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1. Introduction 

Given a probabil i ty measure /z on a countably infinite Abelian group 1~ we pro- 

pose to s tudy the properties of the potential kernels 

~#~n~(x) and ~[#~n~(0)--#(n~(X)], xEI~. (1.1) 
n =0 n=O 

Here 0 is the identi ty element of the (additive) group g~, #~0> is the probabili ty mea- 

sure all of whose mass is concentrated at  O, #~1~=# and #~> is the n-fold convolution 

of # with itself. 

Roughly speaking, the purpose of this paper  is to imitate and extend basic results 

in [10] (Chapter 7 and parts  of earlier chapters). There the at tention was strictly 

confined to the groups (~ =Z~, the groups of d-dimensional integers, or lattice points 

in Euclidean space of dimension d. Thus the basic ideas, methods, and notation are 

exactly those in [10] when possible--and most of the difficulties which arise because 

(~ is more complicated than Z~ can be overcome by the use of certain measures in- 

duced by  the given measure tt on cyclic subgroups of (~. 

I t  will be assumed throughout that  the measure /x is aperiodic ,  i.e. that  the sup- 

port of tt genera tes  all of (~. (Note however that  (~ must  be infinite. When @ is 

finite everything we do is either trivial or well known but  the results are by  no 

means the same.) Given /z we define on (~ the Markov process (random walk) X~ 

with transition function 

P z  IX1  = Y] = P ( x ,  y)  = la(y - x), 

P~ [X~ = y] = P~ (x, y) =/x (n) (y - x), x, y E (~, n 1> 0. 

Here~Px[  �9 ] is the probabili ty measure induced by  the joint probabilities for finite 

paths starting at  X 0 = x, and the associated expectation will be denoted by E~ [-] .  
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We shall have occasion to study real valued functions on (~, such as the po- 

tential kernels defined below. In studying their asymptotic behavior it will be con- 

venient to write 
lim /(x)=L or lim /(x)= +o~ 

I x l - ~  I x l ~  oo 

with the following interpretation: take an arbitrary one to one mapping ~0: (~-->po- 

sitive integers, and let 
lira / (x)= lira/[~-12(n)]. 

I x l - . ~  n-~Gr 

This limit is independent of r Similarly, given a sequence (xn} c (~ ,  we shall write 

I xnl--> co when the sequence of integers ~(x.) tends to infinity with n. 

We shall call the random walk (or the measure /~) transient if 

oo oo  

G(x, y) =~o ~ Pn (x, y) =~0~ ~u(n) (y - x) < ~ ,  x, y e (~ (1.2) 

and recurrent (or persistent) otherwise. I t  is well known that  in the recurrent case 

the series defining the kernel G(x, y) diverges for all x, y. I t  is then that  the second 

kernel in (1.1) becomes an object of interest---to prove ist existence is actually our 

primary goal, and when it does exist it will be denoted by 

A(x,y)= ~ [Pn(O,O)-Pn(x,y)], x, y e~ .  (1.3) 
n=O 

Clearly A(x,y)=A(x-y,O) and G(x,y)=G(x-y,O). We therefore also use the 

notation 
a(x)=A(x,O), g(x)=G(x,O), xE(~. (1.4) 

Finally, to give the probability interpretation of the distinction between transient and 

recurrent random walks, 

Px[X, =y for infinitely many values of n] = 1 (1.5) 

if /~ is recurrent and 0 if it is transient. The usual proof due to Chung and Fuchs 

[4] for (~ =Za (and also for the continuous group R~) requires no modification. 

There is another, more recent ([10], p. 85) form of the classification of ~ into 

the recurrent and transient type. I t  states that  /~ is transient if and only if the real 

part  of [1- /2]  -1 is integrable on F, where /2 is the Fourier transform of ~u and F the 

(compact) character group of (~. This theorem is proved in the next  section (w 2) 

because it yields to somewhat easier methods than those in w 3 and 4. Moreover, it 
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furnishes a striking example of our inability to extend the theory to locally compact 

Abelian groups. The following conjecture is still open even in the case when (~ = R, 

the group of real numbers: 

Conjecture: Let  ~ be an infinite locally compact Abelian group, ju a probabil i ty 

measure on (~ whose support is not contained in a closed subgroup, /2 the Fourier 

transform of ~u and F the character group of (~. Then 

oo 

rt=0 

for some neighborhood U of the origin in (~ if and only if 

f v  1 d~< oo, ICe 1--/2(a) 

for some neighborhood V of the origin in F, with d2 Haar  measure on F. 

In  w 3 we establish the existence of the potential kernel a(x)=A(x, 0), x E~ ,  for 

arbi t rary ~u and arbi t rary (~ (Theorem 3.2). Jus t  as in [10] where (~ = Z  a, this theo- 

rem is closely related to the asymptotic behavior of hitting probabilities of finite sets 

(treated in Theorem 3,1), and to the asymptotic behavior of a(x+y)-a(x)as J xJ--> ~ .  

I t  is shown (in Theorem 3.3) that  a(x+y)-a(x) tends to zero as ix I--> ~ unless 

(~ has an infinite cyclic subgroup ~ such tha t  (~ /~  is finite. And even then the 

limit is zero unless the random walk, observed only when it visits ~,  has mean zero 

and finite variance. Conversely, if ~ is an infinite cyclic subgroup of ~ and if the 

random walk, observed only when it is in ~,  has mean 0 and finite variance, then 

(~/~  must  be a finite group (Lemma 3.4). In  this case we obtain results analogous 

to T 29.1 in [10] where it is shown that  for random walk on Z I, with mean zero and 

variance a s <  c~, a(x§ tends to +_y/a ~ as x ->  • c~. 

In  w 4 we first establish properties of the potential kernels A(x,y) and G(x, y), 
which are valid for every measure /~, and which are independent of the structure of 

the group (~. These properties (Theorem 4.1 (a)-4.1 (b)) may  be regarded as a general 

form of the renewal theorem, as they concern the asymptotic  behavior of a(x) and 

g(x). In  the special case when ( ~ = Z  1 Theorem 4.1 contains one new result, to the 

effect tha t  a(x) has limits as x--> + oo and as x - - > -  oo (which need not both be in- 

finite !). In  Theorem 4.2 the asymptotic  behavior of g(x) and of a(x) is related to the 

algebraic structure of (~ by  showing that  g(x) and a(x) can fail to tend to zero, re- 

spectively oo, as Ix[--> ~ ,  only when (~ has an infinite cyclic subgroup ~ such that  

(~//~ is finite. Theorems 4.3 and 4.4 are devoted to transient random walk on groups 

1 6 -  652933 Acta mathematica 114. I m p r i m ~  le 15 octobre  1965, 
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of the above type, giving necessary and sufficient conditions for g(x) to have a non 

zero limit. The analogous problem for recurrent random walk is open even when 

= Z r Finally, Theorem 4.5, combined with Theorem 3.3 yields a complete descrip- 

tion of the possible boundaries of a recurrent random walk on (~, as defined by 

Kemeny and Snell [8]. These results are just what  might have been conjectured in 

view of the known facts ([10], w 31)) when (~=Za.  

2 .  T h e  c l a s s i f i c a t i o n  o f  r a n d o m  w a l k  

Given a probabil i ty measure /x on a eountably infinite Abelian group (~, such 

tha t  the support of # generates (~, we let 

/2(~) = Y (x, ~) g(x). 2 e r,  

denote the Fourier transform of p, in the notation of Rudin [9]. 

T H E O R E M  2.1.  

n_o/X (n) (0)< oo i/and only i/ Re 1-/2(2)  - -  d), < co .  

Proo/. The Haar  measure d2 on F is normalized so tha t  the Fourier inversion 

theorem holds. Therefore 

For 0 ~ < t < l ,  

/~(n)(x) ; f r  (x, 2) [/2(;t)]" d2, x e $ .  

~ t n ~ t ( n ) ( O ) = f r l d 2 = f r R e  1 d2. 
. - o  1 - t / 2 ( ) . )  1 - t / 2 ( 2 )  

Letting t / 1 ,  and using the lemma of Fatou, 

~ lx(n)(O)=lim f Re l___~ d2 >~ f r  lim Re. 1 1 d2= f rRe  l__~ d2. 
nffi0 t ; t l d F  1 - t/2(~t) t ~1 - $/2(2) 1 - / 2 ( 2 )  

The applicability of Fatou 's  lemma above rested on the fact tha t  

Re - - -  
1 _ l - t  Re 

1-t~ II-t~l ~>~ 

Therefore we have proved the easy par t  of Theorem 2.1, to the effect tha t  the in- 

tegral over F of Re [1 _/2]-1 is finite when # is transient. 
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To go the other way we shall now assume that  ~u is recurrent, so that  

~ o  ~(") (0) = cx:)~ 

We define the integrals 

f r  1 xE(~, ~(x)  = 2 [1 - Re(x ,  4)] R e  ~14-----)] - d4, 

and the sums 

S(x) = ~ [2/~ (n) (0) "~(")  (x) - ~ ( " )  ( - x)], 
n=O 

and shall proceed to prove that  

x E $ ,  

241 

where ZT= is the number of visits of the process X .  to the point x before the first 

visit to zero (counting the visit at  time 0). 

I t  is easy to see that  (i) (ii), (iii) will complete the proof of Theorem 2.1. For if 

Re [1-/2(4)] -1 were integrable on F then we would have from (i) 

f r  1 I(x) ~< 4 Re ~ d4 < co. 

On the other hand, I(x)=S(x) according to (ii) and the probabilistic representation 

in (iii) yields 
oo  

Um s(x) - - .5  o~(",(0) = + ~ Ix1-~r162 = 

(This last fact depends on an easy calculation, given in [10], page 86. Note however 

that  the infinite order of the group (~ is here used in an essential way. However, 

when (~ is finite Theorem 2.1 is obviously true.) 

Proo/ o/ (i). Since # is recurrent we can select, for every x E (~, a positive in- 

teger n= n(x) such that  #(n)(x)= c>  0. For  this particular value of n, 

] - R e  (p(4))  ~ = Z [1 - R e  (y, 4)]/~<" (y) t> c [1 - R e  (x, 4)],  
yE(~ 

S(x) = E=[N=], for x E @, x ~= 0, 

(i) the integrand in I(x) is integrable on F for every x E(~; 

(ii) the series S(x) converges (not necessarily absolutely) for each x E(~, and its 

sum is I(x); 

(iii) S(x) also possesses the representation 
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and therefore 

1-Re(x,~) 1-Re(x,~) l l+D + +~a,,_,l<nl-Re(x,~)<_n< 
=ii- ( -iVI ' 

Therefore the integrand defining I(x) is integrable, which proves (i). 

Proo/o/ (ii). Using the Fourier inversion theorem, the partial sums of S(x) are 

[ ~ . l  `k> (0)  - -  ~tl <k, (X) - -  ft(k) ( - -  X) ]  = 2 ~  1 - -  R e  (X, ~)  [ l  - -  ( # ( j ~ ) )n+ i ]  d~ .  
k:o Jr 1 -#(D 

We saw in the proof of (i) that  Ill-Re (x,t)]/{1-t~(i)]l is a bounded function 

on F for each x E(~. Therefore the dominated convergence theorem will complete the 

proof of (ii) provided that  the sequence 1 - / 2  n+l converges to one almost everywhere 

on r .  We shall now show that  indeed 1 - / 2  n+l converges to one except possibly at  

a finite number of points. We let m denote the greatest common divisor of the po- 

sitive integers k such that  #(k) (0) > 0, and consider the measure u = / t  (m). I t  will clearly 

suffice to prove that  ~n(2)-->0 except a t  finitely many points of F. We call ~ the 

subgroup of ~ generated by the support of v, and A = [~t 14 E F, ~(2)= 1] the so called 

annihilator of ~. Observe that  A is exactly that  subset of F where i n does not tend 

to zero as n--~oo. (This last set consists of the points where 1~(2)]=1 but  because 

u(n)(0)>0 for all sufficiently large n we know that  1~(2)1 = 1 if and only if ~(2)---1.) 

Thus it  only remains to prove that  A is a finite set, and for this purpose we invoke 

the Pontryagin duality theorem in the form (Rudin [9], p. 35) which asserts tha t  A 

is homeomorphically isomorphic to the character group of ~1/~. Thus A is finite if 

and only if ~ / ~  is finite. But  ~ / ~  is finite, (in fact it is a group of order m)since 

decomposes into the cosets ~ -t- gk, k = 0, ..., m - 1, where ~ + gk is the set of points 

x of (~ such that  / in(x)>0 only when n----It (mod m). (For a detailed proof of this 

assertion, see [10], p. 43.) 

Proo/ o/ (iii). We take an arbitrary point b=t=0 in I~l and  proceed to develop 

the elementary potential theory associated with the hitting probabilities of the two 

point  set B = {0, b}. Actually the relevant parts of the theory of random walk .on 

= Z~ in [10], Chapter 3, apply to an arbitrary countable group I~l without modifica- 

tion, and so it will suffice to outline the theory. One defines 

Ha(x, y)= Px [the first visit to B occurs at the point y] when x E ( ~ -  B, y E B, 

H ~ ( x , y ) = O ( x , y ) = l  for x = y ,  0 for x~=y, when x, yEB.  
(2.1) 
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1-Is(x, y ) = P ~  [the first return to B occurs at  the point y] (2.2) 

when x, y E B ,  just  as in definition D 10.1 of [1O]. I t  is then easily shown (as in P 

11.3 of [10]) that  for all xE(~ 

Pn +1 (x, t) H s  (t, 0) = HB (x, 0) -- ~ an (x -- t) [ 1 ~  (t, O) -- ~ (t, 0)] 
re@ tGB 

= Ha (x, O) + [as (x) - a,~ (x - b)] 1 ~  (b, 0), (2.3) 

n 

where an (x) = ~ [~u (k) (0) - #(k)( _ x)]. (2.4) 
k=O 

Specializing to x =  b and x =  0 in equation (2.3), 

~. Pn+l (b, t) H~ (t, O) = an (b) I-is (b, 0), 
t ~ $  

Pn+l (0, t) HB(t, O) = -- an ( - b) l~s(b, O) + 1. 
teqh 

(2.5) 

(2.6) 

At this point it  is important to know that  every bounded non.negative solu- 

tion / of 
P/ (x )  = ~ P(x,  y) / (y) = ~ i~ (y - x) / (y) = / (x), x E ~ ,  (2.7) 

is constant on (~. This was proved by Choquet and Deny [2] (see also P 13.1 in 

[10] where it is shown under the weaker hypothesis that  //> 0, when ~t is recurrent). 

Letting n'  denote a subsequence of the integers such that  

lim ~ Pn.+l (x, t) Ha(t ,  0) = ~b(x) (2.8) 
n'---~ ~ t ~  

exists for all x E ~  it is easily seen that  the limit satisfies P r 1 6 2  x E~ .  (One 

has to observe that  
Cn(x) = Z Pn§ t) Ha(t, 0) 

t ~ G  

satisfies r as n - ->~ . )  This follows from equation (2.5)using the 

fact that  
an +1 (x) - an (x) = ju TM +1) (0) - #(n+D ( _ x) = o(1), x E {~, (2.9) 

as n--> c~. (The simplest proof of (2.9) depends on the theory of Markov chains. The 

invariant measure of the random walk, being group-invariant, is constant and hence 

of total infinite mass. Since all states communicate, the chain is irreducible, and it 
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follows (see [6], page 356) tha t  all n-step transition probabilities tend to zero as 

9Z---> o o . )  

The final step of the proof depends on equations (2.5) and (2.6). Setting n=n ' ,  

subtracting (2.6) from (2.5), and letting n'--> 0% yields 

1= lim [an.(b)+a~,(-b)]I~ts(b,O). (2.10) 

Referring to the definition of an(x) and to the series defining S(x) in (ii) at the be- 

ginning of this section, we have proved 

1 = S(b) r I s (b ,  0). (2.11) 

The definition of l ib  in (2.2) implies that  [I-Is(b, 0)] -1 is the expected number of visits 

of the random walk, starting at  b, to the point b before the first visit to 0 (counting 

the visit to b at  time 0). Since b is an arbitrary point other than 0, that  completes 

the proof of (iii) and hence of Theorem 2.1. 

3. The potential kernel A ( x ,  y )  

In  view of equation (2.3) it is possible to reduce the proof of existence of the 

potential kernel A(x, y) to the study of the limit 

~0(x) = lim ~ P~+l(X, t) Hs(t, 0). (3.1) 
n ---~ ~ re@ 

Here, and in the sequel, B is the set {0, b}, where b is fixed, and non-zero. If  the 

limit in (3.1) exists, then as pointed out in connection with equation (2.8), it  will be 

independent of x, and the existence of A(b, 0) will follow readily from equation (2.3) 

or (2.5). In order to prove the existence of the limit in (3.1) we shall make use of 

known facts from [10] concerning one dimensional random walk, by studying the 

imbedded random walk on the cyclic group ~ which is generated by the fixed element b. 

Let  O=zo, zl, z, . . . .  denote a fixed set of representatives for the eosets of ~. 

Then each element of (~ may be represented uniquely in the form z~ + kb, and (~ it- 

self has the form ~ = I,I {z, + ~}. To define the imbedded random walk let the random 

variables 0 <  T I <  T , <  ... denote the times of successive visits of X~ to ~, i.e., 

XT~ e ~  but X j ~  when ~> 1 and ~=~T, for all i>/1. 

We define U~ = XT~ -- Try_ x for i >/2, U 1 = Xr, - X 0, 

so that  the random variables Ut are independent and moreover identically distributed 
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(with the exception of U 1 which has the same distribution as U~, i >~ 2, only if X 0 E~). 

XTk= UI+ ... + Uk is then the imbedded random walk. We may identify it with a 

random walk on the integers by mapping U~ into the integer k=k(U~) when U~=kb. 

This enables us to talk about moments of the imbedded random walk, in particular 

its variance 
a s = ~ [k(U~)] < ~ .  

Henceforth, to simplify notation we shall not distinguish between U~ and k(U~) 

and only talk about U~. 

The variance a~ is the basis for the following classification: 

I ~ is finite, 

I I  ~ is infinite and a s= ~ ,  

I I I  ~ is infinite and as<  r 

Jus t  as HB(x,y) denotes the hitting probabilities for Xn (see equation (2.1) or 

D 10.1 in [10]) we use HB(X,y), x, yE~ ,  to denote the hitting probabilities for the 

imbedded random walk. We know already (T 30.1 in [10]) that 

lira l~B(kb, O) exists in case II ,  (3.2) 
t k l ~  : r  

and the two limits lira HB(kb, 0) exist in case III ,  (3.3) 
k--~ =t= ~ 

and we proceed to connect these limits to ~ in equation (3.1). The precise relation 

is given in the following theorem. 

T~WOREM 3.1. In  case I, 

h - 1  

lim ~ P,+l(x,t)H~(t,O)= lim HB(x, 0 )=  h ~ R~(kb, O), 
n ~ o r  r e @  Ix]~r162 k ~ 0  

where h is the order o/ b. 

In  case II ,  

lira ~ P~+l (x, t) HB(t, O) = lim H~(x, 0 )=  lim Hs(kb, 0). 

In case III ,  (~/~ is /inite and /or each i 

lira ~ Pn+l(X,t)HB(t,O)=�89 lira {HB(z,+kb, O)+HB(z,-kb, O)} 

= �89 lim {HB(kb, 0) +HB( -- kb, 0)}, 
k ---~ oO 

(3.4) 

(3.5) 

(3.6) 
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In the first two cases the proof is based on the relation 

HB(x,  O) = ~ Pz[XT,  = ]r 0) (3.7) 
kbe~ 

which follows immediately from the interpretation of Hs  a n d / T s  as hitting proba- 

bilities. In case I, the second equality in (3.4) will follow from (3.7) and 

lira Pz[Xr, = kb] 1 k = 0, 1 . . . . .  h -  1. (3.8) 

In case II,  it will suffice for the second equality in (3.5) to show 

lira P = [ X r , = k b  with []c[</]=0 (3.9) 
Izl-*~ 

for each fixed l, because of (3.2), (3.7) and 

P ~ [ X r , =  kb]= l.  
k = - o o  

In fact, these relations show that  

[H~(x, 0 ) -  lira Hs(kb ,  O)[<~P~[Xr,=kb with [k[</] 

+ ~ P~[Xr,= kb] IH,(kb, 0 ) -  lim He(rob, 0)[ 
] k ] > /  rn--> ~ 

=o(1) as first ]x]-->oo a n d t h e n  l - ~ .  

In case I I I a  new argument is needed to show that  ~ / ~  is finite. The second 

equality in (3.6) will then be very easy. The first equalities in (3.4) and (3.5) will 

follow quite easily from (3.8) and (3.9) but in case I I I  we need again a special argu- 

ment for (3.6). 

We now prove (3.8), (3.9) and the finiteness of {~/~ in case I I I  in a number of 

lemmas. 

Lw.MMA 3.1. For each /ixed ye@ and k 

~-,~lim ze~up~}lP~[Xr, = kb] - P~+~ [Xr, = kb]] = O. (3.10) 

Proo/. 

Px [XT, = kb] = Px [enter ~ for the first time at kb] 

>t P~ [visit x + y before visiting ~] P~+~ [Xr, = kb]. (3.11) 
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However ,  if - x E (zs(x) + ~}, then  

Px[visi t  x + y  before visiting ~]  =P0[v i s i t  y before visiting {zs(x)§ ] 

and by  the recurrence of the random walk 

lira Po[visi t  y before visiting {z, + $)}] = 1. 

Since x E {z,(x) + ~),  - x E {zj(x) + ~} and i(x) ~ ~ imply j(x) -+ c~, we conclude 

lim irff inf {Px[Xr,=kb]-P~+u[Xr,=kb]}>~O. (3.12) 
+-+~r xes 

Replacing x by  x + y  and y by  - y  we also have 

lira inf inf {P~+~[Xrl=]Cb]-P(x+y)_u[XT=kb]} 

= - l i m s u p  sup {Px[Xr,=kb]-P~+u[Xr,=kb]}>-O. (3.13) 

(3,12) and (3.13) prove the lemma. 

L~MMA 3.2. (3.8) holds in case I. 

Proo]. Since 
Px+mb [XT,  = kb] = P~ [XT, = (b - m) b] (3.14) 

we have 
h--1 h -1  

P~+,+o[Xr,=kb] = ~ Pz[Xr ,= ( k - m )  b]=Pz[Xr,  e ~ ] =  1. (3.15) 
m=O mffiO 

If  xE(z~(x)§ then Ixl-->co is equivalent  to i(x)-+oo for finite ~ .  Therefore (3.8) 

follows from (3.15) and (3.10) in case I. 

L~MMX 3.3. (3.9) holds in case I I .  

Proo/, Let  x = z+(x) + re(x) b. From every  sequence (x} of elements in ~ for which 

Ix]--> oo we can select a subsequence for which either 

(i) Im(x)l->co, i ( x )= i= eo n s ta n t  or (ii) i (x)-~oo.  

:For sequences satisfying (i) we have by  (3.14) 

lim P~++ m~ [XT1 = kb] = lim P~+[XTI = (]r - m) b] = O, 
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for each fixed k, and thus (3.9). On the other  hand,  for a sequence satisfying (ii) 

we have by  Lemma 3.1 and  (3.14) 

1 m + .  
lira sup sup P~+mb[XT=kb]=lim s u p - - s u p  ~ P~+mb[XT,=kb] 

1 m+n 1 
- n + l  lira sup sup ~ P~dXr,=(k-m)b] ~ - - .  

i---~oo m i = m  n"~" 1 

This holds for each n and  therefore (3.9) holds no mat te r  how [x[--> oo. 

I n  order to deal with case I I I  we first show tha t  it can only occur if (~ /~  is 

finite. 

LEMMA 3.4. ~ infinite and as< oo implies that ~}/~ is finite. 

Proo/. We give an  indirect proof. We assume therefore tha t  both  ~ and  (~ /~  

are infinite and  derive from these assumptions tha t  a s =  co. To avoid some minor  

technical difficulties we give the proof only  under  the addit ional assumption: 

there exist rl, r s such tha t  r l * r  s andpl=P(O, rlb)>O andp2=P(O, r2b)>O. (3.16) 

Le t  then N = number  of ~ ~< T 1 for which Xj - X t _  1 = r 1 b or r s b. 

B y  the exponential  estimates for the tails of a binomial distr ibution ([10], p. 45) one has 

Po[T1 = t and I N -  (Pl q-Ps)t[ ~> e $] 

<<- Po[1/t [(number of i ~< t with X j -  Xj-1 = r x b or r s b) - (Pl +P~)[ ~> e] 

<<- C e TM (3.17) 

for suitable C =  C(e) and 2 =2(e).  Le t  T and N be fixed, say t, n, and assume tha t  

also the indices l~<7" l<~S<. . .< ]n~<t  for which X~-Xj -1  equals rib or %b are fixed 

as well as the values of X k - X k - 1  for k~{]l ,  js, ...,in}- We claim that ,  conditional 

upon  T = t, N = n, X j -  X~-a = r 1 b or r 2 b only for ] E (71 . . . . .  ~n} and  finally, 

Xk--  X ~ I  = ge ( #  r x b or r s b) for k r {~'1 . . . . .  i n } ,  

the random variables Xj~-Xj~_I, i= 1, . . . ,n  are independent  and each have the same 

distr ibution 

V[X,,-X,,_l=r,b]=pl~--pz, / =  1,2. (3.18) 

Indeed,  this follows immediate ly  from the fact  t ha t  X 1 - X  o, X s -  X 1 . . . .  are inde- 
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p e n d e n t  r a n d o m  var iab les  a n d  the  fac t  t h a t  changing X j - X j - 1  f rom r 1 b to  r~ b or  

vice versa  does no t  change the  coset in which Xj  lies; hence also T 1 and  _IV are  

unaffec ted  b y  changes f rom r 1 b to  r~b or vice versa  in the  Xi~-Xl~-l. 

Therefore  for a n y  subse t  I of 

Po[XT, e l I T I = t ,  N=n,  X j - X j _ l = r l b  or r2b only  for  

j e {j~ . . . . .  j~} and  Xk - X ~ - I  = gk, k ~ {Jl . . . . .  Jn}] 
P n 

= 0 [ ~ ( X s , - X i , - 1 )  E I -  Z gk [Tl=t, N=n ,  X j - X s _ l = r l b  or r~b 
t = l  kr ..... in]. 

only  for j E {Jl . . . . .  in} and  X~ - Xk-1 = g~, k = {Jl . . . . .  jn)] 

= P [ S n e I -  Z gk], (3.19) 
kr ..... in} 

where Sn s tands  for the  sum of n i ndependen t  r a n d o m  var iables ,  each wi th  the  dis- 

t r i bu t i on  (3.18). B y  theorem 1 of [3] there  exis ts  an  A such t h a t  

P[S~ = sb] ~ An-�89 (3.20) 

for all  s a n d  n I> 1. Consequent ly  for each set I of fewer t h a n  �89 An �89 points  

P0 [Xr~ e I [ T 1 = t, iV = n, Xj  = X l_ 1 = r l  b or  r 2 b on ly  for  

j e {j~ . . . . .  j,~} and  Xk -- Xk-~ = gk, k ~ {Jl . . . . .  jn}] <~ 

so t h a t  we f ina l ly  conclude (e.g. f rom Tchebychev ' s  inequal i ty)  t h a t  

a2[XT~IXo=O, Tl=t ,  N=n ,  X j - X i _ l = r l  b or %b only  for  

A ~ 
jE{jl  . . . .  ,in} a n d  Xtr162 ]r . . . . .  Jn}]>~ n" (3.21) 

Thus,  for suff icient ly small  e >  O, 

a ~ [ X r ,  ] X o = 0 ,  T~ = t] 

>1 ~ ~ ~. P[N = n, X t - X~-I = r~ b or r 2 b on ly  for 
In-(Pz+P=)t[<~$t l~<]z<J~... <tn<~t glc, k~{Jz,..,,in} 

i E { i l  . . . . .  in},  X k  -- X k - 1  = gk, ~ {~ ( J l  . . . . .  in} ] X 0  = 0 ,  T 1 = t] .  

( y 2 [ X T I l X o = O  , T l = t  , N = n ,  X i - X j _ i = r l b  or r~b only  for 

i ~ {J l  . . . . .  in},  X k  - -  "Xk-1  = gk, ]r {~ {/1 . . . . .  jn}] 

A ~ 
~ ~ et . P[I N -  (pl + p~) tl <-< et [ Xo = O, T~ = t]. 
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Finally, by  (3.17) 

a s [Xr, I Xo = 0] ~> ~. Po [Tx = t] a s [Xr, I Xo = 0, T 1 = t] 
t = l  

A s 
>~ ~ Po[T1 = t; IN - (Pl +P2) tl <- et] -~ ~t 

t = l  

>~ ~ {Po[Tl=t]_ Ce_at } A '~ t=  r162 
t = l  32 

(3.22) 

since ~r  ] is the mean recurrence time of the induced random walk on 

(~ /~  (which takes the value {z~ + ~} whenever the original random walk takes a value 

in the coset {z~ + ~ } )  and any  recurrent random walk on an infinite group must  be 

nullrecurrent (el. comment to (2.9)). 

Remark. By a refinement of the above argument  we can show tha t  for any  

aperiodic random walk X 0 =  0, X1, X 2 . . . .  on the integral points in the p l aneone  has 

E0[IXr, I] = ~ where Xr, is the first X,,n>~ 1 for which the second coordinate is zero. 

Before we complete the proof of Theorem 3.1 we remark that  (3.7), (3.3) and 

lim Pz,+m~ [Xr,/> kb] = lira P~, [Xr, >~ (k - m) b] = 1 

for each fixed k, immediately imply 

lira HB(zi + kb, 0 ) =  lira Hn(kb, 0). 
k ...*, o o  k -.,,. o o  

(3.23) 

Similarly lira Hn(z~ + kb, O) = lim HB(kb, O) (3.24) 
k . . - * -  o o  k , . - . > -  o o  

which proves the second equality in (3.6). 

Proo] o~ Theorem 3.1. As remarked before, the last equalities in (3.4) and (3.5) 

follow from Lemmas 3.2 and 3.3. But  the existence of limltl_.or Hs(t ,  0) immediately 

implies 
lim ~ Pn+I(X,t) HB(t,O)= lim Hs(t ,  0) 

since Y. P,+l(x,t)= l and lira P,+l(x,t)=O 

for each fixed t (cf. comment to (2.9)). Thus for cases I and I I  the proof is com- 

plete. To prove the first equality in 3.6 in case I I I ,  we introduce the random variables 

Tr(n) = time of the first visit to ~ after t ime n 
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a n d  U(n) = U~(n). 

+ o o  

Then  ~. P,+l(x , t )HB(t ,O)= ~ P~+~(x,t) ~ Pt[Xr,=kb]HB(kb,  O) 
teq~ teq~ k =  - r  

Px[U(n)=kb]HB(kb, O) 

a n d  i t  suffices to  prove in case I I I  t h a t  

l im ~ Pz,+mb[U(n)=kb] = l im ~ P~,[U(n)=kb]=�89 (3.25) 
n - - . ~  k > ~ k  o n . . - ) r  k ~ k o - - m  

as well as  l im ~ Pz,+zb[U(n) = kb] = �89 (3.26) 

for each f ixed  i,  m a n d  k o. 

Since the  i m b e d d e d  r a n d o m  walk  U 1, U 1 + U,,, U 1 + U 2 + Ua, . . .  on ~ is recur ren t  

a n d  a s (U 2) = a s (U3) = . . .  < ~ one necessar i ly  has  E U  s = E U  a = . . .  = 0. I n  add i t i on  the  

r a n d o m  var iab les  T k - - T k - 1 ,  k = 2 ,  3 . . . .  are  iden t ica l ly  d i s t r i bu t ed  a n d  

E[Tk - Tk-1] = E0[T  1] < 

for in case I I I  ~ / ~  is f ini te  and  thus  

Px [X~ E ~ for some n ~< no] >/8 > 0 

un i fo rmly  in  x E (~ for sui table  n o and  (5. B y  the  s t rong law of large numbers  one 

has therefore  
r(n)__> 1 

with  p robab i l i t y  1 
n E0[T1] 

a n d  Anscombe ' s  l imi t  theorem [1, Theorem 1] for a r a n d o m  n u m b e r  of summands  

appl ies  to  U(n) = X o + ~r(~) /~,=1 U,. Consequent ly ,  

l im P~i+mb [U(n) 
n - - ~  

= kb wi th  
1/na 2 [ Us]/ Eo T1 

which implies  (3.25) a n d  (3,26). The proof  of Theorem 3.1 is comple te  in al l  eases. 

F r o m  (2.5) a n d  Theorem 3.1 we i m m e d i a t e l y  der ive  

T~.ORV.M 3.2. a ( b ) = l i m n _ ~  an(b) exists and is given by 

1 
l ira HB(x, 0) 

a (b) = l i b  (b, 0) Izl-* 
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in cases I and I I .  I n  case I I I  

1 
lim [HB(zf + kb, O) + HB(z~-  kb, 0)] 

a(b) 21-[B(b, O) k--.~ 

/or each i. 

The asympto t i c  behavior  of a ( x ) - a ( x - b )  ( [ x ] - + ~ )  is now derived ve ry  easily 

f rom (2.3) and  Theorems 3.1 and  3.2. 

THEOREM 3.3. I n  cases I and I I  

whereas in case I I I  

lira [a(x) - a ( x -  b)] = 0 (3.27) 
Izl-*cr 

1 
lira [a(zt + kb) - a(z~ + (k - 1) b)] - a2[U2] (3.28) 

1 
and k~-cclim [a(zf + kb) - a(z, + (k - 1) b)] = - a2 [U2~. (3.29) 

Moreover, in case I I I ,  /or every x, y E ~ the two limits 

l im [a(x + y + kb) - a(x + kb)] (3 .30 )  
k -.-:,. 4.  o o  

exist and are independent o/ x. 

Proo/. I n  the no ta t ion  of (3.1), we have  by  tak ing  limits (n-->o~) in (2.3) 

~0 --  H s  (x,  0) = [a(x)  - a(x - b)] 1 - ~  (b, 0) .  (3.31) 

I n  cases I and  I I ,  q~=limM~l_~Hs(x,O ) according to (3 .4 )and  (3.5), f rom which (3.27) 

follows since l~B(b, 0 ) > 0  for an aperiodic r andom walk. I n  case I I I  we subst i tute  

z~+kb for x in (3.31) and  let k - > o o .  F r o m  (3.6) and  (3.23) one obtains  

1 
lira [ H s  ( - kb, O) - HB (kb, 0)] = l im [a(z, + kb) - a(z, + (k - 1) b)], (3.32) 

2 l-IB(b, 0) k-*~ k-+~ 

where the existence of the  l imit  in the  r ight -hand side is pa r t  of the conclusion. The  

lef t -hand side is independent  of i and  ac tual ly  depends on the imbedded  r a n d o m  walk 

only. Since every  a rgumen t  remains  val id  in the special case where ~ = ~ and  the 

original r andom walk is the  same as the imbedded  r andom walk on .~, the lef t -hand 

side of (3.32) mus t  also equal  
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lim [5(kb) - 5((k  - 1) b)], (3.33) 
k --~ or 

where 5 is the potential kernel for the imbedded random walk. But  (3.33) is known 

(T 29.1 in [10]) to have the value 1/a2[U~] so that  for each fixed i 

lira [a(z~ -4- k b )  - a(z~ -4- ( k  - 1) b)] = lira [5(kb)  - 5 ( ( k  - 1) b)] = a~ [ Uz------j 
k----> ~ k.---~ ~ 

and (3.29) is proved similarly. 

As for (3.30), for the existence of the limits it suffices to prove the existence of 

lim [a(z~ -4- kb) - a(kb)] (3.34) 
k .--~ :l: r 

since x and x + y  are of the form z~+mb and (3 .28)and (3 .29)have been proved 

already. Now hz~ = kob for some finite h and k o since (~/~ is finite. If k o = 0 then 

z~ has finite order in (~ and (3.34) exists by (3.27) with z~ taking the place of b. If  

k0#0  then each k can be written as rko+s,  0~<s~<k o -  1 and 

a(z~ + kb) - a(kb) = a(z~ -4- rhzi + sb) - a(rhz~ + sb) = a(z~ + rhz~) - a(rhzi) + o(1 ) ([ k[ --> cr ) 

by (3.28) and (3.29). But l i m r _ , ~ a ( z , + r h z , ) - a ( r h z , )  exists by (3.27)-(3.29), again 

with z, taking the place of b. This proves the existence of (3.34) in all cases and 

one could even use the above argument to evaluate the limits (3.30) more explicitly 

to show their independence of x. I t  is easier, however, to recall that  

go (u, v) = Eu [number of visits to v before entering 0] = a(u)  + a( - v) - a(u - v) (3.35) 

(ef. [10] 1 ) 11.6 and P 29.4, the proof given there remains valid for arbitrary (~) so 

that  a(x  + y + kb) - a (x  + kb) = go(x + y + kb, y)  - a( - y). Thus also 

lira g o ( x + y +  kb, y)" 

exist and we only have to show that  these are independent of x. The interpreta- 

tion of go(' ," ) as an expectation implies immediately 

go (xz, y) ~> Pz, [visit x~ before 0] go (x,, y) 
so that  

go (Xl + Y + kb, y)  ~ Px,+~+kb [visit X 2 + y + kb before 0] go (xz + y + kb, y).  

Since the random walk is recurrent 

lira P*l+y+kb [visit x ~ + y + k b  before 0]= 1, 
k---> :i: or 

which shows that  l i m k _ . , : ~ : ~ g o ( x + y + k b ,  y) is the same for all x. 
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Remark.  In a different terminology, (3.27) and the existence and independence 

of x of the limits {3.30) can be expressed as follows: The Martin boundary for the 

random walk restricted to ~ - { 0 }  consists of one point only if case I or I I  applies 

for every element b E{~, and of two points if case I I I  applies for some b E{~. The 

regular functions of this random walk will be determined in the next  section, following 

the proof of Theorem 4.5. 

4. Asymptotic behavior o f  potential kernels 

This section is devoted to both recurrent and transient random walk on a count- 

ably infinite Abelian group (~. As heretofore the underlying measure # is assumed 

to be aperiodic. When ju is transient, it is obvious that  the potential kernel G(x, y) 

satisfies 
G(x, y) - ~ P(x,  t) G(t, y) = ~(x, y), x, y E ~ .  (4.1) 

In  the recurrent case, however, the proof that  the potential kernel A(x ,  y) (which exists 

according to Theorem 3.2) satisfies 

P(x,  t) A(t ,  y) - A(x ,  y) = 5(x, y), x, y E (~ (4.2) 
t ~(~ 

is somewhat more delicate; however, the proof of P 13.3 of [10] applies to arbitrary 

with obvious modifications. We now proceed to develop certain results concerning 

the kernels G and A which depend to some extent on (4.1) and (4.2) and which 

exhibit strong similarity--so strong in fact that  we suspect this similarity is only 

partly explained by the formal similarity between the Poisson type equations (4.1) 

and (4.2). 

THEOREM 4.1 (a). Suppose lu is transient. There are then two possibilities. Either 

g(x)=G(x ,O)  tends to zero as Ixl-->c~ or it does not. I n  the latter case there is exactly 

one number L > 0 /or which there exist sequences x ,  E (~ such that g(xn) --> Z and [ xn I ---> oo. 

Moreover, given any in/inite subset S c (~, there exists a sequence o /points  Yn E S such that 

ly~[-->~ and such that either 

l im g (y , )=  0 and lira g ( -  y~)= L 

o r  lira g(yn)= L and lim g ( -  Yn)= 0. 

I / ,  in particular S is the in/inite cyclic subgroup 
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~ = ( n z } ,  n = O ,  +_1 . . . . .  zE(~, 

then we may choose Yn = nz, n >~ 1. 

THEOREM 4.1. (b). Suppose that /~ is recurrent. There are then two possibilities. 

Either a (x )= A(x ,  O) tends to in/ ini ty  as Ixl--> ~ or it does not. I n  the latter case there 

is exactly one number JL < c~ (it is non-negative but may  be zero) /or which there exist 

sequences xnE(~ such that g(Xn)-->i and Ixn[-->~.  The rest o/ the theorem reads just 

as part  (a), except that the limit 0 is replaced by ~ .  

The proof of par t  (a) is an immediate  consequence of four familiar properties of 

the potential  kernel g(x)= G(x, 0). 

0 < g(x) < g(o), x e @ (4.3) 

lira [g(x) + g( - x)] = L exists (4.4) 
I x l ~ : r  

lira [g(x § y) - g(x)] = 0, y E (~, (4.5) 

lim g(x) g( - x) = 0. (4.6) 
I x l - > ~  

These are all well known when ~ = Zd. (4.3) is obvious and the other  three are due 

to Feller and Orey (see [7]). Their proofs as well as those in [10] extend to general 

(~ without  difficulty. I n  part icular  the proof of (4.4) rests o n  an application of the 

Riemann Lebesgue lemma to the representat ion of g ( x ) + g ( -  x) as an integral over 

the character  group F. This causes no concern, and  neither does (4.5) which depends 

on the lemma of Choquet and Deny  ment ioned in connection with equation (2.7). 

I f  the constant  L in (4.4) is zero then we are in the first case of Theorem 4.1 (a), 

and there is nothing to prove. I f  / , >  0 it follows from (4.3) t ha t  g is bounded, and  

from (4.4) and (4.6) tha t  Ixnl--> ~ ,  g(xn)--> M > 0 implies M =  L and l i m n _ ~  g(--Xn) = O. 

When  S is an  unspecified infinite subset, choose any  sequence xn E S such tha t  [ x,, I --> c~. 

Bx (4.4) we can select a subsequence Yn such tha t  either lim g(Yn) > 0 or lira g( - Yn) > O. 

But  we showed tha t  such a positive limit mus t  have the value L, and  tha t  the limit 

of the sequence whose sign is reversed must  be zero. Finally, when S = ~ = {nz} we 

invoke (4.5) with y = z  which prevents  the oscillation which would occur if 0 =  

lira inf g (nz )< l im sup g ( n z ) = L  (in this case every point  in [0, L] would be an  ac- 

cumulat ion point  of g(nz), which is impossible). 

The proof of Theorem 4.1 (b) is based on the inequali ty 

1 7 -  6 5 2 9 3 3  Acta mathematica 114. I m p r i m 6  le 15 oe tobro  1965 .  
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[a( -- y) -- a(x -- y)] a(y) <~ a(x) a( -- y), x, y e (~, (4.7) 

which we proceed to derive. We shall first assume that  neither x nor y belong to 

the set .N= [xla(x  ) = 0]. (Note that  a(0)= 0 so that  N is nonempty, but  that  iV may 

be much larger, as shown in [10], P 30.2.) We denote 

Q ~  x, y e @ - { 0 }  

QN(x,y)= P(x,  y), x, y E ( ~ - . N  

i.e. the transition functions restricted to the complement of the origin and of N, and 

QO and Q~ will denote the iterates of Q0 and QN. I t  follows from (4.2) tha t  

QO (x, y) a(y) = a(x), x E (~ - {0), n ~> 0. 
y~-{O}  

This implies that,  when x E N -  (0}, QO (x, y) = 0 for all y E @ - N. Consequently the 

random walk can only leave the set N -  {0} by  going to O. But  that  may be ex- 

pressed, in terms of the Green functions 

go(x,y) (&( ,y), g~(x,y) ~ Q~(x,y), 
n = 0  n ~ 0  

by saying that  
go(x,y)=gN(x,y) ,  x, y E ( ~ - . N .  (4.8) 

Also it is known (cf. (3.35)) that  

go(x, y) = a(x) + a( - y) - a(x - y), x, y E (~. (4.9) 

Observe now, using (4.2), that  the transient Markov chain with state space ( ~ -  N and 

transition function 

PN(x, y) -Q 'v (x ' y )a (y ) ,  x, y E ( ~ -  N 
a(x) 

has the Green function 

oo 

n~o )__~_ a(y) ~o~ QN (x, y) a(y) aN(x ,y )= _ PNn(x,y =a- (~gN(x ,y  ), x, y e ( ~ - - N .  (4.10) 

Here P~ denotes the iterates (n-step transition functions) of P~. From the maximum 

principle of potential theory in its probabilistically obvious form 

GN(x, y) <- GN(y, y), 

we conclude by combining (4.8), (4.9), and (4.10) that  
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a(y)  [a(x) § a( - y) - a(x  - y)] ~< a(y) + a( - y),  x,  y C ~ - N .  a(x) 

When  simplified, this is exact ly  the inequali ty (4.7). When  a ( y ) = O  then (4.7) is 

obvious. When  x = 0 it is also clear. Assume finally t ha t  x E N -  {0} but  a(y) ~ O. 

Then, y E ~ - N  and  as remarked in the derivation of (4.8), QO (x, y ) =  0 for all n>~ 0 

so tha t  g o ( x , y ) = O ,  and  b y  (4.9) 

go (x, y) = a( - y) - a(x  - y) = O. 

That  completes the proof of the inequali ty (4.7). 

Proceeding with the proof of Theorem 4.1 (b) we m a y  assume tha t  a ( x ) d o e s  not  

tend to infinity as ]xl--> c~. Suppose fur ther  t ha t  Ix~l--~ ~ and  a ( x n ) - - > i <  c~. Then 

we know tha t  a(-x,~)---> ~ ,  since as pointed out  in the proof  of Theorem 2.1 S ( x ) =  

a(x) + a ( ,  x)--> c~ as Ix] --> ~ .  Setting y = - x~ in (4.7) one readily obtains 

lim sup [a(xn) - a(x  + Xn)] <~ O. 
n - o .  o o  

To show tha t  in fact  the limit of a ( x n ) - a ( x +  xn) exists and is zero, observe, say b y  

use of (3.31), tha t  a ( x , ~ - x )  in a bounded sequence when a(x,~) in bounded. Therefore 

a ( x - x , ~ ) - - > ~ .  For  this reason we m a y  set y = - x n + x  in (4.7), let n - +  ~ ,  and con- 

clude tha t  
lim sup [a(xn - x) - a(xn)] ~< 0. 

Since - x  m a y  be replaced b y  x we have shown tha t  

lira [a(xn) - a(x~ § x)] = 0 (4.11) 
n ---> oo 

whenever Ixn[--->~ and a(Xn)- -+L< ~ .  

I n  order to establish the uniqueness of L we now suppose tha t  

and  employ (4.7) together  with (4.11) to  prove tha t  M = . L .  B y  (4.11) 

lira [a( - y) - a(x,~ - y)] a(y) = lira [a( - y) - a(x~)] a(y) = [a( - y) - L]  a(y), 

but  f rom (4.7) we have the inequal i ty  

[a( - y) - L] a(y) ~ .L a( - y) (4.12) 
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into which we substitute y = - y ~ ,  and let n--> r to obtain 

(M - L) lira a( - Yn) <- LM. 

Since a ( - y ~ ) - ~  co it follows that  L>~ M, but  as there is nothing to distinguish L and 

M we have proved tha t  L = M. 

To establish the asymptotic behavior of the potential kernel on an infinite subset 

S c (~ we first take for xn any  sequence in (~ such that  [Xnl--> ~ and a(xn)---> L, 

Then, from (4.12) 

a(y) a( - y) <~ Lid(y) + a( - y)] ~< 2 L max (a(y), a( - y)). 

Thus for each y E(~ 

either a(y)<<.2L or a ( - y ) ~ < 2 L .  (4.13) 

Now the rest of the proof of Theorem 4.1 (b) is ovious. Either a(y)-->cr as ]yl-->~o 

in S, in which case any  subsequence Yn of S with l Ynl-> ~ has the property tha t  

a(yn)---> co, and then (4.13) and the first par t  of the theorem guarantees that  a(-Yn)--->L. 

Or else S contains a subsequence xn such that  Ixn]-->c~ and lim sup a(x~)< co. Then 

by  the first par t  of the theorem xn has a subsequence Yn such tha t  a(y~)-->L, and 

since a ( x ) + a ( - x )  tends to infinity with Ixl we have a(-yn)---> ~ .  I t  only remains 

to consider the special case when S = ~ = { n z } .  The sequence xn=nz, n>~ 1 is then 

seen to have the desired behavior by  using (4.11) in just the same way tha t  (4.5) 

was used in the proof of Theorem 4.1 (a). The proof of Theorem 4.1 is now complete. 

TRv.ORV.~ 4.2. Suppose that the group (~ has an in/inite cyclic subgroup ~ such 

that ~ / ~  is in/inite, or that (~ has only elements o/ /inite order. Then every transient 

random walk on (~ has the property that g(x)= G(x, 0)-->0 as Ix I ---> c~, and /or every 

recurrent random walk a(x)=A(x,O)---> c~, as Ixl--> o~. 

Proo/. The proof is simplest in the first case. Then for some y E(~, of infinite 

order, and ~ ~-(ny}, n =  0, • 1, ..., (~ /~  is infinite. We argue by  contradiction and 

suppose in the transient case tha t  g(x)-->L> 0 along some sequence tending to infin- 

ity, and in the recurrent case tha t  a(x)-->L< ~ .  In  the transient case it follows 

from Theorem 4.1 (a) that  there exists a subsequence z~ of the representatives zk of 

the cosets of ,~, such that  either g(z'n)--->L and g(-z'n)--->O or such tha t  the limits 

are reversed. We assume without loss of generality tha t  the former alternative holds. 

l~urther, by  the last part  of Theorem 4.1(a) either g(ky)-->O and g(-ky)--->L or the 

limits are reversed. Again without loss of generality (as is clear from the rest of the 
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proof) assume the former contingency. I t  follows from equation (4.5) tha t  g(z'~ + ky) 

for fixed k tends to L > 0  as n-->oo and for fixed n to 0 as k - + c o .  For all suffi- 

ciently large values of n~> 1 we may  therefore pick the largest k =  kn such that  

g( z ' n+k=y)>~L .  Then 9(z '~+kny+y)<~�89 and it follows from Theorem 4.1 tha t  

lim g(z'~ + k~ y) = L > 0, l im 9(z~ + k .  y + y) = 0. 
n - - ~  n - - ~  

This is in contradiction to equation (4.5). In  the recurrent case we arrive a t  a con- 

tradiction in exactly the same fashion, using (4.11)in place of (4.5). 

The second half of the proof, concerning groups (~ which have only elements of 

finite order, is more complicated. We shah give the details in the recurrent case. 

Assuming again that  a(x) does not  tend to infinity as ]x] - ->~ we may  select a se- 

quence zn of  distinct elements, whose orders are ha > 1, such tha t  a(zn)-->L < co as 

n - + c o .  Then, observing that  ( h n - 1 ) z n = - z n ,  we see from Theorem 4.1 (b) tha t  

aE(h,~ - 1) z~] --* oo. 

(This shows, by the way that  hn>2.)  At this point we may  select, at  least for large 

enough n, an integer k~ with the property of being the largest positive integer less 

than h a - 1 ,  such tha t  a ( k n z n ) ~ 4 L + 4 .  From equation (4.9) we have 

go(x, y) = a(x) + a( - y) - a(x - y) >~ 0 

which we shall use in the form 

a[(k~ + 1) z~] - a(k,~ z ,  (z~)) <~ a,~ <~ 2 L § 2 (4.14) 

w h e n n  is sufficiently large. I t  follows from the definition of kn and (4.14) tha t  

2 L §  2<--.a(lc,~Zn)<-.4L§ <-.a[(kn§ l)z, ,]<<.6L+6. 

I f  we knew tha t  the sequence kn zn contains infinitely many  distinct elements of (~ 

then we would have a contradiction (on a subsequence of this sequence a(x) would 

then converge t o  a number between 2 L  § 2 and 4 L  + 4 which contradicts Theorem 

4.1 (b)). Indeed there is no way of knowing whether {k~ z~} is of infinite cardinality, 

but  if not, then {(kn + 1) z~} is of infinite cardinality, since {zn} contains infinitely m a n y  

distinct elements. In  that  case the desired contradiction comes from the third and 

fourth inequalities. 

The proof in the transient case is very similar. We have g(zn)--->.L, g[(hn-  1)zn]-->0, 

and define k~ as the largest integer less than h n - 1  such that  g(k,~zn)>~L~/(4g(O)). 
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(This is possible since L<~g(O).) The analogue of (4.14) comes from the elementary 

inequality 
g(x - y) g(y) <. g(O) g(x), (4.15) 

which gives 

I t  follows that  

g[(icn + 1) z~] > g(z~) >~ L 
g(ic~ ~)  " ~  ~ 2 g(0) 

L ~ L 2 L 3 
2 g(icnzn)>~--->~g[(ic'+l)zn]>~-->O'4g(O) 8[g(0)] 2 

(4.16) 

Again Theorem 4.1 leads to the desired contradiction. 

Up till now, in Theorems 4.1 and 4.2 we were concerned with general assertions 

concerning the asymptotic  behavior of the potential kernels--assertions which depended 

on the group structure, but  not on the given probabili ty measure /~. The next  theo- 

rem gives a criterion which does depend on ~ (but in a rather complicated w a y ) f o r  

whether g(x) --> 0 as Ix I -~ oo or not. This criterion will then be simplified in Theorem 4.4. 

THEOREM 4.3. Consider transient random walk on a group (~ with an in/inite 

cyclic subgroup ~ = {ny} such that (~/~ is /inite. Then the statement (a): g(x) does not 

tend to zero as Ixl--> ~ is equivalent to (b): the imbedded random walic XTk, IC >~ 1, starting 

at X0= 0 (de/ined at the beginning o/ section 3) has /inite non-zero mean (in the sense 

that ~=~_~r Po[XT, = Icy] IC is absolutely convergent and non.zero). 

Proo/. Suppose first tha t  (b) holds. Let  G(x, y) denote the Green function of the 

imbedded random walk, which is a one-dimensional random walk on 

~ = {ny}, n = 0 ,  _ 1  . . . . .  

By  the renewal theorem for one-dimensional random walk ([10], T 24.2) 0(0, ny) tends 

to a positive limit (the reciprocal of the absolute value of the mean of the random 

walk XTk) either as n--> + ~ or as n - - > -  ~ .  On the other hand G(0, x) = G O ,  x) 

when x E,~, which proves that  (a) holds. 

To go the other way suppose tha t  (b) is false. Let  G(x, 0 )=  ~(x), G(x, O)= g(x), as 

usual. The renewal theorem now gives ~(ny)=g(ny)-->0 as n~-> • ~ .  Therefore the 

last s tatement of Theorem 4.1 (a) implies tha t  

g(x)-->0, as Ixl--> oo in (~. (4.17) 

Thus (a) is false, and Theorem 4.3 is proved. 
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Our final results depend on a special case of a theorem of Kaplansky concerning 

homomorphisms of Abelian groups (see [9], p. 44). 

L]:MMA 4.1. Let ~ be in/inite Abelian, and ~ = { n y }  an in/inite cyclic subgroup. 

Suppose that ~ / ~  is /inite. The isomorphism ny-->n o/ ~ onto the integers can then 

be extended, in one and only one way, to a homomorphism ~0:(~-->~, the additive group 

o/ rationals. 

Observe that  ~0 is quite explicitly known. When x E~ ~p(x)=n, where x=ny;  

when x ~ ~ observe that  nx E ~ for some integer n (since (~/~ is finite); then nx = my 

and ~p(nx) = ny~(x) = m. 

T~r~.OREM 4.4. For a transient random walk the statements (a) and (b) in 

Theorem 4.3 are equivalent to 

(c) ~ P(O,x)[~o(x)[<co and Z P(O,x)v2(x)@O 
zee~ xe~ 

Proo/. We shall prove the equivalence of (b) and (c). We let Zn=y~(Xn), where 

Xn is the given transient random walk on (~, and observe that Z ,  is a random walk 

on the subgroup ~p((~) Of ~.  The sums in (c) above are simply the moments E0[IZil] 

and E0 [Z1]. 

Suppose now that  (b) holds. If  (~= U~=o{~+z~}, % = 0 ,  then 

Eo[[ZI[]= ~ ~ P(O, ky+z,)lk+Io(z~)], 
l = 0  k = - o o  

and therefore E 0 ]Z:I will be finite if we show that 

P(O, ky+z , ) [k l<oo,  for i = 0 , 1  . . . .  ,p.  (4.18) 
]r or 

The imbedded random walk XT, = U 1 +. . .  + Un, n >~ O, with X 0 = 0 satisfies 

~ Po[Xr, = ky]lkl = Eol~f(u1)[ >/ ~ e(o, ky)Ikl, 
k=--oO --0o 

so that  (4.18) holds for z~=zo=O. For every other z~ we can find integers n~>l, and 

- oo < m < oo such that  

Po[X~=my-z~; X k ~  for l < k < n ] = ~ > 0 .  

Then EolyJ(U1)[~>~ ~ P ( m y - z i ,  ky)[kl=~r ~ +~ p(O, ky+z~)lk+m],  (4.19) 
k ~  - o o  k=- -o0  
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and (4.19) implies that  the sums in (4.18) are finite. Thus (b) implies that  E0[IZ1] ] < ~ .  

To show that  E0[ZI] 2 0  we use the strong law of large numbers. I t  asserts that  

lira Z_~ = Eo [Z1]" (4.20) 
n - - * ~  Tb 

Since ~(XT,) is a (random) subsequence of Zn, we have also 

~(x,,) 
lim ~ = E 0 [Z1], (4.21) 

k--~ oo T k 

the random variables Tn, n ~ l ,  being the times of successive visits of Xn to ~.  But  

by assumption (b) we may apply the strong law of large numbers directly to the 

imbedded random walk to obtain 

k 

lim v2(XTk) lira n~=lYJ(Un) k-*~ k k-*~r k -E0[~(U1) ] * 0 .  (4.22) 

Finally lira T_~n = E0 [T1] < oo (4.23) 
n ---> O0 n 

and this is the mean recurrence time of the induced random walk on the finite group 

(~/~.  Combining (4.20)-(4.23) it is clear that  Eo(Z1):~0 which completes the proof of 

statement (c). 

To prove the converse we assume (c). Then (4.20) and hence (4.21) hold with 

E0[Z1] =~0, (4.23) is also valid, and hence the limit 

lira yJ(Xr~)_ lira ~~ lira __Tn 

exists and is non-zero. I t  therefore follows from the converse of the strong law of 

large numbers that  v2(XT,)=~fl(U1) has a finite non-zero mean, which completes the 

proof of Theorem 4.4. 

Remark. Statement (c) in Theorem 4.4 seems to depend on the generator y of 

the cyclic group ~, since the construction of the homomorphism ~fl =~py of (~ into 

depended on y. In  fact (c) is independent of y, in the sense that  it holds, or fails, 

simultaneously for all elements y of infinite order. This is easily verified, as ele- 

mentary group theoretical arguments show: 
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(i) if y and y" are elements of infinite order, generating the subgroups ~ and ~ ' ,  

and if (~ /~  is finite, then so is (~ /~ ' .  

(ii) under the assumptions in (i) the homomorphisms ~ and y~' of ~ and ~ '  into 

of Lemma 4.1 satisfy ~p'(x)=cy~(x), xE(~, for some non-zero constant c. 

There is at  present no analogue for recurrent random walk of Theorems 4.3 and 

4.4. The reason is that  even when (~ = Z  1 (the integers) we have no satisfactory ne- 

cessary and sufficient condition on the measure /~ under which a(x)=A(x,  0) fails to 

tend to infinity as JxJ-> ~ .  Examples of this phenomenon are furnished, however, 

by  all recurrent random walks on Z 1 such that  

~n2 ju  andn~  M (n) = ~ ju(n) = 0 for some M > 0. 

I f  such a condition were known on Zi, then presumably the method of proof of 

Theorem 4.4 would lead to its generalization for arbi t rary (~. Instead we apply this 

method to a different problem concerning recurrent random walk. 

THEOREM 4.5. For a recurrent random walk the /ollowing three conditions are 

equivalent. 

(a) The random walk is o/ type I I I  with respect to some group element y o/ in- 

finite order, i.e. the /actor group ~ / ~ ,  where ~ = (ny}, is o/ finite order, and the im- 

bedded random walk on ~ has finite variance. 

(b) There exists some zE(~ such that a ( x + z ) - a ( x )  does not tend to 0 as ] x J - - ~ .  

(e) For some y o/ infinite order, and ~ = (ny}, the /actor group (~/~ is finite, and 

the homomorphism in ~fl=yJ~ o/ Lemma 4.1 satisfies 

/ '(0, x) ~(x) = 0, ~ P(0, x) ~ (x) < ~ .  

We sketch the proof, which involves no new ideas. By  remarks (i) and (ii)fol- 

lowing the proof of Theorem 4.4 statement (c) will hold simultaneously for all y of 

infinite order, if it holds for one of them. Therefore (a) will be equivalent to (c) if 

we prove the equivalence for a fixed element y of infinite order. Then we shall know 

that  a recurrent random walk is of type I I I  either with respect to all elements of 

infinite order, or with respect to none, and consequently Theorem 3.3 shows tha t  (a) 

is equivalent to (b). 

Suppose therefore that  (a) holds for some infinite cyclic group ~ = (ny}. Then it 
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may be shown (by exactly the same method as in equation (4.19) of the proof of 

Theorem 4.4) that  
Eo[~)(X1) 2] = ~ P(O, x)v,)2(x) < c~. 

xe{~ 

I t  is also clear that  the random walk yJ[Xn] is a recurrent random walk on the group 

y~((~). This group is isomorphic to the integers Z since ~p(~)/Z is finite. Therefore 

the random walk ~[Xn] has mean 0, and that  completes the proof of (c). 

To go the other way observe that  the imbedded random walk is recurrent, so 

that  it will suffice to show that  the imbedded random walk XT. has finite variance 

when (e) holds. Let  X0= 0, XT, = U 1, and Xn= YI+ Y~ + ... + Yn, where the random 

variables Yk are independent with probability measure /a(x)=P[Yk=x].  Then 

T1 T1 

E0 [y)(U1) 2] = E0{[~ ( k_~ Yk)]2} = E0{[k ~ v2( Yk)] ~} = E0[T1] E[~( Y1)~], 

by a form of Wald's identity (cf: [5], p. 351). Now E0[T1] < cr because ~ / ~  is finite 

and the second moment of ~(Y1) is finite by condition (c), and that  completes the 

proof. 

Remark. As remarked at the end of Section 3, the boundary theory for recurrent 

random walk on (~ is radically different for type I I I  random walk. On the basis of 

Theorems 3.3 and 4.5 the usual Martin boundary construction (see [10], w 31) gives 

the following classification for the non.negative solutions / of 

P(x, y)/(y) =/(x), x E (~ - {0}. 
y:~O. 

They are 

(i) positive multiples of a(x) when {~ has only elements of finite order, or when 

(~ has an element of infinite order which gives rise to an infinite quotient group, or 

when (~ has an element y of infinite order such that  ~ = {ny} has a finite quotient 

group but  its homomorphism ~% into the rationals satisfies 

[v2u(x)] ~ P(O, x) = c~; 
x e ~  

(ii) positive multiples of a(x)+c~(x),  for a suitable non empty interval of values 

of c. This occurs in all remaining cases, i.e. exactly when the equivalent conditions 

(a), (b), (e) in Theorem 4.5 are satisfied. The homomorphism yJ may be constructed 

from any element of infinite order. 
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