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Polynomials on stable spaces

Juan Carlos Diaz and Sean Dineen(!)

Let E be a locally convex space. The space L("E) of continuous n-linear forms
and the space L;("E) of symmetric n-linear forms (which is canonically isomorphic,
by the polarization formula, to the space of continuous n-homogeneous polynomi-
als on F) have been widely used and considered in several branches of functional
analysis, in particular in infinite dimensional holomorphy. Our main result leads
to the possibility of the immediate application of results from the well developed
theory of tensor products and multilinear mappings to the theory of polynomials
on locally convex spaces. For example, the results in [6] can be applied to recover
easily special cases of results in [5] and at the same time shows (see remark (ii)
below) that not all results in [5] follow from [6]. We refer the reader to [7], [9], [11]
for further details on these topics.

A locally convex space is said to be stable if it is topologically isomorphic to
its cartesian square. This note is devoted to proving the following results.

Theorem 1. Let E denote a stable locally convez space. For each n the space
L("E) is algebraically isomorphic to L;("E).

Theorem 2. Let E denote a stable locally convez space. For eachn, the spaces
(L(™E),n1) and (P("E), 1) are topologically isomorphic in the following cases:

(i) 71 and 12 are the compact open topologies,

(ii) 7 and T2 are the topologies of uniform convergence on bounded sets,

(iil) 71 is the inductive dual topology on L(™E) arising from the predual OnrE
and Ty is the 7, topology on P("E).

Theorem 3. Let E denote a stable locally convex space. For each n, @n,wE
is topologically isomorphic to @)n,smE.

The space @,ME is the n-fold tensor product of E into itself endowed with the

() The research of the first author was partially supported by the DGICYT project no.
PB94-0441.
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projective topology 7« and @n,s,,E is the closed subspace of symmetric n-tensors
on E.

The following remarks clarify the scope of our result:

(i) It follows from [1, Lemma 8] and [3, proof of Proposition 1] that L("E)
and L,("E) contain each other as complemented subspaces whenever E is stable.
However this property does not imply, by itself, that they are isomorphic. Indeed
Gowers [8] has constructed Banach spaces X and Y containing each other comple-
mentably (moreover X is isomorphic to X2 and Y is isomorphic to Y3) though they
are not isomorphic.

(ii) The first author [4] gave examples of non-stable Banach and Fréchet spaces
F such that £(*F) is not isomorphic to £,(*F). On the other hand, we provide at
the end of this note a non-stable Banach space X such that £(?X) is topologically
isomorphic to £,(?X).

(iii) We have confined ourselves in this note to continuous forms and polyno-
mials but it is clear from the proof that the result of Theorem 1 is valid for various
other spaces (e.g. the set of all n-linear forms, the set of hypocontinuous n-linear
forms, etc.) and some of these cases may also be carried over to the topological
setting, e.g. Theorem 2 is valid for the hypocontinuous forms with the compact
open topologies.

(iv) The isomorphism established in Theorems 1-3 is as ‘canonical’ as the
isomorphism we suppose exists between E and its square.

Given locally convex spaces F and E;, i=1,... ,n we denote by L(F1,... ,E,)
the space of K-valued (continuous) n-linear mappings on Ey X...x E,,. If Ey=Fy=
...=E,=F we write £L("E); in this case we denote by L,("E) the subspace of sym-
metric n-linear mappings. We also write £("~1E, F) in place of L(E, ™V E, F).
Finally L(™FE; F) is the space of (continuous) n-linear mappings with values in F.
The proof of Theorem 1 is by induction. In Proposition 1 we prove the case n=2
(the case n=1 is trivial) and after some technical preliminaries we complete the
proof in Proposition 3.

Remark 1. Fundamental systems of compact sets, bounded sets and neigh-
bourhood bases at the origin are all stable under linear topological isomorphisms;
moreover, each has the property that set theoretical products in a product space
yield a fundamental system in the product, e.g. if K; and X are fundamental
systems of compact sets in the locally convex spaces E and F' then

{kl sz;kl ekKq, k2eK2}

forms a fundamental system of compact sets in E x F. In the proof of Theorem 1 we
construct a certain algebraic isomorphism w,, between £L("E) and P("E}(ZL;("E)).
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An examination of the proof and the above property shows that w, establishes a
one to one correspondence between the following sets:

(a) subsets of P("E) which are uniformly bounded on compact subsets of E
and subsets of £(™E) which are uniformly bounded on compact subsets of E™;

(b) subsets of P(™E) which are uniformly bounded on bounded subsets of E
and subsets of £("E) which are uniformly bounded on bounded subsets of E™;

(c) locally bounded subsets of P("E) (a subset of P("E) is locally bounded if
it takes some neighbourhood of 0 into a bounded set) and locally bounded subsets
of L("E) (a subset of L(™F) is locally bounded if it takes V™ into a bounded set
for some neighbourhood V of 0).

These correspondences are important in order to obtain the topological isomor-
phisms stated in Theorems 2 and 3.

By E we will always denote a locally convex space topologically isomorphic to
its square, but for convenience and in order to identify clearly certain mappings we
write E as Fy X Fy where Fi=F>=F.

Lemma 1. The space L("E) is isomorphic to L("E)?.

Proof. We have L("E)=L("1E, Fy x F3). Let

a: L("TVE, Fy < Fy) — L("TYE, ) < L("TE, Fy),
o1 (T) = (T|gn-1xp, TlEn-1xp,)-
It is easily checked that «; is an isomorphism. O
Lemma 2. The space L,(*E) is isomorphic to L;(2E)*x L(’E).

Proof. We have L,(2E)2L(?(Fy, x F3)). Then define
oz Ls(P(Fy X Fp)) = Ls(Fy x Fo, Fi x Fo) — L (PF) X L5 (2Fo) x L(Fy, Fy),
a@2(T) = (T|rxFy> Tl Fax o> Ty x 1)

If ap{T)=0 then

T(z1+y1, 2a+y2) =T(wy, 22) + T (Y1, y2) + T (21, y2) + T(y1, 22) = 0+ T(22, 1) =0,

s0 ag is one to one. Let The€L;(?F)), To€L,(*F,), T3€L(F,,F,). Define T¢€
E(Fl XFQ,Fl XFQ) by

T(z1+y1, 22+y2) : = T1 (1, 22) +To(yr, y2) +Ta(x1, y2) + T3(z2, 41)
=T1(z2, 1)+ To(y2. y1) + T3(x2, y1) + T3(z1, 32)-
Thus T€L,(*Fy x F2) and clearly ay(T)=(T}.T3,T3). O

We now prove the case n=2 of Theorem 1.
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Proposition 1. The space L (*E) is isomorphic to L(?E).

Proof. Tt is known that £;(?E) is complemented in L(*>E) [7, Chapter 1]. Hence
there exists V' such that £,(*E) x V2L(?E). By Lemma 2 and Lemma 1 we have

LECEY2LPE)XV2LCE?XLCE)xVEL,(CE)XxLCE? = L,(2E)xL(*E).
Hence, by Lemmata 1 and 2 again,

,C(QE) v C(2E)2 o~ (£8(2E) % £(2E))2 o ES(QE)2 X£(2E)2
=2L,(CEXL(E)=L,(?E). O
Let {I, J} denote a partition of {1,... ,n} into two non-empty sets (so 1<|I|<n
and 1<|J|<n). Let L; ;("E) denote the set of all T€ L("E) which are invariant
under all permutations o of {1,... ,n} for which o(I)=I and o(J)=J (i.e. we can
rearrange the x;, €1, among themselves and the z;, j€J, among themselves with-

out changing the value of the n-linear form). Since clearly £y ;("E)=Lyp 5 ("E) as
long as |I|=|I'| (and hence |J|=|J'|), we have

Lr ("E)=Liy("E),

where |I|=k and Lx("E)=L{1,. x} (k+1...n}("E), i.e. we can take I={1,... ,k},
J={k+1,... ,n}.

Proposition 2. If for each k<n there is an isomorphism
br: L(FE) — L, (*E),
then Lr ;("E) is isomorphic to L("E).
Proof. It suffices to show that L£i("F) is isomorphic to L("E). Let
& L("E) — L(*E; L(™*E)),
(Pe(T) @1y k) (Tht1 s s Tn) =T (T1, . , ZTn)

Then ®; is an isomorphism. Now let

Bi: L("E) — L(*E; £,("*E)),
(Bu(T) (1, s )N (@hs1 s oo s Tn) = Ok (P (T (@1 1 e s T1)) (T k1 e Tr)

and let
B2: L("E) — L("E), Ba2(T) =2 (51 (T)).
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Clearly 5, and (32 are isomorphisms onto their ranges. We show

ﬁQ(ﬁ(nE)) :{TG ‘C(nE) 7T(m1 yeee ,.'L'n) :T(Il yoer s Thy $a(k+1) yeee g IU(TL))
for all permutations o of {k+1,... ,n}}:=L,("E).

(a) B2 (L("E))CL,("E): If S=8o(T) and o is a permutation of {k+1,... ,n}
then

S(@1, e s 20) = (@ HA(D)) (@1, s 2n) = (Br(T) (@1, e s 35)) (Thog1 s e Tn)
= (On_k(Pe(T) (@1, ., k)N (Tht1 s oo Tn)
= On—k(Px(T) (1,5 T1)) (T (ht1) s+ + To(n))
=8(T1, o T, To(kt1) s+ > Ta(n))-

(b) Lo("E)CB2(L(™E)): Let S€L,("E). Then ®4(S)(x1,... ,Tk)ELS(MTFE).
Let

T(z1,... ,2p)= (Hgik(ék(S)(xl oo s TENHTh41 5 o 5 T,

SO

(T (@1, s k) =0, (PR (S) @1, ., Tk))s
On—k(Pe(T)(x1, ... ,21)) =Pr(S)(z1,-.. , Tk)s

BUT) @1 s 00 @kt +0) = O b (B(T) (@1 s 20)) @b, )

(@k(S)(@1 s »0)) @1+ 12n)

=51, Tk Thpl s »Tn)

and Bo(T) (21, ... ,20)=S(z1,... ,Tp), i-e. Bo(T)=S.
Therefore L("E)=L,("E) from (a) and (b). On the other hand it is clear that

| [

£o(nE) = {T € ‘C(nE) ;T(Il 3 e 7:1:71) :T(za(l) s 1 Lo(n—k)sTn—k+1,--- > l‘n)}
=L ("E).

To finish we show L,,("E)=2L("E). Let

B3t Loo("E) — L("*E; L(*E)),
Bs(T) (1,5 s Tk ) (Tt 1 - » )
= (ak(¢n*k(T)(£L‘1 P ,,’En_dk)))(xn..kﬂyl yee ,In)

and let
Bs: Loo("E) — L("E), B4(T)=®;,(8s(T)).
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By going over (a) and (b) for this new situation we see that 34 is an isomorphism
onto its image and T belongs to 34(L,,("E)) if and only if

T(.’L’l yoor 3T kyTn—k+1 .- ,(L’n)
is equal both to
T(a:l s 3 Tn—ky Lo(n—k+1) 5 -+ :wo(n))
and to
T(zry, - s Tr(n—k)s Tn—k+1: - ) Tn )

for permutations o and 7, thus if and only if T belongs to Lx("E). O

Proposition 3. For any positive integer n we have:

(a) Ls("E) is isomorphic to L;("E)?x L("E),

(b) L("E) is isomorphic to L("E).

Proof. The proof is by induction. If n=2 then (a) is Lemma 2 and (b) is
Proposition 1. We suppose (a} and (b) hold for k<n. Thus we can apply Proposi-
tion 2 and assume that L("E) is isomorphic to £("FE) for every k<n. We recall
E=F) xFy where F1=F;=F and define the mapping

U: Lo("(Fy x Fy)) — H[:(Fl VR R), W) =(Ty, .., Tn),
=0

where
Tj(iBl yere s Tiy Yjtl s oer ,yn) = T(.Tl+0 R 1 +0,04+y541, ... ,0+yn)

for all 0<j<n. Since T is symmetric it follows that

1}(:121 v s Lgs Yl e ’yn) :Tj(xa(l) yoo s To(§)r Yo (G+1) 5 -+ aya(‘n))

for any o, permutation of {1,... ,n} such that both o{1,...,j}={1,...,j} and
o{j+1,...,n}={j+1,..,n}. If =0 or j=n then T;€L,("E). If j#40,n then
T;€L;("E). We claim (*) that ¥ is an isomorphism onto £s("E)2 x [[21 Lx("E).
Assuming that (x) is true then we get
n-1
L ("E)2 L ("E)?x [[ Lk("E)2 L("E)* x L("E)" ' 2 L("E)*xL("E)

k=1

the last equivalence by Lemma 1. This establishes (a) for n.
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To prove (b) we note that since L;("F) is complemented in £{"F) we have V,
such that L("E)=Ls("E) xV,,. Therefore, by using (a) and Lemma 1 again,

LOEY2L("E)xV, 2L ("E)?xL("E)xV,
2L ("E)xL("E)? = L,("E)xL("E),
hence,
LME)2L(ME)? 2L ("E)*xL("E)} = L,("E)*xL("E)= L ("E)

and this gives (b) and completes the proof by induction once we have established (x).

(i) ¥ s injective: If W(T)=0 then T;=0 for every j. Given any element
(@ +y;)1, €(F1 X Fo)™ we can write T(z1+y1 , ... ,Tn+Yyn)=y_ T(21,... , 2n) where
z;=x; or y; and the sum is taken over all possible choices. Since T is symmetric
we can rearrange in each term the z;’s so that the z;’s precede the y;’s and so each
term has the form

T(x1, 250 Yjg1s e 2 Yn) =T5(21, o 25 Yjg1 s Yn) = 0.

Hence T'=0 and this implies ¥ is one to one.
(i) ¥ is surjective: Given (Tp, T, ... ,Ty,), with

Toe‘CS(nFQ)’ ]BGLJ(F&’(])aFlsFQ‘(n_])FQ) Tne‘cs(nFl>7

we define S by

n
S($1+yl y oo 7xn+yn) :TO(yl PR ayn)"f'ZTl(xjay? s Y51, Y1, Yj+15 - 7y'n)
i=1

+ZT2(xjaxk7y3 s s Yi—1 Y Y541 - s YR, Y2, Yk 5 e ,yn)
5.k

+ZT3($iany$k,y4,~-- yYi—1: Y1 Vi1 - s Yi—1,Y2: Y5415 -+ » Yk—1,
4,9,k

y37yk+1 PR ,yn)+... .

Note that S is symmetric. Indeed Ty is symmetric. It is readily checked, since
Ty Eﬁl(Fl, Fs, ... ,FQ), that

n
ZTl(xj,ZJQ s Yi—1:Y1, - 7yn)
j=1
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is symmetric with respect to the arguments {(x1+¥; ,... ,Zn+¥n). In the same way
it is shown that each other summand is also symmetric. On the other hand

\I’(S)J(l‘l s 5 TG Yl s e ,yn) :S(Il +0. ... ,1Ej+0, 0+yj+1, )

=T5(x1, o T, Yj415 1 Yn)s

so ¥(S)=(Typ,T1,... ,Tn), hence ¥ is an isomorphism which establishes (*) and
completes the proof. O

Proposition 3(b) establishes Theorem 1. We now prove Theorems 2 and 3.
For each n we let w,, denote the algebraic isomorphism between £("E) and P("E)
(2L;("E)). The correspondence in (a) and (b) of Remark 1 establishes (i) and (ii)
of Theorem 2, respectively. We now show Theorem 3. Let

Q1 ("E)={¢ € P("E)'; ¢ restricted to the locally bounded subsets of P("FE)

is Tg-continuous},
and let

Q2"Ey={¢ € L("E)"; ¢ restricted to the locally bounded subsets of L("F)

is T9-continuous}.

Using results of Ryan [13], Mazet [10] and Mujica and Nachbin [12], Boyd
proved (Proposition 1 and subsequent comments of [2]) that Q1("E) endowed with
the topology of uniform convergence on the locally bounded subsets of £L,("FE) is
topologically isomorphic to ®,, s »E. The method of proof in [12] and [2] extends
readily to the n-linear forms and we see that Q2("E), endowed with the topology of
uniform convergence on the locally bounded subsets of L("F) is topologically iso-
morphic to @JnmE. Since we noted in Remark 1 that the locally bounded subsets of
Ls("E) and L("E) can be identified under w,, and that w, is a topological isomor-
phism for the 75 topologies we conclude that @n,s,,rE and @n,ﬂE are topologically
isomorphic. This proves Theorem 3.

Finally to check (iii) of Theorem 2 we take inductive duals of @, . .E and
®n«E. (The inductive dual of a locally convex space F is the inductive limit
F! ::lim; (F{;,|l-lv) where V ranges over a fundamental neighbourhood system at
the origin.) Our statement follows since (2, s »E).=(P("E),7,) ([2]). O

For a nuclear power series space E, the existence of a topological isomorphism
between L(2FE) and Ls(?E) implies that F is stable ([4, Theorem 10]). We give an
example to show that the analogous result does not hold for Banach spaces.
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Lemma 3. Let X be a Banach space such that X' is stable and has the ap-
prozimation property. If every continuous linear mapping from X to X’ is compact
then L(2X) 1is topologically isomorphic to L(2X).

Proof. Compactness of the linear mappings and the approximation property
on X’ imply LEX)=L(X;X")2X'®.X" where ®. denotes the injective tensor
product. Similarly, £,(2X)=X'®,.X’. Since X’ is isomorphic to its square, the
methods used in Lemmata 1, 2 and Proposition 1 can be adapted to prove that
X'®:X' is isomorphic to its square, X'®, X’ is isomorphic to its square and
X'®X'2X'®,.X'. O

Ezample 1. Let Q denote the set of all ordinals less than or equal to the first
uncountable ordinal. By [15] the Banach space C(€2) is not stable. However C(Q2)'=
11(Q) and [;(£2) is stable and has the approximation property and, moreover, every
continuous linear map from C(Q) to I;(Q2) is compact since C(£2) does not contain
any copy of [;. By Lemma 3, L(°C(Q))=L;(>C(2)) and we conclude that stability
is not always required in our previous results.

The above example leads naturally to the following question: If E and F' are
Banach spaces and E'=F' does this imply that P("E)~P("F) for all n? Using the
arguments of Lemma 3 we give a partial positive answer.

Proposition 4. Let E and F' denote Banach spaces such that E' is isomorphic
to F'. If E' has the Schur property and the approzimation property then P("E) is
tsomorphic to P("F) for every n€N.

Proof. By our hypothesis E and F do not contain /; and have the Dunford-
Pettis property. Let G=F or F. By [14, Corollary 3.4] the n-fold projective tensor
product @n,,rG does not contain /, and hence every continuous linear mapping from
®n_1.2G to G’ is compact. By the method of Lemma 3 we obtain £("G)~®, .G’
and L£;("G)2®,, s G’. Since E'= F'=(’ this implies P("E)=P("F) and completes
the proof. 0O
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