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1. Introduction

If Q is a complex manifold, let P(Q) denote the plurisubharmonic functions on Q. Each
u € P(Q) is subharmonic with respect to every operator A, which in local coordinates
may be written in the form

82
A = —_—
a Zau aZ,-aZ-j

where a=(ay) is a nonnegative Hermitian matrix. We wish here to exploit the fact that
plurisubharmonic functions are simultaneously subharmonic with respect to several
Laplacians to obtain some results on their local behavior which are stronger than those
known for subharmonic functions. We are motivated by the equation

d d’u L ) _
et - =—inf {A u: det[a,] =1} (1.1)
97,9z n d

for u€ P(Q)NCHQ) (c.f. Gaveau [15]); this quantity, in some. sense, estimates the
extent to which u lies in the interior of P(2). Because of the geometric nature of the
cone P(Q), it seems that a “‘potential theory’’ which can describe the properties of
P(2) must necessarily be nonlinear.

The operator dd®=2i33 and its exterior powers (dd®) are invariant under holomor-
phic mappings. It is easily seen that in local coordinates

z;0z;

(dd°u)" = ¢, det [ 832;‘ ] dV(z). (1.2)
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The operators (1.1) and (1.2) are clearly related, but the complex Monge-Ampére
operator (dd)” seems better suited to the purpose of potential theory. In fact, the
Dirichlet problem was shown in [4] to be well posed for (dd®)" and examples were
given to show certain difficulties with (1.1). Here, we will use the operator (dd€)" to
replace the Laplacian and prove, in the category of complex analysis, the analogues of
some well known results of classical real potential theory. Since our arguments
completely avoid the explicit use of kernels and convolutions, they may in some cases
also give new proofs to classical results in the case n=1.
As in [4], we may define

(dd°y": P(Q) NL*(Q,10¢) > M, (Q)

where M,, ,(Q) denotes the space of (n, n) forms on Q with (Borel) measure coeffi-
cients, with the usual topology of weak convergence of measures. Our first main result,
Theorem 2.1, shows that this is actually an extension of the operator (dd®)” on smooth
functions. The case n=2 was proved differently in {5]. It is known [27] that the operator
(dd)" cannot be defined as an element of M, ,(Q) for all € P(Q). The ‘‘correct’
domain of definition for (dd°)” still seems not to be known.

Several capacities have been introduced in connection with various problems of
analytic function theory (see e.g., [1], [10], [22], [25], [26], [28]). And it seems, in
contrast to the case of C!, that there may be a large number of different capacities,
each arising naturally from a different problem. For the situation at hand, the natural
capacity is

C(K, Q)=sup{J. {(dd*v)": vEP(Q), 0<u< 1} (1.3)
K

where Kc=Q is compact. This has the property of decreasing under holomorphic
mappings; i.e. if 1 Q;—Q, is holomorphic, then

C(K, Q)= C(f(K),Q,).

Our second main result, Theorem 3.5, is that every u € P(Q) is quasicontinuous with
respect to this capacity. That is, for each u € P(2) and each £>0, there is an open set
0<=Q such that C(0, Q)<e and u is continuous on the complement of 0. For subhar-
monic functions, this theorem is due to H. Cartan [9].

The usefulness of (dd)” in replacing the Laplacian is reflected in the comparison
theorems we may obtain using it. For instance, we derive a domination principle,
Corollary 4.5, analogous to the one known in classical potential theory.
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We also consider the capacitary plurisubharmonic function «¥, the upper semicon-
tinuous regularization of the envelope

ug=sup{v: vEP(Q), v<0, v<-1on E}.

The extremal function u# is used to give the connection between the capacity C(E, €2)
and the pluripolar sets; i.e. sets which are locally contained in sets of the form {v=—x}
for some plurisubharmonic function v. With Theorems 2.1 and 3.5 it is possible to give
a simpler proof of the characterization given in [2] and [3],

CK, Q)= f (dd°u})" (1.4)

for K a compact subset of Q. For (1.4), we assume there is a Stein manifold M with
Q={p<0}€M for some strictly plurisubharmonic ¢ on M. However, since all the
interesting aspects of our work are local, we will assume that Q is a bounded, strongly
pseudoconvex domain in C”. In fact, we may always take Q={z€C": |z|<R}. The
corresponding statements for Stein manifolds will be obvious, and they are omitted.

We also extend the arguments of [2] and [3] to show in Theorem 6.9 that the sets of
outer capacity zero are precisely the pluripolar sets. This then gives another proof of
Josefson’s theorem [17] on the equivalence of locally and globally pluripolar sets.

We consider also the so-called negligible sets, which are those of the form

N={w<w*}

where w=sup,u, is the upper envelope of an arbitrary family of plurisubharmonic
functions locally bounded above, and w*(z)=lim sup; ,, w(§) is its upper semicontin-
uous regularization. In [2] and [3] it was shown that & is pluripolar if
{u,}=P(Q)NC(Q). Here we extend this result to the general case and show in Theorem
7.1 that the negligible sets are pluripolar. As a consequence, we find that the capacity
defined in (1.3) satisfies the hypotheses of a generalized capacity, and so by Choquet’s
theorem the J-analytic sets are capacitable. Another consequence is that monotone
sequences in P(Q) are ‘‘quasi-uniform’’ (Theorem 7.2). These results are then applied
to some questions of stability in the interior Dirichlet problem for (dd®)", and to give
results on the “‘thin’’ points of sets.

2. The operators (dd°)* and %

Throughout the paper we use the notion of positive differential forms, or positive
currents, as presented in Lelong [18]. This notion was first defined and used by Lelong
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in [21]. If v is a positive current of bidegree (p, p), then y is a distribution of order zero.
Thus, if @ is a positive current of bidegree (1, 1) with smooth coefficients, then gAYy is
well defined and is also a positive current. However, we need to use an extension of
this multiplication of positive currents.

Recall that given v', ..., v*€ P(Q)NL=(RQ, loc) we may define the positive current
ddv' A ... A dd°V* (inductively) as a distribution if we give its action on a test form ¥
of bidegree (n—k, n—k) as

fdd“v' A oo A ddU* A w=fv1dd°v2 A ... AddU* A ddy (2.1
o

Q
(see [4]). The main result of this section shows that (dd°)* is continuous under
decreasing limits. Thus, the definition is justified as an extension of the operator on

smooth functions, and, therefore, retains the usual algebraic properties of the operator
on smooth functions.

THEOREM 2.1. Let {v}}, vy {UJ’.‘} be decreasing sequences of functions in P(2)n
L*(Q,loc) and assume that for all zEQ,

lim v;= VEPQINL™(Q,loc), 1<i<k.

Jjo»
Then
limdd v} A ... A ddVf = ddV' A ... A ddV*
Jow
where the limit is in the weak topology on M, ((Q), the currents of bidegree (k, k) on Q

of order zero; i.e. which are represented by integration (see e.g. [18] or [15]).
An immediate consequence of Theorem 2.1 is

COROLLARY 2.2. The map (U, ..., U")—ddv' A ... A dd°U" is a symmetric, multi-
linear map of [P(Q)NL*(Q,loc))* into the cone of nonnegative closed currents of
bidegree (k, k).

For the proof of Theorem 2.1 and many other results of this paper, it is convenient
to introduce the classes

P*=P*(Q,K,0,A,B) 2.2)

where Q is a bounded, strongly pseudoconvex subset of C”, K is a compact subset of
Q, o is a strictly plurisubharmonic function on Q which is a defining function for
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Q={0<0}, and A, B are constants with A>0. A function 4 € P(2)NL™(LQ, loc) belongs
to P* if

u(z) = Ap(z)+B, zEQ\K.

We will usually not display the lengthy list of parameters Q, K, 0, A, B.
The use of the classes P* is easily seen. Note that the assertion of Theorem 2.11is a
local result. Also, if the functions vj". are changed outside a relatively compact open set

wcQ, the convergence in w will not be changed. Now, if the relatively compact open
set w is specified and if the vj‘: converge as in the hypotheses of Theorem 2.1 we can

always find constants A, B>0 and a compact set K so that all the functions

90 = {max(v}(z),Ag(z)*l-B), Z€EK
M= Ao()+B, ZEQN\K

belong to P* and 0§(z)=v;(z) for zE€ w. Thus, in proving a local convergence result like

Theorem 2.1, we can always assume the functions are smooth outside a compact subset
of Q.

Proof of Theorem 2.1. The proof is by induction on k. For k=1, the assertion is
well known [18]. Assuming the result for values up to k, we will prove that

limf vj(.’ddcv} A A dd°vj'.‘ A ddy = j Vddv A ... A ddV* A ddy 2.3)
Q

Joo Q

for all test forms y on Q. By (2.1), this implies dd“vj‘.’ A A dd°vj'.‘ converges in
M, 11 141(€2). And, following our remarks concerning P* (see (2.2)), we can assume that
U}EP*=P*(Q, K, 0, A, B). By adding a constant to the v’s, we may assume that B=0.
Now we will prove (2.3) for (n—k—1,n—k—1) forms i which have the following
properties:
ddy=0 is a positive current on Q,

1 is smooth in a neighborhood of 8Q, 2.4)
and ¥=0 on 9Q.

This will suffice to complete the proof, for given any compactly supported test form v,
we may choose ¢ small enough that

¥ =—o(dd0)" " '+ey
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will satisfy (2.4). Now (2.3) will hold for ¢ and —o(dd°0)"*~", and thus it will hold for
w=£_1(1/5+9(dd°9)"_k_'), which is what we wanted.

The first step in the proof of (2.3) is the inequality < which is a simple consequence
of the uppersemicontinuity of v°. For later reference we will state it in a slightly more
general form. No proof is given, since this is a well known property of weakly
convergent nonnegative measures.

LEMMA 2.3. Let v; be a sequence of upper semicontinuous functions which either
increase or decrease almost everywhere to an upper semicontinuous function
vEP(QNL™(Q,1loc). Let u and u; be nonnegative measures all supported on a
compact set KcQ with u;—u. Then

jEijvjdﬂfsfvdﬂ'

Notice that the lemma (with v;=v!, u;=dd°v} A ... A dd°v} A dd°y) proves that <
holds in (2.3) with dd°y replaced by any (n—k, n—k) form y which is positive on the
compact set K for which vj". EP¥*(Q, K, 0, A, B). This is because y can be split up into two
parts, y=y+x> by a partition of unity, where y{=0 and support y,cQ\ K. We get the
inequality < in (2.3) for ¢, by the lemma. The terms involving y, all converge because
vi=Ap on the support of x.

To prove the other inequality in (2.3), first assume that all the approximants v;are

smooth on Q. Then

Jvoddcv1 A oo A ddUF A dd°1p=f +J
Q K Q\K

sfv? ddv' A dd°V* A ... A dd°UF A ddctp+J’ Vddv' A ... ddV* A ddSy
K ONK

= f V) ddv' A ... A ddUF A dd“z/)+J’ @ =) ddv' A ... A ddV A ddy.
Q

Q\K

The last integral vanishes because °, Ul(-)=AQ on @\ K. Using (2.1), the first integral is

equal to

fvldfvf AddV A ... A ddVE A ddCy < f v} ddcv;’ A ddV? A ... ddV* A ddy
Q

Q

= J v}’dd‘v} AddVP A ... A ddVE A ddoy.
Q
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Repeating the argument k—1 more times gives

fvodd“v' Ao AddVR A ddy < f v dd°v] A ... A ddVf A ddy. (2.5)
Q ' Q

Letting j— in (2.5) gives the other inequality in (2.3).
If the v} are not smooth, then note first that it follows from the case just proved
that

limf (1)) 5 dd(V]) 5 A ... A (V)) 5 A ddy = J’ v) dd°v] A ... A ddU} A ddy,
-0 19} Q

where (v)s=vx1s denotes a usual regularization of the plurisubharmonic function v
(see [18]). Thus, by a diagonalization process, we can choose §,—0 so that ﬁ;=(vj’:) 5,
decreases to v’ and for all test forms v

limJ’v}’ ddv! A ... A ddVf A ddy = limf (0%) ddG] A ... A AU A ddy.
Q Q

o> jree

By the case just proved, the last limit equals [v® ddv' A ... A dd°V* A dd®y. This
completes the proof.
The operators
e [P(Q) NL™(Q,100)] > M, (Q)
given by
L0, 0, ..., 0% = 0dd A ... A ddV

which appeared in the proof of Theorem 2.1 are equally as important as (dd®)*. Of
course, from (2.1), convergence of the currents dd® vj‘.’ Ad A ddcvj’f is equivalent to the

convergence of ik(v?,...,vj’f) on test forms of the type ddyw. However, the ¥’s

themselves also converge under decreasing limits and this was, essentially, already
shown in the proof of Theorem 2.1.

THEOREM 2.4. Let QcC", and let {vj(.)},...,{vj’.‘} be decreasing sequences of

Junctions in P(Q)NL*(RQ,loc) such that
lim v} = v'€ P(Q) NL*(L, loc).
e

Then

lim £(v), ..., v}) = L, ..., ),
joe

where the convergence is as currents of order 0in M, (Q).
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The main part of the proof of Theorem 2.4 is an observation we will use again later,
so it is stated separately here. It is convenient to use the notation u(¢) for the pairing of
a current x with a test form ¢ in this lemma.

LEMMA 2.5. Let u, v be currents of bidegree (k, k) on QcC" such that
(i) u—v is a positive current on Q
(ii) u=v outside a compact subset K of Q; and
(iii) u(ddp)=v(ddy) for all smooth (n—k—1,n—k—1)
test forms y on Q.

Then u=v.

Remark. Note that (iii) implies that n>k. The lemma asserts there are no closed
nonnegative compactly supported (k, k) forms, if k<n.

Proof. Let B,=p"/p! where B=}iXdz; A dz; is the Kéahler form on C". Since
u—v=0 and u—v=0 outside of K, we only have to prove that (u—v)(B,-)=0 ([18],
Theorem 2, p. 69). Let =0, y € C;(S2) be such that y=1 on a neighborhood of K. Let u
be a smooth (n—k—1, n—k—1) form with dd°u=p,_. Then

=) (Buei) = =) ((B,-i) = =) (xdd‘u)
= (u—v) (dd*(yu)—dy A d°u—du n d°% —uddy).

Now (u—v) (dd°(xu))=0 by hypothesis (iii). All the other terms involve derivatives of y
and therefore are supported in the open set Q\ K where u—v vanishes. Thus, u—v=0,
as asserted.

Proof of Theorem 2.4. Since the assertion of the theorem is local, we may assume
all the vj". belong to one of the classes P* (see (2.2)). First assume n>k, and let

u=v"ddv' A ... A ddV* = L0 0, ..., 00).

Let v be any weak limit of the currents $k(vj‘.’, . vj’.‘). By the proof of Theorem 2.1 and
the < part of (2.3), or directly from Lemma 2.3, it follows that u=v. Since v}EP*,we
have u=v=%; (Ap+B,...,Ap+B) outside KEQ. And Theorem 2.1, via (2.1), implies
that u=v on test forms of the type dd“y. Thus, y=v by Lemma 2.5. This proves the

Theorem when n>k.
If k=n, we can think of the v} as functions on QXCcC"*!, Then the case just
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proved applies, so {Z, (v}’, oo vj'.')} converges as currents on QX C. Applying this con-
vergence to test forms of the type y,(z,,...,2,) ¥,(2,,,) dz,., A dZ,,,, we see that the

££n(vj‘.’,...,v}’) also converges as currents (measures) on QcC”. This completes the

proof.

Of course, the form £ (° v',...,v%) is symmetric in (v',...,v), but not in
@°,v',...,v%). However, another interesting consequence of Lemma 2.5 is the ‘‘sym-
metry in convergence’’ of % in 0%, v', ..., v%).

THEOREM 2.6. Suppose {v;’}, vers {vj‘} converge pointwise to 1°,...,v*F in

P(Q)NL*(Q,loc) in such a way that

() ﬁfk(v}’, v}, vj’.‘)—>$k(v°, v, ..., vY; and
(i) dd® A ddV? A ... AddVE —dd VP A dd°V A ... A ddUF.
J J J
(iii) {v!)is eitheran increasing or decreasing sequence. Then
J

1.0 .2 k 1.0 .2 k
cfk(vj,vj,vj, ...,vj)—>£é’k(v ,U,U%, ..., U5,

Proof. If u=2,"',v°, v, ..., v*) and v is any weak limit of EAUI v}), vf, ..., U") then
u=v (by Lemma 2.3), u=v outside of K, (since we can assume v]".E P*). Further, on test
forms of the form dd®y, ¥ is symmetric in v°,...,v*. Thus, Lemma 2.5 guarantees
convergence for the %, no matter the order of the sequences when n>k. The case n=k
follows exactly as in the proof of Theorem 2.4.

An important corollary of Theorems 2.1, 2.4 is the following.

THEOREM 2.7. If Q=C" and {u;}, {w;}, {v}},..., {vJ’.‘} are decreasing sequences of

functions in PQNL™(Q,loc), and if the corresponding limits u,w,v',...,v"€
P(Q)NL*(Q,loc), then

lim du; A d°w; A ddv} A ... A ddVf = du A d°w A dd0' A ... A ddV" in M, ().

oo

Proof. By polarization in the symmetric forms du A dw and dd“v' A ... A ddV*, it
is no loss of generality to assume that wu=w;and v}=vj, I<isk. Also

assume #=0. Then we have the identity
1 c
7ddcuj A (dd°v)* = udd‘u; A (dd°v))*+du; A du; A (dd°v)

(which also serves as the weak definition of the last term). Since the left hand side and
the first term of the right hand side converge as j—+, by Theorems 2.1 and 2.4, so
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does the last term. The general case follows by applying this argument to u;+C for a
suitable large constant C.

Note the following typical, simple algebraic formulas which hold as a consequence
of Theorems 2.1, 2.4, 2.7.

COROLLARY 2.8. If u,vEP(Q)NL™(Q,loc) and ¢ € C;(Q), then [ @l(dd°u)"—
(ddv)"1=[ (u—v)dd°p A 8, where

0 = (dd°u)" ' +(ddu)"* A ddv+ ... +(ddv)"".

Proof. The equation holds for smooth «# and v so the result follows from Theorem
2.1 by approximating u, v by decreasing limits of smooth plurisubharmonic functions.

COROLLARY 2.9. If u,v, wEP*=P*(Q,K, 0, A, B), then

f(u—v) (dd*w)" = —f d(u—v) A d°w A (ddw)" .
Q

Q

Proof. We can select u;, v, w; smooth plurisubharmonic functions in a class P*
(with possibly different K, A, B) which decrease to u,v, w on a neighborhood of K.
Then convergence follows from Theorem 2.4 for the left side and Theorem 2.7 for the
right side.

Finally, for later reference, we record the Chern-Levine-Nirenberg estimates for
(dd®)” on bounded plurisubharmonic functions (c.f. [11] or [4]).

THEOREM 2.10. If V°, ..., v*EP(Q) NL™(RQ), Qc=C", and if K is a compact subset
of Q, then there is a constant C=C(K,Q) such that

(i) fdd%‘ Ao AV AB,_ | < ClIVM|-.. |1V
K

(ii) fvoda'cv1 Ao AddVEA B | < CIO - 1]
K

<l v

(iii) fdvo AdVA AV A .o AddVE A B,
K

where B,_ =" *l(n—k)!, f=1i ¥ dz; A dz; is the Kdihler form, and

[|v]| = sup {|v'(2)}: zZ€ Q}.

is the supremum norm of v.
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3. Quasicontinuity

In this section we define the inner capacity associated with the operator (dd)” and give
some of its elementary properties. Then we give a Schwarz inequality for the gradients
of plurisubharmonic functions. The main result of the section, Theorem 3.5, is that a
plurisubharmonic function is continuous off of an open set with arbitrarily small
capacity. For subharmonic functions, the corresponding result was obtained by H.
Cartan [9].

Definition 3.1. Let Q be an open set in C”. If K is a compact subset of Q, then we
define

C(K, Q)= C(K)=sup {f (ddu)": uEP(Q),0<u< 1}
and K

C(E, Q) =sup {C(K): K is a compact subset of E}.

Note that C(E) is an inner capacity. If E is a Borel set, then
C(Ey= sup{f(ddcu)": UEP(Q),0<u< 1}.
E

PROPOSITION 3.2, Let Qc=C” and C(E)=C(E, Q).

(1) If E\cE,, then C(E)) < C(E>).
2) If EcQ,c2;, then C(E, Q)= C(E, Q,).

3) c( UEj) < > C(E).
J=1 j=1
(4) If E,cE,c ... are Borel sets in Q, then C(UE) = limjﬁoc C(E).

Proof. Assertions (1), (2), (3) are clear. For assertion (4) let u € P(Q), 0<u<1 be
chosen so that C(E)<fg(dd“u)"+e. Since lim, . C(E)=lim,_, | E (dd°u)" we have

C(E)Slimj C(E). The other inequality follows from (1).

Given a positive (n—1, n—1) current y, we may consider the pairing

(a,ﬂ)=—faAJ*ﬁAX0 3.1

where a,f are smooth real 1-forms and J* is the adjoint of the almost complex
structure, acting on 1-forms. Since this pairing is symmetric it is an inner product so the
Schwarz inequality

(e, P <(a, ) (B, B)
holds.
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PROPOSITION  3.3. Let uy,u,,v,,v,,wy,...,w,_EP(Q)NL™(Q,loc) be given. If
{u,Fu,} €Q, 0sY € CF(Q), w=1 on {u,*u,}, then

(fd(ul—uz) A d(v,—v,) /\X>2S (fd(u,—uz) A df(uy—u,) /\x)

x(szd(v,—vz) A d(v,—v,) /\X)
where y=dd*w, A ... Ndd°w,_,.

Proof. If we set yo=1yy, then with the notation of (3.1), we have
(du, dv) = fw du ndvay.

The integrands in the proposition are defined for u € P(Q) N L*(2, loc) by Theorem 2.7.
The extension to differences of plurisubharmonic functions is achieved by multilinear-
ity. Theorem 2.7 also implies that du belongs to the Hilbert space obtained by
completing the smooth 1-forms in the norm |a|’=(a, o) induced by the inner product.
Thus the estimate is a special case of the Schwarz inequality in this Hilbert space.

The Schwarz inequality is now used to prove that decreasing sequences of pluri-
subharmonic functions converge ‘‘almost’” uniformly.

THEOREM 3.4. Let u;, u€ P*=P*(Q, K, ¢, A, B) and suppose u; decreases to u on
Q. Then for each >0,

lim C{z€Q: uf2) > u(z)+d} =0.

oo
(See (2.2) for the definition of P*.)

Proof. Without loss of generality, take 0=1. Let ={z€Q: u()>u(z)+1}. If
vEP(Q), 0<v<l, then

f (dd*v)' < f (u;—u) (ddv)' < f (u;—u) {dd°v)"
o G Q
= —f d(u;—u) A dv A (ddvy".
Q

By Proposition 3.3, the last integral does not exceed

C(jd(uj—u) A d(u—u) A (dd“v)”'1> "
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where C=([,dv A dv A (ddv)"™")"? and w is a relatively compact neighborhood of the
compact set K from the class P*=P*(Q, K, ¢, A, B). We know the constant C depends
only on w and sup {|v(z)|: zE R}, by the Chern-Levine-Nirenberg estimate of Proposi-
tion 2.10. Another integration by parts then yields

j(dcfv)” = C(j (u—u) A (ddv)"' A ddc(uj—u)>]/2.
o o

Thus, the power of dd°v has been reduced to n—1 in the term on the right hand side of
3.2).

We would like to repeat this argument n—1 more times, but there is one problem.
Namely, when we integrate by parts to obtain

f(uj—u) (ddv)" " A dd*(u—u) = —jd(uj—u) A d A (ddv)" 2 A dd‘(u—u).
o

The Schwarz inequality cannot be applied directly to the right hand side because the
(n—1,n—1) current (dd°v)" % A dd“(uj—u) need not be positive. However, it suffices to
estimate the integral obtained by replacing dd°(u;—u) by dd‘(u+u).This term can then

be estimated by the Schwarz inequality and the Chern-Levine-Nirenberg estimate,
exactly as before.

Continuing in this manner, we finally obtain that foj(dd°v)” is dominated by a
finite number (2”) of terms of the form

C(f(uj—u) ddw' A ... A dd‘w")l/2 7

where each of the functions w',...,w" is either equal to u; or u. The constant C
depends on sup {|u(2)|: z€Q, j=1,2,...}, which is finite since u; decreases to u in P*.
According to Theorem 2.4, each integral of the form (3.3) converges to 0 as j—+o.
Thus,

lim [sup {f (dd°v)": VEP(Q),0<v< 1}] =0,
J® 0}

which completes the proof.

THEOREM 3.5. Let Q be a bounded open set in C* and u€ P(Q). Then for each
>0, there is an open subset O of Q such that C(0, Q)<e and u is continuous on Q\ 0.

2-822906 Acta Mathematica 149
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To minimize technical problems, we give the proof here only for
u€P(Q) NL7(Q,loc).

The full result will be immediate after we have shown that

lim C{z€Q: u(z)<—j}=0 (3.4)

Jooo

in Section 6. Only the bounded case of Theorem 3.5 is used in the arguments leading to
(3.4).

Proof of Theorem 3.5 for P(Q) N L™(Q, loc). Because of (2) and (3) of Proposition
3.2, we can assume that Q is strictly pseudoconvex, or even a small ball, and u is
plurisubharmonic and bounded on a neighborhood of Q. Let u; be a sequence of
smooth plurisubharmonic functions which decrease to « on a neighborhood of Q. By
shrinking Q and replacing u;, u by max (u;, Ao+B), we see that it is also no loss of
generality to assume that

u, u€P*=P*(Q,K,0,A,B).
Then by Theorem 3.4, there exists an integer j; and an open set

0= {u1'1> u+%} cQ

such that C(0}, Q)<27". If G,=U,,, 0, then the functions u; decrease to u uni-
formly on Q\ G,. Hence, u is continuous on Q\ G,. But, by (3) of Proposition 3.2,
C(Gy, Q)<L C(0; Q)<27*, which completes the proof.

4. Comparison theorems

Using the quasicontinuity established in Theorem 3.5, we derive some useful exten-
sions of the results of Section 3 of {4].

THEOREM 4.1. Let Q be a bounded open set in C*. Let u,v€P(Q) NL7(Q) and
suppose that liminf, ,, u(8)—v(5)=0 (i.e. u=v on Q). Then

j (dd°v)" = f (ddu)".
{u<v} {u<v}
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Proof. First, we can assume that liminf,_;, u(8)—v(§)=26>0. Otherwise, replace

u by u+20 and then let 6—0. Thus, there is a relatively compact open set w<Q such
that u(z)=v(z)+0 for zEQ\ w. We can therefore choose smooth plurisubharmonic
functions uy, v; which decrease to u,v on a neighborhood of @ and which satisfy
ui(z)=zvz) for all z€dw.

By the comparison theorem for smooth plurisubharmonic functions ([4], Proposi-
tion 3.1)

f (dd°v)" < f (ddu,)". @.1
{uk<v-} {uk<vj}

Let >0, and let G=G, be an open subset of Q with C(G)<e such that u,v are
continuous on F=Q\ G. Thus, we can write v=¢+1 where ¢ is continuous on Q and
y=0 outside of G. If U is the open set U={u;, <@}, then since (dd"v;))"—(dd"v)" weakly

on Q, we have

f (dd°v)" < lim f (dd°v)".
e ou

jox

But, Uc{u,<v}UG, so
J(dd“v)"?f (dd°v)"—J'(dd°v)"
U {uk<v} G

f(dd°v)"$[ (ddcvj)"+f(dd°vj)"
U {uk<v) G

and

s] (dd“vj)"+f(dd°vj)".
{uk<v.} G
Thus

Joe

f (dd*v)" < lim f (dd°v)"+2(M"C(G, Q)
{uk<u} "k<U,}

where M=2sup{|v{z)|:z€®, j=1,2,...}. So if j—>+o in (4.1), we obtain, since
{ue<v} N{w<v}

f (ddcv)"sf (dd°u)"+2M"e. 4.2)
{uk<v}

{uksv}



16 E. BEDFORD AND B. A. TAYLOR
Now let k— = in (4.2). The left hand side has limit

f (dd*v)".
{u<v}

On the set F, the functions u, v are continuous, SO since u;\ U,

f (ddu)" = lim f (dd‘u,)".
{usv}nF k—w {ugsv}nF

Thus

J' (dd°u)” = lim f (dd°u,)"
{u=v) k= JiusvynF

= lim f (dd“uk)"—f (dd°u,)".
{ukSv} G

k—+%

Consequently, if M=2sup {|u(2)|: z€E®, k=1,2, ...} then we have proved

J' (dd°v)" Sf (ddv)"+3M"¢. 4.3)
{u<v) {usv}
Since £>0 is arbitrary, we therefore have
f (ddv)" < J (ddv)". 4.4)
{u<v} {u<v}

Now, in (4.4), replace u by u+7. The Borel sets {u+#n<uv} increase to {u<v} as g
decreases to zero, and the Borel sets {u+#n<wv} increase to {u<v}. Since
[dd*(u+n)])"=(dd°u)", the theorem then follows from (4.4).

THEOREM 4.2. Let Q be a bounded open set in C" and u,v€P(Q) NL7(Q) be
such that liminfc_,aQ u()—v()=96>0. Then

J (ddv)" < J (ddv)".
{usv} {usv)

Proof. Let u;=u—e, and S,={u.<v}. Clearly, §, decreases to {u<v} as ¢ de-
creases to zero. By hypothesis, S.cw&Q if ¢ is sufficiently small. Then, by Theorem
4.1,

L{dd“u}"sf {ddu}".

N

3 €
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Letting ¢->0, we obtain the desired inequality.

COROLLARY 4.3. Let Q be a bounded open set in C". Let u, v€EP(Q) NL*(Q)
satisfy

(i) lim;_)aQ ul®) = limc_,ag2 v() =0,
(i) usvin Q.

Then

J(ddcv)"sj(ddcu)".
Q Q

Proof. By Theorem 4.1,

f(dfv)" Sf [dd*(1+ &) u}l" = (I+£)"f (ddu)"
Q Q Q

for £>0, which gives the resuit.

COROLLARY 4.4, Let Q be a bounded open set. If u,v€P(Q)NLT(Q),
limsup, 5, [u(§)—v(8)|=0, and (dd°u)"=(dd“v)" in Q, then u=v in Q.

Proof. 1t suffices to prove u=v. Let <0 be a smooth strongly plurisubharmonic
function on Q. If {u<uv} is not empty, then S={u<v+ey} is not empty for some £>0.
Further, since u and v+&y are subharmonic, § has positive Lebesgue measure. By
Theorem 4.1,

J (dd°u)" = f [dd*(v+eyp)]" = f (dd°v)"+¢" f (dd°y)",
M S S

M
which is a contradiction since the last integral over S is strictly positive.

COROLLARY 4.5 (domination principle). Let Q be a bounded open set and
u, VEP(Q) NL*(Q) such that

() limsup, _ s |u(®)—v(®)] = 0;
and

(ii) J (dd°u)" = 0.
{u<v}

Then u=v in Q.
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Proof. If we replace v by v—e+0d|z>=0 where ¢, d are chosen so that #<v on Q,
then

0< j (dd0)" < f (dd°u)" < J (dd°u)" =0
{u<v} {u<o}

{u<v}

which is a contradiction unless {#<v} is empty.

5. Negligible sets

Let {u,} be a family of plurisubharmonic functions on Q which is locally bounded from
above. Then the function

u(z) = SuP4 Ua(2)
need not be plurisubharmonic, but its upper semicontinuous regularization
u*(z) =limsup,_,, u(8) = u(z)

is plurisubharmonic. A set of the form
N={z€Q: uz) <u*(2)} 6.1

is called negligible. I'n this section we will prove that negligible sets have inner capacity
zero. Estimates in terms of other capacities have been given in [19], [20], and [23].

PROPOSITION 5.1. If Q is a bounded open set in C", and if NcQ is negligible,
then C(N, Q)=0.

Remark. After appropriate definitions are given in Section 6, it will be clear from
(5.6) that N also has outer capacity zero.

The proof of Proposition 5.1 proceeds by induction on the dimension x.

We shall need some further properties of the operator (dd®)” and the capacity
C(E, Q). For convenience, we list them in the following two propositions.

PROPOSITION 5.2. Let Q be a strictly pseudoconvex set in C", and {u;} a
sequence in P(Q) NL*(Q,loc) which increases to u€ P(Q) NL*(Q,loc) almost every-
where on Q (Lebesque measure). Then (dd°up)"—(ddu)", weakly as measures on Q.

To study properties of the capacity, we consider the extremal functions associated
to a subset E of Q,
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ug(z) = up(z, )= sup {v(z): vEP(Q),v< -1 on E,v<0on Q}
and
uf(z) =limsup,_, u(f).
Then uj € P(Q) and —1<u}<0.
The following proposition was proved in [2} and [3]. Here we give a more efficient
derivation based on Sections 3 and 4.

PROPOSITION 5.3. Let Q be a strictly pseudoconvex subset of C". If KcQ is
compact, then

(1) (ddu¥)"=0 on Q\K;
(i) C(K, Q)= [q(dd°uf)"= [k (ddu})";
(iil) if ug>—1 on K then C(K, Q)=0.

The inductive proofs of these propositions will be:

Step 1. Propositions 5.1, 5.2 in C” implies Proposition 5.2 in C"*!.
Step 2. Proposition 5.2 in C” implies Proposition 5.3 in C".
Step 3. Proposition 5.3 in C" implies Proposition 5.1 in C".

In the case n=1, Proposition 5.2 is a well-known fact of distribution theory, since dd® is
a linear operator which on C is essentially the Laplacian. Thus, by the inductive
argument these results hold in all dimensions.

Proof of Step 1. We have to show that if QcC™*!,
lim f @(ddu)™" = f olddu)™!
J—° Jo Q

for all test functions @€ Cy(€2). That is,

lim f u(ddu)" A dd°g =f u(dd*u)" A ddg. (5.2
Q Q

oo

First note that if v€EP(Q) NL™(Q) and Y(2)=Llix(2)dz,., A dZ,.,, x € C;(Q), then the
“‘Fubini theorem’” holds for Lebesque measure 4 on C (see [3]):

j v(ddcv)n A 1/) = J'dj'(zn+l) U(' ’ Zn-*—l) (ddcv( k4 Zn+1))nX(' ’ Zn+l) (53)
Q C

Q(ZnH)

where  Q(z,.,)={z€C" (z,2,,,)€EQ}, and f(-,z,,,) denotes the function z—

Az z,4,) on Q(z,,,), where f is a function on Q. This result is clearly true if v is
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smooth. The general case follows by taking smooth plurisubharmonic functions v;
decreasing to v. The left hand side of (5.3) converges by Theorem 2.4, and the right
hand side by Theorem 2.4 and the bounded convergence theorem.
By hypothesis u( -, z,,;) converges almost everywhere on €(z,,,) to u(-,z,,,) for al-
most every z,,,. Thus (5.2) follows from (5.3) by the bounded convergence theorem if

we can prove convergence in C":
lim f pu(ddu)" = f ilddu)" 5.4
=2 Jo Q

for u; increasing to # almost everywhere in P(Q N L™(R, loc) for QcC", @€ Cy(Q).

To prove (5.4), we can clearly assume ¢=0. By our inductive hypothesis,
(dd‘u;)"—(dd°u)". Thus, by Lemma 2.3, < holds in (5.4).

To prove the other inequality, let £>0 and choose an open set GeQ such that
C(G, Q)<e and u, u; are all continuous on F=Q\G. Let v=sup {u;: j=1,2,...}. Thenv
is lower semicontinuous on F, so there exists a continuous function g on Q such that
gsv and [pou(dd®u)"<[ppg(ddu)*+e¢. It is no loss of generality to assume that
g, u, u;, and v are all bounded between 0 and 1 on the support of ¢. Thus,

f puddu)" < f¢v(dd°u)"+C(G)
°

F

< I(pg(ddcu)"+C(G)+s

F

< J pgdd®u)"+C(G)+e¢
o
= limJ' pg(dd*u)"+C(G)+e
Q

e

< limfwg(dfuj)"+2C(G)+8.
F

Jjox

But the u; are continuous and increase to v=g on F, so by Dini’s theorem, the last term

does not exceed

limf¢uj(dd°uj)"+2C(G)+sSlimj uj(ddcuj)"+2C(G)+s.
Jo» Q

Jo®

Since C(G)<e, we have therefore proved that the left hand side of (5.4) dominates
Ja@u(dd®u)". But, as was shown in the proof of Lemma 2.3, vs<u and v*=u, so v=u
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except in the negligible set N={v<v*=u}. By our assumption, C(N, Q)=0, so
[ pu(ddu)"= [ o pu(dd®u)". This completes the proof of Step 1.

Proof of Step 2. We first prove (i). Note that by Dini’s theorem
ug(z) = sup {v(z): vEP(Q) NC(Q),v<0,v<—1on K}. (5.5)

From (5.5) and Choquet’s lemma [18, p. 26] there is a sequence u;<u,<...of
functions in P(Q) n C(Q) with u=<—1onK, u<0on Q, and uk=(supuy)*. If B is a ball
in Q\K, then let w; be the unique, continuous plurisubharmonic function on B with
w;=u; on dQBcQ and (dd°w;)"=0 in B. Then set

) u; in Q\B
4= w;, in B.
Then d=u; and 4, <d@,<.... (See [4], p. 42 for this construction.) Hence,

ug=(sup &,)*. But, (dd*i;)"=0 on B, and (dd°@;)"—(dd°uz)", by our inductive assump-
tion that Proposition 5.2 holds. Hence, (dd°u})"=0 on B. Since B« Q\K is an arbi-
trary ball, we have (dd*uj)"=0 on Q\K, so (i) holds.

To prove (ii), let vEP(RQ), e<v<l—e. Let u; €EP(Q) NC(Q) satisfy u<—1 on K,
u;<0 on Q, and (sup u)*=uk. We can clearly assume u;=Ap for some A>0; otherwise,
replace u; by max (u;, Ag). Thus {u;<v}c{Ao<v}€Q, and Kc{u;<v}. Therefore, by
the comparison Theorem 4.1,

f (ddv)" < f (dd*v)" < f (dd‘w))".
K {uj< U} {uj< v)

Since, (ddu;)"—(ddu¥%)", we let j—o to obtain

f (ddv)"< f (dd°uf)" = f (ddug)".
K THo<u) K

Thus, C(K, Q)< [k (dd°u¥)". Since the other inequality is trivial, part (ii) follows.
To prove (iii), we can assume u(=—1+n, >0, on K, by (1) and (3) of Proposition
3.2. Then u=uj/(1—n)+1 satisfies u € P(Q), Osu<l1, so

C(K) = fK (dd*u)" = (1—1—,7—) L (dduz)" = (T};) C(K),

a contradiction unless C(K)=0. This completes the proof of Step 2.



22 E. BEDFORD AND B. A. TAYLOR

Proof of Step 3. By Theorem 3.5 we can choose an open set G such that u;, u
are continuous on Q\ G=F and C(G, Q)<e. We claim that there exist countably many
compact sets K;=F such that

NcGU[UK] (5.6)

where C(K;)=0. If this is proved, then by Proposition 3.2, C(N)<C(G)+X C(K))<g, so
C(N)=0 and the proposition is proved. Clearly, NcGU(FNn{u<u*})}. But, if
K. s={z€F: u(z)<a<f<u*(z)}, then K,scF is compact because u* is upper semicon-
tinuous and u is lower semicontinuous on F. It is also clear that FN{u<u*}=UKgyg
where the union is over the countably many pairs of rational numbers (o, 8) with a<g.
Thus, we only have to prove that C(K,z)=0. By subtracting a real constant, we may
assume that u;, u<0 on Q. Multiplying by another constant, we may set a=—1. Thus
uk, w?u*>—1=a on K,z. Consequently, C(K,3)=0 by Proposition 5.3, and the proof
is complete.

6. Pluripolar sets

In this section we give the basic connections between pluripolar sets, the extremal
functions u¥, and the outer capacity C* obtained from C. The standard construction of

outer capacity is
C*(E) = C*(E, Q) =inf {C(0): O>E, 0 open in Q}. 6.1

Let us remark that if OEQ is an open set, and if K,cK,c ... is a sequence of compact
sets such that UK;=0, then lim__ , uf =u,~=uf. It follows from Theorem 2.1 and Pro-

j—®

position 5.3 then, that
C(o, Q):f(dd“ug)" 6.2)

for open sets OEQ.
First, some elementary properties of the outer capacity.

PROPOSITION 6.1. If Q is bounded in C", then

() CHENSCHE,) if E\cEcQ;
(i) CHE, Q))=C(E, Q) if EcQ,cQ;
(iii) C*(UE;, Q)<X;C*(E, Q).
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Proof. These follow immediately from the corresponding properties for C(E, €2)
(see Proposition 3.2).
Next, some elementary properties of the extremal functions.

PROPOSITION 6.2. If Q is bounded in C", then
() ufzuf, if ExcE,cQ;

(i) uf(z, Q)=uf(z, Q) if EcQ,cQ;

(@) if uEJ_EO, and E= UE, then u§=0.

Jj=1
In addition, if Q is strongly pseudoconvex and E is relatively compact in Q, then

(iv) uz)—0 as z—9Q.

Proof. Parts (i), (ii) are obvious. So is part (iv), since 0=uf=Ap for some A>0,
where Q={0p<0}, ¢ a plurisubharmonic defining frunction for €. To prove (iii), note
the following equivalence which is a direct consequence of Choquet’s lemma.

ui=0 if and only if there exists a sequence of functions

= (6.3)
USU,S ..., UEPQ), v;<00nQ,u<s—1onkE, and [qolv|<27.

Thus, if v;is <—1 on Ej, v;<0 on Q, and [ |v|<e2~, then v=Lv,€ P(Q), v<0, v<—1 on
UE; and [ |v|<e. Hence, u=0.

We also record another consequence of (6.3).

PROPOSITION 6.3. Let Q be bounded in C". Then uf=0 if and only if there exists
VEP(Q), v<00on Q and Ec{z€Q: v(z)=—x}.

Proof. If u=0 and the v; are as in (6.3), then v=Yv,€EP(Q) and Ec{z€C:
v(z)=—x}. Conversely, Ec{v=—x}, where v<0, vEP(Q) implies ug=sup {vij:
Jj=1,2,...}, so ug=0 on the complement of a set of measure zero. Hence, uf=0.

PROPOSITION 6.4. Let QEC”" be strongly pseudoconvex. Let K;oK,>...be a
sequence of compact subsets of Q, and let K=nK;. Then
@) (limy_, . ug)*=ug,
(i) lim;_,, C(K;)=C(K),
(ii)) C*(K)=C(K).
Proof. Assertion (i) is well-known and may be found, for instance, in [28], Lemma
1. It is a consequence of Dini’s theorem and the lower semicontinuity of the negative of
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the characteristic function of K. Assertion (ii) then follows directly from (i) by Proposi-
tions 5.2 and 5.3. Assertion (iii) follows from (ii) if we take K;={z € Q: distance from z
to K<1/j}.

PROPOSITION 6.5. Let QEC” be strongly pseudoconvex. If EEQ, then
C*E)= j (dd°up)".
Q

Proof. First, we note from Corollary 4.3 and (6.2) that if EcO€Q, @ an open set,
then

f (ddcué)” < f (dd‘u;‘;)" = C(0).
Thus,

f (dd°uf)" < CX(E).

For the other inequality, it suffices to show there exist open sets 0,50, ... such
that Q30,oF and (limj u};j)*=u§. For then, by Proposition 5.2,

00

C*(E) <lim C(G)) = lim (dd°u;’§_)" = f (dd°uf)".
jo® Jjo® J

By Choquet’s lemma there exists an increasing sequence {v;} cP(Q) N L™(L2) such that

v{z)—0 as z—3Q and lim;_,» v;=ug almost everywhere on Q. If O;={(1+1/j)y;<—1},

then Ec0; and USUoSUg. Thus lim;_, Ug=Ug a.e., which completes the proof.

Remark. 1t follows that uf=ug where G=N0,.

COROLLARY 6.6. Let QEC" be strongly pseudoconvex. If EcQ, then C¥(E)=0 if
and only if uy=0.

Proof. If EEQ, then the assertion is a direct consequence of Proposition 6.4 and
the uniqueness result of Corollary 4.4. The general case follows from the countable
subadditivity of C* (Proposition 6.1) and the corresponding property for uf (Proposi-
tion 6.2).

Definition 6.7. A set E in C" is pluripolar if for each z € E there is an open set U3z
and u € P(%U) such that ENUc{u=—w},
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Using the results obtained so far, we can give a simple proof of the following
important theorem of Josefson [16]. The argument given here was given in [2] for the
case n=2, and it works without change in C", given the relevant properties of C*. We
include the argument only for the convenience of the reader. Sadullaev [24] has
indicated how one may modify the arguments of [2] to give another proof of Josefson’s
theorem without using the continuity of (dd)”, n=2. As was noted in ([3], Remark 1),
Josefson’s theorem automatically covers the case where C” is replaced by an irreduci-
ble Stein space.(')

THEOREM 6.8 (Josefson). If EcC” is pluripolar then there exists u€ P(C") with
Ec{u=—o}.

Proof. Since E is pluripolar, we can find sets E;, Q; with E;cQ€C" such that
Uz, E;=E, each Q; is strictly pseudoconvex, and, by Proposition 6.3, u*(E;, ,)=0.
Let iy,i,,...,be a listing of the positive integers so that each one appears infinitely
often. For a sequence ¢,<c;<..., ¢;—>+%, set M;={zE€C": [z]<c;}. We can choose
¢; large enought that Q; €M; and |z|—c;<—1 on E;.

It then follows from Propositions 6.1, 6.3 and Corollary 6.6 and u*(Ei/, Q,;,)EO, that
u*(E;, M))=0. Then, by (6.3), there exists i€ P(M)) with h;<0 on M;, h<—1on E,,
and fp, |h]dV<27. If we set

max (h(z),]z|—c)), z€ M,
pj(Z) = IZI_Cj» Z€ C"\]Wj
then p;€ P(C") and p;/<—1 on E;. Further

p(A= Z pf2)
j=1

is a plurisubharmonic function on C” with p=— on E because the sum converges in
LY(C", loc), the partial sums are éventually decreasing on each compact subset of C”,
and each E; appears infinitely often in the sequence E;. This completes the proof.

We now prove the main result of this section, the characterization of pluripolar
sets as sets of outer capacity zero.

THEOREM 6.9. Let QEC” be strongly pseudoconvex. Then EcQ is pluripolar if
and only if C*(E)=0.

() Added in proof. A result which generalizes Josefson’s theorem was given by the first author in *“The
operator (dd®)" on complex spaces’’, to appear in Séminaire Lelong-Skoda.
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Proof. If EcQ is pluripolar, then by Theorem 6.8 there exists 4 € P(C"), u<0 on Q
with Ec{u=—x}. Hence C*(E)=0 by Proposition 6.3 and Corollary 6.6. On the other
hand, if C*(E)=0, then u(=0 by Corollary 6.6, so E is pluripolar by Proposition 6.3.

We now give the result needed to complete the proof of Theorem 3.5 (the
unbounded case).

THEOREM 6.10. If Q is open in C", then for w€Q and u € P(Q),

lim C{u<—j} N w)=0.
e
Proof. We can assume u<0 on w. Since @ can be covered by a finite union of balls
in Q, we may apply Proposition 6.1 and assume that Q is strongly pseudoconvex. Then
if O={u<-j}Nw we have 0=ug=max {u/j, —1}. Thus, lim; .~ ue=0 a.e. on Q so by
(6.2) and Proposition 5.2, lim;_, .. C(0;, Q)=0.

7. Sequences of plurisubharmonic functions

In this section we first show that the negligible sets discussed in Section 5 are, in fact,
pluripolar. For subharmonic functions, this is due to H. Cartan [8] and is a well known
fact of classical potential theory. For plurisubharmonic functions, this settles a ques-
tion of Lelong ([18], p. 30). Then, Theorem 3.5 is extended to monotone sequences of
plurisubharmonic functions; they converge ‘‘almost’’ uniformly. This yields a strength-
ening of the convergence Theorems 2.1, 2.4, 2.7 and 3.2. Finally, we introduce a space
H(€,loc) related to the Dirichlet-type norms used in the proof of Theorem 3.4, and give
some of its properties.

THEOREM 7.1. Negligible sets are pluripolar.

Proof. The result is local, so we may consider all the functions as being defined on
a bounded strongly pseudoconvex set Q. The theorem was mostly proved in Section 5,
Proposition 5.1, where we showed that for £>0, it was possible to find an open set G
with * C(G)<e and countably many compact sets K; with C(K)=0 such that
NcGU(UK)) (see (5.6)). By Proposition 6.4, C*(N)=C*(G)+X C*(K)<e. Therefore,
C*(N)=0 so N is pluripolar by Theorem 6.9.

- THEOREM 7.2. Let {u;} be a monotone sequence of plurisubharmonic functions,
either increasing or decreasing, on a bounded open set Q=C". Suppose further that
u;j—u almost everywhere on Q, where u € P(Q). Then for each €>0, there is an open set
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GcQ such that C(G), Q)<e, u;, u are continuous on Q\G, and u; converges to u
uniformly on compact subsets of Q\G.

Proof. Let N={u#lim;_,.u;}. By Theorem 1, C¥(N, Q)=0. By Theorem 3.5 and
the countable subaddivity of C, there is an open set GoN with C(G, Q)<<e and «;, u
continuous on Q\G. Then u;—Fu uniformly on compact subsets of @\ G by Dini’s
theorem.

COROLLARY 7.3. Let {u;} be a sequence of plurisubharmonic functions locally
bounded above on the bounded open set Q. Suppose further that

lim sup u;

joo
is not identically —o on any component of Q. Then there exists u€ P(Q) such that
{u*limsup u;} is pluripolar.

Proof. Set ii;=sup {u,: k=j}. By Theorem 7.1 there exists v;€ P(Q) such that v;=4;
except on a pluripolar set. The functions v; decrease and

limsup u;=lim #; = lim v;
joo jo»

holds except on a pluripolar set. Thus u=limv;€ P(Q) is the desired function.

Remark. An example of Choquet [13] shows that limsup cannot be replaced by
lim, even if we pass to a subsequence.

THEOREM 7.4. Let {uj’} <P(Q) NL7(Q,loc), 0si<k (k<n) be k+1 sequences that
are uniformly bounded on compact subsets of Q. Suppose there exist

W0, ..., ulF EP(Q) NL=(Q,loc) such that lim,- u'=u’ almost everywhere on Q, 0<i<k.

J— 7y
If all but one of the sequences {u}’},..., {uj’.‘}, are monotone, either increasing or

decreasing then

@) lim;_ dd°u} A A dd°uj'.‘= ddu' A ... A dd°u
(i) lim,_, u) dd‘u} A A ddCuj’.‘ =ubddu’ A ... A ddu*
(iii) lim,

e AUt AU} AU A A ddub = du® A du' A dd A LA ddEU,
where the limits are in the sense of currents.

We omit the proof, since it parallels exactly the development made in Section 2.
The only change is that the monotonicity used in the proof of = in (2.3) is replaced by
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the almost uniform convergence given by Theorem 7.2. See also ([3], Theorem 1). The
induction starts with k=1 and dd® applied on the nonmonotone sequence.

We consider the norm
|l|gll|= sup {j doa dpa (ddv)"™": VEP(Q), 0<v< 1}
Q

for @€ Cy(Q). Let us define Hy(Q) to be the completion of Cg(€) in this norm. Let us
set
H(Q,loc) = {p€ LA(RQ,1oc) : x9€ Hy(RQ) for all x € C5(Q)}.

The norm ||| ||| and the spaces Hy and H(Q,loc) are invariant under holomorphic
mappings. The topology of H(R,loc) seems to be useful for the study of plurisubhar-
monic functions because of the following properties.

THEOREM 7.5. If QEC", then

(a) L*(Q,loc) NP(Q) cH(RQ,loc);

(b) if u, u€L*(RQ,10c) NP(Q), if lim,_,, u=u almost everywhere on Q, and if {u;}
is a montone sequence, then u; converges to u in H(Q,loc);

(¢) if, in addition, Q is pseudoconvex, then CT(Q)NP(Q) is dense in
L7(Q,loc) NP(Q) in the topology of H(L,loc);

(d) the translation operator v—u,(z)=u(z—1) is continuous on H(Q,loc) for each
u€P(Q) NL*(Q, loc).

The proof of Theorem 7.5 follows the arguments given in Section 3. That is,
u=@+y, where ¢ €C(Q), and y € L*(Q, loc) with C(supp y)<e. Thus for instance

xu—u)=o()+x(y—1y,)
and C(supp (¥ —y.))<2e.

8. Capacitability

In this section we show that the capacity C* in fact satisfies the axioms (8.1), (8.2) and
(8.3) below and thus is a capacity in the generalized sense (see Choquet [12] and Brelot
[7D. Some conclusions are drawn from this.

PROPOSITION 8.1. If EycE,c ... cQ, and if E=UE; then u=lim;_, qu.

Proof. By Theorem 7.1, ug=—1 on E; except on a pluripotar set. Thus,
lim; ., uf=—1 on E, except on a pluripolar set. The result follows.
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THEOREM 8.2. Let QEC"” be strongly pseudoconvex. The set function E— C*(E)
=C*(E, Q) satisfies:

C*E)<C*(E,) for E\cE,cQ; 8.1)

if KyoK,> ... are compact sets in Q@ and K=NK;, then C*(K) = lim C*(K); (8.2)
jre

if E\cE,< ... cQ and E=UE;, then C*(E)=lim C*(E)). 8.3)

Jox

Proof. Assertion (8.1) follows from Proposition 6.1; (8.2) from Proposition 6.4. To
prove (8.3), we only have to show C*(E)<lim;_,. C*(E)). It is no loss of generality to
suppose that E,€Q. Let uj=u;'§j, and let £, #>0. Let G be an open subset of Q with
C*(G)<e and GoU; {Z€E;: uf(2)>—1}. Set U={u;<—1+n}, and =GU ;. Then, by
Corollary 4.3,

C(O)= £+J'(dd°u;,‘;l)” <e+(1-n)" f(ddCuj)" =e+(1-n)""C*(E).
Further, E;c@; and 0,c0,c ..., since u;=u>= .... Thus, 0=U0;>F and
C*(0) = lim C(0) < e+lim C*(E)) (1—n)™".
jow Joo

Letting &, n-—->0 yields the assertion.

We recall the terminology that a set EcQ is Jf-analytic if it may be obtained from a
Souslin operation on the compact subsets of Q. In particular, the Borel subsets of Q2 are
H-analytic. The famous capacitability result of Choquet [12] is the following.

THEOREM (Choquet). If C* is a set function satisfying (8.1)—(8.3), then for every
H-analytic set EcQ

C*(E) = sup {C(K): KcE is compact}.
An immediate consequence of this theorem and Theorem 6.9 is:

THEOREM 8.3. If EcQ is a #-analytic set, then E is pluripolar if and only if every
compact subset of E is pluripolar.

In the case Q=C", another approach to the capacitary extremal function has been
given by Zaharjuta [28] and Siciak [26]. For EcC”", we may set

Ve(2) = sup {v(z): vEP(C"), v<O0on E, and v()—log(1+|{]) is bounded above}. (8.4)

3-822906 Acta Mathematica 149
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It follows (see Siciak [25]) that if VE is bounded above on an open set, then Vg({)—
log (1+]¢]) is bounded above on C”".

Now let 4 be a finite nonnegative Borel measure on Q such that u(S)=0 for every
pluripolar set S. For instance, by Theorem 7.4, we may take u=(dd“u¥)" for EcQ.

PROPOSITION 8.4. The set functions

Y(E) = f |uf | du

and
exp[—Vidu] ifVi<+e

y(E)={0 Vi<t
satisfy (8.1), (8.2), and (8.3).
Proof. First we consider the function u#%. Assertion (8.1) follows by Proposition
6.2. Similarly, (8.2) follows from Proposition 6.4 and Theorem 7.1, while (8.3) follows
from Proposition 8.1. The arguments for V# are similar, the main difference being that

in the proof of Proposition 6.4, we note that the convolutions y.% log(1+|z|) decrease
uniformly to log (1+]z]) on C".

Remark. Capacities like y,y" have been considered by Cegrell [10] and Sadullaev
{25].
THEOREM 8.5. Let Q be a bounded open set. If EcQ is a H-analytic set, then

there is an F-set F and a Gs-set G such that FeEcG and uf=uf=u§, VE=VE=VE.

Proof. We may take u to be Lebesque measure on Q. By Choquet’s theorem and
Proposition 8.4, it follows that E is y-capacitable; i.e.

v(E) = sup {y(K): K<E, K compact}.

Thus, we have F=UK,cE such that [ |u}|du=]|u}¥|du. Since |uf|=|u¥|, it follows that
uf=uf almost everywhere and thus uf=u¥. The existence of G is elementary (c.f. the
remark following Proposition 6.5). Similar arguments give the result for V.

9. Balayage

The classical ideas of ‘‘balayage’” and ‘‘reduction’’ of a superharmonic function « can
be viewed either as solving a Dirichlet problem

Ai=0on w€Q, ia=u on dw H
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or as computing an envelope
i = inf {v: v superharmonic on Q,v=u on dw}. )

Here we consider the analogous problems for plurisubharmonic functions. We will
show that envelopes like (2) are characterized by a Dirichlet problem analogous to (1),
but with the Laplacian replaced by (dd®)". The basic quantitative result is an L”
estimate for the distance from a function to its associated envelope (Corollary 9.8).

PROPOSITION 9.1. Let Q be open in C" and Y €EP(Q) NL7(Q,loc). If DEQ is
strongly pseudoconvex, then there exists a unique function 1 € P(Q) NL*(Q,loc) such
that

(dd*y)*=0on D, ©.1)
Y =19 on Q\D. 9.2)

Further, y=vy.

Proof. Let y; be continuous plurisubharmonic functions which decreases toy on a
neighborhood of D. By Theorem 8.3, p. 42 of [4], there exists y;=y; continuous and
plurisubharmonic on a neighborhood of D satisfying (9.1) and (9.2) with ¥ replaced by
;. Then y=1im;); satisfies (9.1) by Theorem 2.1. Since v, | ¥ on a neighborhood of D
and y=vy; on Q\D, the function =y on Q\ D satisfies (9.2) also. Further, y=y
since yY=v;. The uniqueness follows from the domination theorem, Corollary 4.5.

Now we consider some envelope functions more general than uj.

COROLLARY 9.2. Let h be a bounded, lower semicontinuous function on QEC".
Then if

u,(2) = sup {v(z): vEP(RQ) N L™(Q,loc), v < h}
and

uiz) = lin; sup u,(5) € P(Q2) N L7(R),

then
(dd°uf})" = 0 on the open set {uf<h}.

Proof. If z€{uj<h}, then because uf is upper semicontinuous and 4 is lower
semicontinuous there exists a small ball D centered at z such that sup {uf($): CED}<
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inf {h(): EED}. If ¥ is the function given by Proposition 9.1. with y=u}, we therefore
have that yy<h. Hence y<uj, so Y<uj. Since (dd°y)"=0 on D, we therefore have that
(dd®u$)"=0 on D. Because D is a neighborhood of an arbitrary point z € {uf<h}, the
corollary is proved.

Let FcQcC”, be a closed subset of Q such QN\F€Q. If ¢ €P(Q) nL7(L,loc),
then

Yr(z) =sup {v(z): vEP(Q), v<y on F}

and

Yi(2) = lir? sup Y(&).

COROLLARY 9.3. If ¥ is as above, then
(ddyE)" =0 on Q\ F.

Proof. If D is a small ball in Q\ F, then yf=vy¥, exactly as in the previous
corollary. Hence, (dd*y¥)"=0 on D, therefore on Q\ F.

Generally, Proposition 9.1 implies that ‘‘free upper envelopes’’ of plurisubhar-
monic functions satisfy the complex Monge-Ampére equation (ddu)"=0. Corollaries
9.2 and 9.3 are examples. For another example, recall the function V# defined in (8.4).

COROLLARY 9.4. (dd°V%)"'=0 on C"\\E.

Proof. Same as the previous corollaries.

We note that the function ¥ can also be obtained by the method of balayage.
Namely, let % be an open cover of Q\ F by relatively compact balls B,, B, ..., each of
which is repeated infinitely often in the sequence. Let yq, ¥, ¥2, ... be the sequence of
plurisubharmonic functions on Q obtained by putting o=y and y;.,=v;, where J; is
obtained from y; by Proposition 9.1 with D=B;. Clearly, y1<y,<...,y;=y on F so
the ‘‘balayage” of v, defined by

By, F) = (sup y)* 9.3)
satisfies
By, F) < yi. 9.4)

Also, because each ball occurs infinitely many times in the sequence, it follows that
[dd°B(yp, F)]"=0 on Q\F

by Theorem 7.4 (or Proposition 5.2).
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PROPOSITION 9.5. By, F)=y¥ if Q\F €Q.

Proof. This follows from (9.4) and (9.5) and the domination principle, Corollary
4.5, provided we can show that {B(y, F)<y§}c[Q\F] UE, where E is a pluripolar
set. But, clearly, from the definition of B(y, F) and y§, By, F)=yF=1vy, except on a
pluripolar set in Q\ F, so the proposition follows.

Now let F', F” be closed subsets of Q such that Q\ (F' n F") €Q. We may consider
a sequence of ‘‘alternating” envelopes. Starting with y€P(Q)NL™(X,loc)
we may take '=y%, *=(yp)*, ¥’=(¥})* ....etc. If we define Ty=((¥r)E")*,
then from Proposition 9.5 we see that repeated alternating balayage, gives balayage
from the intersection; i.e.

(}im Tjt/)>* =y,

PROPOSITION 9.6. Let Q be a strongly pseudoconvex set in C", and

u,v€P(Q) NL(Q) such that liminf, _,q u(Q)—v(8)=0. Then for all >0,

Clo=u+1) slU (dd°u)"—f (ddcv)":l.
14 Q {v>u+t}

Proof. Replacing v by tv, u by tu, we see it is no loss of generality to take r=1. Set
E={v=u+1} and let K be a compact subset of E. Then if F={uf+v=u} we have that
FoK\{u§>—1}. Thus, FoK, except for a pluripolar set. By the comparison Theo-
rem 4.2, then,

f[ddc(u,";+v)]"sf(dd°u)".
F F

But,
J[df(u,";+v)]"> f (dd“u,";)"+f(dd°v)" = C(K)+J(dd°v)”.

Consequently,

C(K)Sf(dfu)"—(dd%)". 9.6)
F

Let K,cK>c ... be a sequence of compact subsets of E such that C(K;)—C(E) (=C*(E)
since E is a Borel set). Then uk =uk=...and, inf u,*<j=w€P(Q). The sets F;=
{uk +v=u} therefore decrease to {w+v=u}. So, from (9.6) we have
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C(E) sf (dd®u)"—(dd*v)". 9.7)
{w+v=zu}

However, {v2u+1}c{w+uv=u}cQ, so the Proposition follows.
We will estimate the distance from y to y in terms of the Choquet integral, which
may be defined as

J|f|dC=f wC({|f|> 1} NE, Q)dr.
E 0

for any Borel measurable function f and any Borel subset EcQ.

THEOREM 9.7. Let QEC" be strongly pseudoconvex. Let F be closed in Q with
QN\F Q. Then for 1=sa<n and for v € P(Q) NL7(L2,loc)

1—aln aln
f (Wi-v) dc< CONF.Q) ( f (ddcw)n>
Q Q

1—a/n
Proof. In order to estimate the Choquet integral, we note that
Clyt—p)* >t} < CHyE=w+1") N Q\F)
smin{C(Q\F), e f dd° )" }
Q

where the last inequality is obtained from Proposition 9.6. But

fom min (a, t#b) dt = ﬂ“—fl (%)”’3 B>1)

from which the estimate follows by direct substitution.
We note that these estimates apply also to the solution of the Dirichlet problem

VEP(Q) N C(Q), (dd°v)*=00nQ, v=¢onQ. 9.8)

for QEC” strongly pseudoconvex and smoothly bounded, and ¢ € C(3Q). If u,, is the
function defined in Corollary 9.2, then by Theorem 8.3 of [4], u,, is the solution of (9.8).
By the preceding discussion it is clear that u, is also equal to the balayage
B(w, 02)=%B(¢), where w € P(Q2) N L™(Q) is any function such that limc_,zeagw(c_‘;)=(p(z)
for all z€8Q. This is like Proposition 9.5 except that boundary continuity is used to
replace the condition Q\F €Q.
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COROLLARY 9.8 Let QEC” be strongly pseudoconvex. Let u€P(Q) NL7(Q),
@ €EC(BQ) satisfy limbzeagu(éj)=(p(z) for all z€E3Q. Then the solution of (9.8), i.e.,

uy,=RB(u), satisfies
1-a/n aln
f (Bu—wy*dc<EE < f (ddcu)">
X 1—a/n o

Jor 1=sa<n and KcQ compact.

Proof. This is essentially the same as the previous proof. This time we use
Proposition 9.6 to obtain

C{(Bu—u)*>t} N K) < min {C(K), t_"/“f (dd® u)" }
Q

from which the estimate follows.

For a Borel measure u on Q, we will write u<C if u(E)y<C(E, Q) for all Borel sets E
Q. Clearly, any measure of the form u=(ddv)" with v € P(QQ), 0<v<1, satisfies u<C.
For instance, if v=constant-|z|* then (dd°v)" is a constant multiple of Lebesgue
measure,

COROLLARY 9.9. For u and Q as in Corollary 9.8 and for u<C, 1<sa<n,

I—aln aln
f (Bu—u)* dus———”gg)a / ( f (dd%t)") .
—an \J,

Proof. We estimate
w{(Bu—u)* >t} < min {w(Q), C{(Bu—u)* >t}
< min {u(Q), " J' (dd®u)"}
Q
and proceed as before to complete the proof.
Finally, we remark that if u<C, then u(5)=0 for negligible sets S. Thus we may

consider the capacity y defined by (8.5). If 1<a<n, then for any Borel set EELQ,
Corollary 9.9 gives

l/a l—a/n aln
w20 = [ ([ i an) " <420 ([ agy )™
Q2 Q

We conclude that if 4(€2)<<e then C dominates the capacity v in this sense.
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10. Thinness

Now we apply our earlier results to thin sets. First, we recall the definition of thinness
(see e.g. [7]), translated to the plurisubharmonic case. A set S=C" is thin at a point z if
z€ S and there is an open set %3z and a function y € P(%) such that

lincl sup (O < ¥(z).

LES
We let the ““effilé”” part of S be denoted by

e(S)={z€S: S is thin at z}. (10.1)

The situation here is different from the subharmonic case where polar sets are

always thin.
Example. If S={z€C?: |z;|<1,z,=0}, then § is pluripolar but § is nowhere thin.
For ScQe&C” we denote the set where S is negligible by

N(S)=N={z€S: ut>—1}. (10.2)
And, if {0;} is a neighborhood base for €2, we set
N(S)=N=UN(G;n S). (10.3)
J

The definition of N is independent of the choice of {@;}, and N(S)>N(S). But, by the
example we may have e(S)=2 and N(S)=S.
For general S, the set N may have positive Lebesgue measure. However, it lies

“outside’” of S in the following sense.

PROPOSITION 10.1. If E is a H#-analytic set, then
f (dduf)" =0.
N

Proof. By Theorem 8,5 there exist K,cK,c ... cE such that lim; u}‘<j=u§. It
follows from Proposition 5.3 and Theorem 2.1 that

J (dd°ug)" = lim f (dd°ut)" = lim ~ f ug (ddug )"

Jjo® Jjoe
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By Theorem 2.4, we have
j (dduf) = — f u(dd°uf)"

which completes the proof, since —I<<ug.
We may also use the characterization of thinness in Brelot [7].

PROPOSITION 10.2. If S is thin at z, then there exists a neighborhood U3 zy and a
function @ € P(U) such that ¢p(z2)>—> and

lim sup ¢{§)=—.
&~z

LES

Proof. By hypothesis, there exists an open AU and wEP(U) such that
limsup;_,, w({)<y(z). Without loss of generality, we may assume that z=0,
U={|z|]<1}, <0 on U, y<—1 on UNS, and yY(0)=—n>—1. By the upper semicontin-
vity of y, we may choose 0;>0 (for j sufficiently large) such that y(z)<-n+27"" for
|z]<¢,. It follows that the function

27! ;
| ,W+277), <9,
ma><<|log y oglz|, ) 2] <,

;= —j-1

llogd

J

loglz|, d;<|7<1

is plurisubharmonic on 9. Further, goj(0)=—2"j and (pj(C)s—lﬂ;l—Z"f for CES, ¢
sufficiently close to 0. Thus =X ¢; is the desired function.

PROPOSITION 10.3. If S is thin at z, then there exists a neighborhood U of z such
that ug(z)>—1 where S'=(UNS)\{z}. In particular, the set of thin points is contained
in N(S), i.e., N(S)oN(S)>e(S).

Proof. We let @ be the function given by Proposition 9.14. Then we may choose a
neighborhood 4’ of z such that @({)<@(z)—1 for z+#E€ U’ NS. It follows that

Usnap(2) > E(C_Z_) >-1
where C=sup {@({): CEU' NS}.

The following result and its proof are essentially taken from Choquet [14]. By the
previous proposition, this gives an estimate on the size of the thin points.
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THEOREM 10.4. If S=Q is an arbitrary subset, then for >0 there exists an open
set U containing N(S) such that C*(UN S)<e.

Proof. Let {0;} denote a countable base for the topology of C”. Let
S = {ugjns> —1} ns.

Now by Theorem 7.1, the set SN(US)) is pluripolar, so we can find an open set 0
containing it and such that C*(0p)<e/2. By Theorem 3.5, there exist open sets w; with
C*(w;)<e27~" and such that u%n O; is continuous on Q\ 0.

We set

T=S8n Ln Q\@;].
=0
Thus Tn 0= for all j. By the choice of 0y, it follows that ug’_n s=—1lonT, and by
continuity, this holds on 7. Thus w=°T is an open set, and N(S)cw. Further,
we have wﬂSCUjZO 0;, and thus C*(wN$)<e.
As a corollary to Theorem 10.4, we have

COROLLARY 10.5. If ScC" then SNN(S) is pluripolar. In particular, the set
e(S)NS of points of S where S is thin is pluripolar.

Finally we apply this to stability for balayage. Let F<Q be a closed subset. A point
ZEF is stable if By, FU3Q, 2)=1y(z) for all y €C(Q) NP(Q). An easy consequence of
the definition of stability is the following:

If z is stable then for each ¢ € C(Q), the envelope function

u(F, @, z) = sup {v(z): vE€P(Q), v(§) < ¢(§) for EF}

satisfies u(F, @, 2)*<q(z).

By Theorem 2 of [3] the set of unstable points of F is pluripolar, which generalizes
the classical theorem of Kellogg and Evans for subharmonic functions. This result may
also be obtained as a consequence of Theorem 10.4 because of the following.

PROPOSITION 10.6. The set of unstable points of a closed set F=Q is the same as
N(F).

We omit the simple proof.
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