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Introduction!

1. We are concerned with equations in real variables of the form

Gyt =»),
where -f, g, p are smooth functions of their arguments, and p has period 1=2x/s in
t. About f we suppose that lim f>0 as y— 1 oo; that is to say, we suppose the
“damping” to be positive for lajlge |y|. About g we suppose that it has a “restoring”
effect, i.e. has the sign of y. The simplest case, and a specially important one, to
be covered in any generalization, is g=ay for positive a. We do in fact assume
always that ¢ (0)=0, and that g’ exists and has a positive lower bound.

There is some general theory of such equations. A trajectory (or “motion”) with
initial conditions y (,)=¢&, ¥ (t;)=# (&, n real) at some fixed ¢{=t; is said to have the
point P= (£, 5) as ‘“‘representative point”. If &, 5’ are the values of y, y at t=1¢,+ 41
the transformation 7 from P to P'= (&, n')=TP=T(§, n) is 1 -1 and continuous.

With the condition lim />0 and suitable conditions on g (fulfilled for g=y),
every trajectory is boundedras t—oo, and T transforms a suitable large domain in
the P space into a domain contained in the original one. Further, the vector V, or
P—>TP, makes exactly onc revolution as P moves positively round the boundary.

Then a ‘““fixed point” theorem holds, and the “index number” proof of it is valid.?

i This paper is based on joint work with M. L. CARTWRIGHT.

A paper I, with the same general title, was published in the Journal London Math. Soc., 20 (1945),
180-189, jointly with M. L. CARTWRIGHT. This was written with the same aims as the present In-
troduction, but in drastically condensed form. We have borrowed some passages from it.

2 N. LevinsoN, Journal of Math. and Physics, 22 (1943), 41-48, and Annals of Math., 45 (1945),
723-727.
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There is at least one “fixed point” (f.p. for short) of the transformation 7, and there
corresponds a pertodic motion (p.m. for short) of period A; this need not, however,
be stable.

We must define our vocabulary in the matter of stability. A f.p. P, (and its
corresponding p.m.) is called stable if T™ P converges to P, as m—>co for all P of
a neighbourhood of P,. It is called totally unstable if the reversed trajectories are
stable: this is equivalent to the statement that P’s near and not identical with P,
recede from P, under iteration of 7. f.p. and p.m. that are neither stable nor totally
unstable we shall call non-stable. This is not a term in general use; but the strange
fact is that our “non-stable” p.m. are for the most part infinitely singular (or
“multiple”’), and there is no point in classifying them. (The ordinary ‘“col” does just
oceur and receive a passing mention.)

A periodic trajectory or motion (p.m.), of least period n4, with n>1, is called
a subharmonic of order n. We are interested in the class K of “limiting trajectories”!
the class whose representative points are the set of limit points of T (&, ) as
m~—>oo; this class as a whole is invariant under 7T, and its trajectories are all
bounded in — oo <t< oo. The simplest possible case is that in which K is a single
point; there is then a stable p.m. of order 1 and every trajectory converges to it.
The next simplest case is that of a finite number of p.m., to some one of which
every trajectory converges. In the general topological theory, however, other possi-
bilities, indeed very “bad” ones, have to be contemplated, and it can be very dif-

ficult in a given case to rule them out.

2. The two simplest cases (in respect of the functions f and g) are:

(i) f>¢>0 for all y, together with suitable conditions on g, valid when g=y;
(ii) small departure from linearity, f=e& F, g=y + ¢ G, with fixed F, G, and small ¢.?

We must not discuss here what is known about these cases, except to observe
that they differ from each other, and are both completely unlike anything in the
present paper. We now ask: what is the simplest equation not included in either of
these cases?

Since f is not to be of constant sign, and since it is positive for large |y, it
must have two zeros at least; if we add symmetry about y =0, and take the simplest

possible ¢ and p, our search leads to an equation that can be normalized as

1 “Recurrent motions” of*Birkuor¥, Dynamical Systems (New York, 1927), 198, and G. A.
HEDLUND, Amer. Journal of Maths., 66 (1941), 605-620.
2 f=g+eF for a>0 is ruled out as a special case of (i).
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G-k (Q—y})y+y=buk cos (ut+a), u=2n/4 (E)

“van der Pol’s equation”. %k must not be small, or we are in case (ii), the next
possibility of simplification is to suppose it large, which gives us the equation of
the title.

3. The equation has a considerable literature,! and experiments have suggested
very interesting behaviour, especially in the case of large k. Stable motions occur
which are subharmonics of large odd order (comparable with k), decreasing as b in-
creases. Further, as b increases we have alternately one set of periodic stable motions, of
order 2n+1, and two sets, of orders 2n+ 1 and 2% — 1, the shorter growing at the ex-
pense of the longer. In the experiments » can be of the order of 100 or 200.

It can be foreseen that the theoretical state of things behind these findings of
experiment (two distinet stable periods neither a multiple of the other) must be of
considerable complexity. If there is a subharmonic motion of order m there will be
a ‘“set” of m distinct periodic trajectories, with distinct representative P, obtained
by shifting the original one 0, 1, ..., (m— 1)-periods forward. Now between two ad-
jacent ‘“‘stables” (p.m., or their representative P) there must exist some sort of
“water shed”. A stable f.p. P of order m has a “sphere of influence”, any point of
which converges to P under iteration of 7T™; the sphere of influence is a domain
bounded by “lines” of points corresponding to watershed behaviour. Under iteration
of T (as opposed to T™) P and its sphere of influence circulate through a set m in
number, the picture as a whole being invariant under 7. It is now a question of
two such sets, circulating at different rates; what is the nature of the watershed
lines and the non-stable f.p. that lie on them? Our methods are non-topological, and
raise, not solve, topological questions.2 We find, however, that there is a fine struc-
ture of limiting motions, some periodic non-stable and some non-periodic, of fantastic

complexity, though fortunately describable in fairly simple general terms.?

1 See B. vAN DER Por, Proc. Inst. Radio Engineers, 22 (1934), 1051-1086, where further re-
ferences are given. See also D. L. HERR, Proc. Inst. Radio Engineers, 27 (1939), 396-402, for graphical
solutions, and B. vaN pER PoL and J. vAN DER MARK, Nature, 120 (1927), 363, for experimental re-
sults. The experiments, however, are actually concerned with an extremely unsymmetrical system.

2 Cp. § 31 below, and M. L. CaARTwrIGHT and J. E. LirTLEwooD, Annals of Maths., 54 (1951),
1-37.

8 Since our preliminary announcement of our results, N. LeviNson, Annals of Mathematics, 50
(1949), 127-153, has published a study of the equation §+kf(y)y+y=>bksint, and f(y)= +1 or
— 1 according as Iy I >1 or ly l < 1. The solutions are piecings together of expressions in finite terms,
and he is able to show, in reasonable compass, that for some intervals of b there are two sets of
stable periodic solutions. There is also a fine structure, and we may refer to his paper for further
comments on its nature.



270 J. E. LITTLEWOOD

The lesson would seem to be that the worse possibilities envisaged in the general
theory not merely can occur, but are normal occurrences (once we depart from cases
(i) and (i) of §2). It would be fairly obvious in any case that the general nature
of the results is not bound up with the particularities of van der Pol’s equation, but

in our detailed account we do in fact consider an equation with generalized f, g, p;
G+kf@)y+g(y)=bkpt), [ g, v independent of k, k large.

We retain only such features of the original as are necessary to keep the behaviour

within a single category: the chief of these are (i) f must have only one pair of
zeros (sse § 33 for the drastic changes if this is dropped); (ii) p, (f)= f pdt must not

attain its upper or its lower bound more than once in a period; and (iii) we retain
symmetry (f is even, g odd, p(3}A+t)= —p(¢), and p has mean value 0): if (ii) or
(iii) is dropped fresh complications are involved.! In the account that follows in this
Introduction, however, we keep to the special van der Pol’s equation to avoid a multi-
plicity of constants and other distractions.

For the rest we try, in the Introduction, to give an account intelligible to a
reader who is prepared to take the proofs of much of the complicated detail for
granted: given certain key-lemmas (reasonably plausible in themselves), the main lines
of the argument, and especially those leading to the most striking results, are fairly

clear and unencumbered.

%4 We proceed to describe the general nature of the limiting motions. Either
one or two sets of stable subharmonics, as suggested by the experiments, do in fact
exist, but there is much to add.?

¥ b>%, and k>ky(b, A),® (E) shows the simplest possible behaviour: there is a
stable p.m. of order 1, period 4, to which every trajectory converges.

In the case b<2 we restrict ourselves to the interval B defined by {5 <b <3 — .
We have now to exclude certain intervals of b, in all a small proportion of B. There
then exist &=e¢ (1), small for k,=k,(4) large, with the following properties. If k>k,

there is a set of excluded intervals in B of total length £ at most. The remainder

1 The new features involved when one of them (especially, perhaps, (ii)) is dropped might be
very interesting.

2 Experiment could not be expected to do more than hint at the crudest of the non-stable p.m.

3 This is the simplest instance of a point that should be emphasized. We never assert that
behaviour is more and more nearly such and such as k increases, always that it is exactly such and
such so soon as k exceeds a certain k, [here k, (b, A)]. In fact k is not “large”, but only ‘large
enough”.
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of B is also a set of intervals, B, say; this varies with k, but has length at least
2—¢. B divides into two parts, B, and B,, comparable in size.

When b belongs to an interval I, of B,, (E) has a set of stable subharmonics
of order 2n+1 and most! trajectories converge each to some one of these. n is con-
stant in I, and is of order ((—b)k.

When b belongs to an interval I, of By, (E) has a set of stable subharmonics
of order 2n+1, and another of order 2#— 1; most trajectories converge each to some
member of one of the two sets. It possesses a further set X, infinite in number, of
non-stable p.m. of a great variety of “structures” described in more detail later. It
possesses further a set X, of the power of the continuum, of non-periodic limiting
trajectories, of the type described as “‘discontinuous recurrent”. If we denote the sets
of representative points P in the (£, %) plane also by ¥ and X, then every point
of £ is a limit point of points of X, and also a limit point of points of X. A point
of Z is thus non-stable, and is clearly a highly singular, or multiple, f.p. The number
n (which is of the order of %) is constant in I,. Moreover the set K and its subsets
2, X remain topologically equivalent throughout I,. Thus a point of X remains ‘“‘in-
finitely multiple” for all & of the interval I,, contrary to the natural expectation
that multiplicity would be confined to isolated values of b.

For b of an I, (of B,) there is a set of non-stable subharmonics of order 2# + 1.

For all b of (k5 2—1};) there is a single f.p. of order 1, and it is totally un-
stable. We shall call its representative point P,, and denote by K, the set K less
the point P,.

As b increases in B (from g; to 2—i;), jumping the excluded intervals, the
number 7 decreases. We have nothing to say about the transitions from one stable
period (2n+1) to two stable periods (27 1+1) and wvice versa; these take place in the
excluded intervals, but we add finally that for any b of B there are always sub-

harmonics of some kind, of order comparable with k.

5. We shall be mainly concerned in the rest of the Introduction with the
range B, i.e. if3<b<2%—;, of b: the case of small b is a separate (and interesting)
problem that we do not discuss, and the case b>% in which behaviour is simple,
is treated by adaptations of the arguments we shall be describing.

By A (», y) we denote a constant depending only on A and the parameters shown
explicitly; by L a constant depending only on A, by D a constant 4 (§): all of these

1 The general sense of ‘‘most’ is fairly obvious: to define it precisely would occupy too much
space.
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to be positivel The constant of an O is to be of type L. We use suffixes to identify
constants; generally only for the moment, and starting afresh at 1 on the next oceasion.
Dependence on b always reduces to dependence on the lower bound of & (i.e. yf5) or
the nearness of b to the critical 2. Our present restriction to B makes dependence
on b “uniform”: O’s and D’s are “uniform in b”. The reader may therefore treat it
lightly. We shall sometimes allow ourselves the licence of using o(l) without precise
definition.2 The lower bound k, which is ultimately a D, is to be re-chosen at any
moment when the run of the argument requires it.

We use the symbol @ for the current point (¢, y) of a trajectory I', ¢ for the
phase pyt+a, n for y—1, y, for fydt. Let

Yy
Fy)=[fmdy=3y—y=n*+inp’ L.
0

Then we have an identity® (which we shall call the ‘‘j-identity”’}) with the alterna-
tive forms
J—Yo—= — k[F @)L, + bk (sin @ —sin ¢) — [, 15, | 1)
F(y)=bsingp—(y, +y)/k+C.

6. It is easy to show that for 0<b<2 every trajectory I' eventually satisfies
|y| <Ly, |9|<Lyk; and if a trajectory is started subject to these inequalities at f,,
then |y|<L, |y|<L,k for t>t, where we may further suppose (to cover small
accidents) that L,> L,> 20, say. We will call a trajectory so started (extending the
natural meaning of the adjective) an ‘“‘eventual” one. If b>>0 it crosses y =0 infinitely
often. The corresponding results for the general equation are, for once, considerably
more difficult; but we can fortunately appeal to a proof we have given elsewhere?

Let us now try to look ahead. The regions y>1+9, y< —1-4 have large
positive damping. We expect of a trajectory in y>1-+4, once it has “settled down”,
and so long as it remains in the region, first that it is very stable; we return to
this point presently. We expect, secondly, that both its velocity and its acceleration
will be bounded: 3, 5 =0(D).5 Granted this, it follows from (E) itself that

L The constant of an incquality “<L” or “<D” is to be chosen ‘large enough”, that of
o L7 or “> D7, “small enough”.

2 Actually all the o(1)’s are O (kiA)’s.

3 In which, the origin {=( bheing at our disposal, we generally take t,=0, §,=19,(0).

* Annals of Math., 48 (1947), 472-494.

5 The D) arises from the § just above. The fact is that we shall have to consider & number of
different restrictions, each with a “4”: in the interest of simplicity we make all §’s the same.

The grounds for the “expectation’ itself are further considered in § 7 below.
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L/\ /\ I.-ou.... .

v

Fig. 1. The dips U, U,, U; U, are much exaggerated.

(*~1)y=bu cos ¢+ 0(D/k), (1)
and from the y-identity that

F)=Cosing -l +0(7)- @

Of these (1) implies an approximate ‘“linkage” between y and y; it also implies that
the velocity adjusts itself to make the damping balance the forcing-term; a “‘settling”
of the trajectory: the regions of positive damping have a strongly “settling” effect.

We shall find both “linkage” and “‘settling” very useful conceptions. (2) implies that
I+’ —2=F(y)=C+bsing, (3)

with error O(D/k), over any interval of time of length O(l). The curve (3) has
period 4, and supposing C>b—2, it lies in y>1 (it iesin y>1+4+5if O>b—2+ 40).
It has maxima at ¢=17 and minima at ¢= —1xz. The effect of the term in y,, on
the right-hand side of (2), is to make a trajectory satisfying (2) consist, to error
O (D/k) throughout, of successive A-waves of the form (3), the successive constants ('
diminishing by [y,]/k, the increment ylzfydt being taken over the preceding wave:
the trajectory (with C>b—2+ A4) gradually approaches y=1 from above.

" The neighbourhood of y=1 (where the damping changes sign) is naturally highly
critical, and we have to spend much time discussing it. But for clearness we state
now what in fact next happens to the trajectory we have been following.

It continues its downward trend until one of its A-waves reaches y=1; this

happens, as we should expect from the foregoing account, at a point U, where ¢ is
18 — 563804. Acta mathematica. 97. Imprimé lo 8 aoiit 1957.
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approximately —2Ix (mod2#z). It then (if b is not too large) makes a small “dip”
(depth of order k') below y=1, emerges at U,, and executes another A-wave of
type (3), followed, perhaps, by another “dip” U,U,, and so on. After O (1) dips
Usn_1 Us, at most, the velocities remaining O (1) throughout, the trajectory arrives at
U of the diagram, and, unless by coincidence it belongs to a narrow exceptional
class!, it decisively enters |y|<1, is violently accelerated by the negative damping,
acquiring a velocity of order k¥ which takes it right through |y|<1 to a minimum Z’
at a depth approximately y= —2, still with ¢ approximately —iz (mod2m) (UZ'
occupies only a small time). The trajectory is slightly unsettled at Z’ (the region
|y| <1 is “unsettling”), after a short time it is again settled, and it then repeats, in
inverted form, its earlier behaviour in y>1+94.

We stop at this point in our description, observing that so far we have to cover
three stages; the “‘settled” long descent to y=1, the stage of dips, during which
downward velocity at the successive dips is appreciably increasing (this is a subtlety,

and not really intuitive?), and finally a “‘shoot-through” from U to Z'.

7. We have said that the part of the trajectory above y=1+4 is “very
stable”. We do not here intend a very precise sense of ‘‘stable”, and the matter is
most intelligible if we consider the reversed motion (r.m.). This is “very unstable’:
if it is slightly disturbed, then (except for a coincidence) it “‘slices” or ‘“‘pulls” away
from the original. (See §32, Fig. 7.)

It is instructive (both here and in later contexts) to recall a number of plati-

tudes about the solution of the linear equations

grky+y=>Fkpcospt, (1)
where k is large (and positive). The upper sign gives positive damping and stability,
the lower sign corresponds to the reversed motion of this (reckoned from §=0), with

negative damping and instability. The complete direct motions (d.m.) with the posi-

tive sign are
y=Y )+ C e " + O e P

2

1
Y=

1+ (1= u®)?/(k? u®)
a=t1+1—-4k2H=1+0(k2),
B=1/a=1+0(k?),

. 1—u
{sm‘ut%—-
ku

where cos ut;»

! There is, naturally, a borderland between trajectories that make one more dip and those
that do not: we shall have much to do with it.
2 See § 15, f.n.
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and C,, C, are arbitrary constants which, for an “eventual” trajectory, may be sup-
posed O (1). A further time of the order of 1 now reduces the term C,e™*** to ex-
ponential smallness; this is “settling”; exact settlement corresponds to C, =0, but when
0, is not O there is a small “play” (deviation from exact settlement) depending on
the past history of the trajectory. It is often very convenient to speak of settlement
as if it were exact, ignoring the “play”.! There is a similar “play” in “linkage” of
¥, y (for given ¢), and we sometimes speak of linkage also as if it were exact.

Ignoring the “play” in settlement, i.e. making C; =0, gives us the l-parameter
family

y=Y+Cye ¥ 2)

Its members converge to the p.m. y=Y, but slowly, the time of half-decay being
of the order k.

A small disturbance of (2) can be of two very different kinds; the one involves
a coincidence that keeps C;, =0 and slightly alters C, only; here the new trajectory
runs nearly parallel to the old and slowly converges to it; the other kind creates in
addition a small C,; here the new trajectory quickly arrives within an exponentially
small distance of the trajectory (2) with the new C, (or of the original trajectory
itself in the case where C, is not disturbed).

The r.m. (solutions of (1) with the negative sign) have their separate lesson.

There is a l-parameter family whose equation is
y=7Y (—t)+C, ", (3)

The trajectory (3) is approximately periodic over a time of the order 1, and for
C,>0 the mean heights of the successive waves increase, very slowly. A slight dis-
turbance can be to a neighbouring member of the family, but apart from this coin-
cidence will introduce a term C,e*** involving a violent “pull” or “slice”. Note that

the d.m. (2) are ‘“normal”, if we ignore play; their reversals (3) are abnormal.

8. The foregoing remarks about the linear equation illustrate what we said
about the ‘“‘settled” motion of trajectories of (E) in y>1+05. We now briefly con-
sider motion in |y|<1-—4, which we do first in reversed form, with its positive
damping. So long as the (reversed) motion stays in |y|<1-4, the conditions apply
that led to (1) and (2) of §6. The trajectory is approximately the periodic curve

39°—y=F(y)=C+bsing (1)

1 Exact settlement in the case of equation (E) could only be defined at the.very end of the
story, not at the beginning.
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over a single A-wave at a time, the successive C’s increasing by [y,]/k, where [y]
is the increment of fydt over the preceding wave. For the curve (1) to lie in |y| <1
it is necessary and sufficient that C+0b both lie in (—3,3) (the relevant range of
F(y)), or that

—E-b)<C<-b;
this requires b <2 (and is one aspect of the critical value % for b), and then the in-
equality for C can be satisfied. The r.m., and also the d.m., of period i (the latter

totally unstable when b<$%), have each the same equation y =y (¢); this is of the form
Ly —y=bsingp+0(k"), (2)

for all ¢, but @ has the values g =a+ut for d.m. and r.m. respectively.

It is fairly clear that if C is initially, say, positive, then in the r.m. (where
¢=o—ut) the [y,] are negative, and (' decreases (as long as it is positive). There
is in fact convergence of the r.m. to the r.m. (2). To the convergence of a r.m. by
decrease of C to O corresponds a d.m. whose successive A-waves gradually rise until
their maxima are all near y =1, when fresh complications naturally arise into which we
need not go. But it is to be observed that, in accordance with the end of §7, the
slowly rising d.m. is abnormal and unstable, and if slightly disturbed will “pull” or
“slice” away. Incidentally, all prolonged direct motion in |y|<1 is abnormal and

unstable,

9. We now proceed, after this partly tentative survey, to follow more closely
the strict account of the course of the trajectory of §6 and Fig. 1 up to its ar-
rival at Z’.

The discussion of the first two stages (the first to Uy, the second from U, to U)
is based on two key lemmas whose proofs we take for granted.

The first of these is

Lemma A, (1) Let 0<b<2 (say), and let d be a non-negative and d’ a positive
constant. Then there is a ko (A, d,d') such that when k= k, the following properties hold.

Suppose that an eventual trajectory T' (for which consequently |y|< L) has a piece
XYZ(tx<ty<tz) lying entirely in y=1—dk *; suppose also that (a) XY has a time
length at least d'; (b) Y Z contains a point at which o= —1im; (¢) YZ has time length
at least k=% log kX Then for any Q of YZ

1 (1) Conditions (a), (b), {c) are all fulfilled, with d’=L, if X Z has time length at least %7_,
say (take ¥ so that XY has time length 1 1).
It would be sufficient (as the proof shows), so far as the inequality for |y| in (1) below is



THE EQUATION § —k (1 —3?) g+ y=buk cos (ut+a) 277

lyl<4@ ), |§|<A@ )k, |yl<A @ d)k; (1)
g —1)=bucosp+0(4Ad,d)k?). (2)

In the y-identity?
o —y=F(y)=C+b(1+sing)—y,/k—y/k (3)

we may use any convenient point of XY to determine the constant C, and in the stretch
Y7 we may thus substitute y=0 (4 (d, d")).

(1) Suppose that 0<b<2 and that d is a positive constant. At a @ that has been
preceded by a piece of an eventual trajectory I, lying above y=1+d and lasting a time
k'log*k at least, we have, provided that k> k,(A, d),

lyl<A@), |g]<A@), ..., (4)
with various consequences, e.g. (2) is valid with error-term improved to O(A(d,d') k7).

The d in each part of Lemma A is chosen in different ways on different occa-
sions, generally as a 1/D in part (i), and generally either as an 4 or else as d in
part (ii). (d and d' are blank cheques.) It will be observed that Lemma A (i) is
specially designed to deal with the question of “dips” (it follows the facts very closely).
The hypothesis in (i) that Y Z contains a point ¢= —1x should be noted; the result
is false without it? (in fact all the apparent complications follow the actual facts very
closely).

Part (ii) is the precise expression of the “settling” effect of a region y>1+d.

10. We shall now follow the course of a I' starting at a vertex3 Z, with
9%=0, |yo—2|<Dok™", |@o—in|<Dok*.

D, is ultimately going to be a particular D. We shall find that (subject to an ex-

ception) T' presently arrives at an inverted vertex Z’ satisfying

concerned, to replace (a) by the hypothesis (in effect more general) that XY contains a point R for
which |y R ‘ <d’. But the corresponding results for |y I, | yl would be less simple.

(2) We may fix ideas by supposing that Z is on y=1 ~dr? (an important case in any event);
for if Z is above this line we can prolong the trajectory until it meets the line for the first time
(all conditions remaining fulfilled a fortiors).

1 The right-hand side of (3) can take various forms; it may begin, e.g. C +bsin ¢, C +b (1 +sing),
or ¢ —b (1—sin ¢) according to convenience.

2 This is a sophisticated affair; the examples are certain of the trajectories rising slowly off
the unstable p.m. in |y|< 1. These can end with a piece above y=1 of time-interval 4+ 0(1), and
a downward velocity of arrival at y =1 greater than any assigned L.

s Z is the initial of “zenith”.
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Go=0, lyo+2]<D' k7, (o +im|<D'EE,

where, provided k=ky(A, Dy), D' is a particular D that does not depend on the choice
of the original Dy This independence on the part of IY, achieved by the dependence
of k,, is completely vital to the argument. It enables us, breaking a vicious circle,
to choose Dy=1D" (k, then becoming a particular D); then Z' satisfies the same condi-
tion (inverted) as Z, and we can start afresh from Z’. We mention all this as an
advance warning, because much happens (and the ‘“‘circle” is a long one) before we
reach Z' (in § 15).

In the notation of Lemma A we take X (and ¢{=0) at Z and we take Y to be
the time-point log® k/k later, or the first arrival of I" at y=2— {4, whichever happens

t
first. Over X Y we have, setting T:kffdt,
0

d
(Tt(—y'e’):uef, u=—bkpcosgp+y,

¢

—g=[u(t)exp {—v(t)+7(¢)}dr.
1]

Since |u|<Lk and 7 (t)— (') =Lk (t—¢), this gives
¢
—y<Lk[e ™y <L,
0

and so y>yo—Lt>2—Dyk™ ' ~Lk ' log* k>2—4.

Hence it is t= log® k/k that happens first, and X ¥ has time-length log? k/k.
Next we have (over the whole I')

Fy)—F(1)=C+b(l+sing)—k 'y, —yk?, (1)
in which, on substituting {=0 (and g¢,=0), we have
C=TF (y,)—F (1)~ b (1 + sin ¢,).
Here F@2)=-F(1)=% Fly)=F2)+0(yy—2)=%+0(D, k"),

sin go=1+0 ((po—17)%) =1+0 (DEk™Y),

1 “D" is a momentary notation, not to upset a chain D,, D,, ... we shall presently need.
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and so C=4—-2b+0(Djk™h)2
Thus (1) becomes
F)—FD)=@¢—2b)+b(1+ sin @) —k 'y, —g k' + O (D5 k7). (2)
Consider now the stretch from Y to the first arrival at y =1+ Lemma A (ii) s

valid for this, with d=14, and consequently |y|< L.

Substituting this in (2) for the special time, ¢ say, of arrival at y =1+ 75, we have
kK ly;>(—28)+0—-LEk ' —LDjEk ' —(F (144 — F (1)
>y~ LDGE — (—B+3 G0’ +3) =side — LDG k" > oy,
provided the %, of k>ky(4, D,) is suitably chosen. Then y,>>Lk, and so ¢t>Lk.
A fortiori the stretch from Y to the first arrival, at U,, say, at y =1 has time-length
at least Lk (>241), and contains points with ¢= —1x. Lemma A (i) [with U, for Z]
is accordingly valid, with d'=1, and we have |§|<L for the stretch ¥ U,, and in
particular |yy,|<L (note that the constant is L, not D); and further we may sub-
stitute |7|<L in (2).
Supposing, then, that I' arrives at y =1 for the first time at U,, let
pr=—1n—0w, (o|<n), v,=—9u, (3)
and let Vi=v,+bk(1— cos w,). (4)

We have just seen that v, <L. Next, there is an S of I', at most 4 before U,
where g= —1s; the equation of SU, is, by Lemma A (i) (3), of the form?

Ly —y+2=0"+b(l+ sin @) —y, k' + 0 (LEk™Y),

where we may reckon y, =0 at S. Substituting ¢ =@s=—1n, y=ys=1 in this, we
have C'> — Lk '. Hence

b(1— cos w)=b(1+ sin ¢, )<0-C"+LE'<Lk™;
and so also |w;|<Lb ¥k %3 Summing up we have

0<v;<L, O0<V,<L, |o|<Lk?. (5)

1 Supposing D, =1 [so D,=0 (Dg)].

2 This, like (2), is the y-identity with O (1) substituted for g, but this time with {=0 at S.

3 We can get the result bl sin wll<Lk_l' at once from A (i) (2); but a special argument is
then needed to show that w, is near 0 and not 7.
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11. We prove next that v and w, and so all three of v, V, w, are approxi-
mately “linked”. For this we need the second key-lemma, which covers the three
questions of linkage at w,, ‘“‘dips”, and the final shoot-through from U. (It retains

its form unaltered when we deal with generalized f, g, p.)

LemMA Bl Consider the (Riccati) equation, for >0,

d
Ci%f—x%r 1+a—28z, 2(0)=0,
where o> — 1, and B further satisfies f <0 when a= — 1. z is positive for small positive z.

There is a By (a) such that:

(i) if B>p, lor 0>p>p, when o= —1], then z changes sign to negalive al an
z =2, (a, §)>0;

(i) if B<PB, then z— + oo at an asymptote x=x,(a, f)>0;

(iii) of B =Py, there is a solution in (0, co) for which 2>0 and

z2=x+ B, +F (z, a),

where F is continuous in (x, a), and F=0(1/x) as x—>co.

Further, B,(x) and a+ f§(x) are continuous and monotonic increasing. P, (x) s
large with large positive o.

Finally, B, (o) has the sign of o.

Return now to I' and its “arrival at U,”. If
v =zt
and B, («) is the function of Lemma B, we find a linkage expressed “implicitly” by

Vi=v,+bk(1— cos w;), a+1l=uv,/v" } (1)

Vi=v*(1+a+pB8(x)+o(l)
(which connect v, (or V,) with w, when the parameter o is ‘“eliminated”). Equiva-
lently we may take the first equation of (1) together with three equations
B=uwt@* Bt sinw, oatl=v/v", B=p(a)+o0(l), (1

containing two parameters o, 8. In the particular case o =0 equations (1) give for ¥,

when v, =%,
V,@*)=v*+o0(l), 2)

1 The results are mostly fairly intuitive, but they take a good deal of proving.
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and, to error o(l), v, 20" are respectively equivalent to ¥, =v*. To error o (1), v, and
V, increase with ;.1

The result (1) depends on Lemma B in a manner that is readily intelligible.
We consider the r.m. from U, over a time of slightly larger order than £ *. Its
equation (in integral form, and using v= —1¢ for the new time, reckoned from U, as
origin) 1is

Z_?;_%:k(ﬁ’(y)—lf"(l))—bk(sin (—pt+o@y)— sin ¢U,)—fyd7-

0

We write y=1+v*tk ¥z, tv=0""1k 2, expand in powers of z and z, and reject

terms with coefficients o (1), in particular the one arising from fydr. The result of
0

this process, when we write a=v,/v* — 1, and when B has the value in (1)’, is the
equation

dz 5,

et 1+a—2 3

gz %% +1+a Bz (3)
of Lemma B. If we add a o(l) to the right-hand side, this is actually valid for the
y of T' reversed, over a range of x of length log k, say. Moreover the error is of the
form O (A4 (D) k™*), and by slightly diminishing the index 4, and rechoosing k, (L, D),
it becomes O (k™ *), independent of Dy: Now according to Lemma B, if we have
B> By (), then z becomes negative at an z=uwx,(a, B); if §<pfy(«), then 2—co at an
asymptotic z= =g («, ). But the z corresponding to I’ reversed certainly does neither

of these things; we infer (restoring a o(1)) that o« and § must be connected by

B =Py (x)+o(1). 4)

The result (4) is in fact true, with a precise error-term in place of o (1) that we need
not particularize, and, like that in (3), independent of D, (since the bounds for v, w,

are).

12. We shall in future work mostly in terms, not of v,’s, but of the V,’s
“linked” with them; there is more than one reason for preferring V,, as will appear

later. This being so, we need (to avoid mixing symbols later) a symbol for the V;

1 In the case of V, because oc+ﬂg (o) is increasing.

2 (1) We mean, of course, more precisely, that the upper bound implied in the error term is
independent of D, (and similarly in future).

(2) A’s cccurring as indices are always absolute constants.
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linked with », =v*; and (in the light of (2) of § 11) we define V* to be v*, so that
Vi (@*)=v"+0(1)=V"+0(1). There are now three possibilities about V,:

@) Vi>V*+6; (i) Vy<V*—=¢  (iii) |V,— V¥ <.

The third we describe as a “gap’” case; V lies in a ecritical gap round V*.

Consider now the d.m. from u, over a range of slightly larger order than k7%,
and write y=1-0*1 k1 t=0*"¥1 k"t 2 (£ with a minus sign since y is moving below
y=1); again we expand in { and =z, and ignore terms with coefficients o (1): the
result of the changes of sign as against the (z, ) r.m. equation is

g—i:@—xz—i—lvﬂx*?(—ﬂ)x, (1)
that is to say the equation (3) of §11 with { for 2 and —f for g.

Now with error o (1) we have =g, («); if further we are in case (i), then a> 0,
and f having (by Lemma B) the sign of «, is positive. Then —f<0<pg,(x). By
Lemma B this implies? that a { satisfying (1) tends to + co at a finite asymptote
x =g (a, ). Corresponding to this we expect the y —1 of I" to become a large nega-
tive multiple of k™%, and y to become large and negative, at a time comparable with
k™Y This does happen (when we go properly into the error-terms); the negative
damping then takes hold (as the reader will easily believe: the arguments become
cruder), and it is the fact that y acquires a downward velocity of order k£ and passes
through |y|<1 in a short time.

Consider now case (ii).3 Here «<0, and § has the sign of « and is negative;
—~p>0>p,(a). A { satisfying (1) therefore changes sign at z=z,(«, §). The corre-
sponding behaviour of the y of I' is to descend below y=1 to a depth D,k at
most, and emerge upwards, at U, say, after time Dk ™t at most. Observe that, in
accordance with what was said at the end of §11, D, and the D in Dk™* above do
not depend on D,

Suppose now the next return of I' to y=1 is at U,. Between U, and U,, I" con-

forms to the hypothesis of Lemma A with d=D,, provided k, is re-chosen to depend

1 More precisely a> D (D arising from the & of the gap v*£6).

2 Note the double use of Lemma B; first to establish an approximate equality =g, («) be-
cause ‘‘neither event happens”; then, because the equality is upset by changing the sign of f, to
infer that one or other event does happen in the new case.

3 We shall here ignore the case v,=0, or a= —1, which would need a special treatment in
Lemma B. Its apparently critical character is spurious; since a small dip is found to turn upwards,
it is obvious that a graze will do so also.
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on D,. The equation of I' between U,; U, is accordingly given by Lemma A (3),
slightly rearranged;

1 —y+2=0C"+b(1+ sin ¢) +o(1).

In this, since yy =1 and @y, =—1m+0(l), the constant C’ is o(l). Hence the curve
U, Uy satisfies
b+t =5 —y+3=b(1+ sin g) +0(1). (2)

13. We must now enter on something of a digression. When b <3 the locus

SO
=
|
<
_+
SHINY
I
el
—
+
z
=
2

over a period 4, consists of three separate C,, C,, C;, as shown in Fig. 2. In accord-
ance with what was said earlier, C, and C,, which are in |y|>1, are approximations
to stable trajectories, and C,, which is in |y|<1, is an approximation to a stable
r.m. or unstable d.m. We shall have more to say about these curves later. Meanwhile
we expect I' to follow approximately the curve C), and to reach y=1 at a U, near

the right-hand end of C;. But two points remain to be established.

(i) The approximation (2) of §12 shews that I' is always near one or other of
C,, C,, but not that it cannot shift from C, to C, while still near U,. To settle this
we need to go more closely into the actual error-terms we have presented as o(1)’s:
when we do this (and the extensions are natural ones) we find that I' keeps above y=1
for a time long enough after U, for C; and C, to have diverged more than the error-
term in y; a shift is impossible. So I’ continues along C,, approximately, as far as
the right-hand end of (.
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(ii) We have to show that I' does not turn upwards near this point before

actually reaching y=1. To deal with this! we need the following general principle.2

14. LEMwma C. Suppose y,, y, are respectively solutions of
y=0(y, t)+R1, 25

where ® is continuous in (y, t), B, , are continuous, and R,> R, for 1=t
(1)  If now g, (k) =y, (1), then y, >y, for t>1,.
(i) The conclusion is true tf R,>R, for t>1t, only, provided we know inde-

pendently that y, >y, for small positive t—1,.

We state the complete truth. There is a touch of subtlety in that (ii) is not
true without the final proviso.

We give the easy proof. For ¢>1{, the y, curve is initially above the y, one, by
hypothesis in (ii), and for slightly different reasons in (i) according as w; (f,) > ¥ ()
or ¥y (&) =y, (&). If ever there is an intersection, let ¢ be the first one after {=1£,.
At @ we have, as a matter of geometry, y, <y,, contrary to y, —y,=E;—E,>0.

Returning to T, let #, be a time long enough before ¢, for y to be greater than
1 for several A-periods after . For &, <t<#,, let y(¢) be the y of I', and let
Y=y (), yo=y (¢ +4). The y-identities for ¥, 2 are of the form

y=—kF(y)+ By s,

where [see § 5, (1)] we have

t+1

Rl—R2=2fydt,

and this is certainly positive until y{(f+ 1) is 0 for the first time, at =17, say. Next,
it is possible to find a ¢, as above such that y, () >y, (%); for over a sufficiently
long time I' certainly descends. It follows from Lemma C that y, >y, for {;<t<17.
Since y, (ty)=1, we cannot have y(t) =1 for all ¢ of ¢y, <t <#y, + A [which would imply
both 7>ty and y,(fy,) > 1=y, ((y)}; and this is the desired result.

15. We find, then, that I' arrives downwards at y=1 for the first time after
U, at a U,, near U, + A, and conforming to the hypothesis of Lemma A, with d=D,
{the number associated with the dip at U, U,, § 12). There is a linkage of vy, V,, w,
at Ug; further3

1 The subtleties involved are curious, but we do not see how to avoid them.
2 Constantly used in the full account.
3 The identity in (1) is one reason for working with ¥ rather than v.
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Vo= Vi=Ipliz=M+o(1), (1)
2
where M = f Y, dt, and y=1Y, (8} is the equation of C;; M is of the form A(A).

0

The three alternatives concerning “V,” and the gap V*+0 arise again at U,;
either V, is in the gap; or Vy>V*+ 8 and the velocity 3 becomes (negatively) large; or,
finally, Vo,<V*—08 and there is another dip, of depth D,k™* at most, I conforms to
Lemma A with d=Max (D, D,), and, if k, is rechosen to depend on D,, there is a
fresh arrival at Uy=Uz+2i+0(1), with V,—Vy=M+0(1);! and so on.

Now, by (1), if we do not arrive at a ¥V in the gap, we must have ¥, > V*+§
after n =1+ (V*+98)/(M+0(1)) dips at most. And then the final D, and d are D’s,
independent of Dy, and the final ky is a ky (4, 8, Dy).

Let us sum up, with partly changed notation,®2 what has been so far proved.
There is a ky(4, 6, Dy); if k=ky, I’ starting at a vertex of type 4,=0, |y—2|<Dyk?,
|@o—4m|<Dyk ¥, descends in accordance with the description of §6; after time at

least Lk it arrives, after possible dips, at U, on y=1, with
—jur=v, v=—sn—w, V=v+bk(l—cos w),

v, V, w linked by (1) of §11, the errors having bounds independent of D, and finally
either (i) V*~0<V<V*+4, or else (ii) V*+5<V<V*+d+M+o(l).

Suppose the gap case (i) does not occur, so that case (ii) does. Then, as we
said in § 12, the motion becomes comparatively crude, and it is fairly easy to show
that I" descends in time O(Dk ) to an inverted vertex Z’ with ¢, =0, at which3

ly+2| <4, (0 k7 |gp+im|< 4,00k

where A, and A, are independent of Dy. We are now able, without a vicious circle, to choose
Dy=Max (4,, A,). Then I', restricted by the D, inequalities at the starting vertex Z,

1 We can now, but only now, infer the increase of v, linked with V, at successive dips.

2 We do not consider dips again, and the Uy, U,, ... associated with them do not appear again,
nor do the associated Vi, ete. It will therefore not cause confusion if, from now on, we use v, V
for the things associated with the “final” U, and dashes (U’, v’, V') for “inverted” things, associated
with y= —1.

3 We first show that the time is O(Dk—é), so that I(pZ' +%nl <Dk_%; and then we have, by
the §-identity between U and Z’

.
0=z =bk (1 +sin pz)— V—k(F(y;)—(F(l))—bf ydt
=0 (k(DE *)2)+0 (1)~ k(F (yz)~ F (~2))

F(yz)-F(~2)=0(Dk™"), andso |y +2|=0@Dk ).
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has arrived at an inverted vertex Z' obeying the same restriction (in appropriate in-
verted form).l It therefore repeats in inverted form its former behaviour, arriving, after

tnverted dips, at U' on y= —1 with
Juo =V, gp=in—w’, V' =v"+bk(l—cosw’),

v, V', o' are linked by (1) of §11 (with dashed letters), and either V' is in the gap

V*+§, or else
V*4+0<V <V*+6+M+o(l).

16. We denote by Z,, Z,, ... the time-points after Z where p=1m; N, N,, ...
those where @=-1m, N, being between Z, and Z,, etc. These are approximately
maxima and minima in the long descent.2 The corresponding Z’, N’ similarly succeed Z’,
and have g= —1m, 1z respectively. The stretch of a I' from Z, to the ensuing Z;,
or Z; to the ensuing Z,; or, again from U to the ensuing U’ (or U’ to U), we call a
half-cycle.

We call a I" “gap-free” in a range if it has, in the range, no ¥ or V' in the
gap V*+34.

The g-identity for I, between a U with its V> V*+4 to the ensuing U’ is

.
V+V=—@¢-2b)—[ydt (1)

Suppose now that I';, ‘“start’” in the stream at Z, subject to the “Dy-inequali-
ties” of §15 (or that they join this stream after an earlier start). Suppose further

that T, s are gap-free, and, further again, that they ‘“‘miss the same gaps”, i.e. have

1 Jnverted behaviour may be inferred from direct by changing v into —y, and ¢ into n+¢.

Our arguments implicitly prove, of course, that a trajectory, if started with not too violent
initial velocity, and if remaining an unbroken time %ﬁ. above y =1, will behave similarly, i.e. will
arrive, after possible dips, at y=1 with a “‘gap” V, or else pass through an inverted vertex of the
special kind.

2 Z is a real vertex, with exceptional behaviour; it is near Z,, where (pE%n.
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their U, ; near together and Uj, near together. These simplifying assumptions, which
have to be justified in the strict account, enable us to steer clear of some com-
plications.!

It is now the case that I'; s converge. We aim first, however, at their quasi-
convergence, namely convergence (of y, —y, and ¢; — gy, to 0} with error O ({), where
stands, throughout what follows, for things of the form exp (— D&%) (exponentially

small).

17. Let AV =V,—V,, and similarly for Aw, and other things associated with
I'io Let w=Ay=y,—y,. We have from (1) of §16

U U U,
AV = ~AV— [wdt—R, R~ (]~ [) g, dt.
U, 4

U, U,

The ranges of the integrals in B have lengths Aw’ and Aw.
Uy

So AV' = ~ AV~ [wdt+0(Aw)+0(Aw'). (1)
a,

The key-result (important also for results other than the convergence) is
LevMma D. To error O(), AV and AV’ have opposite signs, and
LAV |- <|AV' | <a| AV |+,
where o 15 an L satisfying 0 <a < 1.

We shall see in § 23 that Aw =0 (AV)+ 0({), and similarly for Aw’; thus Aw, Aw’

are negligible in (1), and to get Lemma D from (1) is then equivalent to proving that, to
Uy

error O (), and normalizing to (—AV)>0, f wdt lies between multiples L and a <1
U,

of (—AV). The half-cycle U, U; has a length of order Lk.

The number w satisfies the equations (the three alternatives have each their réle)
= —Tw+cy—w,
i(eTw)z(c —w,)e”
dt o e ‘ (W)

¢
w=wye " +e 7 [ (cg—w,) e dt. J
0

1 It is actually the case that when b belongs to Bl or Bz T’ exist that are gap-free for all positive
time, but they need not exist for b of the excluded intervals. (And the very introduction of Bl, 9 comes
naturally only after the work we are describing.) Further, it is a troublesome complication to work
into the rest of the argument the proof that I'1,s have their Uj 2 (Ul,,z) near together at the next place
under consideration. (We allow, in short, vicious circles that the strict account, with difficulty, has
to avoid.)
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In these the origin t=0 is arbitrary, and c,=1w,~+ Tyw,; the function 7T =17 (¢)
t t

is Icf udt, where u=AF(y)/Ay; and w, = fwdt. The equations (W) are for the d.m.
0 D

I'12 (d.m.s are always understood unless the contrary is stated). The corresponding
equations for r.m. I';, are also very important; they are
w="Tw+é—w,

w) = (G —w,) e” .

P —

t
w=eTwy+ e [ (G—wy) e T dt,
0

¢
where Gy=1by— Towy, and T is kf(AF/Ay)dt as beforel
0
For d.m. and r.m. with the same =0 we have ¢ = —c,.

18. Lemma D is concerned with the half-cycle U to U’.2 There are two pos-
sibilities: (i) I'y, intersect somewhere in the half.cycle; (ii) they do not so intersect.
In (ii) there are several things to our advantage: w and w, are of constant sign,
and (W), (W) become much easier to handle; further, as a matter of the mere ge-
ometry, Aw and Aw’-have opposite signs.3 In (i) the actual facts are that if, with
a small reservation, I'); have an intersection in a half-cycle, then their y, § differ by
O({) throughout the half-cycle. From this it naturally follows that AV, AV’ (and
Aw, Aw') are 0(); and Lemma D is true in a degenerate form.

It is instructive to make the separation (i), (ii), but actually a whole group of
results and arguments are closely interwoven and cannot be separated, and we follow
a different division of cases. Moreover we begin at Z,, and consider the (near) whole
cycle from Z,, through the ensuing U,,, to the ensuing U;s. The results in the two

new cases are (x) and (p) following.?

(x) There is a certain L, with the following properties: If w(Z;)>(y,® then D'y

L The increment of 7 over a given stretch is the same for the d.m. P@ as it is for the r.an.
¢
QP. But e.g. the two Jﬂedet are not the same.
0

2 Here we use, e.g., “U” for the general neighbourhood of Uy 2, and thers is a similar slight
looseness in speaking of the “half-cycle”.

3 Since ¥V and o are “linked”’, we expect as a consequence that AV and AV’ will, at least
approximately, have opposite signs, and this appears in due course.

4 (&), (B) ..., ({) are stages of one sort or another in the journey to Lemma D.

5 We can normalize lw(Zl)‘ >{, to w(Z;) >{; (altering the numbering of I'y 2 if necessary).
When there is no intersection we then have U1< U,, Ué< U{.
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do not intersect before Us; and the ratio of any two of kw(Z,), kw(Z), ¢(Z,), c(Z1),
Erw(U,), Hw(Us), c(U,), ¢(Us), lies between two L’s.
B) If |w(Z)|<Ey, then w,w=0(0) in (Z,, Us), and AV’ and AV are O (L) [so

that Lemma D is true in this casel.

Once («) has been proved, (f) is easily proved by similar and much easier argu-
ments, and we will take its truth for granted. («) and (§) together lead quickly to
Lemma D (the final steps occupy only the short §23). The main problem is accord-
ingly («), but this is formidable.

To attack it we introduce a mesh of I”s of the stream intermediate, at Z,, be-
tween I'y,, and such that for every pair of consecutives of the mesh we have
o<w<k 2 Since k' is still a £, is is enough to prove (a) for an arbitrary pair of
consecutives of the mesh. This is because the extreme I'; s do not intersect if the con-
secutives do not, and further the numbers w, ¢, whose ratios are considered in (o)
are all additive over a non-intersecting mesh,? and have the various properties of
(o) if each pair of consecutives have them.

We may suppose, then, that I';» are consecutives of the mesh, with w satisfying

w(Z) <k as well as w(Z,)>{,. It is then the fact, as one could expect, that

t
|w|<k® throughout (Z,, Us). The effect of this is that T=kf(AF/Ay)dt differs
0

t
negligibly from t=% f f(y,)dt. Now 7 depends only on the single (gap-free) I';, and,
0

in spite of the complications of the unsettling region |y|<1, we are in fact able to
calculate 7, from a sufficiently approximate knowledge of the behaviour of T', so as
to control the equations (W), (VV) that govern the behaviour of w.t We will take
the complicated details for granted and suppose that we know a complete “dictionary”

of 7. The full account is extremely involved, but we will try to give some idea of

1 We use, e.g., Z,, Ué as names of time-points. ¢ (f;) means the ¢y of (W) for a time origin at Z,.

2 By continuity there exists a I' of the stream through any point of the ordinate at Z; be-
tween those of I'1 2.

3 Note that ¢ (2) is A (y+%F (y)). Actually there is additivity for w, ¢ over a mesh, intersecting
or not.

¢ The mesh argument is accordingly very powerful. We have, moreover, found ourselves quite
unable to dispense with it. The original pair I'; 2 have w=0 (k_l) in |y| >1+L, and w=0 (Dk“!‘:)
in Iyl >1, except near a Z or Z'; but in |y|< 1 w is in general comparable with 1, and 7' is subject
to an uncertainty factor comparable with k, as I'; 2 perform their unrelated staggerings. Since the
time concerned is of order %~ %, the e’ of (W) has an uncertainty factor like exp (Ic%), which is
quite ruinous.

19 — 563804. Acta mathematica. 97. Imprimé le 8 aott 1957,
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the leading arguments.! We start from (W), (W). In these we suppose, always, that
T is replaced by the “known” 7; we include, however, what are essentially strict

proofs that the justifying “w< k™% is really true.

19. In (W), (W) we generally normalize to w being initially positive; i.e. either
w, >0, or, if wy=0, then w4w,>0. With normalized w we have, up to the next? inter-
section (if any)
w<wye T+ ey (t) (dm. up to intersection) ]

¢ , 1)
@(t)=e [ dt. J M)
0

Substituting this in (W;) we have

t
we'Zwy— Wy + €, (f e’dt—ﬁJ) (d.m. to intersection), ]
) ’ R ' 2)
p= [[ e dEdy, J= [[] £ ’fdgdnd:,J

0<é<n<t 0<E<hzit
and we use 9’s always for numbers satisfying 0<§<1.4 If we drop w, from the

right-hand side in (2) we obtain the two further inequalities (for normalized w)

i
w= —wge "ptcyp (1 *ﬂJ/J‘e’dt),
: ’ : (d.m. to intersection) (3)
(YN (1 —ﬁJ/fe’dt — (we/c) 1/)/[ e dt),
0 b

of which the second (through true generally) is appropriate only when c,>0.

For r.m., and normalized w we have, by similar considerations,

t

we T <wy+ &, f e dt (r.m. to intersection), 4)
0

¢ ¢
we "Zwy (1 —p)+ éo(f e"dt) (1 — ﬂj/f e"dt) (r.m. to intersection),

0 0 (5)
7= e " tdgdy, J= [[[ &M agdydl.

0<f<n<t 0<é<n<i<t

1 We do this at considerable length and in considerable detail because this is perhaps the
most central part of the work, and the arguments the most characteristic.

2 That is, the next after ¢=0 if that is one.

3 The numbering is continuous till further notice.

¢ We write ¢ for 7(&§) ete. The & is needed in (2;) because ¢, may be negative.
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The special value t=11 is important here, and we define the constant u,, associated

with the origin ¢=0, by
2

o= f e "dt (r.m.).2 (6)
0

With ¢=11, (4) and (5), translated into d.m. language, become: if there is no inter-

section of the d.m. for time LA before t=0, and if wy>0, then
HoC S0 oo (LT (12)/ptg) >y (1 (1)) — £.2 1)
We set out next part of the t-dictionary.?

[[ €™ ™agdy<Dkt (Am., 0<t<}d),

osbin<i

"Z’Z ‘”‘ e—rn*’gdfdn<pk’§ (I'.m., 0

0<é<n<t

(8)
A).

AN
IA
[

If (0,1) is contained in (Z,, U;) and if t=<L k, where L, is a certain L, then

for the d.m. we have
[[ e mdedy<i, (9)
o=<f<n<t

t
and v/ [edt<DEk Y (10)
0

When t=0 is the special point U,, and t <32, then, for the d.m

t
y= ”‘ e’r/*’Sdédn<DJ’e’dt. (11)
o<i<n<t 0
t
Since J=([ecdd) ([ emiededy),
0 o<Esnst
we have, from (8) and (9),
t
J/[edt<DEt  (dm., 0=t=3), (12)
0

1 We do not give p, the bar associated with r.m. because it will appear frequently in d.m.
results.

2 We translate ¢, into —c¢,. The { comes from w, exp (—7 (% A)) in (5).

3 7 (and for that matter T for the original I'y,2) increases by an amount of order Lk for unit

. -7 . . -k - o — Lkt
increment of ¢, and ¢ = acquires a factor like ¢ “". e ~ is a “modified e 7.
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J/fe’dt<-12~ (0<t<L,k, and subject to the conditions for (9)). (13)
0
_ t t
Since! J<([emzds) (] e mdndl)=([eTdl)y, (14)
0 osnsest 0
_ t
we have, from (8), J/J- e Tdt<Dkt (rm., 0<¢<21).

0

We write p (t,) for p, with t=0 taken at ¢,
If t, is preceded by a stretch of T, of time-length } A at least, that has y > 1+ L, then

yn (t)S Lk (15)

In particular (15) is true for any Z of (Z,, U,).
If ¢, s in (Z;, Uy), then

Lk '<u(t)y<DkE (16)

For the special point U, w(U)sLk 2 (17)

t
The function (p(t):e"fe’dt, formed (for the d.m.) with ¢=0 at ¢, we call
0

¢, (t), and we write @z (¢), ete. We have (as part of the 7-dictionary)

@, (1) <DEk™Y if (y, t) is contained in (Zy, Uy) and t>1t,3 (18)
gz(t)<Lk™ for a Z in (Z,, U,) and tZZ;] 19)
pz(@)>Lk? if t—Z>14. I

@, (8 =p () + 8L, provided t —t, =124 (20)

We conclude our collection of results with some identities and near-identities.

2
c(ty) —c(ty)=— fwdt (21)

1 We separate out the &-integration here, as against the { one for J.
2 (15), (16), (17) are of course true also in inverted form (for I'; suitably gap-free).
3 For quite general ¢, we have ¢, (f) <Dkt

¢ ¢ 14 t
4 (p(t)=e~rferdt:f exp {—t(t)—‘r(t—x)}dw=f + .
0 0 0 12

The first term is fy; the second is a #£. We include this to illustrate “‘translation” from d.m.

to r.m. language.
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U,
cU)=—AV+ [ ydt, c(Us2)= — A V+0(Aw),l
U,
(22)
ve l

cU)=AV' = [y dt, (U1 )=AV' +0(Aw).

U,
If-Aw>0, then w(Uy)sL(-Aw)) -
if Aw'>0, then w(U)SL(Aw). | (23)

(21) is the difference of the j-identities for I'j o (rather disguised). It shows that
when w>0 c¢() is decreasing. The identities in (22) are easily verified; the other
results are trivial consequences of the identities. (23) follows from the fact that be-

fore and near a U [U’] the y for a gap-free I' satisfies |y|< L.

20. We begin by proving (x) “up to U,”; ie. so far as its results relate to
the range (Z,, U;). The proof proceeds by successive stages of two kinds, embodied
in (g), ({) below, with (y) to provide a starting point [(8) is part of the proof of (£)].
We are supposing always, and tacitly, that w(Z,)>{,, where £, is a ‘‘suitable” (,
which we rechoose as the argument proceeds. We set out (y) to () before beginning

proofs.
(v). If Q is in (Zy—14, Z,+12) there is a “w, ¢ linkage” at Q:

w(Q)SLu(Q)ec(Q)LLSLk c(Q)£L. (24)
In particular c(Z,)s Lkw (Z,). (25)

In (8), (¢), ({) we suppose that t, is in (Z,, U,), and we give the short name
H (t)) to the hypothesis, or proposition (as the case may be); “there is no intersec-
tion,! and w<#k"% in (Z,4,)". We replace T by 7 throughout, dealing, as we shall
do, only with ranges where 0<w< k>,

(0). If H(ty) is true, then

w (ty) < L (t) kw (Z,). (26)
(). If H (t,) is true, then there is a w, ¢ linkage at ty:
w (b)) S Ly (§) ¢ (8) = L. (27)
In this u (t,) satisfies [after (16) and (17)]

LE'<u(tyy<Dk™¥ u(U)SLkt. (28)

1 So that w> 0.
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(2). Let Z be a Z of (Zl? U,) [Z=2Z, is permitted], and suppose H (Z) is true, and
c(Z)>1{', where ' is a certain definite . If now
<4, —Z<L,k [L, of (10)],
then H (t,) s true. Also w(t,)SLu(t)c(Z). (29)

We postpone the proof of (y), which is more easily explained a little later: we
assume its results provisionally.

In (6), (¢) we may suppose t,=Z,+14, since the range (Z,, Z,+11) is covered
in each case by (y)[=(24)+ (25)]1

For (6) we have, by (1) and (20),

w (ty) Sw (Z,) e 6772 + ¢ (Zy) @z, (tg) <+ u () c(Zy)
<{+p(to) Lkw(Zy),

by (y), and we may drop the (.

In (¢), consider the r.m. from ¢, taken as origin, over £ <1 4. This lies in a range

with no intersection and w<k™®. We can apply (7), of which the first part is u, ¢, <w.
In the second we have, by (8), and (14) with t=14, y(32) <}, J LA)/uy <, so that

U Co (L —38)>wy (1 —38) ¢,

and dividing by 1—-14¢ we get the remaining inequality of ().
For (£), consider the d.m. from Z till the first intersection, if any, or till w=%k"°,

or till t=t,, whichever happens first. In this range, with ¢=0 at Z, we have (3,), i.e.
t t
w>cop (1—9J/[ & dt— (wy/co) p/[ e dt). (30)
0 0
Since ¢<L,k, the factor of ¥ is <1, by (13), and that of w,/c, is Dk ¥, by (10).
Also wo/co=w (Z)/c(Z), and by ()
w(Z)<Lu(Zyc(Z)+L<Lkc(Z)+¢,
and for suitable {’ this gives w(Z)/c(Z)<Lk™*. Hence (30) gives
w>Lec(Z)pz(t)>0, (31)

and incidentally an intersection is not the first event, and (since w <%~® in the range
up to t) H(t) is true. Then, by (d),

1 Note that c(t) <c(Z,) for t=Z,, w being positive in virtue of H (4,) in (21); also that we
can drop the { in w(t,) <L (¢) kw (Z,) +{ when {, is suitable.
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w< Ly () bw (Z) < Lk 10 < k5,

and w=k"° is not the first event. So t=¢, is the first event, and H (t,) is true.
Since @, (£,)=pu (t,), (31) gives w (t,)>L u (t,)c(Z). Also, by (1) with ¢=0 at Z,

w(t)<l+e(Z)z(t)<{+e(Z)(u(t)+0),

by (20), and for suitable {’ this gives w(¢;) <L u(¢,)c(Z). This completes the proof
of (£).

21. Return now to the postponed (y). This is in point of fact true for any

pair I'; 2 of the stream, and since the mesh does not conveniently help us backwards

from Z,, we prove it in this form, retaining the 7' in (W) and (W) (instead of 7).
Let R be the range (Z, -} 4, Z,+322); this includes both the d.m. and the r.m. from
Q to time 214, and on the other hand it is to the right of Z,+ L (for some L). In
R we have, for each of I'y,, y>1+L. By Lemma A we have ¥, =0 (1), and by
its (3), together with the initial conditions for the stream, we have A F=0 (Dk™?).

Next, we have T'>Lk, T>Lkt in R, for dm. or r.m. It follows by straight-

forward calculations that, for origin Q, and t<14,
_ t
p<Lk? J/[eTdt<Lk™, (32)
0

and also that w(Q)sSLE. (33)

Consider now the r.m. from Q to t=11, or the first intersection (if any), which-
ever happens first. There are two cases: (i) an intersection happens first, (ii) no inter-
section before =14,

Case (i). Consider the r.m. from the intersection as new origin, for a (further)
time }1, or to the next intersection, whichever happens first. We have ;<0 and
w=0 in this range. (5) is valid, with w changed to —w to normalize, and w,=0,
Gy= —wWy= |ty |; and it gives [for the unchanged w], after (32),

t
—we”T2%|u')o|fe‘Tdt. (34)
0
This shows, first that there is no (second) intersection, and so, secondly, that (34) is
valid at t=11, when it gives w,=0 ().
Consider now the d.m. from the intersection up to . There is no intersection

inside the range, and (1) is valid with w,=0, ¢,=|,|, 50 that 0<w <|u,|p <,
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12
and w, = O(f | w | dt) =0 ({). In particular w (Q)=0 ({); also, taking t=Q in

0
W= — Tw+w0—w1, we have w ()= 0 (), and so finally ¢ (Q)= 0 ({). (y) is accordingly
true in degenerate form.

Case (ii). In this case (4) and (5) are valid at t=11 of the r.m., with w,=w (Q),
é=—c(Q); P and J behave as before at t=11, and by an argument now familiar
we get the w, ¢ linkage at Q, in case (ii) as well as in case (i).

Finally, to prove (25), we observe that for suitable {, we can drop the =+ in
(24) when Q=2Z,. This completes the proof of (y).

22. Having now (y) to ({) at our disposal, we divide the range (Z,, U,) at
Zy, b, by ...y b, Uy, where t, are at Z’s, and the time-lengths s of the successive steps
satisfy L,k<s<L;k, where L, is the L, of (10) and L, is suitably small. This is
clearly possible, and with »+1< L. Since the ¢, are Z,, we have ,u(tn)%Lk"l.

At Z,, we have ¢(Z,)>Lkw(Z,)>{ for suitable ;; hence, by ({) with Z=12,,
H (t)) is true. Also w(t,)S Lu(t;)c(Z,), and so, by (25) and (15),

w(t)S Lw(Z,). (35)

By (), with its t,=t,, c(t,)SLu™"|(t)|w )+ therefore, by (15) and (35),
c(t)S Lkw(Z,)+, and so, for £, suitable,

¢(t)S Lkw(Z,)> L. (36)

Since #, is a Z we can apply () with its ¢, =¢,, and (¢) with its £,=1,; H (t,)
is true, w(t)SLu(ty)c(t,)<Lk'c(t) and ¢ () S Lkw (t,) £, which gives, after (36),
and for suitable {;, w () S Lw(Z,), and

¢(ts)S Likw (Z,) LS Lkw (Z,)> ¢,

The process can evidently be repeated (L steps at most are needed); H (f,) is
true, and c¢(t,)S Lkw(t,)SLkw (Z,)>{'.
In the final step to U,;, ({) shows that H (U,) is true [so no intersection in
(Zy, Uy)] and
w(U)SLuUet)S Lkt w(Z,),

by (28); and from (¢) with its ¢{,=U,, and for suitable {;,
c(U)SLpt (U)wU,)£¢SLkw(Z,) 1S Lkw(Zy).

We have now proved («) up to U,.
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We have now to make the step from U, to Zj. The nature of the reasoning is
much the same; the difficult region |y|<1 is involved, but the step is less than 31
(as against, Lk), and the results (11), (12), (14) are available, and adequate to deal
with the new situation.! The upshot is (for suitable ;) no intersection before Z;, and
we can add

¢(Z,)S Lkw (Z1), w(Z) S Lw (Z,),

to our previous results.

We can now make a fresh start at Zj, and proceed to Us, except for the detail
that we have only w(Z;)> L, instead of w (Z;)>{,; this can be adjusted by a final
re-choice of the original ;. The results of (x) are now all accounted for.

After («) we have agreed to take (f) for granted.

23. We can now prove Lemma D. After (§) we may suppose that w(Z,)>{;
and it is enough to show that for consecutives of the mesh satisfying w(Z,)>{, we
have —AV, AV’ >0, and

L(—AV)<AV' <aAV;
for these results are additive.
Since w(U,)<Dk }e(Uy), w(Us) <Dk tc(Us),
(22) and (23) give
~Aw=0DEH(-AV), Ao’ =0 Dk H AV,

so that, by (21),

Uy
AV (1+o()+AV (L+o(L)=— [ wdt. (37)
U:
Also AV =c(Usz) 1 +0(1))S Lkw (Z,),

—AV=cU) (I +o())s Lkw(Z),

by («), and we infer that AV’, (-=AV)>0, and AV'>L(—AV). It remains only,
Uy
after (37), to prove that f wdt> Lkw(Z;). And since w>0, it is enough to prove

U,
that w> Lw (Z,) over a range from Z;+1A to a further distance L, %, with L; con-

veniently small. Now with origin Z;, (3) [in inverted form] gives, for this range,

1 Compare the proof of ({): the last term in (3,) is small with wo/ ¢y, though its other factor
is no longer small.

20 - 563804. Acta mathematica. 97. Imprimé le 8 aoGt 1957.
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Vx4 M
y*
Vo bm—— — K
(V*4 a1y
V*

Fig. 4.
w>c (%) gz, (1) (1—9J /[ & dt—(wy/cg) p/[ & db).
0 0

By arguments now familiar the large bracket is >1; also, since
t=14, @z, ()= p(Z) Lk
Since ¢ (Z1)>Lkw (Z,), by («), we get the inequality w> Lw (Z;) that we need.

24. We propose to exercise some licence in the explanations that follow.
(i) We generally ignore &’s, representing them by 0’s, and we ignore O (J); (i) we
use a symbolism “V’(V)” for the V’ resulting from “V”, as if there were a definite
function V'(V) of V over the range V*—0<V < V*+ M — 01! (the 0’s here representing
suppressed ¢’s): this is in effect supposing “linkage” to be exact. We now use (V*)’
to mean what can be indicated roughly as V' (V*+0). Our bases of argument are
now: (a) V' (V) is defined over V¥4 0<V<V*+ M —0, and lies in the same interval;
(b) V' (V) waries in the opposite sense to V; (c) the interval (V,, V,) “shrinks’; (V3, V3)
is smaller than (V,, V,) in a ratio 1— L.

Suppose (what will in fact normally happen, as we shall see later) that V* s
not near either end of the range (V*, V*+ M). As V increases from V* to V*+ M, V'
decreases from V*’: it may now happen that (i) there is a V, such that Vi=7V",
or again (ii) there may be no V,, in which case (V*+ MY > V*; we shall find that
cases (i), (ii) occur each for certain ranges of b.

Take first the simpler case (ii); the relations of V, V' are shown diagrammatically
in Fig. 4. The lines from any two V'’s of the range (V*, V*+ M) to their V' will

! This “functional” use of a dash produces a slight clash with the usual “inversion’ meaning
(though it originates from the latter meaning).
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VE+ M

(2)
Vs

Va

(1)
o b o T N — —

V*
Fig. 5.

cross and the difference will shrink, and V, V' move in opposite senses. If we start
from any V and form the sequence V', V' =V'(V’), V', ..., there will clearly be
convergence, in the diagram, of V™ to a limit, V, say. An actual (settled)! I" with
a V not in the gap has its V', V", ... clear of gaps, and V'™ quasi-converges to a
Vyp, ie. converges except for error O ({). The I' ultimately has its V’s all of the form
Vo +0 (), and the distance between successive U, U’? is of the form (n—1)A+ 0 (),
with constant n. The ultimate I is therefore quasi-periodie, of quasi-half-period (n—1) 4,
and any pair I'| , starting near the same U quasi-converge to each other.

In case (i) we must build up the diagram, Fig. 5, in two stages. We have
(Va—0)=V*+0, by (b); hence the downward sloping line from V. On the other
hand, again by (b), we have (V,+0)=V*—0, and this means a dip and V' =V*+ M
a A-period later,® a place represented by the right hand vertical line. Thus we have
two lines from ¥V, as shown. Further, (V*) is below V., by (c).

Consider now (V*+ M)". It must not be placed on the middle line, since there
it would, by (b), be below Vi=V*; hence it is placed on the right hand line, and,
by (e), above V.

There is, in this case (i), a new type of gap, a Vi-gap, since a V in Vi+9d
leads to @ V' in V*+0 af the U’ following U. A V of the diagram strictly between
V* and V. has its V', V", ... converging to a ¥V}’ in this range, one strictly between
Ve« and V*+M has its V', V", ... converging to a V¥ in that range. An actual T’
with ¥V in V*+4, Vi—0 (so not in either kind of gap) ultimately has its ¥’s of the

! In future we suppose that all I' mentioned are settled.

2 U, U’ have approximate phases —%Lz, +3 7 respectively.

3 Note that we are using V’ (V) to mean the V’ at the true U’; a V' (V) has a discontinuity
at Vi, V' (Vx—0) being V* +0 at the middle ordinate of the diagram, and V' (Vx4 0) being Ve M

at the end one.
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form V$+0(£), and its successive distances U, U’ of the form (n-1)A+0 (), and
any pair of I' of the kind quasi-converge. A pair of ' with V’sin V. +4, V*+M -6
ultimately have V’s of the form V@& + 0 (), and U, U’ of length (n+3) A+ 0 ({), and

they quasi-converge.

25. We have seen that, assuming V*’ is not near V* or V*+ M, then, if a
trajectory starts with a ¥ in neither the V* gap nor the V, gap (if there is a V,),
its V', V", ... stay clear of gaps. Further that there is either one group of which
every pair quasi-converge, or two groups, such that any pair belonging to the same
group quasi-converge. It remains to show that quasi-convergence (of the kind con-
sidered, clear of gaps) of a pair of trajectories involves their exact convergence (y; — ¥,
and 7, — ¥, tend to 0 as t—oc); and it is then an easy consequence that a group of
quasi-convergent trajectories converge to a single trajectory, necessarily strictly peri-
odic. The argument separates two cases, (i) when the pair ultimately do not intersect,
(ii) where they have an infinity of intersections: it works in either case; but whether

either case happens always, sometimes, or never, we do not know.

26. This time the approximation v for 7' has error only O (Z).

Case (i). Suppose w is ultimately positive. Then first, w;, which is an increasing
function, must be bounded. Otherwise, for an arbitrarily large G and {>1¢,((), we
should have ¢,—w; < — G and so \

¢ t ¢
w=wye T +e 7 | (co—wl)ert<(w0+cofert) e T—Ge " [e"dt.
0 0 ty

By the z-dictionary! the first term is less than a constant independent of G, and the
factor of — G is greater than Lk for ¢>{,+ 1. Hence w is ultimately negative, a
contradiction. Since, then, (a) w; is bounded, (b) w>0, and (¢) % is bounded, we

must have w—0; and then #%—>0 since % is bounded.
Case (i1). Let the intersections be I,,n=1, 2, ..., and w,=w (I,). In the first

place we have, for any w in I, I,
|w] <D |, ] kb (1)

For, taking ¢=0 at I,, and normalizing to w, and w non-negative, we have

t t
w=e" [ (oo —wy) e” dt<ub, e " [eTdt<Dktw,, by a v-result,
0 0

1 We are taking this as known.
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Consider now the r.m. from I, ., taken as t=0, up to t=14, or till we reach
I, whichever happens first. If w is, say, non-negative, we have from (5) of § 19 (with

Wy = 0, €y =n11),
t t

we "= [eTdt (- [[[e T e dgdyd /[ e T dt) (2)
0 0

v

and by considerations we used earlier the large bracket is greater than ]. Hence

¢
w=Ynae’ [e T dt,
0

and in particular I, is not reached before {=11. So we have

12
w (A A)> Y €D [ e Tdt> Loy e LE?
0
by two t-results. On the other hand, this w (1 4), being a w of I, Iy, satisfies (1),
so that |w(i2)|w(2A)|< Lk |w,]. Tt follows that |1, |<}|ewn|. Hence @, >0, and

so, from (1), w—0 uniformly. Finally % must tend to 0 since 4% is bounded.

27. It is possible to give a formula, correct to a factor 1+ o (1), for the period
P of a stable periodic I'.1
Let Y (z, b, ) be defined by (see § 6 (3))
—F(Y)=2—Y+3iY?=2+b(1+ sin ¢)

for the range 0<x<$—2b of x, and then for the long descent

y(x, b)= f Y(z, b, p)dg
is k times the approximate change in the constant « over a period of ¢. Hence

420

z P f de_
k p(z, b)

The right-hand side is independent of A (as we should expect).

28. For the next developments we need to show that, for a fixed V, V' varies
smoothly with b. It is to be expected that a change of order ¥ ' in b corresponds

to a change of order 1 in V', or of one A-period in the period of a p.m. We prove

1 Where there are two periods they differ by a factor 1+o(1).
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that an increase of order, say, (klog k)™! of b produces an increase of order (log k)™*
in V' for fixed V.1 As b increases through I log k such steps, V' will run effectively
through the whole range V*, V*+ M, which last is equivalent to V* a A-pericd
earlier. It is further clear from the diagrams, and (a), (b), (¢) of § 24, that when V*’
is just above V* there will be a V23 and that when it is just below V*-+ M there
will be no V.. We see now the genesis of the excluded intervals of §4, which are
those for which V*’ falls in the ¥*+6 gap,* and of the alternation of the two cases
B;, B..

If & system has stable subharmonics of which the order decreases with increase
of a parameter b, it is perhaps to be expected, as the most natural way of bridging
the gap, that there will be this alternation of one stable period and of two stable
periods (the shorter increasing its sphere of influence at the expense of the longer),

with all the attendant consequences of the latter case.

29. However this may be, we are now in a position to discuss in more detail
the structure of the non-stable trajectories when beB,. We have seen that a I' ar-
riving after a long descent (‘‘settled’’) at y=1 has phase —lz— w, where w lies in
a range (— Lk % Lk *). There are two V-gaps, namely V*+ 8 round V*, and Vyo+L; 6
round V,, where L, will be explained presently. If we suppose a particular linkage
of ¥V and o to be set up in some way, these gaps correspond to two ‘“‘gateways”
on y=1, both lying in the w-range above; there is such a pair of gateways near
every place of phase —lz, and similar ones on y= —1 near every place of phase
m. The V* and V, gateways we call G (suppressing an upper star) and G, respec-
tively when they are on y=1, G’ and G5 when they are on y= —1. A continuity
argument (backed by some subsidiary considerations we will not go into) shows that
a continuous stream S (starting at some Zg) exists, whose I" arrive near a given place
of phase —lm on y=—1, with V' having any assigned value in V* —2§<V'<
V*+ M —§; they arrive after a long ascent (settled), and with |y|> L. We may take
as S the representative points (at Zo) of whose I' lie on a segment of a straight line

in the space of r.p. There is a sub-segment with a corresponding sub-stream going

! The increment is moreover approximately independent of the given V. This less “obvious”
fact is used, so that the long proof is not merely a tiresome necessity.

2 7* and M are functions of b, but vary so slowly that they may be treated as locally
constant.

8 This depends on the inequality Va— V{ I >L(Vy— V) +0 (). Nor can the L be a D! Itis
this that calls for the simplifying b> 185, without which there would be much further complication.

4 The Vx gap can only be reached from a V in a v* gap; with such ¥’s almost anything can
happen.
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through G’ (and ‘‘filling” it); let ', , be the I''s through the V*+§ ends of G re-
spectively. I';, 1 of Fig. 6, shoots through |y|<1 and begins converging to a p.m.
of half-period (n—%)2. Iy, 2 of Fig. 6, makes a dip, and then begins converging
to a p.m. of half-period (n+1)A. U, is at a time (n—3%) A later than U; (approxi-
mately, understood); on the other hand U, is time A later than Uj; since further
Vs is approximately V*+ M, U, is (n+1) A later than Uj, with V,=(V* + M) approxi-
mately. U, and U, are accordingly two A-periods apart, and V, = (V*+0), V,=(V*+ M)’
approximately. These extremes I';,, of Fig. 6 (i) bound a “delta’ where they arrive at
y=1.1 This delta contains two G’s, G; and G,, and one G4. The stream through the
initial ¢’ will contain sub-streams through each of these, again arriving (settled) after
a long descent and with |y|> L. Those through Gy . are scattered similarly to the
original one through G’; that through G, is not immediately scattered, but leads,
after time (n—1)4, to a new @', and if L, is suitably large it contains a sub-stream
through and filling this .2 We have now three sub-streams, each ending by going
through a ¢! or ', and the process repeats.

We note some further details. The extremes I'; ., after leaving y= —1, cross,
approximately at height y=2, and at time approximately A after U;; other I's cross
similarly, The stream becomes a narrow channel, of width O (k™!), for the long des-
cent. I”s of the stream starting near I'; stay below I';, those starting near ', stay
above I'y; both are presently lost for good from the long descent “tube” enclosed by
I'1, 233 it is in fact only a central core of the initial stream (with width probably of

order about k') that provides the stream through the tube.?

30. We proceed to analyse the possible “structures” of streams flowing only
through gateways at their U, U’ (we reject the parts going outside). We have seen
that the three possibilities following a &’ are: (a) a “short” sub-stream, s [length
(n—1 4], to G; (b) a “long” one, ! [length (n+1)1], to G, (c¢) a long one to Gy,
followed immediately by a short one to a G'; the combination we will call C. I’, &', ¢V
have the inverse senses.

¢

We next define a “unit” undashed “‘structure” « to be a stream (through gate-

ways) starting from a @ and ending at a @, the latter being the first G after the

! Distances of order k %, 8% ¥ are of course grossly magnified in the figures. Fig. 6 (v) is
drawn for a case in which I'y makes one dip at y=1; (V* + M) — M lies between 0 and M. The 17's
linked with various points on y =1 are also shown.

2 By the left hand inequality of Lemma D. (By the right hand one we must have L, >1).

3 I”s starting just ontside I'; or I'; enter the tube, but we are not concerned with these.

4 Some Is of the “core”, e.g. 7, 8, of Fig. 6 (i) go below I'y before ending up in the tube.
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Fig. 6 (iv). Intersections with Z,; of the substreams.
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Fig. 6 (v). Arrivals at y=1. (V*+ M) — M <V¥< (V¥ <Vs<V*+ M by Fig. 5.
former. The possible #’s are now as follows, where each of & and y may be either

s or I
(1) ¢; (i) x+y; (i) x+mC +y', m being any positive integer.

The most general structure, from — oo to co, say, is an arbitrary succession of
w’s, or else the inverse of such a structure. [It is generally both, but, e.g., a suc-
cession of (s only is an exception. And a structure can be identical with a dashed
structure suitably translated.] Given any structure there exists a continuous stream
through any finite section —7T <¢<T of it; and by a limit argument there exist
trajectories through all the gaps of any possible structure. These provide the tra-
jectories X of §4; and when the structure is periodic they provide quasi-periodic

trajectories having the structure. The final step to the existence of a strictly periodic
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trajectory having the structure requires an index-number argument. This last is the

only topological argument we have occasion to use.l

31. It follows from the famous ‘““last geometrical theorem” of Poincaré,? inter
alia, that of a transformation 7', which is 1—1, continuous and area-preserving in
the annulus between two curves, has f.p. of order »n, on one curve and f.p. of a
different order n, on the other, such that the points go round the curves once in
n; and n, transformations respectively, then it has f.p. in the annulus of every order
N such that m/N lies between 1/n, and 1/n, for some integer m; if n,=2n+1 and
n,=2n—1, it has f.p. of orders 2n, 4n+1, 611, 8 +3. As a matter of fact an
annulus is not essential to such behaviour: in our case of stable periods (2n+1)4
there is no annulus; all the points of K, lie on the frontier of a simply-connected
domain containing the point at infinity. There would seem, moreover, to be a much
richer “fine structure” of non-stables than is provided by the annulus. For example,
to take only multiples of 2% 1, there exist 4 distinet kinds of set of least period
2n A, 6 of least period 4n 4, and a considerable number of least period 6n 1.3 The
annulus may have as few as 2 of least period 2n 1 and none of a least periods 4% 4,
6n A

Since a trajectory exists conforming to any possible structure of gaps from — oo,
to + oo, cases arise that seem curious at first sight. We may instance that of a pair
of trajectories running close together through the same system of gaps for large
positive and large negative ¢, but running apart over a s*retch in the middle; the
gap-structure towards t= + oo and t= — oo can, again, be periodic of one period in

one direction and of another in the other.

32. In the case beB, a non-stable p.m., or a trajectory of the set X has at
every critical crossing of y= +1 its V either V* or V,, with error o(1). While it
is not necessary to the results to explain, in detail, how this can happen, the reader
may feel some curiosity on the point, and we shall say something about it.%

Any trajectory satisfies an identity

3 —y+3=C+b(1+ sin @) — (+y,)/k. (1)

1 And except for it all our analysis is entirely “low-brow’’.

2 See G. D. BirkuOF¥F, Dynamical Systems (New York, 1927), 165.

3 Owing to possibilities of symmetry, and permutations of constituent units that may be like
or unlike, the exact number of distinet kinds is not at all easy to determine.

4 There are other types of ‘‘odd” behaviour, arising mainly from the critical nature of the
lines y= t1, for trajectories emerging slowly from |y|<1: it is mecessary to the proof of strictly
periodic non-stables to discuss these, but it would take too much space to describe them here.
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Fig. 7 (i). Trajectory “pulled” at R.
Fig. .7 (ii). Trajectory “sliced” at S.
During a “quiet” interval, of duration not more than o(k), in which y is O (1), this

is approximately of the form
1y —y+2=C+b(l+ sin ¢). (2)

If two such quiet intervals are separated by an interlude of duration o (k) [it is in
practice o (1)], the interlude contributes o (1) to y,/k and to error o(l) the ¢ of the
second quiet interval is the same as that of the first. Now the locus (2) can (for cer-
tain C, e.g. C=0) consist of as many as three distinet branches; most of the
time a trajectory is pursuing one or other of these, but it can jump from one to
another in a short interlude in which 4 is large. The value ¢'=0 is particularly im-
portant since the last stages of a “long descent” to y=1 are given, with error o (1),
by (2) with C=0. As we saw in § 13, the locus (2) has then three branches C;, U, O3,
shown dotted in Fig. 7.

It is now possible for a trajectory to behave approximately as follows: (i) arrive
at X on y=1 along a (,, (ii) pursue the unstable C, to some point, (iii) either (1)
“pull” up to the point of O, vertically above and follow (', or (2) “slice’” down to the
point of C, vertically below, and follow C,. In case (iii) (1) it is possible, by varying
the moment of the “pull”, to make the value of y, at Y, the next y=1 point,

1 This applies only to y, not to §; we may not “differentiate” (2) near y = 1.
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vary up to the amount of the area contained by a (| and C,. Since, identically,
Vy= VX+[yl]§, this makes possible a variation, of the order of 1, in the value of
V at Y. Most of the delta is of course free of “normal” trajectories: the delta is none
the less “filled” by the stream, and in fact mostly by the nearly vertical trajectories

in the act of pulling or slicing.

33. We conclude with the obvious remark that if f is allowed to have more
than one pair of zeros the situation can become very different. Consider for example

the equation
GHE(I~yP+e yYYg+y=buk cos (—put+a).

If the term in e * is omitted this is (I) with the sign of ¢ changed, and the tra-
jectories are the r.m. of (E) (and include, for b<%, a stable p.m. of order 1). The
non-stable p.m.’s and the trajectories of X, which are bounded for all ¢, positive and
negative, continue to exist (reversed!, and slightly modified) when the new term is
present; the original stable subharmonics become totally unstable ones. Groups of
trajectories will try to escape to oo, but the positive damping then takes charge,
and all trajectories are ultimately bounded? (the bounds of y, 7 are of course ex-

ponentially large in k).

1 The reverse of a non-stable is a non-stable.
2 N. Levinsox, Journal of Math. and Physics, 22 (1943), 41-48.



