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In this paper we introduce, and undertake the study of a class of Banach algebras
associated with a locally compact group @. These algebras are related to the two-sided
Laplace transform in the same way that the group algebra L(@) and the measure algebra
M(@G) are related to the Fourier transform. In the following paragraph, we indicate the
nature of some of our final results by exposing them in the simplest nontrivial case.

If 4 is a compact convex subset of R" let (A4) denote the space of measurable func-
tions on R” for which

||f||A=fRn|f(x)|¢A(x)dx<oo, where @ (x)=sup,c e “ V.

Note that for f€ &(4), the Laplace transform
re= | fwe s
Rr

converges absolutely for Re z=(Re 2y, ..., Re z,) € 4. The following facts concerning £(4)
are special cases of results of this paper:

Fl. (Lemma 2.2) &(4) is a Banach algebra under the norm || ||, and convolution
multiplication;

F2. (Corollary to Theorem 6.1.) The maximal ideal space of ¥(A4) can be identified
with {z€C":Re z€A4}, and the Gelfand transform of f€L(4) can be identified with the
Laplace transform f* restricted to {z€C*:Re 2€4};

(1) Research partially sponsored by the Air Force Office of Scientific Research, Office of Aero-
space Research, United States Air Force, under AFOSR grant No. 1313-67.

Portions of these results were announced at the meeting of the American Mathematical Society
held January 24-28, 1967, under the title ““L-subalgebras of M(G,”.



252 JOSEPH L. TAYLOR

F3. (Theorem 6.3.) If J is a regular ideal of £(4) for which h(J)={z:/*(z) =0 for all
f€J} is contained in the open tube {z:Rez€int 4}, then k(J) is a finite set {z, ..., %}
and there exists a finite dimensional subspace J* of C(R") such that:

(1) Each g€J* is a linear combination of functions of the form P(x)e™ %%, where
P is a polynomial in » variables, and
(2) If f€L(A), then f€J if and only if ffg=0 for every g€J*.

For the setting described above, F1 and F2 are simple to prove; however, as far as
we know, F3 requires most of the machinery of this paper. Of course, all three results are
trivial in the case n=1.

We shall actually study a situation considerably more general than that described
above. Rather than working with RB”, we shall work with a more general class of locally
compact abelian groups. Also, we shall work with algebras J{(4) consisting of measures
which satisfy a growth condition like that defining £(4). When the measures in' 3(4) are
all absolutely continuous, then R(4)=(4).

" We were led to the results of this paper in the process of studying another problem.
Let @ be a locally compact abelian group and let M(Q) denote the convolution algebra of
finite regular Borel measures on . We say N is an L-subalgebra of M(G) if it is a closed
subalgebra for which 4 €N implies €N whenever » is absolutely continuous with respect
t0 w. A surprisingly involved question is the following: For which L-subalgebras N of
M(G) is it true that the maximal ideal space of N is the dual group of G'? A partial solution
to this problem was obtained in [9]. The missing link for a general solution is supplied by
Theorem 6.2 of this paper. The generalizations of F1-F3 obtained here can be considered
spin-off from Theorem 6.2. The fitting together of Theorem 6.2 with results of [9] to obtain
the general solution to the above problem is reserved for another paper, [10], in which we
also study the implications of this result for thé structure theory of M (@) and other con-
volution measure algebras.

In section 1 we define the class of groups to be considered and discuss certain back-
ground information concerning Laplace transforms and analytic functions in this setting.

We define, in section 2, the class of measure algebras to be considered and develop
the elementary properties of these algebras. For a given group @, we begin with an L-
subalgebra N of M(G) and construct an algebra R(A4) consisting of measures which are
locally in N and satisfy a growth condition which insures that their Laplace transforms
exist in a “tube” based on 4. The set 4 plays the same role that it did in our opening
discussion.

Sections 3, 4, and 5 are devoted to developing machinery to process the combinatorial

problems that arise in working with the correspondence A —~(4) (these problems are not



IDEAL THEORY AND LAPLACE TRANSFORMS 253

apparent in the one variable case, which is precisely why F2 and F3 are so easily proved
in this case). In Section 3 we develop a cohomology theory for the correspondence 4 —N(4),
which is essentially just the Cech cohomology of presheaves. In Section 4 we use the results
of Section 3 and elementary double complex arguments to study linear equations in 3(4).
For certain types of linear equations we obtain a measure, called the residue measure,
which is locally in & and determines the solvability of the equation. In Section 5 we deter-
mine the form of this residue measure through the use of the inverse Laplace transform
and the Cauchy integral theorem. We show that the residue measure is absolutely continuous
and its Radon-Nikodym derivative is a linear combination of exponentials multiplied
by polynomials. ‘

Finally, in Section 6 we put together the results of the previous sections to obtain ideal
theoretic results for N(A4). These results depend strikingly on whether or not N contains
absolutely continuous measures. Because of this, we are able to give a spectral condition
{Theorem 6.2) which ensures that N éontains absolutely continuous measures. In the case
where N =L,, the algebra of absolutely continuous measures with the identity adjoined,
we obtain a generalization of F3 (Theorem 6.3). Theorem 6.1 gives a generalization of F2
for general N.

Our discussion comprises only a bare beginning of the study of the algebras 3(4).
There are many problems concerning these algebras that we have not touched on. We have
not, completely solved those problems that we have touched on. We list below several ways

in which one might attempt to extend our results:

(1) Work with a larger class of groups.

(2) Work with algebras of distributions satisfying growth conditions rather than with
measures.

(3) Attempt to characterize a larger class of ideals.

(4) Study algebras N(4) for which A is allowed to be noncompact or have dimension
less than that of the space X.

(5) Obtain our results by a direct application of analytic function theory, without the

machinery of Sections 3, 4, and 5.

In attacking some of the above problems, one may be able to use directly the machin-
ery of Sections 3 and 4. With this in mind, we have stated the results of these sections

in slightly more generality than is necessary for our later results.
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1. Preliminaries

Let G be a locally compact abelian group. Mackey, in [5], began the study of the
Laplace transform in this setting. His concern was primarily with Laplace transforms of
L2-functions. Arens and Singer, in [1], considered a one-sided Laplace transform in con-
nection with certain subalgebras of L(#). Our initial discussion in this section will overlap
Mackey’s to a certain extent. We shall use freely the modern theory of harmonic analysis
on groups as expounded in [3] and [6].

Definition 1.1. We denote by Q the group of all continuous homomorphisms of ¢
into the multiplicative group of nonzero complex numbers. By I we shall mean the sub-
group of ) consisting of the bounded functions in Q; i.e., I' is the dual group of G. The
real vector space consisting of all continuous homomorphisms of ¢ into the group of
additive reals will be denoted by X.

We shall use additive notation in ¢ and multiplicative notation in I' and Q. If xr€X
then the equation w(g) =¢*” defines an element w =e” of () which is positive in the sense
that it has positive range. Conversely, if w €Q and w is positive, then xz(g) =log w(g) defines
an element z =log w of X such that w =¢*. If 0 €Q then 0< [w| €Q and w/|w| €T". It follows
that each element of Q can be uniquely written in the form e% for some 2€X and y€T’.
If AcX, B<T, we shall often use the notation e*B for {¢y:x€4, y € B}. The map x—e”
is clearly a group isomorphism of X onto a subgroup e* of Q.

If W=X+4X is the complex vector space of continuous homomorphisms of ¢ into
the additive complex numbers, then there is an analogous homomorphism w—e” of W
into Q. If w€ W then w is a purely imaginary element of W if and only if ¢“€I"; in this
case w=1x for some z€X.

Suppose f is a function defined on a subset of Q and w€), x€X. If f(e®w) is defined
for z in a neighborhood of zero in € and is a holomorphic function of z in this neighborhood,
then we shall say that f is holomorphic at w in the z-direction. The derivative f,(w) of f in
the z-direction at w will be the derivative of f(e¥w) with respect to z at zero.

We may topologize Q by giving it the topology of uniform convergence on compact

subsets of G. With this topology, Q) is a topological group.

Definition 1.2. If U is an open subset of Q and f is a function which is defined and
continuous on U and holomorphic in every direction at each point of U, then we shall
say that f is holomorphic on U. The algebra of all holomorphic functions on U will be
denoted by A(U).

By a measure 4 on G we shall mean a complex valued set function defined on the
bounded Borel sets of @, such that if K is any compact subset of ¢ and ux(E)=u(E N K)
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for each Borel set E< @, then uy is a finite regular Borel measure on G. If y is a measure
on (, we define the total variation measure |u| for u by |u|(E)=sup 27 1|u(E,)|, where
the supremum is taken over all finite disjoint collections {E;}i" ; of bounded Borel subsets
of E. It follows that |u| is a positive, inner regular, Borel measure. If ||ul| = |u|(@) <oo
then u is called finite. If x and » are finite measures, then their convolution product g -v is
the unique measure satisfying {fdu-v = { {f(g, +¢,) du(g,) dv(g,) for all continuous functions f
with compact support on G. We denote by M(G) the Banach algebra of all finite regular
Borel measures on G under convolution multiplication. The subalgebra of M(G) consisting

of measures with compact support will be called M (@).

Definition 1.3. If u is a measure on G we define its Laplace transform u* by the equa-

tion
pwhw)= fw'l(y) du(g)

whenever @ is an element of Q for which this integral converges absolutely.

Note that w is in the domain of 4" if and only if f|w (g)|d|u|(g) < .

Lemwma 1.1. (a) If p is a measure on G, then the domain of u* has the form eI', where
A s a convex subset of X. (b) If u€M (Q) then u" € N(Q); the map pu—u" is an isomorphism
of M (G) onto a subalgebra of U(Q).

Proof. Part (a) follows from Holders inequality and part (b) is obvious.

The next lemma gives the form of the inversion theorem that we shall use in Section 5.

LemMa 1.2, If u* exists on €1 for some x€ X and u'(ey) is an integrable function of y
relative to Haar measure on I, then p ts absolutely continuous with a continuous Radon—

Nikodym derivative h, given by
hulg) = fu‘(ye’)y(g) e Ody,

where dy represents integration with respect to an appropriately normalized Haar measure

onT.

Proof. If u* exists on €T' and dv(g)=e *@du(g), then v€M(G) and »(y) =u’(e%).
The lemma now follows from the inversion formula for the Fourier transform (cf. [6],
Chapter 1).

Many of our later results depend heavily on the theory of holomorphic functions of

several complex variables. For this reason, we impose conditions on G which ensure that
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Q is an analytic manifold. Henceforth, we shall assume that G satisfies the following

conditions:

G1. The vector space X is finite dimensional.

G2. The subgroup I'y=¢'* of I is open (hence closed).

Using the structure theory for locally compact groups (cf. [6], chapter 2), one can
deduce that G1 and G2 are equivalent to the following: The subgroup H = {g€G:x(g) =0
for all € X} is compact and G/H has the form R? x Z¢, with R the additive group of reals
and Z the additive group of integers.

If we set Qy={e"*¥:2, y€ X}, then Q, consists of exactly those functions in Q which
are constant on cosets of H. Thus, we may consider a function w €, to be a function on

G/H = R? x Z°. Since w is a homomorphism, it must have the form
Oty ovos by koyy veey kog) = e+ tow | L,

where 2y, ..., 2, are arbitrary complex numbers and ,, ..., {, are nonzero complex numbers.

It follows that Q is isomorphic to the group
C? X (C*)7={(2q, s Zp, L1, «onr Sy ECPHELY, L, £ 0},

where the operation is addition in the first factor and multiplication in the second factor.
A glance at Definition 1.1 shows that if U is an open subset of (), then f€ (V) if and
only if f is a holomorphic function of the variables zy, ..., 2, {3, ..., {, in U. Condition G2
implies that () is an open subgroup of Q and, hence, Q is the discrete union of the cosets
of €. It follows from these considerations that Q is a p +¢ dimensional analytic manifold
and the space U(U) of Definition 1.1 is precisely the space of holomorphic functions on U
in the ordinary sense.
If we represent G/H as R? xZ? and (), as €7 x (C*)?, then we also have

Fo=TnQ,=e*
={(21y s 2y C1 oens GH)ECP X (C*)7: Re 2y =...=Rez,=0,|{|=... =| | =1}
We may represent X as R?*¢, where x=(xy, ..., %, 21, ..., Z,) € X acts on G/H = R? x Z*

as follows:
Bty ooy by gy oen, k) =2y ly + oo byt iy R ok
= (2, 25, 81 oevs C)EQpy T= (Tyy e ey Ty X1, ooy T) € X, and Y= (Yy, -+, Yps Y1, -5 Ya) €X,
then the equation w=e*** simply means z;=z;+iy; and {, = Y for j=1,...,p and
k=1,...,q.
We shall use the above coordinatized representations of G/H, Q,, and X in the re-

mainder of this section but not in later sections.
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If ¢, is the point mass at g€G, then its Laplace transform gj, restricted to €, has
the form

83(0))2 w—l(g)z e—t121~...ftpz,,é-l—k1 C‘;kq’

where g determines the point (4, ..., ¢, &y, ..., k) of R?xZ%=G/H and o determines the
pg-tuple (2, ..., 2p, Cp, s &) of CPx (C*)% I fEA(Q,) then f may be expanded in a
multiple Laurent series in the variables {;, ..., {, with coefficients holomorphic in the
variables 2, ..., z,. Linear combinations of exponential functions are dense in (C?) in
the topology of uniform convergence on compact subsets. It follows that the space of
functions in A(Q,) which are linear combinations of the functions g for g€G, is dense in

A(Q,) in the topology of uniform convergence on compact subsets of Q,.

Lemwma 1.3. If M; denotes the space of Laplace transforms of measures with compact

support on G, then My is dense in A(Q) in the topology of uniform convergence on compacta.

Proof. Based on the above discussion, we have that M} restricted to €, is dense in
A(Qp). If K is a compact subset of Q, then K is contained in a finite union Uj-,y,Q, of
cosets of . If 4 € M, and ¢ is Haar measure on H, we set du; =y, d(u- ). We have ui(y,0) =
ww) for w€Qy and uf =0 elsewhere on Q. It follows that if f€ A(Q) then f may be uni-
formly approximated on K Nv,Q, by functions in M; which are zero on K N y,;Q,for ¢ ==j.
Hence, f may be uniformly approximated on K by linear combinations of such functions.

The space Q, is not only an analytic manifold; it is also a Stein manifold (cf. [4],
Definition 5.1.3). This is easily seen from the representation of y as C°x (C*)%. If U is
an open convex subset of X, then e’T'y={e**¥€Q: €U, y€ X} is holomorphically convex
in Q,, since 0=z, ..., 2ps L1y +os £g) €€UT simply means that (Re zy, ..., Re z,, log |4], ...,
log |Z,]) lies in an open convex set U< RP*. If Q, does not have countable order in Q,
then Q may not be a Stein manifold, since a Stein manifold is, by definition, countable at

infinity. However, the following is true and is all we shall require:

LeMMA 1.4. Each coset of Qg in Q is an n-dimensional Stein manifold where n is the
dimension of X. Also if U is an open convex subset of X, then the intersection of eVT" with

each coset of Q, ts holomorphically convex in this coset.

We shall apply results from the theory of holomorphic functions on Stein manifolds
in several key places in the paper. The following lemmas state explicitly two such appli-

cations.

Lrmma 1.5. If U is an open convex subset of X, then the space M, of Laplace trans-
forms of measures with compact support, is dense in W(e'T") in the topology of uniform conver-

gence on compact subsets of e"T".
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Proof. This follows directly from Lemmas 1.3. and 1.4 and VIL.A.9 of [2], and the

fact that e”T" is the discrete union of its intersections with cosets of (.

Lrmma 1.6. Let U be an open convex subset of X and let f,, ..., [.., k be elements of
(T, If for each w€e T, the equation fihy+...+fnhn=%k can be solved for functions
hy, ..., by holomorphic in a neighborhood of w, then this equation can be solved globally for
functions hy, ..., b, € W(e"T).

Proof. Note that it is enough to prove this for the intersection of T’ with each coset
of Q. In view of Lemma 1.4, this is just a special case of Theorem 7.2.9 of [4].

A primary obstacle to extending the results of Section 6 to general groups is the lack
of analytic function theory, including results like Lemmas 1.5 and 1.6, for Q in the
general case. It is possible that extensions can be obtained by placing more emphasis on

the group theoretic aspects of the problem.

2. The algebras IN(A) and N(A)

Recall that M(G) denotes the algebra of all regular Borel measures on G under con-
volution mutiplication. We shall work with a closed subalgebra N of M(G) which satisfies

the following conditions:

N1. If €N and »€M(G) with v absolutely continuous with respect to y, then »€N;
N2. N is dense in M(G) in the weak-* topology of M(G);
N3. N contains the identity ¢ of M(G).

Condition N1 makes N an L-subalgebra of M(@) in the terminology of [8]. In the
presence of N1, condition N2 is equivalent to the requirement that no open subset of G
is a set of measure zero for every measure in N. Condition N3 is simply a convenience; if a
subalgebra N does not contain the identity we can always adjoin it. The identity of M(Q)
is the point mass at 0 in G.

Of part‘icular importance is the algebra L consisting of all absolutely continuous meas-
ures in M (G). The Radon-Nikodym derivative defines an isomorphism-isometry between
L and L}Y(Q), the algebra of Haar integrable functions on @. Clearly L satisfies N1 and N2
but not, in general, N3. Hence, we shall work with the algebra L, consisting of all measures

in M(G) of the form y +ze, where u€L and z is any complex number.

Definition 2.1. Let Ny, denote the linear space of all measures g on @ such that the
restriction u, of u to each compact subset K of @, is in N.
Note that M(G),. consists of all measures on &, with the term measure used as in

Section 1. Also, (L), consists of all measures of the form p+ze, where z€€ and u is an
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absolutely continuous measure (i.e., u(#)=0 whenever E is a bounded Borel set of Haar
measure zero).

If A is a convex subset of X, then the convex tube in Q based on A is the set e’ =
{w€Q:log |w| €A}. Given a compact convex subset A< X and the subalgebra N of M(G),
we shall define a Banach algebra (4) whose elements are in Ny, and have Laplace

transforms defined in the tube based on A4.

Definition 2.2. If A is a nonempty compact subset of X, set g {g) =sup {e *: x€4}
for each g€G.

LEMMA 2.1. If A and B are nonempty compact subsets of X, x€X, and g, ,€G, then:

(a) @4 is continuous on G;

() alg1+9s) <@a(gr)palgs) and pa(0)=1;

(¢) @a=@cas, where (4> is the convex hull of A;
(d) A< B implies ¢, <gg;

(€) Pa p=max (g, @5); and

(f) Qarz=¢"@a

Proof. Part (a) follows from the compactness of 4; part (b) follows from the multipli-
cativity of e™* as a function on @; and part (c) follows from the convexity of e *® asa

function of x. The remaining parts of the lemma are immediate from the definition.

Defimition 2.3. If A is a nonempty compact subset of X, then

(a) for u€ M(Gho set || lla= f palg)d|n](9) and [ [a = f @2 (—9)d|ul (9);

(b) set IMM(A) ={u€M(Moo: ||ulj.a < o0} and I’ (A) = {u € M(G)yoe: ||u)| s < oo }; and

(c) for the subalgebra N of M(G) set N(A) =Noo N IM(A) ={uENe: ||t]|a< oo} and
N (A)=N1oo NI (A) ={u€Nioc: ||| s < oo}

We also set IN(D) =N() =(0), where D is the empty set and (0) is the subalgebra of
M(G) consisting of the zero element.

LEmMMA 2.2, Let A be a compact subset of X. If n€N(A) and v€N'(A), then u-v exists,
ur € (A), and -rla <Nl albls. 17 v€RA) then s-v€RA) and Jjuos]a < Ll
Under convolution multiplication, N(A) is a Banach algebra and R'(A) 1s an N(A)-module.

Proof. Clearly R(4) and N,(4) are Banach spaces under the norms |||, and || ||,
respectively.

If N, denotes the space of measures in N with compact support, then N, is a dense
subspace of both N(4) and N'(A4); this follows from condition N1.



260 JOSEPH L. TAYLOR

It follows from (b) of Lemma 2:1 that gz (—g; —gs) <@a(g1)pa'(—9gs). Thus, if f is

a continuous function on G' with compact support, then

< fl Hg: + 92) | palg) @' (— 92)d | 1] (g1)

<@a'(=go) | Flloo | 1l

\ ff(gl +¢2)@a'(— 91— 92)dulgy)

and |[[10+0007 - 1= saautganan| <111 Nallallo i

It follows from the Riesz representation theorem that there is a finite measure ¢ such
that

ff do = ”f(gl +99) @~ (— 91— g2) dulg,) dv(g,)

for every continuous function f with compact support, and [[o|| <|lu|all7]]4. If we set

dA(g) = pa(—g)dolg), then [[Alli=llell<llullallv]ls and §jd2=J] fig,+g:)dp(g)dv(gs)
for every continuous function f with compact support. Hence, 4 is the convolution product

w-v. If 4 and v have compact support, then u-v €N, < (4), since N is an algebra. That
1 vENR'(A) in general now follows from the fact that N, is dense in both (4) and N'(4)
and the inequality || u-v || <||pllall? ]2

If u, vEN(A) then we may repeat the above argument, using the inequality ¢.(g; +
92) <@4(01)®a(g:), and conclude that u-v€RN(A) and ||p-v|| 4 <||plla||?] 2

Since the associative, distributive, and commutative laws hold in N, they hold
also in N(4). Hence, N(4) is a commutative Banach algebra. Through convolution, R(4)
acts as an algebra of bounded linear operators on R'(A4). In this sense, N, (4) is an N(4)-
module.

For each compact subset 4 of X, let A(e’I") denote the algebra of functions on the
tube ¢4’ which are uniform limits on e’ of functions bounded and holomorphic in a

neighborhood of e“T". We give U(e“T") the supremum norm.

LemMMa 2.3. The Laplace transform is a norm decreasing isomorphism of N(A) into
N(eAT).

Proof. It p€N(A) and z€A4, then [e*d|u] <fp.d|u|=|u|la< . It follows that
w'(w) exists at every point w of eI’ and |u*(w)| <|u|ls If pEN, then '€ A(Q) and u*
is bounded in a neighborhood of ¢T". Since N, is dense in N(A4) we have u"€ A(e“T") for
every u€N(A). Thus, u—~u" is a homomorphism of N(4) into A(e“T"). If for some x€4,
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u(e*y)=0 for all y€L", then v*(y) =0 for all y€I", where dv=e¢"*du. However, the Fourier
transform is one to one on M(G) and so v=0; i.e., u=0 if u*=0 on e*I". This completes

the proof.

LemMA 2.4. If A and B are nonempty compact subsets of X and x€X, then

(a) B< A implies RM(A)SR(B) <N (B)= W (4);

{(b) N4 U B)=RN(4) N N(B), and N(A)=N(<4>);

(0) N({a}) =N ({x}) and N({O}) - N;

(d) if we set AT u=e"du, then T, is an isomorphism-isometry of N(A) onto (A +x);
(e} for fixed u€NR(A), the map x—T_.u is a continuous map of A into N.

Proof. Part (a) follows from the inequality ¢,'(~9) <@z'(—9) <@xs(9) <@alg) (cf.
Lemma 2.1 (b) and (d)). Part (b) follows from (e) of Lemma 2.1. Part (c) follows from
the fact that gg)(g) =e™*@ = (¢°?) = gj}( — g) and g =1.

Clearly the map 7', preserves convolution and is linear. Part (f) of Lemma 2.1 shows
that 7', maps (A4) isometrically onto (A4 +x). If x€A then T_, maps N(4) onto N4 —
)= RN({0})=N. If €4 and p€N(A) then e *<g,ELYu). It follows from the Lebesgue
dominated convergence theorem that if {x,}7 <4 and x,~>x €4, then e™*—>e™ % in L'(u)
norm and, hence, T'_, u—~7T_,u in measure norm in N. This establishes (d) and (e).

We should point out that part (a) of the above lemma refers to set theoretic contain-
ment. The norms in the spaces N(A), N(B), W (B), and N'(4) are all different. However,
the linear structures of these spaces are consistent and convolution is consistent in (B)
and 9¢(A4). Note that we also have the following: R(B) is not only a linear subspace of
J(4), but it is also closed under multiplication by elements of N(4); hence N(B) is a
submodule of the (4)-module RN'(4). One must, however, exercise care in using these
relationships. A typical situation is the following: There may be disjoint subsets B and C
of 4 and a measure y €RN(4) such that u has an inverse v as an element of 9(B) and an
inverse v,=+vy as an element of N(C); since v, v};E%'(A); the computation u-(¥z—v;)=
e —e=0 is valid; however, the computation 0=v,-0=v5-u-(vg—vc)=e(vg—vc)=vp—; is
not valid because v ¢N(A4) and we cannot treat N'(4) as an N(B)-module. In the case
where X has dimension one, the residue measure constructed in Section 4 has precisely
the form v, —, as above. The situation described above cannot occur when BN C +Q,
for in this case 9(4), N(B), and N(C) are all subalgebras of RN(B N O).

The following lemma will be important when we apply the results of Section 4 to ideal
theory in N(A4):
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Lemma 2.5. Let A be a compact subset of X and uy, ..., u, €EN(A). If x€A and the
equUation p, v, + ...+ p,v, =e has a solution for vy, ..., v, €R({{x}), then there is a closed set E,

confaining x in its interior, such that this equation can be solved for v, ..., v, €EN(A N E).

Proof. Choose vy, ..., v, €R({x}) such that yv;+...+pu,v,=e. Since N, is dense in
N({x}), we may choose v, ...,v, €N, such that ||u»;+...+u,v; —e|5<1. For each n
let U, be the open ball of radius 1/» in X centered at x, and set B, = U, N A. Since ;1 +... +
UnVy, —e=AEN(A), the function @, is A-integrable. We have ¢ B,~>¢ * pointwise on G and
@5, <@, for each n. Thus, |A] 5, = s, d|1| ~fe “d|2| =||A][i <1, by the Lebesgue dom-
inated convergence theorem. Hence, we may choose an » for which ||4] z,<1. This
implies that u,»; +... +u,v, has an inverse ¢ in M(B,). If we set p,=pv;, then y,0, +...+
Hn0n=¢ and oy, ..., 0, €ER(B,) =N(4 n U,). This completes the proof.

The next two lemmas give the crucial facts needed in calculating the cohomology

modules defined in Section 3.

Lemma 2.6. If A and B are compact subsets of X with A U B convex and if u€(A N B),
then there exist u, €N(A) and uz €N(B) such that p=u,+ps.

Proof. We first show that if 4 U B is convex, then ¢,,z=min (¢4, ¢z). For a fixed
g€G, choose z€A4 and y € B such that ¢,(g) =e "9 and @z(g) =e™¥?; such a choice is pos-
sible because 4 and B are compact. Since 4 U B is convex, the line segment joining z
and y lies entirely in 4 U B. Since A and B are closed, there must be a point v =tz + (1 —¢)y
on this line segment such that w€4 N B. We have u(g) =tz(g)+(1 —t)y(g) lies between
x(g) and y(g), and so e 9 lies between g 4(g) =e *® and @g(g) =¢ 9. However, e 9 <
Pans(9) Smin (pa(9), @5(9)). It follows that @4, p(9) =min (4(9), P&(9))-

If we set f=@unppa’, then 0<f<l, @ f=@inp and @zl —f)<@.qpz the last in-
equality follows from the fact that for each g€@ either f(g)=1 or pz(g) =@ns(g). We set
dp,=fdp and duz=(1 —f)du. We then have

lisalle= [adlie = [atalul = [pansdlisl= i lans < 2,

and, similarly, lslle<lIlgllans < oo-
Thus, u, € N(A), uz € R(B), and clearly u=pu,+ ps.

Lemwma 2.7. If Ay, ..., A,, and B are compact subsets of X, u,€M(A4;) for i=1, ..., n,
and piy+ ...+, = EN(B), then there are measures v,€EN((A,, BY) for i=1, ..., n such that
v+ ..+, =u, where {A;, B) represents the convex hull of A;U B.
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Proof. We may assume without loss of generality that the measures y, ..., u, are
absolutely continuous with respect to u, for the u-singular parts of the measures uy, ..., 4,
must add up to zero. Hence, we assume du, =f,du for i =1, ..., n. We shall choose &y, ..., k,
such that |&;| <min (|f;|,1) and h +...+k,=1. Let E;={g€G: |f{g)| >1} and E,=
E,_,U{g€G: |flg)| >1} for i=2, ..., n. We define k,(g) =f,(g9) for gEGE,, h;(g)=1 for
gEENE,_;, and hi(g)=0 for all other g€G. Clearly, {%;}{-, has the required properties
and each h, is y-measurable.

If we set dv,=h,du, then |v|<|u;| and |»,|<|u|, since |&,| <min (|f,],1). Tt
follows that »,€9(4,) N N(B)=N(4,U B)=N(4,, B)). We have v, +...+v,=u, since
hy+...+h, =1,

Note that throughout this section we have tacitly used the fact that N satisfies
condition N1. We used condition N3 in Lemma 2.5 and we shall use it extensively begin-
ning with Section 4. Qur first use of condition N2 comes in the next, and final, lemma of

this section. This is an approximation result that we shall apply in Sections 5 and 6.

LeMma 2.8. If U is an open convex subset of X, then the space N} of Laplace transforms

of elements of N , is dense in U(eT") in the topology of uniform convergence on compact subsets
of e'T.

Proof. By Lemma 1.5, M, is dense in A(e"T"). Thus, it suffices to prove that N is
dense in M; in the topology of uniform convergence on compact subsets of e’T". Let K
be a compact subset of e"I'. If € M, and p* is not in the uniform closure on K of N3,
then there exists a finite regular Borel measure A on K such that [ u*dA==0 but [+"di=0
for all v € N,. However, [v"dA= | A'dy, where A(g) = [ & (g)di(w) is a continuous function
on G. Since N is weak-* dense in M(G) (condition N2), we have that 1*=0. However,
§ 2*dp= § p*dA=0. The resulting contradiction shows that M} is contained in the uniform
closure of N; on K. This completes the proof.

3. Cohomology

In this section we develop a cohomology theory which greatly facilitates the study
of the spaces defined in Section 2. Our theory is patterned after the Cech cohomology theory
of presheaves. We shall need only the more primitive notions of this theory. Introductions
to the theory of sheaves and presheaves appear in [2], Chapters IV and VI, and [4], Chap-
ter VII. Our development will initially parallel that of [4].

Rather than working explicitly with the spaces 3(A4) of the previous section, we shall,

in this section and Section 4, work with somewhat more abstract spaces. We do this with
17 — 682904 Acta mathematica. 121. Imprimé le 6 décembre 1968
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the hope that possible future generalizations of our results might be obtained without

excessive reworking of these sections.

Definition 3.1. Let R be a ring, 4 a set, and § a family of subsets of 4 such that §
is closed under finite intersection and contains the empty set ©. Let T be a map which
assigns to each BE€S an R-module T(B), and let § be a map which assigns to each pair
(B, 0)c §, with Bc(, an R-module homomorphism 65 ¢: T(C)—I(B). We shall call T
a stack of R-modules on § if the following conditions are satisfied:

(a) T(D)=(0);

(b) 05 colc, p =03 p for BeC< D; and

(¢) 85 p=id: T(B)->I(B) for BES.

Ordinarily, 4 is a topological space and § consists of all open subsets of 4. The term
presheaf, rather than stack, is more common in this situation. Swan in [7] uses the term
stack. We have borrowed this term to use in our peculiar setting. In our development,
A will be a compact convex set and § will consist of compact convex subsets of 4. How-
ever, in defining our cohomology modules, we shall use only finite collections of sets in §
and we shall not pass to the direct limit. Therefore, the topological properties of the sets
in § will be unimportant.

Note that if A is a compact convex subset of X and § consists of all compact convex
subsets of 4, then the correspondence B—R(B) of Section 2, defines a stack N of N(4)-
modules on §, where 05 . is the injection of R(C) into N(B) for @ +B<C and g, =0
for all C.

Throughout this section T will denote a stack of R-modules on a collection of sets §.

It B,C€S, B<C, and u€Z(C), we will often write u| 5 for 05 cu.

Definition 3.2. (a) By a complex B in §, we shall mean a finite indexed family
{By, ..., B,} of elements of §.

(b) Let IZ*! denote the eollection of all ordered (p+1)-tuples (s, ..., s,) of integers
between 1 and n. If B={B,, ..., B,} is a complex and p >0, then a p-cochain ¢ will be a
map o—>c, which assigns to each a=(sy, ..., s,)€EI5*! an element ¢, €T (B, N ...N Bs,)
such that ¢, = —c, whenever ¢’ is an odd permutation of o.

(c) For p=>0 let C?(B, T) denote the R-module of all p-cochains for the complex B
and the stack T, where for b, c€C?(B, ) and r € R we define (b +¢), =b, + ¢, and (rc), =7r¢y.

(d) If ceC?(B, T) and 6 =(sy, ..., 8,,,) EI5*>, we set

p+1
(6%¢) s = Zﬁ (= 1Yo | Bun...0Bq, 415
k=

where 6, = (g, ..., 8, ..., Sp+1) I8 ¢ with the index s, deleted.
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Note that for p=>0, the map 67 is an R-module homomorphism of C?(B, T) into
CP*YB, T). A simple calculation shows that §?*104°=0 for p>0. Hence, we have a se-

quence
0-C"8,T) = B, T > .08 %) L o yB,T)—... 1)

in which the image of each map is contained in the kernel of the succeeding map.

Note that if 0 =(Sg, --» $,)EI5*! and s;=s, for some 4=}, then the requirement that
¢y = —Co when ¢’ is an odd permutation of g, forces ¢, =0 for c€C?(B, ). Hence, if the
complex B contains n sets, then C?(B, T)=0 when p>n—1.

Definition 3.3. We denote the image of 6 by B”(B, T) and the kernel of §°*1 by
Z*(B, ¥). Elements of Z?(B, T) will be called p-cocycles and elements of B?(B, T) will be
called p-coboundaries. We set H?(B, ) =Z7(B, T)/B*(B, T) for p>0,and H%(B, <) =2%B, T).
The R-module H*(B, T) is called the pth cohomology module of the complex B with coeffi-
cients in g,

A subcollection §' of § which is closed under finite intersection will be called a
subdomain of §. If §’ is a subdomain of §, T and T’ are stacks of R-modules on §, and
« assigns to each set BES' an R-module homomorphism ap:I(B)—>T'(B), then o will be
called a stack homomorphism from T to ¥’ on § provided a commutes with restriction;
i.e., provided az0; =05 oo for B, CES with B< (. A sequence, ...+~ T %53 AT~ ..,
of stack homomorphisms, each defined on the same subdomain §’, will be called exact
on §' if the sequence ...~ (B) 2 T'(B) #2 T"(B)->... is exact for each BES'. Where it
will not cause confusion, we shall write simply « for each of the homomorphisms oz making
up a stack homomorphism.

If 2:T—+T' is a stack homomorphism on a subdomain §'< §, and if B is a complex
whose elements are elements of §', then « defines a homomorphism &: C?(B, T)—~C?(B, T')
for each p, by (5c), =a(c,). Clearly, & commutes with 4 and, thus, defines a homomorphism
o*: H(B, )—H?(B, T'). We have the following version of the standard lemma for exact
sequences (cf. [4], Theorem 7.3.4):

Lrmma 3.1. Let §' be a subdomain of § and let B be a complex whose elements are in §.

If 0-T2T £F"—>0 is an exact sequence of stack homomorphisms on §', then the sequence

0~CP(B,T) - C*(B,T) ° C*(B,T")>0

ts exact for each p. Furthermore, there is a homomorphism 6*: H?(B, T")—>H"*(B, T) such

that the following sequence is exact:

0-H'B,T)—~...~H®B, %) = H®B,T) L BB, %) & HB,T)>....
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If B=(By, ..., B,) and C=(C,, ..., C,) are complexes in §, we shall say that C is
a refinement of B if each set in C is contained in some set in B. In such a case, we may
choose a map k:1,— I, such that C,< B, for i=1, ..., m. For c€C?(B, T) we set

(K)o, .50 = Clkte..... Ktspn | Cs,-NCi -

Clearly, this defines a homomorphism % of C?(B, ¥) into C?(C, ¥) which commutes with
6. Thus, k induces a homomorphism k*: H?(B, ¥)—H?(C, ¥).

LeMwma 3.2. If C is a refinement of B, then the map k*, defined above, is independent of
the choice of k. If B is also a refinement of C, then k* is an isomorphism of H?(B, ) onto
H*(C, ).

Proof. The first statement is essentially Proposition 7.3.1 of [4]. The second statement
follows from the first. In fact, if B and C are mutual refinements of one another, then there
are maps k: I,,-~1I, and I: I,~ I, such that C;< B, and B, Cyy (i=1, ..., m;j=1,...,n).
Thus, we have maps &l: I,— I, and lk: I,— 1, with By;< By, and C,<Cj,q. The first
statement of the lemma implies that I*j*= (kl)*=id: H?(B, T) > H?(B, T) and kI*=
(kly* =id: H*(C, )= H*(C, Z). In other words, k* is an isomorphism with inverse I*.

Let §' be a subdomain of § and C a subset of 4 with the property that Cn B€ S’
whenever B€S'. We may define a stack T, on § as follows: Let T(B)=I(BNC) for
each B€S’, and define the restriction maps in the obvious way. The restriction map
from I(B) into T(BNC) defines a stack homomorphism o, : T—T; on §’, and hence,
a homomorphism a.: C?(B, T)—-C?(B, I,) whenever B is a complex contained in §'.
Also, note that if B=(B,, ..., B,)=§’, then C determines a new complex B,=(B,NC, ...,
B, N 0). There is, trivially, an isomorphism between C?(B, T) and C?(B;, T) which com-
mutes with §. Hence, there is a homomorphism of C?(B, T) to C?(B¢, T), which we shall
also call a.; this clearly commutes with 4.

If C and D are both subsets of 4 for which ¢ 0 B and DN B are in the subdomain §’
whenever B is, then we have a sequence 0—3*®2F T, fefrF . —0 of stack homo-
morphisms, where (ac® ap) (@) =otc(u) Dop() = |cas®#|pap for w€ZI(B), and (fo—Fp)
(udv) =,u[annB—v|annB for €I, (B), v€I,(B). If this sequence is exact on §', then,

by Lemma 3.1, it induces an exact sequence

0—>HB, T)—...~HB, T) 22", pgr(B, T,0 %)

B0, gyB, Tonp) 2> HPY(B, T)~ ...

whenever B is a complex contained in §’. If we note that H?(B, T, @ T ) is naturally iso-
morphic to H?(B, ;) ® H(B, $) and use the isomorphisms between H?(B, T,), H?(B, Tp),



IDEAL THEORY AND LAPLACE TRANSFORMS

267
H*(B, Tcnp) and HP(Bc, T), H?(Bp, ), H?(Benp, ) respectively, then we have the
exact sequence
0 H'B, T)>...~ BB, T) % HP(B;, T) @ H'(Bp, T)

Hp(Ban) —6—*> Hp+1(B, CI)—>....
This is called the Mayer—Vietoris sequence. The next lemma summarizes this discussion.

Conditions (1) and (2) of the lemma simply insure that the sequence 0% T ® Ty~
Icnp”O 18 exact

LEMMA 3.3. Let §' be a subdomain of § and C and D subsels of A for which C N B and

DN B are elements of §" whenever B is. Let T be a stack on $ satisfying the following conditions:
(1) of BES' and u€Z(B) then p|cap=p|pns=0 implies u=0; and

(2) if BES and u€I(BNCND), then there exist uc€I(BNC) and up,€IT(BN D)
such that p = | sacap + o | sncnp-
Under these circumstances, there is a Magyer-Vietoris exact sequence

0= HB, T)~... - H'(B, T) o2

H?(B;, T) © H*(Bo, T)
Pe~Fb

—_—

for each complex B< §'.

H*(Benp, T) 2 H**'(B,K)—...

At this point we impose conditions on T which are satisfied by the stack % of Sec-
tion 2, and which allow us to calculate H?(B, T) in certain special cases.

Definition 3.4. Let A be a compact convex subset of a locally convex topological
vector space X, and let § be the family of all compact convex subsets of 4. Let @ be a

fixed R-module. A stack T of R-modules on § will be called a convex stack of submodules
of @ on A if the following conditions hold:

(1) for each B€§, T(B) is a submodule of @;

(2) if B,C€S and @+B<C, then T(C)=T(B) and the restriction map 05 ¢ is the
inclusion map of T(C) into I(B);

(3) if B,C€S and {B, ) is the convex hull of BU C, then T(B) N T(C)=I({B, C>);
(4) if B, C€§ and BUC is convex, then T(BN C)=T(B)+I(C);

(5) if By, ..., B,, CES then [T(B,) +... + T(B,)) N T(C)=[T(B,) N T(C)] +... +[T(B,) 1
(O]

Referring to the stack % of Section 2, we find that the conditions of Definition 3.4
are satisfied when R=%(4), Q=N (4), and T(B)=N(B) for each compact convex subset
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B of A. Conditions (1), (2), and (3) follow from Lemma 2.4, while conditions (4) and (5)

are simply restatements of Lemma 2.6 and 2.7 respectively.

LeMMA 3.4. Let T be a convex stack of submodules of Q on A. Let B={B,, ..., B,} be
a complex, and let C and D be closed convex subsets of X with Ui, B;<CU D. If we define
a refinement B'={Bj, ..., By,} of B by Bi=B,nC for i=1,..,n and Bi=B, ,ND for
t=n+1, ..., 2n, then the map k*: H*(B, T)>H*(B', T) of Lemma 3.2 is an isomorphism
for each p.

Proof. Note that the conditions of Lemma 3.3 are satisfied for I, C, and D with
§'=8. In fact, if B is a compact convex subset of 4, then so are BN C and Bn D; and if
BnC=BND=@ then B=0. Hence, if u€I(B) and | gnc=p| pnp=0, then (2) of Defi-
nition 3.4 implies that BN C'=BN D=B=@ and u=0; this gives condition (1) of Lemma
3.3. Condition (2) of Lemma 3.3 follows from (4) of Definition 3.4.

The Mayer—Vietoris sequence of Lemma 3.3, applied to B and B’, gives us the following
diagram:

0> . H B, ©) % BB, T) 22 BBy, T)0 BBy, K) " HP(Bonpy B>

l"‘(‘:nn l"' l"’&@"’b l"*an
g o *gDap , , BE-6D ,

0—...>H" Y(Btnp, T) — H*B,T) —— H* (B, T)®HYBp, T) —— H’(Binp,T)—>...
Note that the two rows of this diagram are exact and are both induced by the sequence
0->T->T,@Lp—>Lonp—0. The maps kinp, k*, k¢, and &} are induced, as in Lemma 3.2,
from the map k:I,,~>1I, defined by k(3) =k(t+n)=1 for i =1, ..., n. It follows that the
above diagram is commutative. Furthermore, the complexes B¢, Bp, and Benp and the
complexes B, Bp, and Beap are, respectively, mutual refinements of one another. Hence,
kg, k%, and k&np are isomorphisms, by Lemma 3.2. It follows from the diagram that k*
is also an isomorphism.

A refinement B’ of B, of the type given in the above lemma, will be called a one-step
regular refinement. Let C be a refinement of B. If there exist refinements B=1B,, By, ..., By
of B such that B, is a one-step regular refinement of B;_; for t=1, ...,n and C and B,
are mutual refinements of one another, then we shall call C a regular refinement of B.
The passage from B, to C might eliminate redundancies introduced in the refinements

B, ..., B,. We have the following corollary to Lemma 3.4:

CoROLLARY. If T is a convex stack on A and B, and By are complexes with a common
regular refinement, then H?(By, T) and H?(B,, I) are isomorphic for each p.
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We now proceed to define the cohomology of a set as opposed to a complex. Let
B={B,, ..., B,} be a collection of compact subsets of 4. If P is a hyperplane in X, then
P=CnD where C and D are closed half-spaces in X. We obtain another collection
B ={Bi, ..., By,} by setting Bi=B;nNCfori=1,..,nand B;=B,_,N Dfori=n+1, ..., 2n.
If Bis a compact subset of 4 and (P, ..., P,) is a sequence of hyperplanes in X, then iterat-
ing the above process yields a sequence {B,, ..., B,} of collections of compact sets, with
By={B} and B, obtained from B, , by decomposing relative to the hyperplane P; for
i=1, ..., n. Note that a given B; may not be a complex because the sets composing it may
not be convex. If, however, B, is a complex, then we shall call it the polygonal decompo-
sition of Brelative to (P, ..., P,). A given compact set B may not have a polygonal decom-
position; however, if it does we shall call B a semipolygonal set. We have the following

lemma concerning these notions:

LemMwma 3.5. (a) Compact convex subsets of A are semipolygonal, as are finite unions of
ordinary polygons in A.

(b) The intersection of any finite number of semipolygonal sets is semipolygonal.

(¢) If B, and B, are polygonal decompositions of a semipolygonal set B, then B, and

B, have a common reqular refinement.

Proof. Parts (a) and (b) are obvious. To prove part (c), we simply note that if B,
and B, are decompositions of B determined by (P}, ..., PL) and (P}, ..., P%) respectively,
then the polygonal decomposition B, of B, determined by (P, ..., Py, P, ..., P%), is a
regular refinement of both B, and B,.

Definition 3.5. Let T be a convex stack on 4 and let B be a semipolygonal subset
of A. We define H?(B, ¥) to be H?(B, T), where B is any polygonal decomposition of B.

Note that Lemma 3.5 (¢) and the corollary to Lemma 3.4 imply that the definition
of H?(B, ) is independent of the choice of B.

The cohomology modules H?(B, ¥) could be defined for a larger class of sets B, by
using more general kinds of decompositions or by taking direct limits; however, the class

of semipolygonal sets is large enough for our purposes.

TaroreM 3.1. If C, D, and CU D are semipolygonal subsets of A and T is a convex

stack on A, then there is an exact sequence

*D

0~HYCU D, T)>...»H(CU D, T) 2B w0, 3y H(D, T)

ﬁ*_ﬁ* *
=2 HCnD,T) & BHNCOUD,T)~...
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Proof. We can find a sequence (P, ..., P,) of hyperplanes which induces a polygonal
decomposition B of CU D such that B, Bp, and Bg,p are polygonal decompositions of
C, D, and Cn D respectively. If § is the collection of all convex compact subsets E of 4
for which ENnC and EN D are convex, then §' is closed under finite intersection and
B< §'. From this and (2) and (4) of Definition 3.4, it follows that the conditions of
Lemma 3.3 are met. The theorem follows.

Let B={B,, ..., B,} be a complex, let B=U}1B,, and (B> be the convex hull of B.
There is a natural injection ¢: T((BD)~>C%B, ) given by (tu)s = |z Clearly, the image
of i lies in Z%B, T)=H’(B, T), and so ¢ determines an injection i*: T((B))~H"(B, T).
If B is connected, then it follows from (3) of Definition 3.4 that ¢* is onto. Hence, we

have:

LeMwMA 3.6. If B is a compact connected subset of A and T is a convex stack on 4,
then i*: T((B))—~>H(B, T) is an isomorphism.

We are now in a position to compute the cohomology modules of the sets we shall be

dealing with in later sections.

THEOREM 3.2. If B is a compact convex subset of A and T is a convex stack on 4,
then H?(B, T)=0 for p>0 and i*: T(B)—> H(B, %) is an isomorphism.

Proof. The complex B, consisting of the set B alone, is a polygonal decomposition of B.
For this complex, we have O?(B, T) =0 for p>0 and C°(B, T)=Z%B, T)=I(B).

Let z,, ..., z, be the vertices of an n-simplex 8={z,, ..., z,><A. The collection,
B={B,, ..., B,}, of all (n—1)-faces, B;=<=q, -.., &, ..., x,», of S, forms a complex with a
regular refinement which is a polygonal decomposition of 88 = U} B;. Hence H?(28, ¥) =
H?(B, ¥) for any convex stack T on A, by the corollary to Lemma 3.4. If cEC" (B, )
then (8¢),....m=3f-0( = 1)*C0.....&s... |manun5y =0: since By ...N B,=@. However, the
expression (6¢C)q,...ny =2 r=0( ~1¥Cq,...%.....nyy Where the addition takes place in the
R-module @, may not be zero. The map d,: C" (B, T)—Q is an R-module homomorphism
and dy0c=0 for c€C" (B, T). Thus, §, determines a homomorphism g : H* (B, T) Q.
If we identify H"1(8S,T) with H* }B,T), then we have a homomorphism &5 :
H* (08, T)~>Q.

THEOREM 3.3. Let S be an n-simplex in A and let T be a conver stack on A. If n>1
then H?(6S, T) =0 for p+£0, n—1, 6§ : H*1(88, T)—~>Q is one to one, and 1*: T(S)—~H(88, T)

is an tsomorphism. If n=1 then the sequence 0— T (S) L H(88, i)ﬁ@ is exactand HP(88,T) =0
for p>0.
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Proof. If n=1 then 8=<xy, 2>, 88={xy, 2}, and H(2S, T)=C"%B, T) where B is
the complex ({z,}, {,}). If c€C*(B, T) then §,c=c, —c, where ¢, ET({z,}) and c,€T({x,}).
If §,¢ =0 then

1 =o€ T({1}) N T({o}) = Lo, 210) =T(S).

Tt follows that 0—>T(S)—~>H"@8, T)—~Q is exact. Since B contains only two elements and
their intersection is empty, H?(B, T)=H?(8S, T)=0 for p>0.

We now prove the theorem by induction on n. The above paragraph establishes the
case n=1. We assume the theorem is true for any convex stack and any simplex of dimen-
sion less than n>1. Let T be a convex stack and §={x,, ..., ,> be an n-simplex with
(n—1)-faces By, ..., B,. We set C = 7-¢' B;. We first prove that H?(C, T) =0forp=+0,n—1.

Define a new stack ¥’ on B, as follows: Let T'(E)=T((E, x,») for each compact
convex subset E of B, ,where x, is the vertex of § opposite the face B,. It can be verified
directly that I’ is a convex stack of submodules of @ on B,, according to Definition 3.4.
If we let E,=B;N B, for i=0, ..., n—1, then the complexes C=(B,, ..., B,_;) and €=
(Eq, .-, E,_;) have regular refinements which are polygonal decompositions of C' and
0B, = U E, respectively. Note that

D D
B,={(E,z,y for i<n and () By=< N Ey, z,> for
k=0 k=0

Sgs o Sp<m and p<n—1. It follows from this and the definition of T’ that C?(C, ) and
C?(E, T') are isomorphic for p +n—1. Since B, is an (n—1)-simplex, we have H(E, T') =
H?(@B,, T')=0 for p=+0, n—2 and & : H* (£, T')—~>Q is one to one, by our induction
hypothesis. Hence, H?(C, T) =H?(C, T)=H?(E,T)=0for p+0,n—2,n 1. If c€Z" ¥, T)
then ¢ corresponds to ¢’ €C"2(E, T)=2Z""2(€, T') such that Jy¢’=0. It follows that
0b' =c' for some b’ €C"3(E, T'). There is a corresponding element b€C"3(C, ¥) such
that 6b=c. Hence, H* %(C, T) =H" 2(C, T) =0. This completes the proof that H?(C, ) =0
for p=+0, n—1.

Since 6S=CU B, and éB,=CN B,, Theorem 3.1 yields an exact sequence

s H@B, D) 2 68, T) 2R e, e BB, T) 2> HY9B, T)-....

By the induction assumption, H* (8B, T)=0 for p=+1, n —1. By the result of the above
paragraph, H?(C, ¥)=0 for p=+0,n—1. Since B, is convex, Theorem 3.2 implies that
H?(B,, T)=0 for p=+0.

Hence, we can conclude from the above sequence that H?(8S, 3)=0 for p=+0, 1, n—1.
To handle the case where p=1 and n>2, we note that H%(88, T)=3(S), H(C, T) =T(S),
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H%B,, T)=I(B,), and H%®B,, T)=T(B,); this follows from Lemma 3.6 and the fact

that each of these sets is connected when »>2. The above exact sequence then yields
o, Dy o~ B1— B o* 1
0—-Z(S) — TSI (B,) — (B, — H 6S,T)—~0.

A glance at the definitions of the maps involved (cf. Lemma 3.3) shows that o, =id:
L(8)—>Z(S) and f,=id : T(B,)>Z(B,). Hence, §,—p, is onto and 6*: T(B,)-H (88, T)
is the zero map. Thus HY(2S, T)=0.

It remains to show that 83: H" 1(88,T)—>Q is one to one. Let B=(B,, ..., B,) be
the complex consisting of the (rn—1)-faces of S. If c€C" }B,T) and J,c=0, then
Con=(—1)"3%26 (—1)¥c,,, where ¢=(0,...,n) and o= (0, ..., &, ..., n). Note that
¢, € ¥(By, ..., By, ..., B,) =T({x}), where z, is the vertex of S opposite B,. Condition (5)
of Definition 3.4 yields elements b, € T({(, %,>) = L(By, ..., By, ..., By_;), such that
Con= 2020 (— 1)F b.,, where 7,=(0,..., E,...,n—1). If ¥ is any (n— 1)-tuple of integers
in [0, n], we set b, =b, if 7 is an even permutation of 7, b, = — b, if 7 is an
odd permutation of 7, and b, =0 if 7’ is not a permutation of any ,. We then have an
element b€ 0" %B, T) such that (c— 0b)q,, = 0 and Jy(c — 8b)= d,c= 0. This process can be
repeated for each of the vertices of § and finally yields c€ B" 4B, ¥). Hence, d,¢=0 for
c€C" (B, T) implies c€ B" Y(B, T); i.e., d¢ : H* (08, T)~>Q is one to one.

We should note that our only use of condition {5) of Definition 3.4 comes in the
above proof.

If we set Q(F)=@ for each nonempty compact convex subset £ of 4, then we obtain
a convex stack Q of submodules of @ on A, which we shall call the constant stack. For
any semipolygonal set B< A, the cohomology H?(B, Q) is just the ordinary pth Cech
cohomology module with coefficients in Q. If we denote the injection of ¥ into Q by g,
then ¢ induces a homomorphism ¢*: H?(B, T)—H?(B, Q) for each p and each semipolygon
B. For Q, Theorem 3.3 gives the well-known result that §5: H?(8S, Q)—>@ is an isomor-
phism. We thus have the diagram

L
H"'@8,3I) —— @

lq.

H* 38, Q)

which implies that ¢*: H*-1(88, T)—>H""1(a8, Q) is one to one. Theorem 3.3 also implies
that ¢*: H?(28, T)—~ HP(8S, Q) is one to one for p=+n—1 as well. Trivially, ¢*: H*(B, T)~
HP(B, Q) is one to one if B is convex. This indicates that ¢* may be one to one for a fairly
large class of semipolygons B.
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It is not true that ¢* is one to one for all semipolygons B. If zy, ,, x, are points of 4
which are not colinear and if B =<z, z,) U {(%;, %>, then H(B, Q) =0, but there are convex
stacks T for which H(B, T) +0. In fact, if T is the stack N of Section 2, then a nonzero
element of HY(B, N) corresponds to a measure p€N({x,}) which cannot be written as
M1 —pho With uy €R({xy, 2,)) and p €N((@y, z5p). If we choose a line I, through x,, which
is parallel to the line containing x, and «,, then it is trivial to pick a measure g which
is in N(!') for each finite segment I’ of I, but which is not in N(C) for any set € not contained
in 1. If we could write y as p, —pue with p, €R(<xy, 5)) and y, €N({x,, z,)), then Lemma 2.7
would imply that u, and y, can be chosen from R(<Z', z,>) and N(', x,>), respectively,
for any segment !'<l. It would follow that u€NR({', 2> N ', z,»). This contradicts the
choice of u, since {I', 2> N, 2> 1.

The above example shows that the cohomology theory developed here seems to
measure not only the “holes” in a set, but also the various degrees of nonconvexity of

thig set. This should, perhaps, be investigated further.

4. Linear equations

Let T be a stack of R-modules on a collection § of subsets of 4. Let 7y, ..., 7,€R,
A€T(A) and consider the equation

PV T =4, ity

where we seek a solution vy, ..., v, €Z(4). If we set T,(B)=2"®I(B) for BES, then we
may think of the n-tuple (ry, ..., 7,,) as defining a map d: T, T, by d{y,, ..., 4,) =1y phs +... +
Tt €T(B) for (puy, ..., u,) €T,(B). Equation (1) has a solution if 1€im d. If (1) has a solu-
tion for every 1€I(A4), then the sequence T,;(4)% T(4)—0 is exact.

There is a fairly well-known technique for studying the above situation. Suppose

there is a sequence of stacks and stack homomorphisms,

dn— dp— dy d
o T, TS T, s 5T, > T, —> T 0, 2)

which is exact on a subdomain §’ of §. (Later in the section we shall show one way that
such a sequence may be obtained.) If B=(By, ..., B,) is a complex whose elements are
in §', then (2) induces the following diagram
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| \: \ \:
T,(4) > CB,T,) > ONB.T,) —...~ "B, >...
ldn—l l(i”~1 l‘;"‘l lin—l
Tn 1(4) > OB, To_y) > OB, Tuor) > .. > OB, Tur) = ...
\: y I }
: : : : (3)
\: i\ \ \:
T(4) > B,I) > BT »...~ C°BT,) ...
| | lé lé
T4 > 3T 5 B3 -..> "BI) —..
V | | \
0 0 0 0

All columns of this diagram are exact except possibly the first one. It is the first column
that we wish to draw conclusions about. The following discussion of this diagram is derived
from standard double complex theory:

When convenient in discussing diagram (3), we shall use d to denote any one of the
maps i, 8% ..., 6%, ... and d to denote any one of the maps d,d,, ..., d,, .... We shall also
use the notation T,=T and C-1(B, I,) =T ,(4).

Definition 4.1. For the diagram (3), we make the following definitions:

(@) DP"l=im ¢6* 2 +im d,< C*"Y(B, T,) for p=>0, where §2=0 and 61=q;

(b) A residue sequence a°, al,..,a” .. is a sequence with a?€C? B, T,) and
daP*1 = da? for p=>0.

LemMma 4.1. (a) If 2€T(A) then there is a residue sequence; a°, @, ..., av, ..., with A=a’.

() If A=d® al, ..., aP, ... and A= b, ... bP, ... are two residue sequences starting at A,
then a® —b" € DP™1 for each p.

(¢) If A=al, al, ..., a?, ... is any residue sequence for which a?€ D*1, then a?€ D1 for
p>q. ‘

Proof. We construct the sequence a°, a, ..., a?, ... by induction on p. Suppose we have
a®, al, ...,a?"! defined with A=a® and da?=da?"! for ¢<p-—1. Since dda?r=4da? 1=
06a”"2=0, the exactness of the columns of (3) implies that there exists a?€C* B, T,)
such that da®=da?~1. This proves part (a).
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Note that if we consider the sequence 0=a, — by, a; —by, ..., @, —b,, ..., then part (b)
follows from part (c) with ¢ =0. To prove part (c), note that if a®€ D?"1 then a? =8b® +dc?*1,
where b €C?%(B, T,) and ¢?*1€C? (B, T,.,). It follows that d(a?*1 — §¢P*1) = da® — ddcP ! =
06b°=0. Hence, there exists c®"2€(C?(B, T,.,) such that a?1—dcP*!1=dc?*%; ie., a?*l1=
b1+ deP*2 if we set ¢?T1=bP*1. We conclude by induction that part (c) is true.

Note that, in the above lemma, D! is the image of d in T(A4). Thus, part (c) of the
lemma says in particular that if 1€im d, then a?€ D? ! for all p>0. Under appropriate
conditions on the cohomology groups H?(B, I,), we can prove an analogue of part (c)

which goes the other direction.

Lemma 4.2. Suppose H* " YB, T,)=0 for 1<p<m, and i*: IT(A)~H"B,T) and
i* TA)>HYB, T,) are isomorphisms. If 2=a’,a, ..., a", ... is a residue sequence starting
at A€I(A) and am€D™ 1, then a?€D? 1 for 0 <p<m. In particular, A€im d under these

circumstances.

Proof. Tf a™€D™1 then o™=08b"+dc™*, where b"€C™2(B, T, and c"*l€
C™YB, T,.4)- It follows that (@™ ! —db™) =d(a” — 8b™) =ddc™* 1 =0. If m=>2 it follows
from the hypotheses that there exists 6™ 1€C™ ¥(B, T, ;) such that a™ 1 —db™=38b"™ 1,
ie., @™ 1=0b""1+dc™ if we set ¢™=b", If m =1, then a' = db! 4-dc? implies idb! =da! —ia®.
Since T(A4)L. C%B, T) is one to one, we have dbl —a’=A. Hence 1€im d, in this case. We

now have that the lemma is true, by induection.

Definition 4.2. Let A be a set and § a collection of subsets of A which is closed under
finite intersection and contains @. Let ¥ be a map which assigns to each B€S a ring
F(B) with identity ey, and let 0 be a map which assigns to each pair (B, )< §, with
B< C, a ring homomorphism 65 : T(C)—~I(B) such that O =e;. We shall call T a stack
of rings with identity on § if (D) =(0), 0 satisfies the transitive law, and 85 p=id, as in
Definition 3.1.

Note that if ¥ is a stack of rings with identity and (B, C)€S§ with B<(C, then we
may consider T(B) as an algebra over the ring ¥(C) under the operation u-v=(05 cu)»
for u€3Z(C), y€T(B). In particular, T(B) is an algebra over T(4) for every BE S, and the
maps O . are T(4)-algebra homomorphisms. If we consider only the additive structure
in T(B) for each B, then T may be considered a stack of T(4)-modules as in Definition 3.1.

Definition 4.3. Let A be a compact convex subset of a topological vector space X
and let T be a stack of rings with identity over the compact convex subsets of 4. Let @
be a T(A4)-module which contains T(B) as a submodule for each BE€ §, in such a way that
the maps 0z . are inclusion maps for B+@. If T, considered as a stack of T(A4)-modules,
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is a convex stack of submodules of @ according to Definition 3.4, then T will be called a
convex stack of rings with identity in Q.

Note that with Q@ =3'(4), the correspondence B—N(B), of Section 2, defines a convex
stack of rings in @. In fact, Definition 4.3 abstracts precisely those properties of the cor-
respondence 4 —9(A4) which are needed to carry out the results of this section.

If T is a stack of rings with identity, there is a canonical way of constructing a se-
quence like (2). This is the Koszal complex, which we describe below. For each BE€S we
set T,(B)=>"®I(B). For m>1, we let T,(B)= A ,T,(B) be the m-fold exterior product
of T,(B) over the ring T(B). This space may be described as follows: Let e be the identity
of Z(B) and for i=1, ..., n set ¢;=(0, ..., e, ..., 0)€T,(B), with e appearing in the ith posi-
tion; the elements ey, ..., ¢, form a basis for T,(B) over I(B). For m >1, we let T, (B) be
the free T(B)-module having as generators the symbols e; A ... Ae; , where we make the
identifications: e; A... Ae, =(—1) ¢, A ... ey if (jy, ..., 4,,) i @ permutation of (iy, ..., ¢,)
with ¢ =1 if the permutation is odd and ¢ =0 if the permutation is even, and e;, A ... Ae;, =0
if the subscripts ¢, ..., %,, are not all distinct. Note that T,,(B) is a free T(B)-module of
dimension (7). In particular, T,,(B)=(0) for m>n and ¥,(B) is isomorphic to I(B); i.e.,
T,(B) is a free T(B)-module with a single generator e, A ... Ae,.

For u€T,(B), »€T,(B) with
m= z ﬂil-""ipeil/\ "’/\eip
e ip
and r= D Hinaig€i A s A €y,

we set uhy= Z Wisoooip Vi i, N oo Ny A s A L. N g,

We then have u Av€Z, (B) and u Av=(—1)"% Ay. Under the multiplication induced
by the wedge product u Av, the space 220 @I, (B) is an associative algebra over IT(B),
where we set To(B)=3(B) and u Av=pu-v for y, vE€T(B).

If (B, C)<= § with B<(, then the map 0 o T(C)—T(B) induces a homomorphism
05,00 200 @®@ZT,(C)>2 50 ®T,(B) which preserves wedge products and carries T,(0) into
Z,(B). In particular, if we consider T,(C) and T,(B) as T(4)-modules, then 5  is a T(4)-
module homomorphism of T,(C) into T,(B). In other words, we may consider T, to be
a stack of T(A)-modules on §.

I uy, ..., p €E(4), then we may define a stack homomorphism d,: T,.,~F, as fol-

lows: For

v= Z Vipedpr 1€ N oo /\eip+161p+l(B)a
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p+1
k+1 a
we setb dyv=" 32 kz1(_ D v cprr 6 A e A& A o Negyyne
flredp+l =

A simple calculation shows that d,_;od,=0 and d,,,.1(v Ap)=(d,¥) Ao+ (—1)» A (d,0)
for v€%,,1(B) and p €T, ,1(B).

LemmaA 4.3. If the equation pvi+...+u,v,=e can be solved for v,, ..., v, €I(B), then
the sequence 0— T, (B)%2=} ... 4 T, (B) % I(B)->0 is exact.

Proof. The hypothesis says that d is onto, since dy(vye; + ... +7,€,) =¥y + ... + g Vp.
Since d, ;d,=0, we need only show that if d,_,0=0 then g=d,4 for some 1€Z(B). We
set A=v Ag, where v=vie,+...+v,e, and v, +...+uv,=e. If d,_,0=0, then d A=
{dovy Nog+v A{d,_jo)=e Ao+ ANO=g.

Thus, if §' is a subcollection of § which is closed under finite intersection, B is a

complex whose elements are in §’, and the equation

/ulvl_’_""i';un’”n:e (l‘l‘lﬁ LR ,unei(A)) (4)

is solvable in T(B) for each B€§’, then we have a sequence Oﬁinﬂ 5 T0
which is exact on §’, and the results of Lemmas 4.1 and 4.2 apply for the complex B.

If T is a convex stack of rings with identity in @, then we define @, ={>;,....5%.....ip
en A ... Neyt vy, .5, €Q}, with the appropriate identifications among the symbols ¢, A ... A e,
We may consider @, to be a T(4)-module containing T,(B) as a submodule for each BE€S§.
Since T, is just the (j)-fold direct sum of copies of the stack T, it follows that T, is a convex
stack of submodules of @, for each p. We may now apply the results of the previous section
and Lemmas 4.1 and 4.2 to obtain specific theorems concerning equation (4) for convex
stacks.

Let T be a convex stack of rings in @, on a compact convex set A< X. If z€X and
H15 o 1 €L(A), we shall say that equation (4) is solvable locally at z if there is a convex
neighborhood U of 2 such that (4) can be solved for v, ..., v, €I(B), where B=U N A.
If T is the stack 3 of Section 2, then Lemma 2.5 says exactly that (4) is solvable locally
at €A if (4) is solvable in N({z}).

THEOREM 4.1. Let T be a convex stack of rings on A and uy, ..., u, €T(A). If (4) 1s.
solvable locally at each point of A, then (4) is solvable in T(A).

Proof. Since 4 is compact, we have that the topology of A4 is the weak topology
generated by the family of linear functionals on X. It follows that if (4) is locally solvable
at each point of 4, then we may choose hyperplanes P, ..., P, such that if B={B,, ..., B}
is the polygonal decomposition of 4 induced by Pi, ..., P;, then (4) is solvable in T(B))
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for i=1, ..., 1. Also, if §' is the collection of all finite intersections of elements of B, then
(4) is solvable in T(B) for every BES'. Hence, by Lemma 4.3, we have a sequence of the
form (2) which is exact on §’, and Lemma 4.1 applies. This gives us a sequence e=a’, ..
av, ..., with a?€C? (B, T,) and da? =da?*1.

By Theorem 3.2, H?(B, T,)=0 for p>0, and i: T ,(4)—~H*B, T,) is an isomorphism
for all q. Hence, the hypothesis of Lemma 4.2 is satisfied for all m. Thus, if a™€ D™1 for
some m, then e€ D! =im d, and (4) is solvable in T(4). However, C" (B, T)=0=D""1
if m>n or m>1+1. This completes the proof.

*9

The above theorem shows that local solvability implies global solvability in T(A4)
for the equation py;v; + ... +u,v, =e. It would be useful to have a similar theorem for the
equation gy +... +u,v, =0 with e4p€3I(4). To prove such a theorem by our present
methods would require constructing a sequence ...—~3,—... $,>Z,—>0 which is exact in
sufficiently small neighborhoods of each point of 4, where T, is a convex stack for p>1
and Ty(B) is the submodule u, T(B) +... +u, ZT(B) of IT(B) for each BES. We have not
been able to do this in the case of the stack 9 if Section 2. A solution to an analogous
problem for the sheaf of germs of analytic functions is presented in IV.F.5. of [2]. This
solution is quite involved and requires a great deal of information concerning the local
structure of the sheaf.

In the next two theorems we will be concerned with the case where (4) is locally

solvable on a subset of 4. Using Theorem 3.3, we obtain a particularly useful result in the
case where (4) is locally solvable on the boundary of an m-simplex S< 4.

THEOREM 4.2. Let T be a convex stack of rings on A, S an m-simplex in A, and
U o> pn €T(A). If pyvy+ ... +upv, =e is locally solvable at each point of &8, then
(a) if n<m the equation p,vy+...+p,v, =e is solvable in I(S);

(b) if n=m there is an element g €Q such that, for each A€ZT(A4), the equation u,v;+...+
Un=A ts solvable in T(8) if and only if Ao =0.

Proof. Let B={B,, ..., B,} be the complex consisting of the (m —1)-faces of S. Since
(4) is locally solvable at each point of @S, Theorem 4.1 implies that (4) is solvable in ‘T(B)
for each compact convex set B which is a subset of some B,;. Hence, by Lemma 4.3, we
have that Lenma 4.1 applies for the complex B. By Theorem 3.3, H?(B, ¥,)=0 for
0<g<m—1 and HYB, T,)=T,(S) for all ¢, provided m >1. Hence, for m>1, Lemma 4.2
also applies.

Let e=a® al, ..., a?, ... be the residue sequence guaranteed by Lemma 4.1. If n<m
then ¥,,=0 and a™=0€ D™"!, Hence, by Lemma 4.2, e€imd and y,v, +...+y,v,=e is
solvable in T(S).
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If n=m>1, then Theorem 3.4 implies that &% : H* (B, T,)—~@, =@ is one to one.
If A€X(A) then 1=1a° Aa!, ..., Aa?, ... is a residue sequence, since § and d are T(4)-module
homomorphisms. It follows from Lemma 4.2 that u,v, +... + y,», =2 is solvable in I(S)
if and only if Aa" € D" 1. However, C""1(B, ¥, ,,) =0,since T, ,; =0,and so D" 1= B"(B,%,).
It follows that p,» +...+p,v, =21 is solvable in. T(S) if and only if 1d4a"=4,4a" =0. The
proof is complete for m > 1 if we set g =d,a".

For m=n=1, we use the last statement of Theorem 3.3. This gives us the diagram

0
\
0-T,(8) — C°B,3,) = @
I K
0~T(S) > C*B,T) =@,
¥
0

with exact rows and exact second column. If 1d,a!' =0 then 1=db, where ib—JAal. Thus,

0 =0, a! is the required element of @ in the case m =n=1.

Definition 4.3. The element ¢ €@, given by Theorem 4.2, will be called the residue of
the system u,, ..., 4, on the n-simplex 8.

An important feature of the residue g is that it is an element of the T(A4)-module Q.
In working with 9(4), @ will be '(4), and so ¢ will be a measure which is locally in our
original subalgebra N of M(G). We will show, in the next section, that ¢ must be a very
smooth absolutely continuous measure. Hence, Theorem 42 gives a strong connection

between spectral properties in J(4) and the existence of absolutely continuous measures
in N.

TuEOREM 4.3. Let < be a convex stack of rings on A. Let B and C be compact semipoly-
gonal subsets of A such that A= BV C. Suppose that u,, ..., p,, A€I(A4) and B and C satisfy
the following conditions:

(1) B s connected and (B>=A;

(2) the equation pyvy + ... +p,v, =e is docally solvable at each point of B;

(3) the equation v, +...+p,v, =4 is solvable in I((E>) for each connected component
Eof BNC:

Then the equation piy v, + ...+ u,v, =2 is solvable in IT(A).
18 — 682904 Acta mathematica. 121. Imprimé le 6 décembre 1968
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Proof. Since B and C are semipolygonal sets, we may choose a polygonal decomposi-
tion 4 of 4 such that 4, A, and A4,,c are polygonal decompositions of B, C, and BN ¢
respectively. As a first step in the proof, we reinterpret conditions (1), (2), and (3) in terms
of the complexes A4z, A¢, and Azqc.

In view of Lemma 3.6, condition (1) is equivalent to

(1) 2% (A)~H" Az T)=2"Az, T) is an isomorphism.

By Lemma 4.3, condition (2) implies that 0 > T, R AN <z, £ T-0is an
exact sequence on §’, where § is the collection of all compact convex subsets of B. In
view of Lemma 4.1, we have that condition (2) implies

(2') there are residue sequences A=15° ...,b% ... and A=a" ...,a” ... with b°€
C? 1(45,%,) and a?€C? ! (Apnc, T,).

If E, .. E, are the components of BNC, then i¢: T, KED)D... 0T (KED)~
H%Aznc, T,) =Z%Agne, Tp) is an isomorphism for each p. Condition (3) implies that
d: TKED)D...0%,(KED)>TKED)D... 0F(E,> has the element Al ®... D4z,
in its image. In other words, the element a!€(%(A4g.c, T,), of the residue sequence
A=a’ al, ..., a%, ..., may be chosen from Z°(Agz.c, I,). Thus dal=0 and we may choose
a?=0. Hence, condition (3) implies

(3') there is a residue sequence 4=a? al, ..., a®, ... for the complex A,z such that
a?=0.

Recall, from the proof of Theorem 3.1, that the sequence

>ac (513 Bg—8
0->T === Tpo e == Tpnc >0

is exact on a subdomain containing 4, A4p, Ac, and Apne, and it induces the exact

sequence
xp®eg Bp-Be
O ind CD(A, C’E) - Cp(AB’ I)@Cw()4'6" C’E) —_— CP(ABGC) i) - 0

This, in turn, induces the exact sequence

‘_Bz'

afDal 8% *
veo > H?(A,T) —— H(Ap, T)® H*(Ac, T) —— H(Asnc, ) it H>" (A4, Z) >....

Since H?(4,Z)=0 for p>0, we have that g5 — % is an isomorphism for p>0. This
implies that Bz — B, carries B?(A45, T)® B"(Ac, T) onto B(Aznc, T) for each p> 0. These
considerations hold for each T, as well as for L. In particular, for p=1 and ¢=2, 3 this
yields the following commutative diagram:
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By-Be
C Az, Ty) ®C (Ac, Ty) —— CM(Azne, Ty) >0
|2ea |a (5)
Bz-Beo
C* (A, T,)® Y Ac, ;) —— Y Asnce Ty) > 0.

In (5) the rows are exact and 8 —P. maps B' (45 T,) ® B (Ac, T,) onto B (Azne, Ty)
for ¢=2, 3.

I A=0° b, ..., b7, ... is the residue sequence for A given by condition (2'), then A =fb°,
Bcb?, ..., Bcb?, ... is a residue sequence for the complex A4, .. However, it follows from
condition (3") and Lemma 4.1 (b), that Bcb2€ DY(Apnc) = B (Apncs To) +im (d: CYAzacs To)
= CY A pncTy)). Diagram (5) then gives us that 42€ DY(A4;). Condition (1) implies that the
hypothesis of Lemma 4.2 is satisfied with m =1. Hence, A€im (d: T,(4)—>T(4)), i.e., the
equation p,v; +... +pu,v, =42 is solvable in I(A4).

We shall apply the above result in Section 6. In this application, ' will be a finite
union of disjoint simplices in 4, and B will be A\ int C.

5. The residue for N(A)

In this section and the next, we return to the study of the algebra R(4) of Section 2.
The results of Section 4, concerning convex stacks of rings, apply with X as defined in
Definition 1.1, 4 a compact convex subset of X, T=N, and @=N'(4). Our purpose in
this section is to determine the form of the residue measure g constructed in Theorem 4.2.

We assume throughout this section that X has dimension n, int 4 contains an #-
simplex S, and Uys -5 i €R(A) have the property that |ui| >£>0 in a neighborhood of
infinity in e“I", and the equation

v+ .. v, =e (4)

is locally solvable at each point of 88.

Theorem 4.2 yields a measure p€NR'(A) such that if 1€RN(4), then the equation
Byt + o, =2 has a solution in N(S) if and only if dp=0. If B={B,, ..., B,} is the
complex consisting of the (n-—1)-faces of 8, then according to the proof of Theorem
4.2, there exists a”€C" (B, N,) =C" (B, N) such that g =Jya™

Let xy, ..., %, be the vertices of S, where {2,} = N4 B;; i.e., , is the vertex opposite
the face B;. We set

&= (@)o..i..mER(N B) = N({z}).
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n

Thus o=0,a"= > (—1) ;.
Note that for each ¢, the Laplace transform g} of g, exists on e*I".

Let C be any closed subset of I'. If £ is a compact convex subset of 4, we let A(E)
be the algebra of functions on ¢*C which are uniform limits of functions bounded and
analytic in a neighborhood of ¢?C. The correspondence E—UA(E) defines a stack ¥ of
rings with identity on A, where for @ + E< F the map 0z, p: Uc(F)—U(E) is the restriction
map f—f|eEC.

The Laplace transform, y—u", defines a homomorphism of (Z) into A(H) for each
Ec A, and, hence, a homomorphism of the stack 0 into the stack ¥ (cf. Section 1 and
Lemma 2.3).

LemMma 5.1. There is a closed set C<T and a set {f} of functions, with f,,€ U(<x;, x,>),
such that U=I"\C has compact closure in T, f,;= —f,;, and 0} =>71(—1)f,; on €“C for

1=1, ..., n.

Proof. Let U be an open set with compact closure in I' such that |ui| >&¢>0 on I\ U.
If we set C=I"\U, then (u})~! is bounded on e*C. Also, y; can be uniformly approximated
on ¢T" by elements of N}. It follows that (u) 1€ Ue(4).

Let e=a®, a, ..., a", ... be the residue sequence appearing in the proof of Theorem 4.2.
This determines a residue sequence 1=(a%", (al)", ..., (@")", ... for the stack U, and the
complex B. However, the equation uif, +... +usf, =1 is trivially solvable in %.(4), since
(u)1€A(A). It follows from Lemma 4.1 (c) that (a”)" =68 +dy, where BEC™ (B, (Us),)
and y€C"}(B, (?Ic)n+1) =(0); i.e., (@")"=0p. If we set f,;=P,...5..0...m forj<i, fiyy=—fy
for <, and f,;=0, then £, €Ac(Ns4s;B;) =Uc((zy; ;) and

oi=(@%0 1.5 .=08)01.. 1. .m

n

i-1 n
=;Zo(~ l)jﬂ(o.....?,....?....,n)_ > (- l)jﬂ(o,....f.....f,....n)= 2(— l)jfij‘

J=i+1 i=0

This completes the proof.

If % is a continuous function with compact support on @, then the convolution prod-
uct o;%h(g)=fh(g—g')do;(g’) defines a continuous function g;%h on G, with Laplace
transform (o, % h)" =g}h". If K*(e%) is integrable with respect to Haar measure on T’
for each fixed x€A4, then (o}h")(e™y) is integrable for each i, and we may recover the

function g% k=7 o —1); %k from the inversion formula. This leads to:
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LeEMMA 5.2. There is a finite reqular Borel measure 1, with compact support.on eI,
such that

ox hig)= fh‘(w) w(g) dv(w)
for every continuous function h, with compact support on G, for which h*(e®y) is y-integrable
for each x€A.

Proof. Let h be continuous, with compact support on @, such that A*(e"y) is y-integrable

for each x€ 4. From the inversion formula (Lemma 1.1), we have

oxhig)= go (—1)'ei*h(g)= éo (— 1)']9? (ey) B (e"y) €O y(g) dy.

By Lemma 5.1, we may write o} =>7 o (~1)/f;, on €*C, for some ¢ =T"\\U, where U is

an open set with compact closure and f;;€ U ({z;, z,>). Hence

0% h(g)= _go( - l)”fve? (€™y) B (e%y) €@ y(g) dy

+ _20 LZO( — 1) f fis(e%y) B (€% p) €9 y(g) d)’] .
i=0 Lj= ¢
The first sum in the above expression represents an integral of A*w)w(g) =h"(e"y)e*@p(g)
with respect to a finite measure 7’ concentrated on the bounded set U7 oe*U. We use the

fact that f,;= —f,, in the expression in brackets above and simplify, obtaining
o * h(g) = fk (@) w(g) d7'(w)

£33 (=10 Uyl 1) 0 = [y ) () €591 yl0) dy.

i=0 j<i

It suffices to prove that each of the integrals in the double sum can be reduced to the
proper form. To do this, we fix ¢ and § and set f(w) =f;;(w) 2" (®w) w(g). Thus, the inte-
gral we are interested in is just {.[f(e®y) — f(e7y)] dy. Furthermore, f€ e (<x;, x,>).

We may assume without loss of generality that ;=0 and set z;=y. We then have

f€Ac(<0, y>) and

L Hey) — Hey) dy = fc [He'y) = f(y)l dy-
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To finish the proof, we shall show that there is a measure 7" on &1, with compacet
support, such that this integral is [ f(w) d7"(w).

We choose an (n— 1)-dimensional subspace X, of X such that X = (y) + X, and set
I';=¢*. We choose a set F<I' such that F contains exactly one element from each
coset of Iy=e'* in I". We set da(y’) = 3,er doy(y + '), where o, is Haar measure on I';.

If ¢, is properly normalized, we can write
f )~ fley)dy= f f [Hey') — f(e vy )] dt da(y'),
c FI Ky'

where K, ={t€(—m,m): é¥y’ €C} and 2m is the period of the map t—>e" (m= oo if
t—e™ is one to one). Note that since '™\ C is bounded, (—m, m)\ K, is bounded for
each y’ and K, = (—m, m) except for 9" in a bounded subset J of FI';.
If o' ¢ J then
1 im 1+im
[ ver—geronma=1 [ femy= "oy dao,

Kyr —im 1-im

since t—>e™ has period 2m and f€U(<0,y)) implies 2z~ f(e*y’) is bounded and holo-

morphic for Im z € (—m, m) and Re z€ (0, 1). Hence, we can write
[v—semay=[ [ wemy)-pesorynaaoty).
c J K’y'

If m< oo then K, is bounded and we are through. If m= oo then K, = (~ o0, a(y’)]U
L, U [b(y"), o) for numbers a(y’), b(y'), and a bounded set L,.. Note that the Cauchy
integral formula yields

r [f(eﬂﬂy’)—f(e<l+“>"y')]dt=lU fe*y") dz—f f(ez”y')dz]

by ? th(y’) 1+ib(y")
1 fiHeoe
7
== fle*y') dz,
v JibeyH

and a similar formula for the integral over ( — co, a(y’)]. Putting all of this together, one.
can see that we have reduced { [f(y)— f(e“y)1dy to an integral of f(w) with respect to a

measure 7" concentrated on a compact subset of ¢*?’I". This completes the proof.

LrmMa 5.3. The residue measure g is absolutely continuous, with a Radon—Nikodym
derivative h, given by

he(9)= fw(g) dr(w),

for some finite measure T with compact support in €T,
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Proof. We choose a net {h,} of continuous functions, with compact support on @,
such that: (1) for each «, h;(e%) is an integrable function of y for each x€4; and (2) {h;}
converges uniformly to 1 on each compact subset of ¢*I'. In fact, h, =y, %, defines
such a net-if {U,} is a neighborhood basis at 0 in @ with U, compact for each a. Let 7
be the measure of Lemma 5.2. We have,

0% halg)= f k() oolg) dr(@) — f w(g) dr(),

since 7 has compact support. It follows that for each continuous £ with compact support
on G, [k(g)e*h.(g)dg— [k(g)he(g)dg, where hy(g) = fw(g)dr(w). From this it follows that
do(g) =he(g)dyg.

TurEorREM 5.1. If A€N(A) and the equation uif,+ ... +us fo=2" has a solution in the
class of functions holomorphic in a neighborhood of ¢°T", then Ag =0.
Proof. It follows from Lemma 5.3 that 1xk(g)=fA"(w)w(g)dr(w). By Lemma 2.8,

each of the functions f; is the uniform limit on compact subsets of T’ of a sequence
{v;}21, with v,;EN,. If we set A;=u,v);+...+u,v,,;, then 3j—~1" on compact subsets of
¢’T. Furthermore, we have 1;-9=0 by Theorem 4.2. Hence,

A% holg) = fl“(w) w(y)dz(g) = li;nfl?(w) w(g) d=(g) = 1i;n ;% ho(g) = 0.

Thus 4-¢ =0.

Since we have agsumed that u] is bounded away from zero in a neighborhood of infinity
on ¢“T", the set V of common zeros of the functions u3, ..., uy is a compact subset of e“I".
Under the assumptions of this section, ¥ N e?T =@ and so V N (¢t 5T') is a compact subset
of ¢™ ST". However, V N (¢™ °T") is also an analytic variety. By IIL.B.17. of [2], ¥ n (¢’T")
must consist of a finite set of points wy, ..., 0.

THEOREM 5.2. Let w,, ..., w;, be the common zeros of uj, ..., un in €T, as above. If
Xy, oo Ty, 48 @ basis for X, then there are polynomials Py, ..., Py, in 2y, ..., *,, such that

13
he(9)= 2 Pi(9) o(9).
Proof. If u€N(A), consider the function ¢(z) =p"(eZw) for fixed x€X, w€Q. We have

’ d —_ —
#0= [ £ @ duto) = - [ 00 g0 duto).

Hence, ¢'(0)= | w(—g) (—g) du(g) = u % h(0), where k(g) = z(g) (g)-
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‘We choose a basis z,, ..., z, for X, and for each m and each ¢ we let F,, ; be the linear
span of the functions zl, ..., *w; for j;+...+j, <m. We may consider each A€F, ; to
be ‘an element of N(A)* if we set h(u) = Jh(—g)dulg) =pxh(0) for u€R(A). Likewise, k,
can be considered an element of N(A)* if we set hy(u) =u % k,(0). We shall show that there
exists an m such that hy(u)=0, whenever u€NR(4) and h(u)=0 for each A€, Fp ;.
From this and the Hahn-Banach Theorem it will follow that h, €571 F, ;.

Let O denote the ring of germs of functions holomorphic in a neighborhood of zero
in O". The ring of germs of functions holomorphic in a neighborhood of w; in {2 is isomor-
phic to O through the map f—>¢l, where (p}(zi, vy 2g) = fleamt ot onngy s We let J,, be the
ideal in O consisting of functions all of whose derivatives of order <m are zero at zero.
We fix ¢ and let J be the ideal in O generated by the functions g, ..., ¢.". Since ui, ..., uy
have an isolated common zero at w,, the ideal J is contained in a unique prime ideal
of O; in fact, this unique prime ideal is the maximal ideal J, = {f€ O : f(0)=0}. It follows
that J,,=(J)"< J for some m (cf. [2], Ch. IT). This implies that the equation uif; +... +
psf. =4 is solvable in A(U), for some neighborhood U of w,, provided (8/dz} ... 82y
AM(eam T tamtngy Y — (0 whenever §; +...+j, <m. By the result of the first paragraph, this
last condition is equivalent to A(A) =A% h(0)=0 for all A€ F,, ;. It follows that if k(1) =0
for every h€>% 3, ; then the equation pif,+...+unf,=2" has a holomorphic solution
in a neighborhood of w; for each . Since w,, ..., w, are the only common zeros of f;, ..., f,
in €T, we conclude that u}f, +... +up f, = A" has a holomorphic solution in a neighborhood
of each point of ¢°T".

Since Scint A, we may choose an open convex set V such that Sc V< A. H
AEN(A) and A(A)=0 for every h€>F., F, , then we may choose V in such a way that
WAfi+ ...+ ufs = A* has a holomorphic solution in a neighborhood of each point of ¢'T".
By Lemma 1.6, the equation ,u‘fl} ...+ pinf,=2" has a global holomorphic solution in
¢'T. By Theorem 5.1, it follows that A- 0=0. Hence, A(h)=0 for every h€3ioFn,
implies A(h,) = A% h,(0) =0. This shows that h, € > F, , and completes the proof.

We should point out that the blanket assumption that |ui| >&>0 in a neighborhood
of infinity, which was used throughout this section, is probably not necessary and should
be removed. Also, we have assumed that dim S=dim X. It should be possible to say

something about a residue measure ¢ for a simplex § with dim §<dim X.

6. Ideal theory in %A(A)
We are now in a position to generalize the facts F2, F3 of Section 1. In the process,
we obtain a fairly surprising connection between spectral theory in R(A) and the smooth-

ness of the measures in N.
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Our first result is a characterization, analogous to F2, of the maximal ideal space of
the Banach algebra 9¢(4). We seek a compact Hausdorff space A(4) and a homomorphism
u—=u’ of N(4) into C(A(4)) with the following properties: (1) e'=1; (2) R(A)' ={u" :
HEN(A)} separates points in A(4); (3) every maximal ideal of (A4) has the form {u €N(4):
w'(m)=0} for some m€A(A). In the presence of condition (1), condition (3) is equivalent
to the following: (3") If py, ..., 4, €N(4) and the functions uj, ..., u do not vanish simul-
taneously at any point of A(4), then the equation p,v, +...+u,v, =e has a solution in
RN(4).

For the algebra N =9({0}) let the maximal ideal space be A and the Gelfand trans-
form be y—>u’. For u€N(A) and z€A4 we set dT_,u=e *dy. By Lemma 24, T_, is a
homomorphism of N(4) into N, and for fixed u€(A4) the map x—T_,u is continuous
from A4 into N. It follows that if we set u (x, m) =(T'_,u)"(m) for x€A, m€A, and u€N(4),
then u—u~ is a homomorphism of (4) into C(4 x A). Since T'_,e=e, condition (1) is
satisfied for u—u”. We shall show that (3') is also satisfied.

I py, o €R(4) and uy, ..., u, do not vanish simultaneously on 4 x A, then for
each €4 the functions (7T_,u,)", ..., (T_ u,)" do not vanish simultaneously on A. Since
A is the maximal ideal space of N, the equation (T_,u,)v, +... +(T_,u,)?, —e has a solu-
tion in N. If we apply 7', to such a solution, we find that u,», + ... +u,v, =e has a solution
in N({x}) for each 2€A4. By Lemma 2.5, this equation can be solved locally on 4, and
by Theorem 4.1, it can be solved in R(4). Hence, (3') is satisfied for the map u—pu".

Unfortunately, condition (2) is not generally satisfied for y—u . For some mE€A,
z,y€A it may be that u (x, m)=u (y, m) for all u€N(A). However, if m,+m, then
(x, m;) and (z, m,) can be separated for each x€A; this follows from the fact that T'_,
carries (4) onto a dense subalgebra of N.

We set (z, my)~(y, my) if u (x, m)=u (x, m,) for all u€N(4) and let A(4) be the
factor space of 4 x A modulo the equivalence relation ~. Let a: A x A—-A(4) be the
natural map. If we set u’((z, m))=p (x, m), then A(4) and p—u" satisfy conditions 1-3.
This gives us the following theorem:

TarEorREM 6.1. If A(A) is the maximal ideal space of N(A) and pu—u" is the Gelfand
transform, then there is a continuous function o from A x A onto A(A) such that p*(c(x, m)) =
(T_ ) (m) for w€N(A), where (T_,u)" is the Gelfand transform of T _,u as an element
of N. The function o is one to one on {x} x A for each x€A.

The Fourier transform p—u*, is a homomorphism of N into C(I'). It follows that I’
may be continuously embedded in A in such a way that " is the restriction to I' of the

Gelfand transform g". In the case where N =L,, the space of absolutely continuous meas-

19 — 682904 Acta mathematica. 121. Imprimé le 6 décembre 1968
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sures with the identity adjoined, we have that this embedding is just the embedding of
I' in its one-point compactification if I" is noncompact. If I" is compact then I'=A in this
case. We let I denote the one-point compactification, I' U {oo}, of I" if I" is noncompact
and set IV =T if T is compact.

CorOLLARY. If the maximal ideal space of N is IV, then the maximal ideal space of
N(A) is (eT")', where (eAT") is eI if " is compact and the one-point compactification of T’
otherwise. The Gelfand transform u for u€N(A) is the natural extension of the Laplace

transform u* to (e*T)'.

Proof. If we set afx,y)=ey for €A, y€I' and o(w, c0)=oc0 when IV=T"U {oo},
then « is a continuous map of 4 xI" onto (eT")’. Also, u*(a(z, ) =p e™y) =(T_.pu)"(y)
for €A, y€T". Since N(A4)" separates points in €T, the corollary will follow from Theorem
6.1 if we can show that y*(oc)=lim, ., (7_,u)(y) exists and is independent of x (in case
I' is not compact). However, since IV is the maximal ideal space of N, we have u*(c0)=
lim,_, ,u*(y) exists for each u€N. This implies that each y€N has the form pu—py, +ze,
where y, is a continuous measure and lim,,., ui(y)=0. It follows that each x€R(4)also
has this form and lim,., (7_.u)"(y)=lim,. . (T'_. )" +2=2 for every x€A. This com-
pletes the proof.

Unfortunately for the significance of the above result, the case of greatest interest is
the case where N =L,, and in this case we may trivially prove that A(4) =(e3F)' by using
the fact that the adjoint space of £,(4) is a space of measurable functions on G.

More surprising results may be obtained by applying the results of Section 5.

THEOREM 6.2. Let N be any subalgebra of M(Q) satisfying N1, N2, and N3 of Sec-
tion 2. Let the dimension of X be n. If, for some n-simplex S< X and some collection py, ..., thy €
N(S), the equation p, vy + ... +p,v, =e is solvable in N({x}) for each x€S but is not solvable
in N(S), and if |u1| is bounded away from zero in a neighborhood of oo in €T, then L= N.

Proof. The results of Section 5 apply. Hence, there is an absolutely continuous measure
0EN'(4) with the property that the equation ;v +...+p,v,=2 is solvable in N(4) if
and only if 1-p=0. Since, by hypothesis, the equation u,», +... +u,v, =€ is not solvable
in 9(4), we have e-g=p =+0. Since the restriction of p to any compact subset of G is an
element of N, it follows that L, N N #(0). Conditions N,, N,, and N, now imply that
L,= N (cf. [9]). '

CoROLLARY. If the maximal ideal space of N is I, then L,< N.

Proof. We chose measures y,, ..., u, €N, such that uj, ..., u; have a nonempty discrete

set of common zeros in e”T for some neighborhood U in X. We choose y,; such that |u;]
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is bounded away from zero in a neighborhood of infinity in e'I'. That we can so choose
these measures follows from Lemma 2.8. and the fact that Q is an n-dimensional complex
manifold. We now choose a simplex §< U such that e’T" contains a common zero of u3, ..., 5,
but ¢%T" does not. The corollary now follows from Theorem 6.2 and the corollary to Theo-
rem 6.1.

If a subalgebra N of M (@), without identity, satisfies N1 and N2 and has I as its maxi-
mal ideal space {(e.g.: N =L) then we may adjoin the identity to obtain an algebra N, to
which the above corollary applies. We conclude that L= N in this case. In combination
with results of [9], this leads to a complete characterization of all such algebras N. The
result is this: For any l.c.a. group @, a closed sulabgebra N of M(@®), satisfying N1, has

I" as its maximal ideal space if and only if L& N< VL, where VL is the intersection of all
maximal ideals of M(G) containing L. A discussion of this result and its implications for
the structure theory of M(G&) will be found in [10].

Unfortunately, one aspect of Theorem 6.2 is this: It shows that the situation described
in Section 5 can lead to only the trivial residue measure g =0, unless L.= N. This suggests
that, once Theorem 6.2 has been proved, the residue theory has further significance only
for the algebra L,. Thus, we shall restrict attention to this algebra from here on.

If f is a measurable function on @ for which fp,' is bounded (cf. Definition 2.2),
then f is u-integrable for every u€%,(4) and f may be considered an element of £,(4)*
if we set f(u) = [f(—g)du(g). In fact, every element of ,(A)* clearly has this form. Hence,
we may identify {,(A4)* with the space F°(A4) of all equivalence classes of measurable

1

functions f for which fp,' is bounded. Two functions f, g are equivalent in this space if

f(0)=g(0) and f=g almost everywhere with respect to Haar measure.

Definition 6.1. (a) A function f€ 2*(A4) will be called exponential if f(g) = P(g) w(g)
for some w€e’l" and some polynomial P(g) = Jj, i .. i jn<m@....ind (g), ..., 2" (g) with
Zys oo 2, € XL

(b) If J is an ideal in Q,(4), we set J*={f€2°(4): f(u) =0 for every u€J}.

The correspondence J—J* is one to one and onto from the class of closed ideals of
L(4) to the class of weak-* closed, translation invariant linear subspaces of {3°(4).
Since J* is translation invariant, we have that f€J* if and only if f,(u)= (g —g")du(g’) =
u*f(g)=0 for each u€J and g€@, where f,(g')=f(g' —g). The obvious analogue of the
spectral synthesis problem for LY{(G) (cf. [6], Ch. 7) is the following: Under what conditions
on an ideal J< &,(4) is it true that J* is the weak-* closed linear span of its exponential
elements? Note that F3 gives a partial result on this problem in the case G = R". We now

prove this result in our more general situation.
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By the corollary to Theorem 6.1, the maximal ideal space of £,(4) may be identified
with (eT")’, where for u€2,(4) the Gelfand transform y' is the Laplace transform u*
extended to (e*T') =e?T'U {co} ((¢*T") =e4I" if I' is compact). If J is an ideal of ,(4),
then we set (J) = {w € (e*T") : u*(w) =0 for all y€J}.

LeEMMmA 6.1. If the dimension of X is n, and J is an ideal of L.(A) such that h(J)N
(e?TY =@, then

(1) h(J) is a finite set {w,, ..., w,}; and

(2) if K is any compact subset of int A, then there exist n elements uy, ..., 4, of J such
that there are only finitely many common zeros of ui, ..., un n €“I" and ui does not vamnish
at infinity.

Proof. Since (¢%“T")" is compact in (e*I')’,
common zero of ¥, ..., v lies on (¢?“I"). However, the set of common zeros of 1, ..., v},

i then a compact subvariety of ¢™*I". It follows that this set is finite (cf. [2], II1.B.17).

To prove part (2), we choose any measure u, €J such that ui does not vanish at

we can choose vy, ..., 7, €J such that no

infinity. If V ={w€e™I":u*(w)=0}, then V is an analytic space of pure dimension % —1
(cf. [2], Ch. V). It is a direct application of V.D.4 of [2], that we can choose #,, ..., ¥, from
the closure of J such that v, ..., ¥} have a discrete set of common zeros on V. Hence, if
K is a compact subset of int 4, we may choose y,, ..., 4, €J close enough to »,, ..., », so
that wy, ..., u, have a finite set of common zeros on eX[". This follows from II1.B.17 of
[2] and the fact that ¢T" N V is compact.

TrEOREM 6.3. If J is an ideal of L,(A) such that h(J) N (e?T") =D, then J is closed
and J' is finite dimensional. Furthermore, J* is the linear span of exponential elements of
the form P(g)w(g), with w €h(J) and Pw €JL. In other words, there are finitely many exponen-
tial elements Py, ..., Prw, €JL such that v, €R(J) for each i and J ={A€ L (4) : 2*(P;w;)=0
fori=1, .., k}.

Proof. Note that if w€e“l", then {Pw: P is a polynomial in z,, ..., z, of degree <m}
is a finite dimensional translation invariant subspace of £°(A4). It follows that if u€ ,(4),
w€eT', and P is any polynomial in z,, ..., ,, then u*(Pw)=P,w for some other poly-
nomial P,. Hence, if h=>P,w,€L7(4) with w;+w; for i+j and puxh=0, then
px(P,w,;)=0 for each ¢. Thus, if J is an ideal and h=2P,w,€J* with ;= w; for i=j,
then P,w,€J* for each :.

If J contains an ideal J,, and if the conclusions of the theorem hold for J;, then they
also hold for J. In fact, if J, is closed and JY4 is finite dimensional, then £,(4)/J, is finite

dimensional and. contains J/J; as an ideal. It follows that J is closed and J* is finite
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dimensional. Since J*-<J4, we have that J* is generated by exponential elements of J{.
However, the first paragraph then implies that J* is generated by exponential elements
of J*. Necessarily these exponential elements have the form Pw, with w €h(J).

By Lemma 6.1, h(J)={w,, ..., w,} — & finite subset of ¢™* 4. We choose a compact
convex set. K <int A such that &(J)< e™ £T". In accordance with Lemma 6.1. (b), we choose
Uy .o, 4 €J such that pi(cc) =40 and uj, ..., un have a finite set of common zeros in €*T".
This implies that the points w,, ..., w, are isolated common zeros of the set {p1, es pin }-
Hence, we may choose a pairwise disjoint collection 8§, ..., S, of n-simplices contained
in 4, such that the common zeros of 3, ..., uj, lie in U}_1(e5T). Let J; be the ideal of £,(4)
generated by uy, ..., u,. We have J,=J, and A€J, if and only if 1€%,(A4) and the equa-
tion p,v; +...+u,v, =2 has a solution in €,(4).

Consider the case where n>1. This implies that the set B=A\ U}.; (int S;) is con-
nected. Note that the functions ui, ..., u» have no common zeros on (¢®I')'. Applying
Theorem 4.3 with C=J;_; 8, and B as above, we obtain: the equation ylvi+...+unvn
has a solution in ¥,(4) if and only if it has a solution in £,(8;) for each ¢. By Theorem 4.2
and Theorem 5.2, there are exponential elements P w;, ..., Pywy, such that pyv,+...+
Ha¥n =21 is solvable in £(8,) for each i whenever Ax(P;w;)=0 for each j. Hence, if
Jy={A€L,(A): 2% (P,;w;)=0 for j=1, .., k}, then J,cJ,cJ, J, is closed, and J} is
generated by exponential elements of the form Pw with w €h(J,)=A(J;). In view of our
previous remark, the proof is complete in the case n>1. In the case n=1, 4 itself is a
1-simplex (an interval) and we can apply Theorem 4.2 directly without using Theorem 4.3.

The above result is not very surprising and seems small reward for all of the effort
of the previous sections. We would be very interested in a simple proof of this result. It
may be possible to obtain such a proof directly from the theory of several complex var-
iables, without resorting to the special sheaf theoretic constructions of Sections 3 and 4.

The study of ideals J of £,(4), for which A(J) N (¢?4T")' + @, would seem to be a far
more difficult task.

We conclude with the following remark concerning Theorem 6.2: In the case of a
general algebra N < M((), satisfying N,, N,, and N,, it may be possible to find further
connections between spectral properties of 9(4) and measure theoretic properties of N,

by investigating the situation described by Theorem 4.2 in the case n>m.
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