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1. Introduction

For each index n from the set N of natural numbers, let H, denote the regular net of
equilateral triangles in the complex plane C, whose vertice set consists of the points
[p+(%+3V/3/2)¢g]2" with integers p and g.

A mapping ¢: €—~C is called linear, if there are constants a, b, ¢€C such that ¢(z) =
az-+bz*+c; the superscript star denotes complex conjugation. A mapping ¢: C—C is said
to be piecewise-linear with respect to the net M,, if its restrictions to the triangles of 1, are
linear mappings. We define the piecewise-linearized mapping ¢¢: C—C for a mapping
@: C—C with respect to the net N, as follows: ™ is piecewise-linear with respect to #,,,
and it coincides with ¢ on the vertice set of H,.

The set of continuous mappings ¢: C—C will be considered as a topological space with
the compact-open topology; this induces convergence in the sense of uniform convergence on
compact subsets. Approximation means convergence to a given mapping. Each continuous
mapping ¢: C—C is approximated by its piecewise-linearized mappings ¢™.

In the subspace of quagiconformal mappings of the plane, there is the problem: can
each ¢ be approximated by ¢, which are piecewise-linear with respect to H,?

METHOD OF BEURLING AND AHLFORS. Lef a quasiconformal mapping ¢: C—C
have mazimal dilatation K(p)< V3. Then, @ s approximated by the piecewise-linearized
mappings ¢ ; ¢ is quasiconformal (ARlfors [2], 768; [3], 298); ¢ has maximal dilata-
tion K(p) <&[K(q)], where & is a certain function involving elliptic integrals (Agard [1], 739);
for each index n, there are some @ such that K(p‘™)=E[K(p)] holds (Agard [1], 739); more-
over, there are some @ such that K(p™) =&[K(p)] holds for all indices n ([4], 49).
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AGARD’S METHOD. Let a quasiconformal mapping ¢: C—C be composed asp =@,0...0¢;
by quasiconformal mappings §,; C—C with maximal dilatations K(@,)=[K(g)]"* < V3.
Then @ is approximated by the mappings @,: =F5 o...0¢{"; @, is piecewise-linear, though
not with respect to N,; @, is quasiconformal; for e >0 and p sufficiently large, @, has maximal
dilatation K(p,) <[K(p)>**3 +¢ (Agard [1], T40); further, there are some @ such that

K(@,) > [K(g)]> 2
holds for all indices n and all admissible p ([4], 51).

THEOREM (abridged version). Let a quasiconformal mapping ¢: C—C have maximal
dilatation K(p)>1. Then, @ can be approximated (“well” in the sense of Lehto—Virtanen
[6], 194) by quasiconformal mappings ¢,: C—C with maximal dilatations K(g,) <K(g),

which are piecewise-linear with respect to certain prescribed nets N, of triangles.

CoROLLARY. The subset of piecewise-linear mappings is dense in the space of K-quasi-

conformal mappings of the plane.

With regard to maximal dilatations, Agard’s result is weaker than our theorem. This
is caused by the use of a sufficient condition, which is an unnecessary limitation: to ap-
proximate by piecewise linearizations of the given mapping or of mappings composing it.

Now, consider the following necessary, but insufficient condition.

ProrosiTroN. Let a quasiconformal mapping @: C—~C be approximated by quasicon-
formal mappings @,: C—>C, which are piecewise-linear with respect to arbitrary nets N,.

Then, ¢ can be approximated by quasiconformal mappings v,: C—>C such that ¢, =y3".

Taking the @, as g, proves it. To apply this proposition, we take certain sufficiently
smooth y, with maximal dilatations K(y,) <K(g).

2. Linear mappings of a triangle

A triangle in C is given by its vertices, three non-collinear points z,, z,, 2,€C. We
represent the vertices and thus the triangle by the triple Z: =(z,, 25, 25) in the Cartesian
product space C3. The point set of the triangle is T: =conv Z.

Let a linear mapping ¢: €—C be given by ¢(z): =az +bz* +¢ with constants a, b, c€C.
Then, 32, 2", 2”): =(p(2), p(z"), @(z
Let us introduce the notation E:=(1,1,1). ¢ is uniquely determined by its restriction
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)) defines the Cartesian product mapping ¢*: C3—C3,

to the vertice set of a triangle T=conv Z. From
W:=¢¥Z)=aZ +bZ*+cE,

Cramer’s rule allows us to compute a, b, ¢ for given triples Z (non-collinear) and W.
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LeMMA 1. Let Z:=(2, 29, 25) denote the triple of vertices of a triangle in C, and let
W:=(w,, wy, wy), W:=(ily, Dy, Wy) be triples in C3. Then, there are uniquely determined
linear mappings @, ¢: C—C such that p¥(Z)=W and §3(Z) = W. ¢ has the representation

_z det (W, Z*, E) +2*-det (Z, W, E)+ det (Z, Z*, W)
det(Z, Z*, E)

@(2)

@ 1is quasiconformal if and only if det (W, Z*, E) > det (Z, W, E); then the complex dilata-
tion 1s
e det(Z, W, E)
det (W, Z*, E)’
If @ and p are quasiconformal, then the difference of their complex dilatations is
_ det (W, W, B) - det (2, 2*, E)
det (W, Z*, E) - det (W, Z*, E)

®— 2%

Proof. It is trivial to check a, b, ¢ and % =b/a. In order to show the last result, we work

{3
.

with known formulag for inner and outer ““ x ”” multiplication of 3-vectors:
(% —2)-det (W, Z*, E)-det (W, Z*, E)
— det(Z, W, B)-det(W, Z*, E)—det(Z, W, E)-det(W, Z*, E)
= [det(Z, W, E)- W —det(Z, W, E)- W]-(Z* x E)
= [(E x Z) x (W x W)]+(Z* x E)
= [det (W, W, E)-Z —det(W, W, Z)- E]-(Z* x B)

= det (W, W, E)-det(Z, Z*, E).

3. Linearization of a nearly linear mapping

Let a triangle T=conv Z in € be given, and consider a continuous mapping ¢: T—C.
The linearized mapping §: C—C for ¢ with respect to T is defined as follows: ¢ is the uniquely
determined linear mapping with ¢3(Z)=¢3(Z).

If the mapping ¢: T—C is quasiconformal, then its complex dilatation x(z) equals

b g
oz* (z)/az 2
almost everywhere in T. We want to guarantee that ¢ is quasiconformal with complex

dilatation # near x(z). Since a condition on x(z) alone would allow a subsequent con-

formal distortion of ¢(T) and thus of ¢3Z), let us try a limitation of both %(z) and

7
5‘5 (z); this leads to the following lemma.
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LeMMA 2. Let a triangle T in € have angles o, ay, otz and put f: =max {0, ay, 0tg, 77/2}.
Consider a continuously-differentiable quasiconformal mapping p: T—C, and the linearized
mapping §: C—C for y with respect to T. Let the differential of v satisfy an inequality

|dy(2) — (adz + bdz*)| <e|dz|

with constants a, b€C and a positive constant ¢ <}(|a| — |b|)sinf. Then 1§ is quasiconformal,
and its complex dilatation % satisfies the inequalities
. b

»— -
a

[b/a]+1

<l |b|sinf+e
a/e|sin g —

|x]\|a,|sin/3—£'

Proof. We are going to assume the following special conditions. In case that g >x/2,
the maximal angle is «, =g, the corresponding vertex is z, =0; further, (0)=0. In case
that § =72, the orthocenter of T lies at the origin 0; further, ¢(0) =0. This can be achieved
by a renumbering of the vertices of T, a translatory mapping of T, and composition of
between two translatory mappings. Clearly, the values of the differentials and complex
dilatations in Lemma 2 remain unchanged.

Now, the geometrical properties of T imply: |(E xZ)+Z*| = |E xZ| +|Z|sin §; abso-
lute values are taken componentwise: |Z| = |(zy, 25, 23)|: =(]21], |22, |2s])-

Let us define linear mappings ¢, §: C—C by ¢(z): =az+bz* and @:=1). Integrating
the differentials dy(z) and dg(z) along the segments from 0 to the vertices of T, we get

§UZ) =9%(2) =y*(Z) =9*(Z) + D;

here, the triple D satisfies | D| <¢|Z| componentwise. Thus, we can estimate as follows:
(B xZ)-D|<|ExZ|-|D|<¢|ExZ|-|Z|. Next, we apply Lemma 1; the above formula
and estimate will be used some lines further.

. _det(aZ+bZ*, aZ +bZ* + D, E)- det (2, Z*, E)
#TXT Jet (aZ + bZ*, Z*, E) - det (aZ + bZ* + D, Z*, E)

_la-det(Z, D, E) +b-det (Z*, D, E)]-det (Z, Z*, E)
[a-det (Z, Z*, E)] [a - det (Z, Z*, E) + det (D, Z*, E)]

_(Ex Z)-D+(b/a) (B x 2%)-D

W(Ex2)-Z*+(Z*xE)-D
. e|ExZ|-|Z|+¢|b/al-|E x Z||Z| 1+|6/al
—_ < = - ;
heneo %=« la|-|E x Z|-|Z|sinf—¢|E x Z|-|Z] |a/e|sinf—1
. - - et+elb/a bl |bsinf+e
and finally |%|<|x_”|+[”|<WIL/3L——|;E p =%h%;;_—e.
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4. Nets of non-degenerating triangles

For each index nEN, let us consider a locally-finite covering M, of € by triangles,
such that any two different triangles of , intersect in a common side, in a common
vertex, or not at all. The #, will be called general nets of triangles.

The triangles of a general net can be very different in size; we want to describe the
diameters of the triangles with the help of a continuous function §,: C—R.

For any triangle T€ 1, and any point z€C, put
T, =(T—-2)N(z—T):={w€C: 2+ w€ET}.

In fact, T, is the largest subset of T —z which is symmetrical with respect to the origin 0.
T, is void for z¢T€N,. If 2z€TEN,, then T, is a non-void convex set which depends on
N,, depends continuously on 2, but does not depend on the particular T chosen. We in-
troduce the symmetrical diameter 6,(z) for the net M, with respect to the point z as

0,(2): =max {diam [(T —z) N (z—T)]: TEH,}.
Let the triangle T=conv {z,, z,, 23} of the net M, have angles o, o, ®; and put

B: =max {a;, &, ot3, /2}. Elementary calculations lead to an upper bound and to a condi-
tion of Lipschitz type:

max {3,(z): z€T} =diam T=max {|z—2], |2, 2|, |2a—2]|}
]6,,(2”)—6,,(2')|<|z”—z'|-2tang for 2',2"€T.

Next, let us consider the shape of the triangles. We need good estimates for #; yet,

Lemma 2 is asymptotically sharp for 8 } &, because there are examples with
1= 6] sin B+ ¢ sin (8/2)
|a|sin B —gsin (8/2)°

We can allow small angles, but we must prevent the triangles from being too obtuse.
Therefore, we speak of a non-degenerating sequence of nets N, if all angles of all triangles
of all nets are bounded away from z.

This makes the functions d,: C—R uniformly continuous, even equicontinuous.
Hence, a well-known theorem ([5], 74, Hilfssatz 5.1) implies the next lemma.

LeMmA 3. Consider a non-degenerating sequence of nets M, of triangles in C. Let the
symmetrical diameters §,(z) converge to O pointwise on a dense subset of C. Then the 0, converge

to 0 in the compact-open topology.



270 SIGBERT JAENISCH

5. Approximation by smooth mappings with smaller dilatations

We are going to approximate a quasiconformal mapping ¢: C—C by auxiliary map-

pings ¢,: C—~C. We require certain smoothness properties which are to be used later.

LeEumA 4. Let a quasiconformal mapping @: C—~C have complex dilatation x(z). Then,
there exists a sequence of continuously-differentiable quasiconformal mappings §,: C—C,
converging to @ in the compact-open topology, with complex dilatations x,(z) converging to
#(2) pointwise almost everywhere in C, and satisfying the following conditions. Each i, is
conformal outside some compact set; P,(0)=@(0) and P,(1) =p(1) holds;

K(¢n)—1<(l_1) K(p)—1,
K(@,)+1 n) K(g)+ 1’

for each index n and for each & >0 there are constants g,,, , with 0 <g,, 6, < oo such that if two

points 2', 2" €C fulfil either |2"—2'| <p, or |2'|, |2"| 20, then d, satisfies
|dpu(e") —dipn(2') | <e|de|.

Proof. We use the standard method of defining a quasiconformal mapping implicitly
by its complex dilatation. Let us start with a sequence of real-analytic functions

7, C—~C, with »,(2) converging to x(z) pointwise almost everywhere in C, and such that

sup {|.(2) |+ 2] <n+7/2} <[K(p) —1]/[K(p) +1].

Further, let us put

1
1—-= for t<n
n

Lo ()= (1—%) 1 —sin®*(v—=)] for n<r<n+g

0 for r>n+g

This defines a continuously differentiable function y,: R—>R. By #,(2): =%,(2) 1.(|2[), we get
a continuously differentiable function x,: C—C with the required properties.

The generalized Riemann mapping theorem ([5], 204) guarantees a corresponding
quasiconformal mapping @,: €-C with §,(0) =¢(0) and §,(1) =¢(1). The condition for the
differential dip, follows from the smoothness of x,, because , is regular ({5], 244) in €
and conformal outside a compact subset of C.

Finally, a well-known normality argument ([5], 218) combined with the fact that our

convergence is derived from a topology, leads to the conclusion that the §, approximate p.
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6. Approximation by piecewise-linear mappings with smaller dilatations

THEOREM. For a non-degenerating sequence of nets N, of triangles in C, let the sym-
metrical diameters d,(z) converge to 0 pointwise on a dense subset of C. Further, let a quasi-
conformal mapping @: C—~C have complex dilatation »(z) and maximal dilatation K(p)>1.
Then there exist quasiconformal mappings @,: C—>C, converging to @ in the compact-open
topology, with complex dilatations »,(z) converging to »(z) pointwise almost everywhere in C,
such that @, has maximal dilatation K(p,) <K(p), and @, ts piecewise-linear with respect to
the net N,,.

Proof. I. In this part, we apply Lemmas 3 and 4. — Lemma 4 approximates the given
mapping ¢ by certain mappings ¢,. Since ¢, is a regular quasiconformal mapping, con-
formal outside of a certain compact subset of C, the absolute value of &¢,/0z hag a positive
lower bound y,. As the sequence of the nets !, is non-degenerating, we can find a constant
fo with 7/2<f, <z which is an upper bound for the angles of the triangles of the nets

MN,. For each index n, we define the positive constant

n 1y .
8n3=% (1 —K((p)) sin f,.

Putting &: =g, in Lemma 4, we get constants g,, o, such that |[2”—2'| <g, or |2'], |2"| >0,

implies the inequality |d,(z") —dP,(z')| <e,|dz|.

Lemma 3 ensures us that the symmetrical diameters §,(z) converge to O uniformly on
compact subsets of €. For each index m, and for all sufficiently large indices », any triangle
TE€ N, will satisfy either diam T <g,, or T<{z: |2z| >0,}. We can choose an isotonic and
surjective function A: N-~N such that the pairs (m, n) with m <A(n) are admissible for the

above statement.

11. Choice of the mappings ¢,. — Since for each index m, the mapping 17)m is approxi-
mated by its piecewise-linearized mappings 5", it follows that we have |5
[P (0) —,(0)| <27 and |50 (1) —@(1)| = [ P50 (1) —Pn(l)| <27 for all sufflclently large

indices n. We can choose an isotonic and surjective function y: N—N such that the pairs

~(n> I -

{m, n} with m <u(n) are admissible above.

Taking »:=min {4, u}, we define another isotonic and surjective function y: N—N.
We put m:=v»(n); this makes the pairs (m, n)=(v(n), »n) admissible in the sense of parts
T and IL. With the sequence of the mappings ¢,,, we associate the diluted sequence consisting
of the mappings y,: =,(,). Finally, let us define @,: =yy”; these mappings ¢,: C—>C are

piecewise-linear with respect to the nets H,,.
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111. Application of Lemma 2. — Let us take any one of the nets },, any one of the
triangles T€H,, and any one of the points z€T. We define y: T—C as the restriction of
¥, to T; its linearization %: C—C with respect to T coincides with ¢, =y{” on T. Finally,

we -put a:=aalz” (2), b:=g%’-‘
estimates: |a| >y,,; sin f>sin By; |bja| <[1-1/»(n)][K(p) —11/[K(p) +11.
b|_ _lb/al+1 _[-1/%n)][K(g)—11/IK(g)+1]+1
Cla/elsinp-1" 3n(n)Kig)/[K(p)—11-1
WK -K@) -1 1 Kg)-1_ 2 K-l

3v(n) K(p) — [K(p) — 11 »(n) K(p)+1 3w(n) K(p)+1’

o L1 L] K@)-1
"_&I“L‘a‘g[l 3v(n>] Kig)+ 1

(2), & =¢y(n) Now we apply Lemma 2 and use the following

I”n (z)— ;fv(n)[ =|x—

a

hence I %, (2) l <

1+ | (2)] _ 6v(n) K(g) — [K() —
1-[, ()]~ 6(n)+ [K(g)—1]

and finally 1] <K(p).

IV. Properties of the mappings ¢,. — Part III implies the quasiconformality of ¢,
in each triangle TE€ M, and thus in C. The estimates for x,(z) hold in U{int T: T€N,},
which is almost everywhere in C; since we have upper bounds depending only on »(n)
and K(g), we can deduce K(p,)<K(p). For n—>oco, we find that x,(2) —%,y,—>0, and
#%,(m)—>#(2), hence x,(z)—>x(z) pointwise almost everywhere in C. If we combine this with
@, (0)~>(0) and @,(1)~>¢(1), we can conclude that the corresponding mappings ¢,: C—~C
approximate ¢: €—~C in the compact-open topology.
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