a whole being i nva r i a n t  under  T. I t  is now a quest ion of 

two such sets, circulat ing a t  different  rates; what  is the na tu re  of the watershed 

lines and  the non-s tab le  f.p. t ha t  lie on them? Our methods  are non-topological ,  and  

raise, no t  solve, topological questions.  2 We find, however, t h a t  there is a fine struc- 

ture  of l imit ing motions,  some periodic non-s tab le  and  some non-periodic,  of fantas t ic  

complexity,  though fo r tuna te ly  describable in  fairly simple general  terms,  a 

1 See B. VAN DEI~ POL, PreC. Inst.  Radio Engineers, 22 (1934), 1051-1086, where further re- 
ferences are given. See also D. L. HERR, Prec. Inst.  Radio Engineers, 27 (1939), 396-402, for graphical 
solutions, and B. VAN DER POL and J. VAN DE~ MARK, Nature, 120 (1927), 363, for experimental re- 
sults. The experiments, however, are actually concerned with an extremely unsymmetrical system. 

2 Cp. w 31 below, and M. L. CARTWnIGH~ and J. E. LITTLEWOOD, Annals  el Maths., 54 (195[), 
1-37. 

Since our preliminary announcement of our results, N. LEVINSON, Annals  of Mathematic~ ~, 50 
(1949), 127-153, has published a study of the equation ~+k](y)  y + y = b k s i n t ,  and ](y)=-t 1 or 
- 1 according as l Y I > 1 or l Y I < 1. The solutions are piecings together of expressions in finite terms, 
and he is able to show, in reasonable compass, that for some intervals of b there are two sets of 
stable periodic solutions. There is also a fine structure, and we may refer to his paper for further 
comments on its nature. 
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The  lesson would  seem to be t h a t  t he  worse possibi l i t ies  env isaged  in the  genera l  

t h e o r y  no t  mere ly  can occur, b u t  are  no rma l  occurrences  (once we d e p a r t  f rom cases 

(i) and  (ii) of w 2). I t  wou ld  be fa i r ly  obvious  in a n y  case t h a t  the  genera l  n a t u r e  

of the  resul ts  is no t  b o u n d  up  wi th  the  pa r t i cu la r i t i e s  of van  der  Po l ' s  equa t ion ,  b u t  

in our  de ta i l ed  accoun t  we do in fac t  consider  an  equa t ion  wi th  genera l ized  ], g, p; 

~]+k/(y)~/+g(y)=bl~p( t ) ,  [, g, 10 i n d e p e n d e n t  of /r /c large.  

W e  re ta in  on ly  such fea tures  of the  or iginal  as are  necessary  to  keep  the  b c h a v i o u r  

wi th in  a single ca tegory:  t he  chief of these  are  (i) ] m u s t  have  on ly  one pa i r  of 

zeros (see w for the  dras t ic  changes if th is  is dropped) ;  (ii) pl(t)=fpdt m u s t  no t  

a t t a i n  i ts upper  or i ts  lower b o u n d  more  t h a n  once in a per iod;  and  (iii) we r e t a in  

s y m m e t r y  (] is even, g odd,  p ( � 8 9 2 4 7  a n d  p has  mean  va lue  0): if (ii) or  

(iii) is d r o p p e d  fresh compl ica t ions  are  involved.  1 I n  t he  accoun t  t h a t  follows in  th is  

I n t roduc t i on ,  however ,  we keep  to  the  special  van  der  Po l ' s  equa t ion  to  avo id  a mul t i -  

p l i c i ty  of cons tan t s  and  o the r  d i s t rac t ions .  

F o r  the  res t  we t ry ,  in the  In t roduc t i on ,  to  give an  accoun t  in te l l ig ible  to  a 

r eade r  who is p r epa red  to  t ake  the  proofs  of much  of t h e  compl i ca t ed  de ta i l  for 

g ran ted :  g iven  cer ta in  k e y - l e m m a s  ( reasonably  p laus ib le  in themselves) ,  the  ma in  lines 

of the  a rgumen t ,  and  especia l ly  those  leading  to  the  mos t  s t r ik ing  resul ts ,  are  fa i r ly  

clear  and  unencumbered .  

4. We  proceed to  descr ibe  the  genera l  n a t u r e  of the  l imi t ing  mot ions .  E i t h e r  

one or  two sets of s tab le  subharmonics ,  as sugges ted  b y  the  exper iments ,  do in fac t  

exist ,  b u t  the re  is much  to add.  2 

I f  b > ~,2 and  k >  k 0 (b, 2), ~ (E) shows the  s imples t  poss ible  behaviour :  there  is a 

s tab le  p.m. of order  1, per iod  2, to  which eve ry  t r a j e c t o r y  converges.  

I n  the  case b < ~ we res t r ic t  ourselves  to  t he  in t e rva l  B def ined  b y  ~0~-< b _< ] 1 100" 

W e  have  now to  exclude cer ta in  in t e rva l s  of b, in al l  a smal l  p ropo r t i on  of ~ .  There  

t hen  exis t  e = e (2), smal l  for k 0 =/c 0 (2) large,  wi th  the  fol lowing proper t ies .  I f  /r _>/% 

the re  is a set  of exc luded  in te rva l s  in B of t o t a l  l eng th  e a t  mos t .  The  r e m a i n d e r  

x The new features involved when one of them (especially, perhaps, (ii)) is dropped might be 
very interesting. 

Experiment could not be expected to do more than hint at  the crudest of the non-stable p.m. 
8 This is the simplest instance of a point that should be emphasized. We never assert that 

behaviour is more and more nearly such and such as k increases, always that it  is exactly such and 
such so soon as k exceeds a certain k 0 [here k0 (b, ~)]. In  fact k is not "large", but only "large 
enough". 
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of B is also a set of intervals, B, say; this varies with k, bu t  has length at  least 

~-e. B divides into two parts,  B1 and B~, comparable  in size. 

W h e n  b belongs to an interval  11 of B1, (E) has a set of stable subharmonics  

of order 2 n +  1 and  most  1 trajectories converge each to some one of these, n is con- 

s tan t  in I~ and is of order (~- b)k. 

When b belongs to an interval 12 of ~2, (E) has a set of stable subharmonics 

of order 2n+ l, and another of order 2n-l; most trajectories converge each to some 

member of one of the two sets. It possesses a further set ~, infinite in number, of 

non-stable p.m. of a great variety of "structures" described in more detail later. It 

possesses further a set X, of the power of the continuum, of non-periodic limiting 

trajectories, of the type described as "discontinuous recurrent". If we denote the sets 

of representative points P in the (~, 9) plane also by ~] and X, then every point 

of ~ is a limit point of points of ~, and also a limit point of points of X. A point 

of Z is thus non-stable, and is clearly a highly singular, or multiple, f.p. The number 

n (which is of the order of /c) is constant in Ie. Moreover the set K and its subsets 

~, X remain topologically equivalent throughout I~. Thus a point of Y, remains "in- 

finitely multiple" for all b of the interval I2, contrary to the natural expectation 

that multiplicity would be confined to isolated values of b. 

For  b of an 11 (of ~1) there is a set of non-stable  subharmonics  of order 2 n  + 1. 

For  all b of @~, w ~0) there is a single f.p. of order 1, and it is to ta l ly  un- 

stable. We shall call its representat ive point  Pu, and denote  by  K 0 the set K less 

the point  P , .  

As b increases in B (from I~0 to ~ - ~ ) ,  jumping  the excluded intervals, the 

number  n decreases. We have noth ing  to say about  the transitions from one stable 

period (2 n + 1) to two stable periods (2 n __+ 1) and  vice versa; these take place in the 

excluded intervals, bu t  we add  finally t ha t  for any  b of B there are always sub- 

harmonics of some kind, of order comparable  with ]c. 

5. We shall be main ly  concerned in the rest of the In t roduc t ion  with the 

range B, i .e .  i~0_< b __<~3 - -  100'1 of b: the  case of small b is a separate (and interesting) 

problem t h a t  we do no t  discuss, and the case b > ~, in which behaviour  is simple, 

is t rea ted  by  adapta t ions  of the  arguments  we shall be describing. 

B y  A (x, y) we denote  a constant  depending only  on 2 and the  parameters  shown 

explicitly; by  L a constant  depending only on 2, by  D a constant  A (d): all of these 

1 The general sense of "most" is fairly obvious: to define it precisely would occupy too much 
space. 
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to be positive. 1 The cons tan t  of an  0 is to be of type  L. We use suffixes to ident i fy  

cons tan t s ;  general ly only  for the moment ,  and  s tar t ing  afresh a t  1 on the nex t  occasion. 

Dependence  on b always reduces to dependence on the lower bound  of b (i.e. ~ 0 ) o r  

the  nearness  of b to the crit ical ~. Our present  restr ic t ion to B makes dependence 

on b "un i fo rm" :  O's and  D's  are "un i fo rm in  b". The reader may  therefore t rea t  it  

l ight ly.  We  shall sometimes allow ourselves the licence of using o ( I ) w i t h o u t  precise 

def ini t ion.  ~ The lower b o u n d  /co, which is u l t ima te ly  a D, is to be re-chosen at  a ny  

m o m e n t  when  the  run  of the a rgumen t  requires it. 

We use the symbol  Q for the cur ren t  point  (t ,y) of a t ra jec tory  F, ~ for the 

phase # t + ~ ,  ~1 for y - l ,  Yl for f y d t .  Let  

y 

F ( y ) =  f / ( y )  d y = ~ y a - y = t t 2  + I t ] 3 -  ~. 
0 

Then  we have an  iden t i ty  a (which we shall call the "~- iden t i ty" )  with the a l terna-  

t ive forms 

- Yo - - k IF  (y)]~. + b/C (sin ~ - sin q)o) - [Y~]~., t 

F (y) = b sin q~ - (y~ + y)//c + C. ] (1) 

6. I t  is easy to show t h a t  for 0 < b < 2  every t ra jec tory  F even tua l ly  satisfies 

[Yl <L~,  ]y[ < L~k; and  if a t ra jec tory  is s tar ted  subject  to these inequali t ies  at  t o, 

t hen  [Yl <L2,  ]Yl < L 2 k  for t_>t o , where we ma y  fur ther  suppose (to cover small  

accidents)  t h a t  L 2 > L ~ > 2 0 ,  say. We will call a t ra jec tory  so s ta r ted  (extending the 

n a t u r a l  mean ing  of the adjective) an "even tua l "  one. If  b > 0 i t  crosses y = 0 inf ini te ly  

often. The corresponding results for the general  equa t ion  are, for once, considerably 

more diff icul t ;  bu t  we can fo r tuna te ly  appeal  to a proof we have g iven elsewhere. 4 

Le t  us now t ry  to look ahead. The regions y > l + 5 ,  y < - 1 - ~  have large 

posit ive damping .  We expect of a t ra jec tory  in y >  1 + 5, once it  has "se t t led  down" ,  

a n d  so long as it  remains  in the region, first t ha t  it  is very  s table;  we r e t u r n  to 

this  point  present ly.  We expect, secondly, t ha t  bo th  its velocity and  its acceleration 

will be bounded :  ?), ~] = O(D) .  5 Gran ted  this, it  follows from (E) itself t h a t  

i The constant of an inequality " < L "  or " < D "  is to be chosen "large enough", that of 
" > L" or ">  D ' ,  "small enough". 

~- Actually all the o (1)'s are O (k A)'S. 
a In which, the origin t--0 being at our disposal, we generally take t o = 0, 90-Y0 (0). 
4 Annals el Math., 48 (1947), 472 494. 

The D arises from the ~ just above. The fact is that we shall have to consider a number of 
different rcstrictions, each with a "5": in the interest of simplicity we make all ~'s the same. 

The grounds for tile "expectation" itself are further considere(1 in w 7 below. 
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Fig. 1. The  d ips  U~ U2, Ua U4 are  m u c h  exaggera ted .  

J 

(y~ - 1) 9 = b#  cos ~ + O (D/k), (1) 

and from the #-identity tha t  

F (y) = C + b sin qJ - ~ [Yl]t0 § O �9 (2) 

Of these (1) implies an approximate  "l inkage" between y and ~); it also implies tha t  

the velocity adjusts itself to make the damping balance the forcing-term; a "sett l ing" 

of the trajectory:  the regions of positive damping have a strongly "sett l ing" effect. 

We shall find both "l inkage" and "sett l ing" very useful conceptions. (2)implies tha t  

~ 3 §  sin~,  (3) 

with error O(D/k), over any interval of t ime of length O(1). The curve ( 3 ) h a s  

period ~, and supposing C >  b - ~ ,  it lies in y >  1 (it lies in y >  1 + 5 if C >  b - ~ +  =4 (5). 

I t  has maxima at  q ~ z  and minima at  ~ - ~ J r .  The effect of the term in Yl, on 

the right-hand side of (2), is to make a t rajectory satisfying (2) consist, to error 

O(D/k) throughout,  of successive ;t-waves of the form (3), the successive constants C 

diminishing by  [yl]/k, the increment Yl =f Y d t being taken over the preceding wave: 

the trajectory (with C >  b - ~ + A  5) gradually approaches y - 1  from above. 

The neighbourhood of y -  1 (where the damping changes sign) is naturally highly 

critica], and we have to spend much time discussing it. But  for clearness we state 

now what  in fact next  happens to the trajectory we have been following. 

I t  continues its downward trend until one of its ~-waves reaches y - 1 ;  this 

happens, as we should expect from the foregoing account, at  a point U~ where q~ is 

18 -- 563804. Acta mathematica. 97. Imprlm6 le 8 aofit 1957. 
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approximately - - ~  (mod2~) .  I t  then (if b is not too large) makes a small "d ip"  

(depth of order k -�89 below y = l ,  emerges at  U2, and executes another  A-wave of 

type (3), followed, perhaps, by another  "d ip"  U a U4, and so on. After 0 ( 1 ) d i p s  

U2n-1 U2n at  most,  the velocities remaining 0 (1) throughout,  the trajectory arrives at  

U of the diagram, and, unless by  coincidence it belongs to a narrow exceptional 

class 1, i t  decisively enters l Yl < 1, is violently accelerated by  the negative damping, 

acquiring a velocity of order k which takes it right through l yl_< 1 to a minimum Z'  

a t  a depth approximately y = - 2, still with ~ approximately  - ~ z (rood 2 ~) (U Z '  

occupies only a small time). The t rajectory is slightly unsettled at  E'  (the region 

l Yl < 1 is "unsettl ing"),  after a short t ime it is again settled, and it then repeats, in 

inverted form, its earlier behaviour in y > 1 § ~. 

We stop at  this point in our description, observing tha t  so far we have to cover 

three stages; the "set t led" long descent to y=l, the stage of dips, during which 

downward velocity at  the successive dips is appreciably increasing (this is a subtlety, 

and not really intuitive~), and finally a "shoot- through" from U to ~ ' .  

7. We have said tha t  the par t  of the trajectory above y =  1 §  is "ve ry  

stable". We do not here intend a very precise sense of "s table" ,  and the mat te r  is 

most  intelligible if we consider the reversed motion (r.m.). This is "very  unstable": 

if it is slightly disturbed, then (except for a coincidence) it "slices" or "pulls"  away 

from the original. (See w Fig. 7.) 

I t  is instructive (both here and in later contexts) to recall a number  of plati- 

tudes about  the solution of the linear equations 

~___ k~) § y =  ]c# cos/~t, (I) 

where k is large (and positive). The upper sign gives positive damping and stability, 

the lower sign corresponds to the reversed motion of this (reckoned from t = 0 ) ,  with 

negative damping and instability. The complete direct motions (d.m.) with the posi- 

tive sign are 
y = Y (t) + C 1 e -~kt + C 2 e -~t/k, 

1 t 1 _#2 ] 
where Y - 1 § (1 - #2)2/(]c2 #2) ~sin/~ t § - ~ - -  cos jut I , 

~ = 1 ( 1 + ( 1 - 4 k - 2 ) ~ ) =  1 + O(k-2), 

fl = ] / ~  = l + o (~-~),  

1 There is, naturally, a borderland between trajectories that make one more dip and those 
that do not: we shall have much to do with it. 

See w 15, f.n. 
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and C1, C 2 are a rb i t ra ry  constants  which, for an "even tua l "  t ra jectory,  m a y  be sup- 

posed 0(1) .  A fur ther  t ime of the  order of 1 now reduces the  term Cle  - ~  to  ex- 

ponential  smallness; this is "set t l ing";  exact set t lement  corresponds to C 1 = 0, but  when 

C 1 is not  0 there is a small " p l a y "  (deviation from exact  sett lement) depending on 

the past  h is tory  of the  t ra jectory.  I t  is of ten very  convenient  to speak of set t lement  

as if it were exact,  ignoring the  "p lay" .  1 There is a similar "p l ay"  in " l inkage"  of 

y, ?~ (for given t), and  we sometimes speak of linkage also as if it were exact.  

Ignor ing the " p l a y "  in sett lement,  i.e. making  C I = 0  , gives us the  1-parameter  

family 
y = Y ~ C 2 e -~/~. (2) 

I t s  members  converge to  the p.m. y =  Y, bu t  slowly, the t ime of half-decay being 

of the order ]~. 

A small dis turbance of (2) can be of two ve ry  different kinds;  the  one involves 

a coincidence t h a t  keeps C 1 = 0 and slightly alters C 2 only;  here the new t ra jec tory  

runs nearly parallel to  the old and  slowly converges to i t ;  the  other  kind creates in 

addit ion a small C1; here the new t ra jec tory  quickly arrives within an exponential ly 

small distance of the  t ra jec tory  (2) with the  new C 2 (or of the original t ra jec tory  

itself in the case where C 2 is no t  disturbed).  

The r.m. (solutions of (1) with the negative sign) have their  s~parate lesson. 

There is a 1-parameter  family whose equat ion is 

y = Y ( - t) + C 2 e ~t/k. (3) 

The t ra jec tory  (3) is approximate ly  periodic over a t ime of the order 1, and for 

C2> 0 the mean  heights of the successive waves increase, very  slowly. A slight dis- 

turbance  can be to  a neighbouring member  of the  family, bu t  apar t  f rom this coin- 

cidence will in t roduce a te rm C~e ~k~ involving a violent  "pu l l "  or "slice". Note  tha t  

the d.m. (2) are "normal" ,  if we ignore play; their reversals (3) are abnormal.  

8. The foregoing remarks  abou t  the  linear equat ion illustrate wha t  we said 

about  the "se t t led"  mot ion  of trajectories of (E) in y >  1 + 8. We now briefly con- 

sider mot ion  in ] y l <  1 - 8 ,  which we do first in reversed form, with its positive 

damping.  So long as the  (reversed) mot ion  s tays  in l y l <  1 - 8 ,  the conditions apply  

tha t  led to  (1) and  (2) of w The t ra jec tory  is approximate ly  the  periodic curve 

l y 3 - y =  F ( y ) = C  + b sin ~ (1) 

1 Exact settlement in the case of equation (E) could only be defined at the .very end of the 
story, not at the beginning. 
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over  a single h-wave a t  a t ime,  the  successive C's  increas ing b y  [yl]/k, where  [Yl] 
is the  inc rement  of f y d t  over  the  preceding  wave.  F o r  t he  curve ( 1 ) t o  lie in [ y [ < l  

i t  is necessary  and  suff icient  t h a t  C_+b bo th  lie in ( - a ,  ~) ( the r e l evan t  range  of 

E(y ) ) ,  or t h a t  
- ( ~ - b ) < C < ~ - b ;  

th is  requires  b < ~  (and is one aspec t  of the  cr i t ica l  va lue  ~ for b), and  then  the  in- 

e q u a l i t y  for C can be sat isf ied.  The  r .m.,  and  also the  d.m.,  of per iod  ~ (the l a t t e r  

t o t a l l y  uns tab le  when b < ~), have  each the  same equa t ion  y = y  (~); th is  is of the  form 

ya _ y = b s i n  ~ § O (/c-1), (2)  

for  all t, but  ~ has  the  values  qg=~_+/~t for d.m. and  r .m.  respec t ive ly .  

I t  is fa i r ly  clear t h a t  if C is in i t ia l ly ,  say, posi t ive ,  t hen  in the  r .m.  (where 

- ~ - , a t )  the  [Yl] a re  negat ive ,  and  C decreases (as long as i t  is posi t ive) .  There  

is in fac t  convergence of the  r .m. to the  r .m.  (2). To the  convergence of a r .m.  by  

decrease of C to 0 cor responds  a d.m. whose successive ~-waves g r adua l l y  rise un t i l  

the i r  m a x i m a  are  all  near  y = 1, when fresh compl ica t ions  n a t u r a l l y  arise in to  which  we 

need  no t  go. Bu t  i t  is to  be observed  tha t ,  in accordance  wi th  the  end of w the  

s lowly rising d.m. is a b n o r m a l  and  uns tab le ,  and  if s l ight ly  d i s t u r b e d  will " p u l t "  or 

"s l ice"  away.  Inc iden ta l ly ,  all prolonged di rec t  mot ion  in [y[_< 1 is a b n o r m a l  and  

uns tab le .  

9. We  now proceed,  a f te r  this  p a r t l y  t e n t a t i v e  survey,  to  follow more  closely 

the  s t r ic t  account  of the  course of the  t r a j e c t o r y  of w and  Fig.  1 up  to  i ts  ar- 

r ival  a t  Z ' .  

The discussion of the  f irst  two stages (the f irst  to  U1, the  second from U1 to U) 

is based  on two key  l emmas  whose proofs  we t ake  for g ran ted .  

Tile f irst  of these  is 

L ~ M . ~  A. (i) Let O < b < 2  (say), and let d be a non-negative and d' a positive 

constant. Then there is a k o (~, d, d') such that when k>_k o the/ollowing properties hold. 

Suppose that an eventual trajectory F (/or which consequently [Y[ < L )  has a piece 

X Y Z  ( t x < t y < t z )  lying entirely in y > _ l - d k - " ;  suppose also that (a) X Y  has a time 
1 . length at least d'; (b) Y Z  contains a point at which q ; ~ - ~ ,  (c) Y Z  has time length 

at least k -~ log k. 1 Then /or any Q o/ Y Z  

1 (1) Conditions (a), (b), (e) are all fulfilled, with d'=L, if X Z  has time length at least 32, 
:say (take Y so that X Y  has time length 12). 

I t  would be sufficient (as the proof shows), so far as the inequality for [?)[ in (1) below is 



In  the #-identity ~ 

THE EQUATIOS 9 -- k (1 -- y~) # + y = b # k cos (/z t + :r 

I~l[<A (d,d'), [~][<A (d,d')lc �89 [ y [ < A  (d ,d ' )k;  

?) (y2 _ 1) = b#  cos ~0 + 0 (A (d, d')/c-~). 
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(1) 

(2) 

i ya _ y = F ( y )  = C + b (1 + sin ~) - y l / l c  - ~t/Ic ( 3 )  

we may use any convenient point o/ X Y to determine the constant C, and in the stretch 

Y Z we may thus substitute ~ = 0  (A (d, d')). 

(ii) Suppose that 0 < b < 2 and that d is a positive constant. At  a Q that has been 

preceded by a piece of an eventual trajectory I', lying above y = 1 + d and lasting a time 

/c -1 log2k at least, we have, provided that /c_>k0i;t, d), 

I ~ I < A  (d), [ ~ I < A ( d )  . . . . .  (4) 

with various consequences, e.g. (2) is valid with error-term improved to O(A (d, d')/c-1). 

The d in each pa r t  of L e m m a  A is chosen in different ways  on different occa- 

sions, generally as a l I D  in par t  (i), and generally either as an A or else as ~ in 

par t  (ii). (d and d' are blank cheques.) I t  will be observed tha t  L e m m a  A (i) is 

specially designed to deal with the question of "d ips"  (it follows the facts very  closely). 

The hypothesis  in (i) t h a t  Y Z  contains a point  ~ - - - � 8 9  should be noted;  the result  

is false wi thout  it 2 (in fact  all the apparen t  complications follow the actual  facts very  

closely). 

Pa r t  (ii) is the precise expression of the  "set t l ing"  effect of a region y >  l + d .  

10. We shall now follow the  course of a F star t ing at  a vertex a Z, with 

yo=O, lyo-2[<Do ~-1, [Vo-~[<Do~-L 

D o is ul t imately going to  be a part icular  D. We shall f ind t h a t  (subject to an ex- 

ception) F presently arrives at  an  inverted ver tex Z '  satisfying 

concerned,  to replace  (a) b y  t h e  h y p o t h e s i s  (in effect, more  general )  t h a t  X Y  con t a in s  a po in t  R for 

wh ich  l Y/~ [< d ' .  B u t  t h e  co r respond ing  resu l t s  for I Y l, I I would  be  less s imple .  
(2) W e  m a y  fix ideas  b y  suppos ing  t h a t  Z is on y =  1 - d k  -�89 (an  i m p o r t a n t  ease in a n y  event ) ;  

for if Z is above  th i s  l ine we can  pro long  t he  t r a j e c to ry  un t i l  i t  m e e t s  t h e  line for t he  f i rs t  t i m e  

(all condi t ions  r e m a i n i n g  fulf i l led a ]ortiori).  

1 The  r i g h t - h a n d  side of  (3) c an  t a k e  va r i ous  forms;  i t  m a y  begin ,  e.g. C + b s in  % C + b (1 + s in  ~0), 

or  C - b  ( 1 - s i n  T) accord ing  to convenience .  
Th i s  is a soph i s t i ca t ed  affair;  t h e  e x a m p l e s  are  ce r t a in  of t h e  t r a jec to r i es  r is ing s lowly  off 

t he  u n s t a b l e  p . m .  in [ y [ <  1. These  can  e n d  w i th  a piece above  y =  1 of t ime- in t e rva l  ~ + o (1), a n d  

a d o w n w a r d  ve loc i ty  of a r r iva l  a t  y = 1 g rea t e r  t h a n  a n y  a s s igned  L .  
3 Z is t he  ini t ia l  of " z e n i t h " .  
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y ~ = 0 ,  l y o + 2 1 < D ' k  -1, 1 ~ 0 + ~ 7 ~ l < D ' k - i  , 

where, provided k >_ k o (~, Do), D' is a particular D that does not depend on the choice 

o/ the original Do. 1 This independence on the par t  of D' ,  achieved by  the dependence 

of ko, is completely  vi tal  to  the  argument .  I t  enables us, breaking a vicious circle, 

to  choose Do=D'  (/c o then  becoming a part icular  D); then Z '  satisfies the same condi- 

t ion (inverted) as Z, and we can s tar t  afresh f rom E'.  We ment ion all this as an 

advance warning, because much  happens (and the "circle" is a long one) before we 

reach Z'  (in w 15). 

I n  the  no ta t ion  of L e m m a  A we take  X (and t = 0 )  a t  Z and we take  Y t o b e  

the t ime-point  log 2 k / k  later, or the  first arrival of F a t  y =  2 -  ~, whichever happens 
t 

first. Over X Y  we have,  sett ing ~ = k f / d t ,  
0 

d 
d~t ( - ~/ e~) = u e ~, u =  - b k tt cos q~ + y , 

t 

- ? ) = f  u(t') exp { - v ( t ) + ' c ( t ' ) } d t ' .  
0 

Since l u [ < L k  and v ( t ) - ~ ( t ' ) > _ L k ( t - t ' ) ,  this gives 

t 

- -~<LIc  f e-Lk(t-t')dt' <L ,  
0 

and so y > y o - L t > 2 - D o k - l - L k  -1 log ~ k > 2 - ~ .  

Hence it is t = log 2 k / k  tha t  happens first, and X Y has t ime-length log 2 k/k.  

Next  we have (over the whole F) 

F ( y ) -  F (1)=C + b (I + sin q~)- k- l  y ~ - ~ k  -~, (1) 

in which, on subst i tut ing t= 0 (and ?}o = 0), we have 

C = F (Yo) - F (1) - b (1 + s in  ~0)- 

Here F (2) -- - $ '  (1) - ~ -~ ,  F ( y o ) = F ( 2 ) + O ( y o - 2 ) = ~ + O ( D o k - ~ ) ,  

s in  ~o o = 1 + 0 ( ( ~ o -  �89 ~)  2) = 1 + 0 (D~k-1), 

1 "D'" is a momentary notation, not to upset a chain D1, D2, ... we shall presently need. 
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Thus  (1) becomes 

T~E EQ~ATIO~ ~ -- k (1 -- y~) y + y = b #  k cos  ( # t  § ~) 

C = ~ -  2 b + 0 (Do e k-~). 1 
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F (y) - F (1) = (~ - 2 b) + b (1 + sin ~) - k -1 Yl - 9 k -1 + O (D~ k- l ) .  (2) 

Consider now the s tretch from Y to the  first arr ival  a t  y = 1 + 1~. L e m m a  A (ii) is 

valid /or this, with d = ~ ,  and consequently ]?~l<L.  

Subs t i tu t ing  this in  (2) for the special t ime, t say, of arr ival  a t  y = 1 + ~,  we have 

k - l y ~ > ( ~ -  2 b ) + O - L k - ~ - L D ~ k - ~ - ( F ( l  + ~ ) -  F(1))  

2 212-1 11A_! (]1~3 §  ) 29 LDOe/c-i I > is~-  L Do - (  ~o ~ a ~J - ~ooo - > ,~o~, 

provided the k 0 of k > k  0 ( 2 , D  O ) is su i tab ly  chosen. Then  Yl > L k ,  and  so t > L k .  

A /ortiori the stretch from Y to the  first arrival,  a t  U~, say, a t  y =  1 has t ime- length  

a t  least L k ( > 2 2 ) ,  and  contains  points  with ~v~-~7~ .  Lemma A (i) [with U 1 /or Z] 

is accordingly valid, with d ' = l ,  and  we have ] # I < L  for the stretch YU1, and  in 

par t icular  ]#u,] < L  (note t ha t  the cons tan t  is L, no t  D); and  fur ther  we ma y  sub- 

s t i tute  ]?~] < L  in (2). 

Supposing, then,  t h a t  F arrives a t  y =  I for the first  t ime a t  U~, let 

~v  ~ - 1 ~ - w l  ( ]w~[<z) ,  v ~ = - # ~ , ,  (3) 

and  let V 1 = v I + b k (1 - cos wl). (4) 

We have jus t  seen t h a t  v l < L .  Next ,  there is an  S of F,  a t  most  ~ before U1, 

where ~ - � 8 9  the  equa t ion  of S U  1 is, by  L e m m a  A(i)  (3), of the  form ~ 

~ y a - y  + ~=C'  § b (l + sin c f ) - y l  k-~ + O (L k-~), 

where we m a y  reckon y 1 = 0  at  S. Subs t i tu t ing  ~ = ~ s ~ - ~ 7 ~ ,  y=ys>~ 1 in  this, we 

have C ' > - L k  -1. Hence 

b ( 1 -  cos w l ) = b ( l +  sin q ~ , , ) < _ O - C ' + L k - l < L k - a ;  

and  so also ]wl l<Lb- �89  k-~-. a Summing  up  we have 

O < v l < L  , O<_VI<L,  [o)11 < L  k-�89 (5) 

1 Supposing D o _> 1 [so D o = 0 (D~)]. 
2 This, like (2), is the y-identity with 0 (1) substituted for y, but this time with t = 0 at S. 
3 We can get the result b[ sin eol[<Lk -~- at once from A(i) (2); but a special argument is 

then needed to show that ~o 1 is near 0 and not ~z. 
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11. We prove next  tha t  v and co, and so all three of v, V, w, are approxi- 

mate ly  "l inked".  For this we need the second key-lemma, which covers the three 

questions of linkage at  Ul, "dips",  and the final shoot-through from U. (I t  retains 

its form unaltered when we deal with generalized /, g, p.) 

LEMMA B. 1 Consider the (Riccati) equation, /or x_>0, 

d ~ Z = z 2 - x 2 + l + ~ - 2 8 x ,  z (0 )=0 ,  
dx  

where :r >_ - 1, and 8/urther satis/ies 8 < 0 when ~ = - 1. z is positive/or small positive x. 

There is a 8o (a) such that: 

(i) i/ 8>8io [or 0 > 8 > 8 o  when o~=-1] ,  then z changes sign to negative at an 

x =  xo (:r 8 ) > 0 ;  

(ii) i/ 8 < 80, then z--> + ~ at an asymptote x = x o (~, 8) > 0; 

(iii) i/ 8 = 8o, there is a solution in (0, oo) /or which z>_ 0 and 

z = x + 8 o + F ( x ,  ~), 

where F is continuous in (x, ~), and F = O ( 1 / x )  as x--->~. 

Further, 8o (:r and ~+8~(~) are continuous and monotonic increasing. 8o(:r 

large with large positive :r 

Finally, 8e (cr has the sign o/ ~. 

Return  now to F and its "arr ival  a t  UI".  I f  

v* =ju (~- b) �89 , 

and 8o (r162 is the function of Lemma B, we find a linkage expressed "implici t ly" by 

V l = v l  + b k ( 1 -  cos(ol), ~+ l= v l / v* ,  } 

v1 = v* (1 + ~ + 8o ~ (~)) + o (1) (1) 

(which connect v I (or V1) with (o 1 when the parameter  ~ is "eliminated").  Equiva- 

lently we m a y  take the first equation of (1) together with three equations 

f l = # - i  (v* k)�89 sin (ol, ~ + l = V l / V * ,  8 = 8 o  (cr + o  (1), (1)' 

containing two parameters  cr 8. In  the particular case r162 equations (1)give for V1 

when v 1= v*, 
V1 (v*) = v* + o (1), (2) 

1 The results are mostly  fairly intuitive,  but they take a good deal of proving. 
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and,  to  error  o (1), Vl~V* a r e  respec t ive ly  equ iva len t  to  V l ~ v * .  To error  o (1), v I and  

V1 increase wi th  0)1.1 

The  resul t  (1) depends  on L e m m a  ]3 in a manne r  t h a t  is r ead i ly  intel l igible.  

W e  consider  the  r .m.  f rom U 1 over  a t ime  of s l ight ly  larger  order  t h a n  /c -�89 I t s  

equa t ion  (in in tegra l  form, and  using r = -  t for the  new t ime,  reckoned  f rom U 1 as 

origin) is 

d y  

d r  
- -  --v  I = lc (F(y) - F ( 1 ) )  - b k (sin ( - # r +  ~u,) - sin ~u,) - ~ y d r .  

0 

W e  wri te  y = l + v * � 8 9  r = v *  �89189 e x p a n d  in powers  of z and  x, a n d  re jec t  
T 

t e rms  wi th  coefficients o(1),  in pa r t i c u l a r  t he  one ar is ing f rom f ydv. The resul t  of 
o 

th i s  process,  when we wri te  ~ = V l / V * - 1 ,  and  when /~ has  the  va lue  in (1)', is the  

equa t ion  

dz  
- - z  2 - x 2 +  1 + ~ - - 2 ~ x  (3) 

d x  

of L e m m a  B. I f  we a d d  a o (1) to  the  r i gh t -ha nd  side, th is  is ac tua l ly  va l id  for the  

y of I '  reversed,  over  a range  of x of l ength  log k, say.  lVIoreover t he  error  is of t he  

form 0 (A (Do)/c-A), a n d  b y  s l ight ly  d iminish ing  the  index A, and reehoosing k o (L, Do), 

i t  becomes 0 ( k - A ) ,  independent o/ Do.~ N o w  according  to  L e m m a  B, if we have  

/3 > /30 (:r t hen  z becomes nega t ive  a t  an x=xo(o~ , fl); if /3</30(cr then  z - ->~  a t  an  

a s y m p t o t i c  x =  Xo (~,/3). B u t  the  z cor responding to  F reversed  cer ta in ly  does ne i the r  

of these  things;  we infer  (restoring a o (1)) t h a t  ~ and  fl m u s t  be connected  b y  

fl = fl0 (~) + o (1). (4) 

The resu l t  (4) is in fac t  t rue ,  wi th  a precise e r ro r - t e rm in place of o ( 1 ) t h a t  we need  

no t  par t icu lar ize ,  and ,  l ike t h a t  in (3), i ndependen t  of D o (since t h e  bounds  for  vl, co 1 

are). 

12. We shall in future work mostly in terms, not of Vl'S, but of the V1's 

"linked" with them; there is more than one reason for preferring VI, as will appear 

later. This being so, we need (to avoid mixing symbols later) a symbol for the V I 

1 In the case of V 1 because ~ + fl02 (0r is increasing. 
2 (1) We mean, of course, more precisely, that the upper bound implied in the error term is 

independent of D o (and similarly in future). 
(2) A's cccurring as indices are always absolute constants. 
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l inked  wi th  v l = v * ;  and  (in the  l ight  of (2) of w 11) we de/ine V* to  be v*, so t h a t  

V 1 (v*) = v* + o (1) = V* + o (1). There  are  now th ree  possibi l i t ies  a b o u t  VI: 

(i) V 1 > V * + 6 ;  (ii) V 1 < V * - 6 ;  (iii) I V x - V * ] - < 6 .  

The  th i rd  we descr ibe  as a " g a p "  case; V lies in a cr i t ical  gap  round  V*. 

Consider now the  d .m.  f rom u 1 over  a range  of s l ight ly  larger  order  t h a n  k -�89 

and  wr i te  y = 1 - v *�89 k ~ ~, t = v *-�89 k-�89 x (~ with  a minus  sign since y is moving  below 

y =  1); aga in  we e x p a n d  in ~ and  x, and  ignore t e rms  wi th  coefficients o(1):  the  

resul t  of the  changes of sign as aga ins t  the  (z, x) r .m.  equa t ion  is 

d ~ - ~ e - x ~ +  1 + ~ - 2  ( - / ~ )  x, (1) 
d x  

t h a t  is to  say  the  equa t ion  (3) of w wi th  $ for z and  - f l  for ft. 

Now wi th  error  o(1)  we have  fl=fl0(cr if fu r the r  we are  in case (i), t hen  ~ > 0 , 1  

and  fl hav ing  (by L e m m a  B) the  sign of ~, is posi t ive.  Then  - f l < 0 < f i 0 ( ~ ) .  B y  

L e m m a  B this  implies  2 t h a t  a ~ sa t i s fy ing  (1) t ends  to + ~ a t  a f ini te  a s y m p t o t e  

x =  x'0 (~, fl). Corresponding to  th is  we expec t  the  y -  1 of F to  become a large nega-  

t ive  mul t ip le  of k --~, and  ~ to become large and  negat ive ,  a t  a t ime  comparab le  wi th  

k -~. This  does h a p p e n  (when we go p rope r ly  in to  the  error- terms);  the  nega t ive  

damp ing  then  t akes  hold  (as the  reader  will easi ly  believe: t he  a rgumen t s  become 

cruder) ,  and  i t  is the  fac t  t h a t  y acquires  a d o w n w a r d  ve loc i ty  of order  k and  passes 

t h rough  ]y]_< 1 in a shor t  t ime.  

Consider now case (ii). a Here  cr and  fi has  the  sign of r162 and  is negat ive ;  

- f l > 0 > / ~ 0 ( ~  ). A ~ sa t i s fy ing  (1) therefore  changes sign a t  x = x 0 ( ~ ,  /~). The  corre- 

sponding  behav iou r  of the  y of I ~ is to  descend below y = l  to  a d e p t h  D l k  -�89 a t  

most ,  and  emerge upwards ,  a t  U 2 say,  a f te r  t ime  D k  -~ a t  most .  Observe  t h a t ,  in 

accordance  wi th  w h a t  was said a t  the  end of w 11, D 1 and the D in D k  -~- above do 

not depend on JD o. 

Suppose  now the  nex t  r e tu rn  of P to  y =  1 is a t  U S. Be tween  U 1 and  U2, P con- 

/orms to the hypothesis o/ Lemma A with d = D 1, provided k o is re-chosen to depend 

1 More precisely cr > D (D arising from the ($ of the gap V*• (~). 
2 Note the double use of Lemma B; first to establish an approximate equality fl=flo (a) be- 

cause "neither event happens"; then, because the equality is upset by changing the sign of fl, to 
infer that one or other event does happen in the new case. 

a We shall here ignore the case vl=0,  or r  1, which would need a special treatment in 
Lemma B. Its apparently critical character is spurious; since a small dip is found to turn upwards, 
it  is obvious that a graze will do so also. 
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y = l  

y =  1 

y = - 2  

C1 

C2 

F i g .  2. 

on D 1. The equat ion of r between Ux Ua is accordingly given by  Lemma A (3), 

slightly rearranged; 

� 8 9  sin ~ ) + o  (1). 

I n  this, since y g = l  and qs l - - - - - - -~s+o(1) ,  the constant  C'  is o(1). Hence the curve 

U 1 Ua satisfies 
1 ~3 / ~2 l ~.3 ~q T q  = ~ y  - y + ~ = b ( l +  s i n ~ ) + o ( 1 ) .  (2) 

13. We mus t  now enter on something of a digression. When  b <~ the locus 

~ y a _ y + ~ = b ( l +  sin F), 

over a period 4, consists of three separate C1, C2, Ca, as shown in Fig. 2. I n  accord- 

ance with wha t  was said earlier, C a and C1, which are in I Y I ~> 1, are approximat ions  

to stable trajectories, and C2, which is in l yl  -< 1, is an approximat ion to a stable 

r.m. or unstable d.m. We shall have  more to say  about  these curves later. Meanwhile 

we expect  F to follow approximate ly  the curve C 1, and to  reach y = 1 at  a Ua near 

the r ight -hand end of C~. But  two points remain to be established. 

(i) The approximat ion  (2) of w 12 shews t h a t  F is always near one or other of 

C1, C~, bu t  no t  t h a t  it cannot  shift f rom C 1 to C 2 while still near U r To settle this 

we need to  go more closely into the actual  error-terms we have presented as o (1)'s: 

when we do this (and the extensions are na tura l  ones) we find tha t  F keeps above y = 1 

for a t ime long enough after  U2 for C 1 and C~ to  have diverged more than  the error- 

term in y; a shift is impossible. So F continues along C 1, approximately, as far as 

the r ight -hand end of C1. 
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(ii) W e  have  to  show t h a t  I" does no t  t u r n  upwards  near  this  po in t  before  

ac tua l ly  reaching  y = 1. To dea l  wi th  th is  1 we need  the  following genera l  principle.  2 

14. L EMMA C. Suppose Yl, Y2 are respectively solutions o[ 

~ = O ( y , t ) + R 1 ,  ~, 

where ~ is continuous in (y, t), R1, 2 are continuous, and RI > R 2 /or t>_t o. 

(i) I /  now Yl (to)>-Y2(t), then Yl >y2 /or t > t  o . 

(ii) The conclusion is true if R I >  R 2 /or t > t  o only, provided we know inde- 

pendently that y~ > Y2 /or small positive t - t  o. 

W e  s ta te  t he  comple te  t ru th .  There  is a t ouch  of s u b t l e t y  in t h a t  (ii) is no t  

t rue  w i thou t  t he  f inal  proviso .  

W e  give the  easy  proof .  F o r  t >  t o t he  Yl curve is in i t i a l ly  above  the  Y2 one, b y  

hypo thes i s  in (ii), and  for  s l igh t ly  d i f fe ren t  reasons  in (i) according  as Yl (to)>Y2(to) 

or Yl (to)= Y2 (to). I f  ever  there  is an  in tersec t ion ,  le t  Q be the  f i rs t  one a f te r  t = t o. 

A t  Q we have,  as a m a t t e r  of geomet ry ,  Yl-< Y2, c o n t r a r y  to  Y l - Y 2  = R 1 - R 2  > 0. 

Re tu rn ing  to  F ,  le t  t o be a t ime  long enough before  t~, for  y to  be g rea te r  t h a n  

1 for severa l  ~-periods a f te r  t o . F o r  to<_t<_tu ~, le t  y(t)  be the  y of F ,  and  le t  

y l = y ( t ) ,  y 2 - y ( t + ~ ) .  The  ~- idcnt i t ies  for  Yl.2 are  of t he  form 

where  [see w 5, (1)] we have  

fl = - k F (y) + R1,2, 

t+~ 
R 1 - R  2 = . [  y d t ,  

t 

and  this  is ce r t a in ly  pos i t ive  un t i l  y (t + 2) is 0 for  the  f i rs t  t ime,  a t  t = v, s~y. N e x t ,  

i t  is possible  to  f ind a t o as above  such t h a t  y~ (to)> Y2 (to); for  over  a su//iciently 

long t ime  F ce r ta in ly  descends.  I t  follows f rom L c m m a  C t h a t  Yl > Y~ for t o < t  _< T. 

Since Yl (tv~) = 1, we canno t  have  y (t) >_ 1 for al l  t of tu, < t <_ tv, + ,~ [which would  i m p l y  

b o t h  T > t v ,  and  Y2 (t~,)> 1 =Yl  (tu,)]; and  th is  is the  des i red  resul t .  

15. W e  f ind,  then ,  t h a t  F ar r ives  downwards  a t  y = 1 for t he  f i rs t  t i m e  a f te r  

U 1 a t  a U2, nea r  U 1 + 2, and  conforming to the  hypo thes i s  of L e m m a  A, wi th  d = D 1 

(the n u m b e r  assoc ia ted  wi th  t h e  d ip  a t  U 1 U 2, w 12). There is a linkage o/v2, V2, 0)2 

at U a; /urthera 

1 The subtleties involved are curious, but we do not see how to avoid them. 
2 Constantly used in the full account. 
3 The identity in (1) is one reason for working with V rather than v. 
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V 2 - V 1 = [yl]uu: = M -~ o (1) ,  (1) 

where M =  .f Y1 dt, and y= Yl(t) is the equation o/ C1; M is o/ the /orm A(,~). 
o 

The three al ternat ives concerning "V2" and the gap V* •  arise again at  Ua; 

either V 2 is in the gap; or V~ > V* + ~ and the velocity !) becomes (negatively) large," or, 

/inally, V~ < V * - ~  and there is another dip, o/ depth D2]C-~ at most, P con/orms to 

Lemma A with d = M a x  (D1, D2), and, i/ k o is rechosen to depend on De, there is a 

/resh arrival at Us=Ua+~+o(1  ), with V a - V ~ = M + o ( 1 ) ;  1 and so on. 

Now, by  (1), if we do no t  arrive at  a V in the gap, we must  have V~>V*+(5 

after  n = l + ( V * + ~ ) / ( M + o ( 1 ) )  dips a t  most.  And  then the /inal D~ and d are D's, 

independent o/ Do, and the /inal /Co is a ]co (,~, (5, Do). 

Let  us sum up, with par t ly  changed notat ion,  2 wha t  has been so far proved.  

There is a ]c o (~, ~, Do) ; i/ lc >_/Co, F starting at a vertex of type  Y0 = 0, l Y - 2 1 <  Do ]c ~, 

[ ~ 0 - ~ l  < D0]c ~, descends in accordance with the description of w 6; af ter  t ime at  

least L/c it arrives, after  possible dips, at  U, on y =  l, wi th 

-~/u'=V, q~u=-lTe-~o,  V = v + b ] c ( l - c o s a ) ) ,  

v, V, co linked by (1) of w 11, the errors having bounds independent  of Do, and finally 

either (i) V*-5<~V<V*+(5 ,  or else (ii) V * + 5 < V < V * + 5 + M + o ( 1 ) .  

Suppose the gap case (i) does not  occur, so tha t  case (ii) does. Then, as we 

said in w 12, the mot ion  becomes compara t ive ly  crude, and  it is fairly easy to show 

tha t  F descends in t ime O(Dk �89 to  an inverted ver tex E '  with yz .=0 ,  at  which 3 

l y + 2 [ < A l ( 5 )  k -~,  I ~-~- 1 ~ ]  < A 2  ((5) ]c -1,  

where A 1 and A~ are independent o/ D o. We are now able, without a vicious circle, to choose 

D o = Max (A1, A~). Then  1 ~, restricted by  the D o inequalities at  the s tar t ing vertex E, 

1 W e  can now,  b u t  o n l y  now,  in fe r  t h e  increase  of v, l inked  w i t h  V, a t  success ive  dips .  

2 W e  do n o t  cons ide r  d ips  aga in ,  a n d  t h e  U 1, U2, . . .  a s soc i a t ed  w i t h  t h e m  do n o t  a p p e a r  aga in ,  

n o r  do t h e  a s s o c i a t e d  V1, etc .  I t  will  t he re fo re  n o t  cause  c o n f u s i o n  if, f r o m  n o w  on,  we use  v, V 

for  t he  t h i n g s  a s soc ia t ed  w i t h  the  " f i n a l "  U,  a n d  d a s h e s  (U ' ,  v ' ,  V 1) for  " i n v e r t e d "  th ings ,  a s s o c i a t e d  
w i t h  y = - 1. 

a W e  f i r s t  s h o w  t h a t  t h e  t i m e  is O(Db-�89 so t h a t  I ~ z , + � 8 9  a n d  t h e n  we  have ,  b y  
th~ y - i d e n t i t y  b e t w e e n  U a n d  Z t 

0 = 9~, = b/c (1 + s in  ~z') - V - / c  ( F  (Yz') - ( F  (1)) - .5 Y dt 
0 

= 0 ( k  ( D b -  �89 + 0 (1) - k ( F  ( Y z ' )  - 2 '  ( - 2)); 

F ( y ~ , ) - F ( - 2 ) = O ( D k - 1 ) ,  a n d  so ]y~,+21=O(Dk-1).  
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\ r  
~=1 

g = - I  

^A/ 
g V ~ U '  

~ o . . O @ e o o a e  o$*'  

Fig. 3. 

has arr ived a t  an  inver ted  ver tex Z '  obeying the same restr ic t ion (in appropria te  in- 

ver ted  form). 1 It  there[ore repeats in inverted [orm its [ormer behaviour, arriving, alter 

inverted dips, at U' on y = -  1 with 

r 1 r V t = V I y v , = v ,  ~ v , = ~ - w  , + bk ( 1 -  cos co'), 

v', V', o~' are l inked by  (1) of w i1 (with dashed letters), and  either V' is in the  gap 

V* ~+(~, or else 
V * + ~ <  V ' <  V * + ~ + M + o ( 1 ) .  

16. We denote  by  Z1, Z~ . . . .  the  t ime-points  af ter  Z where ~ z ;  N 1, N 2 . . . .  

those where F ~ - - ~ z ,  N 1 being between Z 1 and  Z2, etc. These are approximate ly  

max ima  and  min ima  in the  long descent.~ The corresponding Z ' ,  N '  s imilarly succeed Z' ,  

and  have ~ - ~ ,  �89 respectively.  The stretch of a F from Z 1 to the  ensuing Z'I, 

or Z~ to the ensuing Z1; or, again  from U to the ensuing U'  (or U' to U), we call a 

half-cycle. 

We call a F "gap-free" in  a range if it  has, in the range,  no V or V' in  the 

gap V* +3 .  

The ?)-identity for F,  between a U with its V >  V*+O to the ensuing U '  is 

U" 

V' + V= - ( ~ - 2 b ) - f y d t .  (1) 
U 

Suppose now t h a t  FL2 " s t a r t "  in the s t ream at  Z 0 subject  to the  "D0-inequali-  

t ies" of w 15 (or t ha t  they join this  s t ream after an  earlier s tart) .  Suppose fur ther  

t ha t  F~.~ are gap-free, and,  fur ther  again,  t h a t  they  "miss the  same gaps",  i.e. have 

1 Inverted behaviour may be inferred from direct by changing y into - y ,  and ~ into ~ + ~. 
Our arguments implicitly prove, of course, that a trajectory, if started with not too violent 

initial velocity, and if remaining an unbroken time ~ ~ above y= 1, will behave similarly, i.e. will 
arrive, after possible dips, at y= 1 with a "gap" V, or else pass through an inverted vertex of the 
special kind. 

2 Z is a real vertex, with exceptional behaviour; it is near Z0, where q~-:l~. 
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the i r  UL2 near  t oge the r  and  U~,2 near  together .  These s impl i fy ing  assumpt ions ,  which 

have  to  be jus t i f ied  in the  s t r ic t  account ,  enable  us to  s teer  clear  of some com- 

pl ica t ions .  1 

I t  is now the  case t h a t  F1.2 converge.  W e  a im first ,  however ,  a t  the i r  quasi-  

convergence,  n a m e l y  convergence (of Y l - Y 2  and  Yl -Y2  to 0) wi th  error  O (~), where  

s tands ,  t h r o u g h o u t  wha t  follows, for th ings  of the  form exp ( D k) (exponent ia l ly  

small) .  

i 7 .  L e t  A V : :  V 2 - V 1 ,  and  s imi la r ly  for Am,  and  o the r  th ings  associa ted  wi th  

F1,2. Le t  w = A y = y e  Yl. W e  have  f rom (1) of w 

UL' U2" U2 

Av':  A v -  fwdt-R,  R:(/- f)y  t. 
U~ U~' U~ 

The ranges  of the  in tegra ls  in R have  lengths  A oJ' and  A o). 

U~' 

So A V ' =  - A V -  fwdt+O(Aco)+O(Ao)'). (1) 
U~ 

The key- resu l t  ( impor t an t  also for  resul ts  o the r  t h a n  the  convergence) is 

L E ~ M A  D. To error 0(~) ,  A V  and A V '  have opposite signs, and 

LI• <IzXV'I<~I Av]+ ~, 
where ~. is an L satis/ying 0 < cr < 1. 

W e  shall  see in w t h a t  A a ) = o ( A V ) + O ( ~ ) ,  and  s imi la r ly  for Aco'; thus  A~o, Ac0' 

are  negl igible  in (1), and  to get  L e m m a  D f rom (1) is then  equ iva len t  to proving t ha t ,  to  
U 1 " 

error  O(~), and  normal iz ing  to  ( -  AV) > 0, f w d t  lies be tween  mul t ip les  L and  g < 1 
U, 

of ( - A V ) .  The  hMf-cycle U 1U~ has  a l eng th  of order  L k. 

The  n u m b e r  w sat isf ies the  equat ions  ( the th ree  a l t e rna t ives  have  each the i r  r61e) 

zb = - rj, w + c  o -  w 1 ] 

d (e~w) = (Co - wl) e~, ]t (W) 
d t  

W=Woe-  T ~- e- r f (Co-W1) eT dt.  
0 

1 I t  is actually the case that when b belongs to E 1 or ~2 I" exist that are gap-free for all positive 
time, but they need not exist for b of the excluded intervals. (And the very introduction of El. 2 comes 
naturally only alter the work we are describing.) :Further, it is a troublesome complication to work 
into the rest of the argument the proof that  I~L2 have their U1.2 {U1,2) near together at the next place 
under consideration. (We allow, in short, vicious circles that the strict account, with difficulty, has 
to avoid.) 
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I n  these the origin t = 0  is arbi t rary,  and c0=~b0+T0w0;  the funct ion T = T ( t )  
t t 

is k f u d t, where u = A F (y)/A y; and w 1 = f w d t. The equat ions (W) are for the  d.m. 
0 0 

Fl,e (d.m.'s are always unders tood unless the con t ra ry  is stated). The corresponding 

equat ions for r.m. FL2 are also very  impor t an t ;  t h e y  are 

~ = T w + ~ 0 - w  1, 

~(e-~ wl=(eo-w~le-L 
dt (w) 

t 

w = e r  wo + er f (6o-- wl) e-r  dt, 
0 

t 

where 60=~0-5"0w0,  and T is lcf ( A F / A y )  dt  as be/ore. 1 
0 

For  d.m. and  r.m. with the  same t = 0  we have c 0 = - c 0 -  

t8 .  L e m m a  D is concerned with the half-cycle U to U'.  2 There are two pos- 

sibilities: (i) Fl,z intersect somewhere in the  half-cycle; (ii) t hey  do not  so intersect. 

I n  (ii) there are several things to our  advan tage :  w and w 1 are of cons tant  sign, 

and (W), (W) become much  easier to handle;  further ,  as a ma t t e r  of the  mere ge- 

ometry ,  Ace and Ao/ .~have opposite signs. 3 I n  (i) the actual  facts are t h a t  if, with 

a small reservation, FI,Z have an intersection fn a half-cycle, then  their  y, ~ differ by  

O(~) t h roughou t  the half-cycle. F r o m  this it na tura l ly  follows t h a t  AV, AV'  (and 

Ao~, A(o')  are O(~); and L e m m a  D is t rue in a degenerate form. 

I t  is instruct ive to  make  the separat ion (i), (ii), bu t  actual ly  a whole group of 

results and arguments  are closely in terwoven and cannot  be separated,  and we follow 

a different division of cases. Moreover we begin at Z1, and consider the (near )whole  

cycle from Z~, th rough  the ensuing U1 2, to the ensuing U'  , 1,2. The results in the two 

new cases are (~) and (fl) following3 

(~) There is a certain ~ with the /ollowing properties: I[ w(Z1)> ~1, 5 then F1 2 .~1~ 

1 The increment  of Y over a given s t re tch  is the same for the d.m. PQ as it is for the  r .m. 
t 

QP. But  e.g. the two ~ e Tdt are not the same. 
0 

Here we use, e.g., " U "  for the general ne ighbourhood of U1,2, and  there is a similar  sl ight  

looseness in speaking of the "half-cycle".  
3 Since V and e) are " l inked",  we expect  as a consequence t h a t  AV and  AV'  will, a t  least 

approximate ly ,  have  opposite signs, and this appears  in due course. 

4 (~), (ill  . . . ,  (~) arc s tages of one sort  or ano ther  in the journey  to L e m m a  D. 

5 We can normalize [w(Z1) I >~1 to w(Z1)>~1 (altering the n u m b e r i n g  of F1.2 if necessary).  

When  there is no intersection we then  have U 1< U 2, U2 < U1. 
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do not intersect be/ore U "  ' ' 2, and the ratio o/ any two o/ kw(Z1) ,  kw(Z1) ,  c ( Z i )  , c (Z1)  , 

]~�89 , k�89 c(U1), c(U2); lies between two L's.  1 

(fl) I /  Iw (Z l ) l<_~ ,  then w, ~b~O(~)  in (Z~, U~), and A V '  and A V  are 0(~)  [so 

that Lemma  D is true in this ease]. 

Once  (:r has  b e e n  proved ,  (fl) is easi ly  p r o v e d  b y  s imi la r  a n d  m u c h  easier  a rgu-  

men t s ,  a n d  we will  t a k e  i ts  t r u t h  for g r a n t e d .  (e) a n d  (fl) t o g e t h e r  lead  qu i ck ly  to  

L e m m a  D ( the f ina l  s teps  occupy  o n l y  t h e  sho r t  w 23). The  m a i n  p r o b l e m  is accord-  

i ng ly  (~), b u t  th i s  is fo rmidab le .  

To  a t t a c k  i t  we i n t r o d u c e  a m e s h  of F ' s  of t he  s t r e a m  i n t e r m e d i a t e ,  a t  Z1, be-  

t w e e n  PI,2, a n d  such  t h a t  for eve ry  pa i r  of consecu t ives  of t he  m e s h  we h a v e  

o < w <  lc-l~ 2 Since  /c1~ is st i l l  a ~, is is enough to prove (o~) /or an arbitrary pair el 

conseeutives o/ the mesh. This  is because  t he  e x t r e m e  F1,2 do n o t  i n t e r sec t  if t he  con-  

secu t ives  do no t ,  a n d  f u r t h e r  t he  n u m b e r s  w, c, whose  ra t ios  are  cons idered  in  (e) 

are all  add i t i ve  over  a n o n - i n t e r s e c t i n g  mesh,  a a n d  have  t he  va r i ous  p roper t i es  of 

(~) if each pa i r  of consecu t ives  have  t h e m .  

W e  m a y  suppose,  t hen ,  t h a t  ]['1.2 are  consecu t ives  of t h e  mesh,  w i t h  w sa t i s fy ing  

w ( Z 1 ) < / c  10 as well  as w ( Z 1 ) > ~ l .  I t  is t h e n  t he  fact ,  as one  could  expect ,  t h a t  
t 

i w l <  k 5 t h r o u g h o u t  (Zj,  U~). The  effect  of th i s  is t h a t  T = I c f  ( A F / A y ) d t  differs 
0 

t 

neg l ig ib ly  f rom ~ = k f / ( y l ) d t .  N o w  T d e p e n d s  o n l y  on  the  s ingle  (gap- f ree )F1 ,  and ,  
0 

i n  sp i te  of t h e  compl i ca t ions  of t he  u n s e t t l i n g  reg ion  l Yl -< 1, we are  in  fac t  ab le  to  

ca lcu la te  T, f rom a suf f ic ien t ly  a p p r o x i m a t e  knowledge  of t he  b e h a v i o u r  of F,  so as 

to con t ro l  t h e  e q u a t i o n s  (W), (W) t h a t  g o v e r n  t he  b e h a v i o u r  of w. 4 W e  will  t a k e  

t h e  c o mp l i c a t ed  de ta i l s  for g r a n t e d  a n d  suppose  t h a t  we k n o w  a comple t e  " d i c t i o n a r y "  

of ~. T h e  ful l  a c c o u n t  is e x t r e m e l y  i nvo lved ,  b u t  we will  t r y  to  give some idea  of 

i We use, e.g., Z1, U2 as names of time-points, c (to) means the c O of (W) for a time origin at t 0. 

By continuity there exists a I '  of the stream through any point of the ordinate at Z 1 be- 
tween those of I'1,2. 

a Note that c (t) is A (~ + k F  (y)). Actually there is additivity for w, c over a mesh, intersecting 
or not. 

4 The mesh argument is accordingly very powerful. We have, moreover, found ourselves quite 
unable to dispense with it. The original pair F1,2 have w = O (k- 1) in I Y I > 1 + L, and w = O (D k- �89 
in l Yl ~> 1, except near a ~ or ~ ' ;  but  in l Yl < 1 w is in general comparable with 1, and T is subject 
to an uncertainty factor comparable with k, as F1, 2 perform their unrelated staggerings. Since tlle 
time concerned is of order k -�89 t h e  e T of ( W )  has an uncertainty factor like exp (k�89 which is 
quite ruinous. 

1 9 -  563804. Acta mathematica. 97. Imprim6 le 8 aofit 1957. 
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t h e  l ead ing  a r g u m e n t s .  1 W e  s t a r t  f rom (W), (W). I n  these  we suppose ,  a lways ,  t h a t  

T is r ep laced  b y  the  " k n o w n "  ~; we inc lude ,  however ,  w h a t  are  e s sen t i a l ly  s t r ie t  

proofs  t h a t  t h e  j u s t i f y i n g  " w < k  5,, is r ea l ly  t rue .  

t 9 .  I n  (W), (~r we gene ra l ly  no rm a l i ze  to  w be ing  i n i t i a l l y  pos i t ive ;  i.e. e i ther  

w o > 0 ,  or, if w o = 0 ,  t h e n  ~b o > 0 .  W i t h  n o r m a l i z e d  w we have ,  u p  to  t he  n e x t  ~ in te r -  

sec t ion  (if any )  

w_<w 0e - ~ + c  o~( t )  (d.m. u p  to  in te r sec t ion)  ] 
! t �9 (1)a 

~ ( t ) = e  ~ofe ~ dt. ] 

S u b s t i t u t i n g  th is  in  (Wa) we h a v e  

t 
we~>_Wo-Wo~f+Co(fe~dt-v~J) (d.m. to  in te r sec t ion) ,  

o (2) 

a n d  we use ~9's a lways  for  n u m b e r s  sa t i s fy ing  0 ~ 0 <  1. 4 I f  we d rop  w o f rom the  

r i g h t - h a n d  side in  (2) we o b t a i n  t he  two f u r t h e r  i nequa l i t i e s  (for n o r m a l i z e d  w) 

t 

t t 
w O-oJ/fezd -(Wo/eol tit), 

o o 

(d.m. to  in te r sec t ion)  (3) 

of which  t h e  second  ( t h rough  t rue  genera l ly )  is a p p r o p r i a t e  o n l y  w h e n  c o>O. 

F o r  r .m. ,  a n d  n o r m a l i z e d  w we have ,  b y  s imi la r  cons ide ra t ions ,  

t 
we ~<_Wo+eofe-~dt (r.m. to  i n t e r sec t ion ) ,  

0 

(4) 

t t 
we ~ > w 0 ( 1 - v ~ ) ~  5~ (r .m. to  in te r sec t ion) ,  

(5) 

1 We do this at considerable length and in considerable detail because this is perhaps the 
most central part of the work, and the arguments the most characteristic. 

2 That is, the next after t=  0 if that is one. 
a The numbering is continuous till further notice. 
4 We write v~ for v (~) etc. The v ~ is needed in (21) because c o may be negative. 



THE EQUATION ~ - -  k (1 -- y2) ?) + y = b #  k cos (# t + a.) 291 

The special value t =~ ~t is important here, and we define the constant ,u0, associated 

with the origin t =0,  by 

~o = f e - ~ d t  (r.m.).  1 (6) 
0 

1 With t = ~ ,  (4) and (5), translated into d.m. language, become: i/ there is no inter- 

section o/ the d.m. /or time ~ be/ore t=O, and i/ w o>0, then 

/~oC0 -<w0, ~oeo (1 - v~J( l  ~) /~0)  > w0 (1 - ~ ( ~ ) )  - ~.~ (7) 

We set out next part  of the T-dictionary. 3 

f f  e-%+~d~d~]<Dk ~ (d.m., O ~ t _ ~ ) ,  

f~= f f  e "~+~d$d~t<Dk ~ (r.m., O<t_<~-~).  / 
o<_~<<~<t 

(s) 

I /  (0, t) is contained in (Z,, U1) 

/or the d.m. we have 

ff 
o < ~ t  

and i/ t<_L lk ,  where L 1 is a certain L, then 

e-~*~ d~ d~ <~, (9) 

and 
t 

w/fe~dt<Dk ~. 
0 

(10) 

When t=O is the special point U1, and t <~ 2, then, /or the d.m 

t 

~= ff e~-~d~d~<Dfe~dt. 
o<~<r/< t 0 

(11) 

Since 
t 

ff e <'d d4 
0 o<_$<_~<_t 

we have, from (8) and (9), 

t 

J / ] e ~ d t < D k  -'~ (d.m., O < t < ~ ) ,  (12) 
0 

1 W e  d o  n o t  g i v e  ft 0 t h e  b a r  a s s o c i a t e d  w i t h  r . m .  b e c a u s e  i t  w i l l  a p p e a r  f r e q u e n t l y  i n  d . m .  

r e s u l t s .  

W e  t r a n s l a t e  Co i n t o  - c  o . T h e  ~ c o m e s  f r o m  w o e x p  ( - v  (l~t)) i n  (5).  

a ~ ( a n d  f o r  t h a t  m a t t e r  T f o r  t h e  o r i g i n a l  I"1,2) i n c r e a s e s  b y  a n  a m o u n t  of  o r d e r  L k  f o r  u n i t  

i n c r e m e n t  of  t, a n d  e T a c q u i r e s  a f a c t o r  l i ke  e - L k .  e T is  a " m o d i f i e d  e - L k t ' '  
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t 

J / f d d t < ~  
o 

( O < _ t ~ L l k  , and subject  to the  conditions for (9)). (13) 

t t 

Since  1 ff (14) 
0 o<_~<~<t 0 

we have,  f rom (8), 
t 

] / f e - ~ d t < D k  �89 (r.m., O_<t_<~2). 
o 

We write # (to) for tto with t = O  t aken  a t  t o . 

I /  t o is preceded by a stretch o/F1,  o/time-length ~ ~ at least, that has y > 1 + L, then 

/~ ( t o ) e L k  ~. (15) 

I n  particular (15) is true /or any Z o/ (Z1, U1). 

I /  t o is in (Zl,  U1) , then 

For the special point U~ 

L k  l < t t ( t o ) < D k - � 8 9  (16) 

/t (U1) ~ Lk-�89 (17) 

The funct ion cp( t )=e-~ fe~d t ,  fo rmed (for the d.m.) wi th  t = 0  a t  to, we call 
o 

~to(t), and we write q~z~(t), etc. We have  (as par t  of the  z-dict ionary) 

q; t , ( t )<Dk -~ i/  (to, t) is contained in (ZI, U1) and t > t 0  .a (18) 

~ z ( t ) < L k  -1  [or a Z in (Z1, U1) and t ~ Z ; ~  

q : z ( t ) > L k  1 i/ t _ Z ~ 1 2 "  ~ (19) 

, > ~ ~ 4 ( 2 0 )  q)t~ (t) = ~t (t) + 0 ~, provided t - ~o - ~ "" 

We conclude our collection of results with some identit ies and near-identi t ies.  

t2 

c ( t2 ) -c  ( t l )= - f w d t  (21) 
t~ 

i We separate out the ~-integration here, as against the ~ one for J. 

2 (15), (16), (17) a r e  of c o u r s e  t r u e  a l so  i n  i n v e r t e d  f o r m  (for I~l s u i t a b l y  g a p - f r e e ) .  

3 F o r  q u i t e  g e n e r a l  t o w e  h a v e  q)t, (t) < D k �89 

t t t.~ t 

, ~(,)=~-~fo*a,=f e x p { - r ( t ) - r ( t - x ) } 4 x = f  + f .  
o 0 o �88 

T h e  f i r s t  t e r m  is  tic; t h e  s e c o n d  is  a ~9 ~. W e  i n c l u d e  t h i s  t o  i l l u s t r a t e  " t r a n s l a t i o n "  f r o m  d . m .  

t o  r .m .  l a n g u a g e .  
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c(U~)= - A  V+ f y~dt, e(U~,~)= - •  V+O(Ao), 
U~ 

LT.. { (22) 

c ( U ~ ) = A V ' -  f y ld t ,  e ( U ~ . 2 ) = A V ' §  
UI" 

I / - A ~ o > 0 ,  then w(U1)~ L ( -  Aog); ] 
i/ A o / > 0 ,  then w(U~)~L(Ao) ' ) .  ~ (23) 

(21) is the difference of the ?}-identities for F1, ~ (rather disguised). I t  shows tha t  

when w >  0 c (t) is decreasing. The  identities in (22) are easily verified; the other  

results are tr ivial  consequences of the identities. (23) follows from the fact  t ha t  be- 

fore and near  a U [U'] the ?) for a gap-free F satisfies [ ~ [ ~ L .  

20. We begin by  proving (~) "up to  UI";  i.e. so far  as its results relate to 

the range (Z 1, U1). The proof proceeds by  successive stages of two kinds, embodied 

in (e), (~) below, with @) to provide a start ing point  [((~) is par t  of the proof of (~)]. 

We are supposing always, and tacit ly,  t ha t  w (Z1)> ~ ,  where $~ is a "su i tab le"  $, 

which we rechoose as the argument  proceeds. We set out  (7) to  ($) before beginning 

proofs. 

(7). I /  g2 is in (Z1-�88 Z x + l ~  ) there is a "w, c linkage" at ~: 

w (~) ~ L~t (~) c (~'~) --~_ ~ ~ L k -1 c (~'~) -t- ~. (24) 

In  particular c (Z1) ~ L k w (ZI). (25) 

In  (~), (e), ($) we suppose tha t  t o is in (Z1, U1) , and we give the short  name 

H (to) to the hypothesis,  or proposit ion (as the case m a y  be); " the re  is no intersec- 

tion, 1 and w < k  -5, in (Z1, to)". We replace T by  ~ throughout ,  dealing, as we shall 

do, only with ranges where 0 < w < k -5. 

((~). I /  H (to) is true, then 

w (to) < L # (to) kw (Z1). (26) 

(e). I~ H (to) is true, then there is a w, c linkage at to: 

w (to) ~ L ~ (to) c (to) +_ ~. 

In  this Ft (to) satis]ies [after (16) and (17)] 

Lk- l<~t( to)<Dk- �89  ~ (U1)~Lk-�89 

(27) 

(28) 

1 So that w>0. 
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(~). Let Z be, a Z o/ (Z1, U1) [ Z = Z  1 is permitted], and suppose H (Z) is true, and 

c (Z)> ~', where ~' is a certain definite ~. I /  now 

~ < _ t l - Z < _ L l k  [L 1 of (10)], 

then H (tl) is true. Also w (tl) ~ L ,u  (t 1) c (Z). (29) 

We postpone the proof of (7), which is more easily explained a little later: we 

assume its results provisionally. 

I n  (5), (s) we m a y  suppose t0_>Z 1+~2 ,  since the range (Z1, Z I + I ~ )  is covered 

in each case by  (y) [ = (24) + (25)]. 1 

For  (5) we have, by  (1) and (20), 

W (to) ~ W (Z1) e (vt. - vZ , )  -~- c (Z1) ~ z  I (to) • ~ -~- # (to) c (Z1) 

< ~ + # (to) L/c w (Z1), 

by  (7), and we m a y  drop the ~. 

I n  (s), consider the r.m. f rom to, taken as origin, over t <1 ~t. This lies in a range 

with no intersection and w </c -s. We can apply  (7), of which the first par t  is #0 co -< w0" 

In  the second we have, by  (8), and (14) with t = { 2 ,  v~(l~)< I, j(i~)/~0<~, so t h a t  

#oCo (1-1~)>w0 (1 - ~ ' ) -  ~, 

and dividing by 1 - ivY '  we get  the remaining inequal i ty  of (s). 

For  (~), consider the d.m. f rom Z till the first intersection, if any,  or till w =/c -s, 

or till t = tl, whichever happens first. I n  this range, with t = 0 a t  Z, we have (32), i.e. 

t t 

w > c o c f  (1 - v ~ J / f  d d t - (Wo/Co) ~/ . [  d d t). (30) 
0 0 

Since t~_L1/c , the factor  of v ~ is <~, by  (13), and t h a t  of Wo/C o is D k  -�89 by  (10). 

Also Wo/Co=W (Z)/c (Z), and by  (~) 

w (Z) < L #  (Z) c (Z) + ~ < L / c  -1 c (Z )+  ~, 

and for suitable ~' this gives w (Z)/c  ( Z ) < L k  -1. Hence (30) gives 

w > L e  (Z) ~z  (t) > 0, (31) 

and incidentally an intersection is no t  the first event,  and (since w <  k -s in the range 

up to t) H( t )  is true. Then, by  (5), 

1 Note that c (t) _~c (Z1) for t->Z1, w being positive in virtue of H (to) in (21); also that we 
can drop the ~ in w (to) <Lt t  (to) kw (Z1) + ~ when ~1 is suitable. 
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w<Li~(t)  k w ( Z 1 ) < L k  ~- 1~ < k-5, 

and w = k  -5 is no t  the first event.  So t=t~ is the first event, and H( t l ) i s  true. 

Since Cfz(t~)>#(t~), (31) gives w(t~)>L/u(t~)c(Z). Also, by  (1) with t = 0  at  Z, 

iV (tl) < ~ -~ C (Z) ~ z  (t 1) < ~ ~ c (Z) (/s (tl) ~-~ ~), 

by  (20), and for suitable ~' this gives w (tl)<L/~(tl)c (Z). This completes the proof 

of (~). 

21. Re tu rn  now to the postponed (y). This is in point  of fact  t rue for any 

pair F1.2 of the stream, and since the  mesh does no t  convenient ly help us backwards 

from Z1, we prove it in this form, retaining the T in (W) and (W) (instead of T). 

Let  ~ be the range ( Z I - ~ X  , Z1+~2) ;  this includes both the d.m. and the r.m. f rom 

s to t ime 2.�88 and on the other  hand  it is to  the r ight  of Z 0 + L  (for some L). I n  

we have, for each of FI. 2, y > l + L .  B y  L e m m a  A we have y, ?~=0(1) ,  and by  

its (3), together  with the initial conditions for the stream, we have A F = O  (Dk-1). 

Next,  we have T > L k ,  T > L k t  in ~ ,  for d.m. or r.m. I t  follows by  straight- 

forward calculations that ,  for origin ~ ,  and t _< 1 ~, 

t 
~ < L k  1, j / f e - r d t < L k - 1 ,  

o 

and also tha t  # (s % L k 1. 

(32) 

(33) 

Consider now the r.m. f rom s to  t = �88 2, or the first intersection (if any),  which- 

ever happens first. There are two cases: (i) an intersection happens first, (ii) no inter- 

section before t = ~ ~. 

Case (i). Consider the r.m. f rom the intersection as new origin, for a (further) 

t ime ~ ,  or to the next  intersection, whichever happens first. We have ~0 < 0 and 

w < 0  in this range. (5) is valid, with w changed to - w  to  normalize, and w 0 = 0 ,  

5 0 = - ~ o = l * b o [ ;  and it gives [for the unchanged w], after (32), 

$ 

-we-~>_~l~ol f e-~ dt. (34) 
0 

This shows, first t ha t  there is no (second) intersection, and so, secondly, tha t  (34)is  

valid at  t = ~ ,  when it gives ~b0= 0 (~). 

Consider now the d.m. f rom the intersection up to  s There is no intersection 

inside the range, and (1) is valid with w 0 = 0  , c0=l~01 , so tha t  0_<w<]~ ,01V<~,  
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and  w , = O ( . f l w l d t ) = O ( ~ ) .  I n  par t icular  w ( ~ ) = O ( ~ ) ;  also, t ak ing  t = ~  in 
0 

~b = - T w +  w 0 - w l ,  we have  ~ ( ~ ) =  0 ($), and  so finally e ( ~ ) =  0 (~). (F) is accordingly 

t rue  in degenerate  form. 

Case (ii). I n  this case (4) and  (5) are valid a t  t = 1 2  of the  r .m.,  wi th  w o = w ( ~ ) ,  

g o = - e ( ~ ) ;  ~ and  ] behave  as before a t  t = ~ . ,  and b y  an a rgumen t  now famil iar  

we get  the  w, c l inkage a t  ~ ,  in case (ii) as well as in case (i). 

Finally,  to prove  (25), we observe t h a t  for suitable ~1 we can drop the  • ~ in 

(24) when ~ = Z 1. This completes  the  proof  of (F). 

22. Hav ing  now (~) to  (~) a t  our  disposal, we divide the  range (Z1, U1) a t  

Z1, tl, t~ . . . .  , $~, U1, where tn are a t  Z 's ,  and  the  t ime- lengths  s of the  successive steps 

sat isfy L 2 k < S < L l k  , where L 1 is the  L 1 of (10) and  L 2 is su i tably  small.  This  is 

clearly possible, and  with ~ +  1 < L .  Since the  tn are Z~, we have  /t ( t n ) ~ L k  -1. 

At Z1, we have  c (Z1)>Llcw(Z1)> ~' for suitable ~1; hence, b y  (~) wi th  Z=Z1 ,  

H($1) is true.  Also w ( t l ) ~ L # ( t l ) e ( Z 1 )  , and so, b y  (25) and  (15), 

w (tl) ~ L w  (Z1). (35) 

B y  (s), wi th  its to=t~, e ( t l ) ~ L # - l l ( t ~ ) l w ( t l ) •  therefore,  by  (15) and  (35), 

c ( t l ) ~ L k w ( Z 1 ) + ~ ,  and so, for ~1 suitable,  

c (tl) ~ L k w  (Z1) > ~'. (36) 

Since t 1 is a Z we can app ly  (~) wi th  its tl=t~, and  (s) with its t0=t2;  H(t~)  

is true,  w (t~) ~ L/~ (t2) c (tl) _< L k 1 c (t~) and  c (t~) ~ L k w (t~) • $, which gives, a f te r  (36), 

and  for  suitable ~1, w (t~) ~ L w (Z~), and 

c ( t ~ ) ~ L k w  (Z~) ++_~Lk w  (Z~)> ~'. 

The  process can ev ident ly  be repea ted  (L s teps a t  mos t  are needed); H (t,) is 

t rue,  and  c (t~) ~ L k w (t,,) ~ L I~ w (Z1) > ~'. 

I n  the  final s tep to U~, (~) shows t h a t  H(U~)  is t rue  [so no intersect ion in 

(Z1, U1) ] and  

w (U1) ~ L #  (U1) c (t,) ~ L k  �89 w (Z1), 

b y  (28); and  f rom (s) wi th  its t o = U1, and  for  suitable ~ ,  

c (U1) ~ L # -1 (U~)w (U1) 4 - ~ L k w  ( Z ~ ) •  (Z~). 

We have  now proved  (~) up  to U 1. 
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We have now to make  the step from U 1 to Z~. The nature  of the reasoning is 

much the same; the difficult region l Y] < 1 is involved, bu t  the step is less than  ~2 

(as against,  L/c), and the results (11), (12), (14) are available, and adequate  to deal 

with the new situation. 1 The upshot  is (for suitable ~1) no intersection before Z~, and 

we can add 
! p 

c (Z1) X L/c w (Z~), w (Z1) X L w (Z~), 

to  our previous results. 
! r 

We can now make  a fresh star t  a t  Z~, and proceed to U2, except for the detail 

t ha t  we have only w ( Z ~ ) > L ~ I  instead of w (Z~)> ~1; this can be adjusted by  a final 

re-choice of the original ~1- The results of (:r are now all accounted for. 

After (:~) we have agreed to take  (fl) for granted.  

23. We can now prove L e m m a  D. After (fi) we m a y  suppose tha t  w(Z1)>  ~ ;  

and it is enough to show tha t  for consecutives of the mesh satisfying w (Z1)> ~1 we 

have - A V ,  A V ' > 0 ,  and 

for these results are additive. 

Since 

(22) and (23) give 

so that ,  by  (21), 

Also 

L ( - A V ) < A  V ' < ~ A V ;  

w (U1) < D/c - t  c (UI), w (U'2) < D k - i  c (U:.), 

- A e o = O ( D / C - � 8 9  V), AoY=O(Dk-~- )A  V', 

A V' (I + o ( 1 ) ) +  A V (I + o ( 1 ) ) =  -- f w d t  
U~ 

(37) 

A V' = c (U~) (1 + o (1)) ~ L kw (Zl) , 

- A V = c (U1)  (1 + o (1))  % L k w (Z1),  

by  (u), and we infer t ha t  A V ' ,  ( - A V ) > 0 ,  and A V ' > L ( - A V ) .  I t  remains only, 
U~" 

after (37), to  prove tha t  .~ w d t > L k w ( Z 1 ) .  And since w > 0 ,  it is enough to prove 
U~ 

tha t  w>Lw(Z1)  over a range f rom Z ~ + { 2  to a fur ther  distance L1k, with L 1 con- 

veniently small. Now with origin Z~, (3) [in inverted form] gives, for this range, 

1 Compare the proof of (2): the last term in (32) is small with w0/c0, though its other factor 
is no longer small. 

20-  563804. Acta mathematica. 97. Imprim~ le 8 aofit 1957. 
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11. i -M 

V*'  

V, 

(V*+ M)' 

V* 

Fig. 4. 

w > c (  z '  ,) (t) (1 - J/f e" dt). 
0 o 

By a rguments  now familiar  the  large b racke t  is >�89 also, since 

> 1 ~ ,  _># t _ ~  ?~zl (t) (Z i )Lk  -1 . 

Since c(Z' ! )>Lkw(Z1) ,  by  (~), we get  the  inequal i ty  w > L w ( Z 1 )  t h a t  we need. 

24. We propose to  exercise some licence in the  explanat ions  t h a t  follow. 

(i) We general ly ignore c$'s, represent ing t hem by  O's, and we ignore 0 (~); (ii) we 

use a symbol ism " V ' ( V ) "  for the  V' result ing f rom " V " ,  as if there  were a definite 

funct ion V' (V) of V over  the  range V* - 0_< V_< 17" + M -  01 (the O's here represent ing 

suppressed c$'s): this is in effect supposing " l inkage"  to be exact.  We now use (V*)' 

to mean  wha t  can be indicated roughly  as V' (V*+  0). Our bases of a rgumen t  are 

now: (a) V" (V) is de/ined over V*+O~ V <_ V*+ M - O ,  and lies in the same interval; 

(b) V' (V) varies in the opposite sense to V; (c) the interval (V1, V2) "shrinks"; (Vi, V~) 

is smaller than (V1, V2) in a ratio 1 - L .  

Suppose (what will in fact  normal ly  happen,  as we shall see later) t h a t  V*' is 

not  near  ei ther end of the  range (V*, V*+M).  As V increases f rom V* to V * + M ,  V' 

decreases f rom V*': it m a y  now happen  tha t  (i) there  is a V, such t h a t  V . =  V*, 

or again  (if) there  m a y  be no V,,  in which case (V* + M ) ' >  V*; we shall find t h a t  

cases (i), (if) occur each for certain ranges  of b. 

Take  first the  simpler case (if); the  relat ions of V, V' are shown d iagrammat ica l ly  

in Fig. 4. The  lines f rom any  two V's of the range  (V*, V*+M)  to their  V' will 

1 This " funct ional"  use of a dash produces  a slight clash wi th  the  usual  " i nve r s ion"  mean ing  

( though it originates f rom the  la t ter  meaning).  
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cross and  the  difference will shrink,  and  V, V' move in opposi te  senses. I f  we s t a r t  

f rom any  V and  form the  sequence V', V " =  V ' (V ' ) ,  V ' " ,  . . . .  there  will c lear ly  be 

convergence,  in  the diagram, of V (~) to  a l imi t ,  Vp say.  An ac tua l  (sett led) 1 F wi th  

a V no t  in the  gap  has i ts V', V", ... clear o f  gaps,  and  V (m) quasi-converges to a 

Vp, i.e. converges except  for error  0 (~). The  F u l t i m a t e l y  has  i ts V's al l  of the  form 

V~ + 0 ($), and  the  d is tance  be tween  successive U, U '2 is of the  form ( n -  �89 A + 0 (~), 

wi th  cons tan t  n. The  u l t i m a t e  F is therefore  quasi-per iodic ,  of quas i -hal f -per iod (n - ~-) ~, 

and  a n y  pair  F1.2 s t a r t i ng  near  the  same U quasi -converge  to each other .  

I n  case (i) we m u s t  bui ld  up the  d iagram,  Fig.  5, in two stages.  We have  

( V . - 0 ) ' =  V * + 0 ,  b y  (b); hence the  downward  sloping line from V..  On the  o the r  

hand,  aga in  b y  (b), we have  (V.  + 0 ) ' =  V * - 0 ,  and  this means a dip and V ' - V *  + M  

a X-period later, 3 a place represen ted  b y  the  r ight  hand  ver t ica l  line. Thus we have  

two lines f rom V. as shown. Fu r the r ,  (V*)' is below V.,  b y  (c). 

Consider now ( V * + M ) ' .  I t  mus t  no t  be p laced  on the  middle  line, since there  

i t  would,  b y  (b), be below V , =  V*; hence i t  is p laced  on the  r igh t  h a n d  line, and,  

b y  (c), above  V..  

There  is, in th is  case (i), a new t y p e  of gap,  a V,-gap,  since a V in  V.+_b 

leads to a V' in  V*+~ ~ at the U' following U. A V of the  d i ag ram s t r i c t ly  be tween  

V* and  V,  has  i ts  V', V", ... converging to a V~ 1) in this  range,  one s t r i c t ly  be tween  

V,  and  V * + M  has i ts  V', V", ... converging to  a V~ ) in t h a t  range.  An ac tua l  F 

wi th  V in V * + b ,  V , - ~  (so no t  in e i ther  k ind  of gap) u l t ima t e ly  has  i ts V's of the  

1 In future we suppose that all I? mentioned are settled. 
2 U, U' have approximate phases -�89 ~, +�89 ~ respectively. 
3 Note that we are using V' (V) to mean the V' at the true U'; a V' (V) has a discontinuity 

at V., V' ( V . -  0) being V*+ 0 at the middle ordinate of the diagram, and V ' (V,  + 0) being V* + ~a// 
at the end one. 
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form V~)+O (~), and its successive distances U, U' of the form ( n - ~ ) A + O  (~), and 

any  pair of F of the kind quasi-converge. A pair of F with V's in V. + (~, V*+  M -  

ul t imately have V's of the form V(~2)+ 0 (~), and U, U'  of length (n + �89 + 0 (~), and 

they  quasi-converge. 

25. We have seen that ,  assuming V*' is not  near V* or V * + M ,  then,  if a 

t ra jec tory  starts with a V in neither the V* gap nor  the V. gap (if there is a V.),  

its V', V", ... s tay  clear of gaps. Fur the r  tha t  there is either one group of which 

every pair quasi-converge, or two groups, such t h a t  any  pair belonging to the same 

group quasi-converge. I t  remains to show t h a t  quasi-convergence (of the kind con- 

sidered, clear of gaps) of a pair of trajectories involves their exact convergence (Yl-Y2 

and .Yl-Y~ tend to 0 as t - + ~ ) ;  and it  is then an easy consequence t h a t  a group of 

quasi-convergent  trajectories converge to a single t rajectory,  necessarily strictly peri- 

odic. The a rgument  separates two cases, (i) when the pair ul t imately do not  intersect, 

(ii) where they  have an infinity of intersections: it works in either c a s e ; b u t  whether  

either case happens always, sometimes, or never, we do no t  know. 

26. This t ime the approximat ion v for T has error only 0 (~). 

Case (i). Suppose w is ul t imately positive. Then  first, wi, which is an increasing 

function, mus t  be bounded.  Otherwise,,  for an arbitrari ly large G and t > t  o (G), we 

should have c 0 - w  1< - G  and so 

t t ,  t 

0 0 to 

By the ~-dietionary 1 the first te rm is less than  a constant  independent  of G, and the 

factor  of - G  is greater than  L/c -1 for t > t  0+ !. Hence w is u l t imately  negative,  a 

contradiction. Since, then, (a) w 1 is bounded,  (b) w >  0, and (c) ,b is bounded,  we 

must  have w-+0;  and then z b ~ 0  since ~) is bounded.  

Case (ii). Let  the intersections be I~, n =  1, 2 . . . . .  and w~ = w  (In). I n  the first 

place we have, for any  w in I~ I~+ l ,  

Iwl< Dl&,~] Ic~. (1) 

For, taking t - 0  at  I~, and normalizing to ~n and w non-negative,  we have 

t t 

0 0 

1 We are taking this as known. 



T H E  :EQUATION y - -  k (1 -- y2) ?~ + y = b/t k cos (/~t + ~) 301 

Consider now the r.m. f rom In+l,  taken as t = 0 ,  up to t = ~ ,  or till we reach 

In,  whichever happens first. I f  w is, say, non-negative,  we have from (5) of w 19 (with 

wo=O, ~o =~n+l ) ,  
t 

we ~ . + ~ f e  ~ d t ( 1 - f f f e - ~ r 2 4 7  rdt) (2) 
0 0 

and by  considerations we used earlier the large bracket  is greater than  21. Hence 

t 

w>~ �9 eTfe-T ~wn+l dr, 
0 

and in particular I~ is not  reached before t =~ 2. So we have 

w (~ ~) > 12wn+1" e T(�88 f e Tdt>~l~bn+l "e~Lk "Lk-1 
0 

by two ~-results. On the other hand,  this w( i~) ,  being a w of J[nlN+l, satisfies (1), 

so tha t  {w(12) lw(12)I<_ik l { ? j ) n { .  I t  follows t h a t  {~bn+~[_<,~{~bn{. Hence ~bn->0, and 

so, from (1), w--->0 uniformly. Final ly ~b mus t  tend to 0 since 0) is bounded.  

27. I t  is possible to give a formula, correct to a factor  1 + o  (1), for the period 

P of a stable periodic F. 1 

Let  Y(x, b, ~) be defined by  (see w 6 (3)) 

-F(Y)=~- Y+~ ya=x+b (1 + sin ~) 

for the range O _ < x ~ < ~ - 2 b  of x, and then for the long descent 

yJ(x, b ) =  i Y (x, b, qg)dc, v 
--st 

is k times the approximate  change in the constant  x over a period of ~v. Hence 

*/3 - 2 b 

~ P  f dx 
k ~ (x, b) 

0 

The r ight-hand side is independent  of ~ (as we should expect). 

28. For  the next  developments  we need to show that ,  for a fixed V, V' varies 

smoothly  with b. I t  is to  be expected t h a t  a change of order k 1 in b corresponds 

to a change of order 1 in V', or of one ~-period in the period of a p.m. We prove 

1 Where there are two periods they differ by a factor 1 + o (1). 
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t h a t  an  increase of order ,  say,  (k log k) -1 of b produces  an  increase of order  (log It) -1  

in V '  for f ixed  V. 1 As b increases t h r o u g h  L log k such steps,  V '  will run  effect ively 

t h rough  the  whole range  V*, V * + M ,  2 which las t  is equiva len t  to  V* a ~-period 

earlier.  I t  is fu r the r  clear f rom the  d iagrams,  and  (a), (b), (e) of w 24, t h a t  when F * '  

is jus t  above  V* there  will be a V.,  3 and  t h a t  when i t  is jus t  below V * + M  there  

will  be no V..  W e  see now the  genesis of the  exc luded  in te rva ls  of w 4, which are 

those  for which V*'  falls in the  V*__ d gap,  ~ and  of the  a l t e rna t ion  of the  two eases 

I f  a sys tem has s table  subharmonics  of which the  order  decreases wi th  increase 

of a p a r a m e t e r  b, i t  is perhaps  to be expected ,  as the  mos t  n a t u r a l  way  of br idging 

the  gap,  t h a t  there  will be this  a l t e rna t ion  of one s tab le  per iod  and  of two s table  

per iods  (the shor ter  increas ing i ts  sphere of influence a t  the  expense of the  longer),  

wi th  all the  a t t e n d a n t  consequences of the  l a t t e r  ease. 

29. However  th is  m a y  be, we are  now in a posi t ion to  discuss in more  detai l  

the  s t ruc ture  of the  non-s tab le  t ra jec tor ies  when be  B2. We have  seen t h a t  a P ar- 

r iving af ter  a long descent  ( " se t t l ed" )  a t  y = l  has  phase  - ~ - o ) ,  where ~o lies in 

a range ( - L k-�89 L k �89 There  are two V-gaps, n a m e l y  V* ___ ~ r o u n d  V*, and  V,  • L 1 

round  V,,  where  L 1 will be exp la ined  present ly .  I f  we suppose a pa r t i cu la r  l inkage  

of V and  o~ to be set up  in some way,  these  gaps  correspond to two " g a t e w a y s "  

on y = l ,  bo th  ly ing  in t he  w-range above;  there  is such a pa i r  of ga t eways  near  

eve ry  place of phase  - ~ ,  and  s imilar  ones on y = -  1 near  eve ry  place of phase  

~ .  The V* and  V,  ga t eways  we call  G (suppressing an upper  s tar)  and  G,  respec- 

t i ve ly  when t h e y  are on y =  1, G' and  G,  when t h e y  are  on y = - 1 .  A con t inu i ty  

a r g u m e n t  (backed b y  some subs id ia ry  considerat ions  we will no t  go into)  shows t h a t  

a cont inuous  s t r eam S (s ta r t ing  a t  some Z0) exists ,  whose P ar r ive  near  a given place 

of phase - � 8 9  on y = - 1 ,  wi th  V' hav ing  a n y  assigned va lue  in V* - 2 d < V  ' <  _ 

V * + M - d ;  t h e y  arr ive  af te r  a long ascent  (sett led),  and  wi th  l y l > L .  W e  m a y  t ake  

as S the  represen ta t ive  poin ts  (at Z0) of whose F lie on a segment  of a s t r a igh t  l ine 

in the  space of r ,p,  There  is a sub-segment  wi th  a corresponding sub-s t ream going 

1 The increment is moreover approximately independent of the given V. This less "obvious" 
fact is used, so that the long proof is not merely a tiresome necessity. 

2 V* and M are functions of b, but vary so slowly that they may be treated as locally 
constant. 

This depends on the inequality [V2-V~I >L(V~-V1)+O(r  Nor can the L be a D! I t  is 
this that calls for the simplifying b > 1 ig~, without which there would be much further complication. 

4 The V, gap can only be reached from a V in a V* gap; with such V's almost anything can 
happen. 
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th rough  G' (and "fil l ing" it); let Fi. 2 be the F ' s  t h rough  the V* +_(5 ends of G' re- 

spectively. F1, 1 of Fig. 6, shoots th rough  l yl < 1 and begins converging to a p.m. 

of half-period ( n - ~ ) L  F2, 2 of Fig. 6, makes a dip, and then begins converging 

to a p.m. of half-period (n+~)~ .  U 1 is at  a t ime (n-~))~ later than  U~ (approxi- 

mately,  understood);  on the other  hand  U~ is t ime ~ later than  U~; since fur ther  

V~ is kpproximate ly  V* + M, U 2 is (n + ~) ~ later than  U~, with V e -  (V* + M)'  approxi- 

mately.  U 1 and U S are accordingly two ~-periods apart ,  and V 1 = (V* § 0)', V 2 = (V* § M) '  

approximately.  These extremes F~,2 of Fig. 6 (i) bound a "de l ta"  where they  arrive at  

y =  1.1 This delta contains two G's, G 1 and  G 2, and one G.. The stream through  the 

initial G' will contain sub-streams th rough  each of these, again arriving (settled) after 

a long descent and with l Yl > L .  Those th rough  G~.2 are scattered similarly to the 

original one th rough  G'; tha t  th rough  G. is not  immediately  scattered, but  leads. 

after t ime (n-~))~, to  a new G', and if L~ is sui tably large it contains a sub-stream 

through  and filling this G'. 2 We have now three sub-streams, each ending by going 

through a G or G', and the process repeats. 

We note some further  details. The extremes F~,~, after leaving y = - l ,  cross, 

approximate ly  at  height y =  2, and at  time approximate ly  ~ after U~; other  F 's  cross 

similarly. The s t ream becomes a narrow channel, of width O(k-1), for the long des- 

cent. F ' s  of the s t ream star t ing near  F~ s tay  below F~, those s tar t ing near F2 s tay  

above F2; bo th  are presently lost for good from the long descent " t u b e "  enclosed by  

F1,.~;a it is in fact  only a central  core of the initial s t ream (with width probably  of 

order about  /c ~) t ha t  provides the stream th rough  the tube. 4 

30. We proceed to  analyse the  possible "s t ruc tures"  of streams flowing only 

th rough  ga teways  at  their U, U'  (we reject the parts  going outside). We have seen 

tha t  the three possibilities following a G' are: (a) a " sho r t "  sub-stream, s [length 

(n -1))~], to  GI; (b) a " long"  one, 1 [length (n ~,~)~], to  G2; (c) a long one to G., 

followed immedia te ly  by  a short  one to a G'; the combinat ion we will call C. l', s', C' 

have the inverse senses. 

We next  define a "un i t "  undashed  " s t ruc tu re"  u to be a s t ream ( through gate- 

ways) s tar t ing from a G and ending at  a G, the lat ter  being the first G after  the 

Distances of order k �89 6k -�89 are of course grossly magnified in the figures. Fig. 6 (v) is 
drawn for a case in which I~2 makes one dip at y= 1; (V* + M ) ' - M  lies between 0 and M. The V's 
linked with various points on y = 1 are also shown. 

2 By the left hand inequality of Lemma D. (By the right hand one we must have LI> 1). 
a I"s starting just outside F 1 or I'~ enter the tube, but we are not concerned with these. 
4 Some I"s of the "core", e.g. 7, 8, of Fig. 6 (i) go beIow I~i before ending up in the tube. 
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Fig. 6(v). Arrivals a t y - 1 .  ( V * + M ) ' - M < V * < ( V * ) ' < V , < V * + 3 1 b y F i g .  5. 

former.  The  possible u 's  are now as follows, where each of x and  y m a y  be e i ther  

s or l: 

(i) C; (ii) x + y ' ;  (iii) x + m C ' + y ' ,  m being a n y  posi t ive  integer .  

The  mos t  genera l  s t ruc ture ,  fronl - -oo  to co, say,  is an  a r b i t r a r y  succession of 

s  or else the  inverse  of such a s t ruc ture ,  l i t  is genera l ly  both, but ,  e.g., a suc- 

cession of C's  only  is an  except ion.  And  a s t ruc tu re  can be iden t ica l  wi th  a dashed  

s t ruc ture  su i t ab ly  t r ans la ted . ]  Given any  s t ruc tu re  there  exis ts  a cont inuous  s t r eam 

th rough  a n y  f ini te  sect ion - 2 ' < t < T  of it;  and  b y  a l imi t  a r g u m e n t  there  exis t  

t r a jec to r ies  t h rough  all  the  gaps  of a n y  possible s t ruc ture .  These  provide  the  t r a -  

jector ies  X of w 4; and  when the  s t ruc tu re  is per iodic  t h e y  provide  quas i -per iodic  

t r a jec to r ies  having  the  s t ruc ture .  The  final s t ep  to  the  exis tence of a s t r ic t ly  per iodic  
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t ra jec tory  having the s t ruc ture  requires an  i ndex -number  a rgument .  This last  is the 

only topological a rgumen t  we have occasion to use. 1 

31. I t  follows from the famous " las t  geometrical  theorem" of Poincar4$ inter 

alia, t ha t  of a t r ans fo rmat ion  T, which is l - l ,  cont inuous  and  area-preserving in 

the annu lus  between two curves, has f.p. of order n I on one curve a nd  f.p. of a 

different  order n 2 on the other, such t h a t  the points  go r ound  the curves once in 

n 1 and  n 2 t rans format ions  respectively, then  it  has f.p. in the annu lus  of every order 

N such tha t  m / N  lies between 1/n 1 and  1/n 2 for some integer  m ; i f n  1 = 2 n §  and  

n e = 2 n - 1 ,  i t  has f.p. of orders 2n ,  4 n •  6 n _ + l ,  8 n + 3 .  As a ma t t e r  of fact an 

annulus is no t  essential  to such behaviour:  in our case of s table periods ( 2n_+ l )  

there is no annulus ;  all the points  of K 0 lie on the frontier  of a s imply-connected  

domain  conta in ing the point  a t  inf ini ty .  There would seem, moreover,  to be a much  

richer "fine s t ruc ture"  of non-s tables  t h a n  is provided by  the annulus .  For  example,  

to take only mult iples  of 2 n 2 ,  there exist 4 d is t inc t  k inds  of set of least  period 

2 n ~ ,  6 of least period 4 n ~ ,  and  a considerable n u m b e r  of least period 6 n 2 .  3 The 

annu lus  may  have as few as 2 of least period 2 n ~ and  none  of a least periods 4 n ~, 

6 n 2 .  

Since a t ra jec tory  exists conforming to any  possible s t ructure  of gaps from - oo, 

to + ~ ,  cases arise t ha t  seem curious a t  first sight. We ma y  instance t h a t  of a pair  

of trajectories r unn ing  close together  th rough the same system of gaps for large 

posit ive and  large negat ive  t, bu t  r unn i ng  apar t  over a s+retch in the middle;  the  

gap-s t ructure  towards t = + oo and  t = -  oo can, again, be periodic of one period in 

o~e direct ion and  of ano ther  in  the other. 

32. I n  the case beB2 a non-s table  p.m., or a t ra jec tory  of the set X has a t  

every critical crossing of y =  +_1 its V either V* or V., with error o(1). While it  

is no t  necessary to the  results  to explain,  in  detail,  how this can happen,  the reader 

may  feel some curiosi ty on the  point ,  and  we shall say something abou t  it. 4 

A n y  t ra jec tory  satisfies an  iden t i t y  

� 8 9  + sin ~ ) - ( ~ + y l ) / k .  (1) 

1 And except for it all our analysis is entirely "low-brow". 
See G. D. BIRKHOFF, Dynamical Systems (New York, 1927), 165. 

3 Owing to possibilities of symmetry, and permutations of constituent units that may be like 
or unlike, the exact number of distinct kinds is not at all easy to determine. 

4 There are other types of "odd" bchaviour, arising mainly from the critical nature of the 
lines y= Jr 1, for trajectories emerging slowly from [y[ < 1: it is necessary to the proof of strictly 
periodic non-stables to discuss these, but it would take too much space to describe them here. 
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y = - l  L 
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y = - 2  

Fig. 7 (i). Trajectory "pulled" at R. 

Fig. 7 (ii). Trajectory "sliced" at S. 

During a "qu ie t "  interval,  of durat ion no t  more than  o(k), in which t/ is 0 (1) ,  this 

is approximate ly  of the form 

~y3_  y + ~ =  C +  b (1 + sin q)). (2) 

I f  two such quiet intervals are separated by  an interlude of dm'at ion o (k) [it is in 

practice o (1)], the interlude contr ibutes o (1) to y l / k  and to error o (1) the C o/ the 

second quiet interval is the same as that o] the [irst. Now the locus (2) can (for cer- 

rain C, e.g. C = 0 )  consist of as m a n y  as three dist inct  branches; most  of the 

time a t ra jec tory  is pursuing one or other  of these, bu t  it can jump from one to 

another  in a short  interlude in which ~ is large. The value C = 0 is part icularly im- 

por tan t  since the last stages of a " long descent"  to  y - 1  are given, with error o (1), 

by  (2) with C =  0.1 As we saw in w 13, the locus (2) has then three branches C 1, C2, C3, 

shown do t ted  in Fig. 7. 

I t  is now possible for a t ra jec tory  to behave approximate ly  as follows: (i) arrive 

at  X on y = l  along a C 1, (ii) pursue the unstable C 2 to some point, (iii) either (1) 

"pul l"  up to the point  of C1 vertically above and  follow C~, or (2) "slice" down to the 

point  of C 3 vertically below, and follow C a. I n  case (iii)(1) it is possible, by  varying 

the momen t  of the "pul l" ,  to  make  the  value of y~ at  Y, the next  y = l  point, 

x This applies only to y, not to ?); we may not "differentiate" (2) near y= 1. 
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v a r y  up  to  the  a m o u n t  of the  a rea  con ta ined  by  a C 1 and  C 2. Since, iden t ica l ly ,  

Vr = V x §  [Yl]~, th is  makes  possible a var ia t ion ,  of the  order  of 1, in the  va lue  of 

V a t  Y. Most  of the  de l t a  is of course free of " n o r m a l "  t ra jec tor ies :  the  de l t a  is none  

the  less " f i l l ed"  b y  the  s t ream,  and  in fact  mos t ly  b y  the  nea r ly  ver t ica l  t r a j ec to r i e s  

in the  act  of pul l ing or slicing. 

33. W e  conclude wi th  the  obvious  r e m a r k  t h a t  if / is a l lowed to have  more 

t h a n  one pa i r  of zeros the  s i tua t ion  can become ve ry  different .  Consider  for example  

the  equa t ion  

~ ] + / c ( 1 - y 2 + e - k y 4 ) ~ j + y = b p k e o s (  # t + a ) .  

I f  the  t e rm in e -k is omi t t e d  this  is (E) wi th  the  sign of t changed,  a n d  the  t r a -  

jector ies  are  the  r .m. of (E) (and include,  for b<~ ,  a stable p.m. of o rder  1). The  

non-s tab le  p .m. ' s  and  the  t r a jec to r ies  of X,  which are  bounded  for all t, pos i t ive  and  

a~egative, cont inue to  exis t  (reversed 1, and  s l ight ly  modif ied)  when the  new t e rm  is 

present ;  the  original  s tab le  subharmonics  become to t a l l y  uns tab le  ones. Groups  of 

t ra jec tor ies  wi l l  t r y  to  escape to ~ ,  b u t  the  posi t ive  d a m p i n g  then  t akes  charge,  

and  all t r a jec tor ies  are u l t i m a t e l y  bounde d  2 (the bounds  of y, ?~ are of course ex- 

t )onential ly  large in k). 

1 The reverse of a non-stable is a non-stable. 
-" X. LEVlNSON, Jom'n~d o/ Math. ariel Physics, 22 (1943), 41-48. 


