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1. Introduction 

For each index n from the set N of natural numbers, let ~n denote the regular net o/ 

equilateral triangles in the complex plane C, whose vertice set consists of the points 

[p+(�89 -~ with integers p and q. 

A mapping ~: C-~C is called linear, if there are constants a, b, cEC such that  ~(z)= 

az +bz* +c; the superscript star denotes complex conjugation. A mapping ~: C-~C is said 

to be piecewise-linear with respect to the net ~ ,  if its restrictions to the triangles of ~n are 

linear mappings. We define the piecewise-linearized mapping ~<~>: C-->C for a mapping 

~: C-~C with respect to the net }l~ as follows: ~<n> is piecewise-linear with respect to ~n, 

and it coincides with ~ on the vertice set of ~ .  

The set of continuous mappings ~: C-+C will be considered as a topological space with 

the compact-open topology; this induces convergence in the sense of uniform convergence on 

compact subsets. Approximation means convergence to a given mapping. Each continuous 

mapping ~: C-+C is approximated by its piecewise-linearized mappings ~<~>. 

In the subspace of quasiconformal mappings of the plane, there is the problem: can 

each ~ be approximated by ~ which are piecewise-linear with respect to Tl~? 

METHOD OF BEURLING AND AHLFORS. Let a quasicon/ormal mapping q~: C-->C 

have maximal dilatation K(~)< V3. Then, q~ is approximated by the piecewise-linearized 

mappings q~<n> ; qD <~> is quasicon/ormal (Ahl/ors [2], 768; [3], 298); ~<n> has maximal dilata- 

tion K@ <~>) ~<~[K@)], where ~ is a certain/unction involving elliptic integrals (Agard [1], 739); 

/or each index n, there are some q9 such that K(~ <~>) =~[K(90)] holds (Agard [1], 739); more- 

over, there are some ~ such that K(q~ <n>) =~[K(~)] holds/or all indices n ([4], 49). 
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A r AR D'S M E T ~ 0 D. Let a quasicon/ormal mapping q~: C-~ C be composed as q~ = ~ o... o ~l 

by quasicon/ormal mappings ~q: C-~C with maximal dilatations K(~q)=[ (~)] 
Then ef is approximated by the mappings . -<n> -<n>. ~n. =Tr  o.. .o~l , ~n is piecewise-linear, though 

not with respect to ~ ;  q~ is quasicon/ormal; /or ~ > 0 and p su//iciently large, q)~ has maximal 

dilatation K(q~n)~ [K(~)] 3'243"'" +e  (Agard [I], 740);/urther, there are some q~ such that 

K ( ~ )  > [K(~)] 3'243"'" 

holds/or all indices n and all admissible p ([4], 51). 

THEOREM (abridged version). Let a quasicon/ormal mapping q~: C~C have maximal 

dilatation K(~)>1.  Then, q~ can be approximated ("well" in the sense o/Lehto-Virtanen 

[5], 194) by quasicon/ormal mappings q~: C~C with maximal dilatations K ( ~ ) < K ( ~ ) ,  

which are piecewise-linear with respect to certain prescribed nets 7~ o/triangles. 

COROLLARY. The subset o/piecewise-linear mappings is dense in the space o/K-quasi- 

con/ormal mappings o/ the plane. 

With regard to maximal dilatations, Agard's result is weaker than our theorem. This 

is caused by  the use of a sufficient condition, which is an unnecessary limitation: to ap- 

proximate by piecewise linearizations of the given mapping or of mappings composing it. 

1Wow, consider the following necessary, but insufficient condition. 

PROPOSITIOn. Let a quasicon/ormal mapping qJ: C-~C be approximated by quasicon- 

/ormal mappings q)~: C-~C, which are piecewise-linear with respect to arbitrary nets ~ .  
<n> Then, q~ can be approximated by quasicon/ormal mappings ~p~: C-~C such that q~ =y~ . 

Taking the ~ as ~ proves it. To apply this proposition, we take certain sufficiently 

smooth ~p~ with maximal dilatations K(yJ~)< K(T). 

2. Linear mappings of  a triangle 

A triangle in C is given by  its vertices, three non-collinear points zl, z2, z36C. We 

represent the vertices and thus the triangle by  the triple Z: = (zl, z2, z3) in the Cartesian 

product space C 3. The point set of the triangle is T: = cony Z. 

Let  a linear mapping V: C-+C be given by V(z): =az +bz* +c with constants a, b, c 6C. 

Then, ~3(z', z", z"): = (qg(z'), q~(z"), V(z'H)) defines the Cartesian product mapping V3: C3___>C3. 

Let  us introduce the notation E :=(1 ,  1, 1). V is uniquely determined by  its restriction 

to the vertice set of a triangle T =conv  Z. From 

W: =~3(Z) = aZ + bZ* + cE, 

Cramer's rule allows us to compute a, b, c for given triples Z (non-collinear) and W. 
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LEMMA 1. Let Z:=(zl,  z2, z3) denote the triple o/ vertices o/ a triangle in C, and let 

W: =(w 1, w2, w3), I~: =(Wl, w2, w3) be triples in C 3. Then, there are uniquely determined 

linear mappings 9, (o: C-~C such that 93(Z) = W and @3(Z) = W. 9 has the representation 

z. det (W, Z*, E) + z*. det (Z, W, E) + det (Z, Z*, W) 
9(z) - det (Z, Z*, E) 

9 is quasicon/ormal i/ and only i / d e t  (W, Z*, E) > det (Z, W, E); then the complex dilata- 

tion is 
det (Z, W, E) 
det (W, Z*, E)" 

I] 9 and ~ are quasicon/ormal, then the di//erence o/their complex dilatations is 

_ n = det (W, W, E).  det (g, Z*, E) 

det (W, Z*, E)" det (I~, Z*, E) 

Proo/. I t  is trivial to check a, b, c and x = b/a. In order to show the last result, we work 

with known formulas for inner " . "  and outer " •  multiplication of 3-vectors: 

(~ -~ ) .  det (W, Z*, E). det (I~, Z*, E) 

= det (Z, IV, E). det (W, Z*, E) - det (Z, W, E). det (l~, Z*, E) 

= [det (Z, l~, E)- W -  det (Z, W, E)- W]. (Z* • E) 

= [(E xZ) x (W x ~ ) ]  .(Z* x E) 

= [det (W, W, E ) . Z - d e t  (W, W, Z). El .(Z* x E) 

= det (W, W, E)- det (Z, Z*, E). 

3. Linearization of a nearly linear mapping 

Let a triangle T=conv Z in C be given, and consider a continuous mapping 9: T~C. 

The linearized mapping ~: C-+C for 9 with respect to T is defined as follows: 9~ is the uniquely 

determined linear mapping with ~3(Z)=93(Z). 

If the mapping 9: T-+C is quasiconformal, then its complex dilatation n(z) equals 

almost everywhere in T. We want to guarantee that  ~ is quasiconformal with complex 

dilatation ~ near n(z). Since a condition on x(z) alone would allow a subsequent con- 

formal distortion of 9(T) and thus of 93(Z), let us t ry a limitation of both ~ ~z* (z) and 

~ (z ) ;  to the following lemma. this leads 
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Lr, MMA 2. Let a triangle T in C have angles ~q, ot~, ~ and put fl: =max{~l ,  cr r ~t/2}. 

Consider a continuously.dil/erentiable quasicon/ormal mapping ~p: T~C,  and the linearized 

mapping ~: i3~i3 /or ~p with r~pect to T. Let the di/lerential o /~  satis/y an inequality 

with constants a, b E C and a positive constant e < �89 I - I bl) sin ~. Then r is quasicon/ormal, 

and its complex dilatation ~ satisfies the inequalities 

~ Ib/al+ 1 Iblsin~+e 
&- <la/dsin~_ 1, I~l<l~lsin~-~" 

Proo/. We are going to assume the following special conditions. In ease that  fl >~/2, 

the maximal angle is al=fl ,  the corresponding vertex is z 1 =0; further, ~v(0)=0. In case 

that  fl =~r/2, the orthocenter of T lies at the origin 0; further, ~v(0) =0. This can be achieved 

by a renumbering of the vertices of T, a translat~ry mapping of T, and composition of 

between two translatory mappings. Clearly, the values of the differentials and complex 

dilatations in Lemma 2 remain unchanged. 

Now, the  geometrical properties of T imply: ](E xZ) .Z* I = I E x Z [ .  IZ[ sin fl; abso- 

lute values are taken eomponentwise: I Zl = l{~1, z,, ~,)1: = (Izl[, Ix, I, I~,l)- 
Let us define linear mappings q , ~ : C + C  by  q~(z):=az+bz* and ~ :=r  Integrating 

the differentials d~v(z) and d~(z) along the segments from 0 to the vertices of T, we get 

#.(z) =r =C(z) =~"(z) + D; 

here, the triple D satisfies IDI <e lZl  componentwise. Thus, we can estimate as follows: 

I(E xZ).DI -< I E •  I DI -<el E xZl"  IZl. Next, we apply Lemma 1; the above formula 

and estimate will be used some lines further. 

hence 

and finally 

_ u = det (aZ + bZ*, aZ + bZ* + D, E).  det (Z, Z*, E) 
det (aZ + bZ*, Z*, E) .  det (aZ + bZ* + D, Z*, E) 

= [a. det (Z, D, E) + b. det (Z*, D, E)].  det (Z, Z*, E) 
[a. det (Z, Z*, E)] [a. det (Z, Z*, E) + det (D, Z*, E)] 

= (E x Z ) .  D + (b/a) (E x Z*) .  D 
a(E x Z) .  Z* + (Z* x E) .  D ' 

^ ~ e l E x Z l ' l Z l + e l b / a l ' l E x Z l ' l Z I  1 A- Ib//al 

e + e l b / a l  + b l _ l b l s i n f ? + e  
I~1< I ~ - r l +  [~1< lal s i n f l -  e ~ ]  s-~Zfl- ~" 
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4. Nets of non-degenerating triangles 

For  each index hEN, let us consider a locally-finite covering ~n of (3 by triangles, 

such that  any  two different triangles of ~n intersect in a common side, in a common 

vertex, or not at all. The ~n will be called general nets of triangles. 

The triangles of a general net can be very different in size; we want to describe the 

diameters of the triangles with the help of a continuous function 0.: C~R.  

For any triangle T E ~n and any point z e C, put  

T~: =(T-z) n (z-T): ={w~e: z+_weT}. 

In fact, T~ is the largest subset of T - z  which is symmetrical with respect to the origin 0. 

T~ is void for z ~T E ~/n- If z e T e ~ . ,  then T~ is a non-void convex set which depends on 

~n, depends continuously on z, but  does not depend on the particular T chosen. We in- 

troduce the symmetrical diameter On(z) for the net ~n with respect to the point z as 

0.(z): = max {diam [(T - z) (1 (z - T)]: T e ~.}" 

Let  the triangle T=conv{zl ,  z2, z3} of the net ~n have angles ~1, ~ ,  ~3 and put  

fl: =max  {~1, ~2, ~3, ~/2}. Elementary calculations lead to an upper bound and to a condi- 

tion of Lipsehitz type: 

max {On(z): zeT}- -d iam T = m a x  {Iz3-z21, 1~-~31, I=~-=~l}, 

/t l ~ o /t IO . (= ) -On(= ) l< l=" -= ' l ' 2 tan  for =,= 

Next, let us consider the shape of the triangles. We need good estimates for ~; yet, 

Lemma 2 is asymptotically sharp for fl ~ ~, because there are examples with 

[bl sin + sm 
[~[ = [a [ sin fl - e sin (fl/2)" 

We can allow small angles, but  we must prevent the triangles from being too obtuse. 

Therefore, we speak of a non-degenerating sequence of nets ~n, if all angles of all triangles 

of all nets are bounded away from g. 

This makes the functions On: C ~ R  uniformly continuous, even equicontinuous. 

Hence, a well-known theorem ([5], 74, Hilfssatz 5.1) implies the next  lemma. 

L~MM.( 3. Consider a non-degenerating sequence of nets ~n o/triangles in C. Let the 

symmetrical diameters On(z) converge to 0 pointwise on a dense subset of C. Then the On converge 

to 0 in the compact-open topology. 
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5. Approximation by smooth mappings with smaller dilatations 

We are going to approximate a quasiconformal mapping q: C~C by auxiliary map- 

pings ~p~: C->C. We require certain smoothness properties which are to be used later. 

L ~ M A  4. Let a quasicon/ormal mapping cp: C->C have complex dilatation ~(z). Then, 

there exists a sequence o/ continuously-di//erentiable quasicon/ormal mappings ~n: C~C, 

converging to q~ in the compact.open topology, with complex dilatations ~n(z) converging to 

u(z) pointwise almost everywhere in C, and satis/ying the /ollowing conditions. Each ~ is 

con/ormal outside some compact set; t~n(0 ) =~(0) and ~=(1) =~(1) holds; 

K ( ~ ) - I  ( 1) K @ ) - I  
K(~.) + 1 < 1 - K@) + 1' 

/or each index n and/or each e > 0 there are constants Q~, (~ with 0 < ~n, a~ < c~ such that i / two 

points z', ~" e c/u~lil either I ~"- ~'1 <~ ~,, or I z'l, I ~" I >1~ them d~,, satis/i~ 

Proo/. We use the standard method of defining a quasiconformal mapping implicitly 

by its complex dilatation. Let us start with a sequence of real-analytic functions 

u=: C ~C, with x,,(z) converging to ~(z) pointwise almost everywhere in C, and such that 

sup { ] ~=(z) [: I z [ ~< n +n/2} ~< [K(q) - 1]/[K(w ) + 1]. 

Further, let us put 

l1 - 1  for z~<n 

Z~(T):=]!  1 - 1 ) [ 1 - s i n 2 0 : - n ) ]  f~ ~ > n +  2 

This defines a continuously differentiable function Z~: R-+R. By ~n(z): =~=(z)zn(Izl), we get 

a continuously differentiable function ~ :  C-+ C with the required properties. 
The generalized Riemann mapping theorem ([5], 204) guarantees a corresponding 

quasiconformal mapping v~n: C-+C with v~(0)=~0(0) and v)n(1)=~v(1). The condition for the 
differential dv~ follows from the smoothness of ~=, because v~ is regular ([5], 244) in C 

and conformal outside a compact subset of C. 
Finally, a well-known normality argument ([5], 218) combined with the fact that our 

convergence is derived from a topology, leads to the conclusion that the ~ approximate 99. 
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6. Approximation by piecewise-linear mappings with smaller dilatations 

THEOREM. For a non-degenerating sequence o/ nets ~ o/triangles in C, let the sym- 

metrical diameters (~(z) converge to 0 pointwise on a dense subset o/C. Further, let a quasi. 

con/ormal mapping q~: C-+C have complex dilatation x(z) and maximal dilatation K ( q ) >  1. 

Then there exist quasicon/ormal mappings q~: C-~C, converging to q) in the compact-open 

topology, with complex dilatations Un(Z) converging to ~(z) pointwise almost everywhere in C, 

such that q)= has maximal dilatation K(~n) < K(q), and ~fn is piecewise-linear with respect to 

the net ~ .  

Proo/. I. In  this part,  we apply Lemmas 3 and 4. - -  Lemma 4 approximates the given 

mapping ~ by  certain mappings V~n. Since v~ is a regular quasiconformal mapping, con- 

formal outside of a certain compact subset of C, the absolute value of a~n/~z has a positive 

lower bound 7~. As the sequence of the nets ~= is non-degenerating, we can find a constant 

fl0 with ~/2 ~<fl0 < x  which is an upper  bound for the angles of the triangles of the nets 

~/~. For each index n, we define the positive constant 

e n �9 - -  ~ 

Putt ing e: =e~ in Lemma 4, we get constants ~n, a~ such that  I z~-z  'l < ~  or Iz'l, lz"l > ~  

implies the inequality ]d~(z") - dv~=(z') ] ~< en [dz ]. 

Lemma 3 ensures us that  the symmetrical diameters ~n(Z) converge to 0 uniformly on 

compact subsets of C. For each index m, and for all sufficiently large indices n, any triangle 

T E Tl~ will satisfy either diam T ~<Qm or T c {z: ]z] ~>a~}. We can choose an isotonic and 

surjective function 2: N-~N such that  the pairs (m, n) with m ~<~t(n) are admissible for the 

above statement.  

I I .  Choice of the mappings ~cn. - -  Since for each index m, the mapping ~ m  is approxi- 

mated by  its piecewise-linearized mappings ~'m=<n>, it follows that  we have ]v~<~">(0) -q (0) [  = 

[vS,7>(0) -V)m(0)l ~<2 m and [ v)~>(1) -9~(1)[ = [v)<~n>(1) -v~m(i)[ ~<2 -m for all sufficiently large 

indices n. We can choose an isotonic and surjective function #: N ~ N  such that  the pairs 

(m, n) with m ~<#(n) are admissible above. 

Taking v: =min  {,~,#}, we define another isotonic and surjective function v: N-+N. 

We put  m: =v(n); this makes the pairs (m, n)=(v(n), n) admissible in the sense of parts 

I and II .  With the sequence of the mappings ~m, we associate the diluted sequence consisting 

of the mappings F~: =~(~). Finally, let us define ~ :  =~0~n>; these mappings ~=: C-+C are 

piecewise-linear with respect to the nets ~ . .  
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I I I .  Application of Lemma 2. - -  Let us take any one of the nets ~n, any one of the 

triangles TE T/~, and any one of the points zET. We define ~: T-~C as the restriction of 

~n to T; its linearization ~: C-~C with respect to T coincides with ~n =~v(~ n> on T. Finally, 

we p u t  a: =~z" (z), b: ~ - z  ~ (z), e: =e~{~}. Now we apply Lemma 2 and use the following 

estimates: l al >~r~(~); sin fl ~> sin rio; ]b/a I <<" [1 - 1/v(n)] [K(r - 1]/[K(~) + 1]. 

-~v{~)[= ~ I I b / a l + l  l < ~ [ 1 - 1 / ~ ( n ) ] [ K ( q ~ ) - l ] / [ K ( q ) ) + l ] + l  
I~n (z) _ b a <~ la/~l sin fl - 3~(n) K(~)/[K(~) - 1] - 1 

-< 2~(n) K ( ~ ) -  [K(~) - 1] 1 K(~) - 1 2 K(~) - 1 
" ~ - ~ K ( r 1 6 2  1] ~(n) K(r162 ' 

hence ] u~ (z) I ~< I ~ - bl + I b I < [1 - 3~(n)] "K(~)K(~) - 1 .T  1' 

and finally 1 + Ix,(z)] 6~(n) K ( ~ ) -  [ K ( r  1] 
1 - lu~(z)l ~< 6v(n)+ [K(~) -  1] < K(~). 

IV. Properties of the mappings r - -  Part  I I I  implies the quasiconformality of ~ 

in each triangle Te~n and thus in C. The estimates for u~(z) hold in U{int T: Te~.}, 
which is almost everywhere in C; since we have upper bounds depending only on v(n) 

and K(~), we can deduce K(~)<K(~) .  For n - ~ ,  we find that  u~(z)-~,(~)-~0, and 

~(n)-+x(z), hence u~(z)-+u(z) pointwise almost everywhere in C. If we combine this with 

~ ( 0 ) - ~ ( 0 )  and ~n(1)~(1) ,  we can conclude that the corresponding mappings ~ :  C-~C 

approximate ~: C-~C in the compact-open topology. 
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