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Polynomials on stable spaces 

Juan Carlos Dfaz and Sean Dineen(1) 

Let E be a locally convex space. The space s  of continuous n-linear forms 
and the space/:s  (hE) of symmetric n-linear forms (which is canonically isomorphic, 
by the polarization formula, to the space of continuous n-homogeneous polynomi- 
als on E)  have been widely used and considered in several branches of functional 
analysis, in particular in infinite dimensional holomorphy. Our main result leads 
to the possibility of the immediate application of results from the well developed 
theory of tensor products and multilinear mappings to the theory of polynomials 
on locally convex spaces. For example, the results in [6] can be applied to recover 
easily special cases of results in [5] and at the same time shows (see remark (ii) 
below) that  not all results in [5] follow from [6]. We refer the reader to [7], [9], [11] 
for further details on these topics. 

A locally convex space is said to be stable if it is topologically isomorphic to 
its cartesian square. This note is devoted to proving the following results. 

T h e o r e m  1. Let E denote a stable locally convex space. For each n the space 

s  is algebraically isomorphic to s 

T h e o r e m  2. Let E denote a stable locally convex space. For each n, the spaces 

(s ~-1) and (7:)(~E), 7-2) are topologically isomorphic in the following cases: 

(i) T1 and T2 are the compact open topologies, 
(ii) T1 and ~-2 are the topologies of uniform convergence on bounded sets, 
(iii) 7-1 is the inductive dual topology on s  arising from the predual ~ n , , E  

and T2 is the ~-~ topology on P('~E). 

T h e o r e m  3. Let E denote a stable locally convex space. For each n, Q n , ,E  

is topologically isomorphic to Qn,s,~E. 

The space ~n,~E is the n-fold tensor product of E into itself endowed with the 

(1) The research of the first author was partially supported by the DGICYT project no. 
PB94-0441. 
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projective topology 7r and @,~,s,~E is the closed subspace of symmetric n-tensors 
on E. 

The following remarks clarify the scope of our result: 
(i) It follows from [1, Lemma 8] and [3, proof of Proposition 1] that  ~(nE) 

and s contain each other as complemented subspaees whenever E is stable. 
However this property does not imply, by itself, that  they are isomorphic. Indeed 
Gowers [8] has constructed Banach spaces X and Y containing each other comple- 
mentably (moreover X is isomorphic to X 2 and Y is isomorphic to y3)  though they 
are not isomorphic. 

(ii) The first author [4] gave examples of non-stable Banach and Fr~chet spaces 
F such that  s is not isomorphic to s On the other hand, we provide at 
the end of this note a non-stable Banach space X such that  l :(2X) is topologically 
isomorphic to s  

(iii) We have confined ourselves in this note to continuous forms and polyno- 
mials but it is clear from the proof that  the result of Theorem 1 is valid for various 
other spaces (e.g. the set of all n-linear forms, the set of hypocontinuous n-linear 
forms, etc.) and some of these eases may also be carried over to the topological 
setting, e.g. Theorem 2 is valid for the hypocontinuous forms with the compact 
open topologies. 

(iv) The isomorphism established in Theorems 1-3 is as 'canonical' as the 
isomorphism we suppose exists between E and its square. 

Given locally convex spaces F and Ei, i = 1 , . . .  , n we denote by s , En) 
the space of K-valued (continuous) n-linear mappings on E1 x...  x E~. If E1 =E2 = 
. . . .  E,~=E we write s  in this case we denote by s the subspace of sym- 

metric n-linear mappings. We also write s  F)  in place of E ( E ,  (n. 1) E,  F) .  
Finally E(nE;  F)  is the space of (continuous) n-linear mappings with values in F.  
The proof of Theorem 1 is by induction. In Proposition 1 we prove the case n = 2  
(the case n = l  is trivial) and after some technical preliminaries we complete the 
proof in Proposition 3. 

Remark 1. Fundamental systems of compact sets, bounded sets and neigh- 
bourhood bases at the origin are all stable under linear topological isomorphisms; 
moreover, each has the property that  set theoretical products in a product space 
yield a fundamental system in the product, e.g. if /C1 and K:2 are fundamental 
systems of compact sets in the locally convex spaces E and F then 

{ k l •  k2EK2} 

forms a fundamental system of compact sets in E x F.  In the proof of Theorem i we 
construct a certain algebraic isomorphism con between E(nE)  and 7)(~E)(--~s 
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An examination of the proof and the above property shows that  wn establishes a 
one to one correspondence between the following sets: 

(a) subsets of "P(nE) which are uniformly bounded on compact  subsets of E 
and subsets of s  which are uniformly bounded on compact  subsets of En; 

(b) subsets of P(nE) which are uniformly bounded on bounded subsets of E 

and subsets of s which are uniformly bounded on bounded subsets of En; 
(c) locally bounded subsets of "P(nE) (a subset of P(nE) is locally bounded if 

it takes some neighbourhood of 0 into a bounded set) and locally bounded subsets 
of s (a subset of s is locally bounded if it takes V n into a bounded set 
for some neighbourhood V of 0). 

These correspondences are important  in order to obtain the topological isomor- 
phisms s tated in Theorems 2 and 3. 

By E we will always denote a locally convex space topologically isomorphic to 
its square, but for convenience and in order to identify clearly certain mappings we 
write E as F1 xF2 where F1--F2~E. 

L e r n m a  1. The space s is isomorphic to s 2. 

Proof. We have E(nE)-~s F1 xF2).  Let 

al:  F1 • , • F2), 

 I(T) := (TIEn-1 Tl o , 

It  is easily checked tha t  c~t is an isomorphism. [] 

L e m m a  2. The space/2~(2E) is isomorphic to/2~(2E) 2 x/2(2E).  

Proof. We have E~(2E)-~E~(2(F 1 xF2)).  Then define 

 2:C ( (FlxF2))=C (Flxg2,F xF ) 

If a ~ ( T ) = 0  then 

T(Xl -[-Yl, x2 + Y2) = T(xl, x2) + T(yl, Y2) + T(xl , Y2 ) + T(yl, x2) = 0+T(x2 ,  Yl) = 0, 

so c~2 is one to one. Let Tl~s T2Cs TaEs Define TE  
s XF2, Fl xF2) by 

T(xl  -~-Yl, x2 -I-y2) : : Zl (Xl, x2) -l-T2 (Yl, Y2) -t-- T3 (Xl, Y2) -I-T3 (x2, Yl ) 

= T1 (x2, x 1) + T2 (Y2, Yl ) + T,  (x2, Yl ) + T3 (Xl, Y2)- 

Thus TeZ:~(2F~ xF2)  and clearly c~2(T)=(T1, T2, T3). [] 

We now prove the case n = 2  of Theorem 1. 
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P r o p o s i t i o n  1. The space/:s(2E) is isomorphic to s 

Proof. It is known tha t / : s (2E)  is complemented in/ :(2E) [7, Chapter 1]. Hence 
there exists V such that /2s(2E) x V~Z.(2E).  By Lemma 2 and Lemma 1 we have 

~(2 E) ~= C~(2 E) • v ~= Ls(~ z )  ~ • ~(2 E) • v ~_ ~ (~  E) • ~(2 E)~ ~- ~s(2 E) • ~(~ E). 

Hence, by Lemmata 1 and 2 again, 

/~(2E) ~/Z(2E) 2 ~ (L:s (2E) • s 2 ~/Zs (2E)2 • L(2E) 2 

~E~(2E)~xs163  [] 

Let {I, J} denote a partition of {1, ... , n} into two non-empty sets (so 1< III < n  
and l<_]Jl<n). Let ~.i,j(nE) denote the set of all TC/:('~E) which are invariant 
under all permutations o of {1,... , n} for which a ( I ) = I  and a ( J ) = J  (i.e. we can 
rearrange the xi, i E I, among themselves and the x j, j C J, among themselves with- 
out changing the value of the n-linear form). Since clearly 12I,j(nE)~s (nE) as 
long as II]=]I'l (and hence ]J l=lJ ' ] ) ,  we have 

ZS,j(nE) -= Z:~(nE), 

where IIl=k and L:k('~E)=L:{1 ..... k},{k+l ...... }(hE), i.e. we can take I = { 1 , . . .  ,k}, 
J = { k + l , . . .  , h i .  

P r o p o s i t i o n  2. If  for each k < n  there is an isomorphism 

Ok: s  ~ s 

then s  is isomorphic to s 

Proof. It suffices to show tha t / : k (~E)  is isomorphic to / : (~E) .  Let 

�9 ~:L(nE) ,C(~E;Cr 

( ~ I ) k ( T ) ( : ; C l  , . . .  , xk) ) (Xk+l; . . .  , Zn) : :  T ( Z l  , . . .  , X n ) .  

Then (Pk is an isomorphism. Now let 

(Zl (T)(xl  , ... , xk))(~k+~, .-., z~) := (O~-~(~k(T)(x~ , ... , z~)))(xk+~, . . . ,  x~) 

and let 
/32:/:(hE) , s  32(T)=~; l ( /31(T) ) .  



Polynomials on stable spaces 91 

Clearly fia and f12 are isomorphisms onto their ranges. We show 

f l 2 ( s  ) = { T  �9 s  ; T ( x l  , ... , Xn) = T ( X l  , ... , x k ,  X~(k+l) , ... , x~(n))  

for all permuta t ions  a of { k + l , . . .  , n}} :=  s  

(a) f l 2 ( s  If  S=f l2 (T)  and a is a pe rmuta t ion  of { k + l , . . .  ,n}  
then  

S ( x l , . . .  , x~) = (~k  1(/31 (T ) ) ) (x l ,  ... , xn) = (/31 ( T ) ( x l ,  ... , xk))(Xk+l , ..- , x~) 

= ( O , ~ _ k ( ~ ( T ) ( x ~ , . . . ,  ~k)))(xk+~ , . . . ,  ~) 
= (On-k(~k(T)(x l , . . .  ,Xk)))(Xa(k+l),... ,Xa(n)) 

= S ( ~ 1 ,  . . .  , z k ,  x ~ ( k + l ) ,  . . .  , x ~ ( ~ ) ) .  

(b) s 1 6 3  Let S � 9 1 6 3  Then  ~ k ( S ) ( x l , . . .  , x k ) � 9 1 6 3  

Let 

T ( x l  , ... , Xn) = (On!k(t~k(S)(Xl,. . .  , Xk)))(Xk+l,...  , Xn), 

SO 

a ) k ( T ) ( X l  , . . .  , x k )  = o ~ l k ( ~ k ( S ) ( x l  , . . .  , x k ) ) ,  

O ~ - k ( a P k ( T ) ( x l , . . .  , xk)) = ~ k ( S ) ( x l ,  ... , xk), 

(il l  ( T ) ( x l  , . . .  , Xk ) ) (Xk+l  , . . .  , X~) = ( O n - k ( ~ k ( T ) ( x l  , . . .  , Xk)))(Xk+l , -.- , X,)  

: ( ~ k ( S ) ( Z l , , . - .  , X k ) ) ( X k + l , - . -  ,Xn) 

: S ( X  1 , . . .  ~Xk.~Xk+l ,... ~Xn) 

and fl2(T)(Xl,  ... , x n ) = S ( x l , . . .  , x n ) ,  i.e. f l 2 (T)=S .  
Therefore f . ( ~ E ) ~ s  from (a) and (b). On  the other  hand  it is clear tha t  

~o(nE) ~ { T  � 9  ; T ( X l , . . .  ,Xn) =T(xa(1) , . . .  , Z c ~ ( n - k ) , X n - k + l , - . - , X n ) }  

:=&o(~). 

To finish we show s 1 6 3  ). Let 

fi3: ~oo(nE) ----'--+ ~(n-k  E; L(k E) ), 

( & ( T ) ( ~ I  , . . . ,  x n - k ) ) ( x n - k + l  , . . ,  xn) 

::(Ok(ffPn_k(T)(xl ,... ,Xn--k)))(Xn--k+l , '"  ,Xn) 

and let 

f l 4 : s  ~ s  f l 4 ( T ) = ~ l _ k ( f l 3 ( T ) ) .  
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By going over (a) and (b) for this new situation we see that ]34 is an isomorphism 
onto its image and T belongs to/34(Eoo(nE)) if and only if 

T(Xl , . . .  , X n _ k , X n - k + l  ~...  ~ X n )  

is equal both to 

T ( X l  , ... , X n _ k ,  Xc~(n_k+ l )  , . . .  , X a ( n ) )  

and to 

T(x~-(1  ) , . . .  , X T ( n _ k ) , X n - - k + l  , . . .  , X n ) ,  

for permutations c~ and T, thus if and only if T belongs to Ek(~E). [] 

P r o p o s i t i o n  3. For any positive integer n we have: 
(a) Es(nE) is isomorphic to Es('~E)2xE(~E), 
(b) s is isomorphic to s 

Proof. The proof is by induction. If n = 2  then (a) is Lemma 2 and (b) is 
Proposition 1. We suppose (a) and (b) hold for k<n. Thus we can apply Proposi- 
tion 2 and assume that  Ek(nE) is isomorphic to E('~E) for every k<n. We recall 
E=--F1 x F2 where F 1 - F 2 = E  and define the mapping 

luuuuw:s215 ) I - I  ~ : ( f l ,  (J)..., F~.F2 , (n-j)... , F~), ~(T)  = (T0 , ... , T,~), 
j=0 

where 

Tj ( x  1 , . . .  , Xj, Yj+I ,... , Yn) := T(Xl ~-0,,.. , xj +0, 0-t-Yj+l ,... , O+yn) 

for all O<j<n. Since T is symmetric it follows that  

T s ( X l , . . . ,  x j ,  y j §  . . . ,  yn) = Tj (x~(1) ,  . . . ,  x < j ) ,  y~( j+ l ) ,  . . . ,  y~(n)) 

for any a, permutation of {1,.. .  ,n} such that  both a{1, . . .  , j } = { 1 , . . .  , j}  and 
a { j + l , . . . , n } = { j + l , . . . , n } .  If j = 0  or j = n  then TjCE~(nE).  Ifjs/=0, n then 

TjEEj(nE).  We claim ( ,)  that  02 is an isomorphism onto s xrlk=ln-1L;k(nE). 
Assuming that  ( ,)  is true then we get 

n--1 
s ~= s 2 x 1-I s TM f~s(nE)2 •  ~ s • f~(nE) 

k = l  

the last equivalence by Lemma 1. This establishes (a) for n. 
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To prove (b) we note tha t  since s  is complemented in f-.(nE) we have Vn 
such tha t  s163 ) x Vn. Therefore, by using (a) and Lemma 1 again, 

c ( ~ E )  ~ L~(~E) x v,~ ~ Cs("E)  ~ • C("E) • V. 

s (uE) x s ~ f_.s(nE) x s 

hence, 

f ~ ( n E )  ~ s  ~- s  2 x z : (nE)  2 TM s  (hE)  2 • s  -~ s  

and this gives (b) and completes the proof by induction once we have established (.). 
(i) k~ is injective: If 9 ( T ) = 0  then Tj=O for every j .  Given any element 

( x i + y i ) n l  E (F1 x F2) n we can write T(x l  +Yl , . . .  , x , ~ + y , ~ ) = ~  T(Zl , . . .  , zn) where 
z i=xi  or Yi and the sum is taken over all possible choices. Since T is symmetr ic  
we can rearrange in each te rm the zi's so that  the xi 's  precede the y~'s and so each 
te rm has the form 

T(x l  ,... , x j , y j+ l  ,... ,Yn) = Tj(Xl ,... , x j , y j+l  ...,Y~) =0. 

Hence T_=0 and this implies ~ is one to one. 
(ii) 9 is surjective: Given (To, T1 , . . . ,  Tn), with 

To C s  r j E s  Zn C s  (hE1), 

we define S by 

n 

S(Xl-~-Yl,""  ,Xn-[-Yn)-~-T0(Yl,.-.  , Y n ) - ~ - E  T I  ( x j '  y2 ' ''" , Y j - I ,  Y l , Y j + I  , "" , Yn )  
j = l  

-t- E T 2 ( X j ,  Xk ,  ~13 , ... , Y j - 1 ,  Y l ,  Y j + I  , ... , Y k - 1 ,  Y2,  Yk+l , .." , Yn)  
j , k  

- } - E  T 3 ( x i '  x r  x k ,  Y 4 , ' "  , Y i - 1 ,  Yl, Y i + l  , ... , Y j - 1 ,  Y2, Y j + I  , ' "  , Y k - 1 ,  
i,j,tr 

Ya, Yk+l ,... ,Yn)+ . . . .  

Note tha t  S is symmetric.  Indeed To is symmetric.  It  is readily checked, since 

T1 ~s (F1, F2, ... , F2), tha t  

n 

T,(xj, y 2 ,  ,yj-1, y l , ,  y.) 
j = l  



94 Juan  Carlos Dfaz and Scan Dineen 

is symmetric with respect to the arguments (xl "~"Yl , . . .  , X n  " l - y n ) .  In the same way 
it is shown that  each other summand is also symmetric. On the other hand 

I'I/(S)j(Zl,... ,x j ,yj+l , . . .  ,Yn) =S(Xl-~-O,... ,Xj-~-0,0-~-Yj+l,...) 
= T j  ( x l , . . .  , x j ,  Y j + I , . . .  , Y,~), 

so qZ(S)=(To,T1 ,... ,T,~), hence �9 is an isomorphism which establishes ( .)  and 
completes the proof. [] 

Proposition 3(b) establishes Theorem 1. We now prove Theorems 2 and 3. 
For each n we let cz~ denote the algebraic isomorphism between s and P(nE) 
(~s  The correspondence in (a) and (b) of Remark 1 establishes (i) and (ii) 
of Theorem 2, respectively. We now show Theorem 3. Let 

QI(~E) ={r  E P ( ~ E ) '  ; r  restricted to the locally bounded subsets of P('~E) 
is T0-continuous}, 

and let 

Q2(nE) ={r  c 12(nE)';r restricted to the locally bounded subsets of s 
is T0-continuous}. 

Using results of Ryan [131, Mazet [10] and Mujica and Nachbin [12], Boyd 
proved (Proposition 1 and subsequent comments of [2]) that  QI(nE) endowed with 
the topology of uniform convergence on the locally bounded subsets of s is 
topologically isomorphic to ~ , ~ , . E .  The method of proof in [12] and [2] extends 
readily to the n-linear forms and we see that  Q2 (hE), endowed with the topology of 
uniform convergence on the locally bounded subsets of s is topologically iso- 
morphic to ~ , ~ E .  Since we noted in Remark 1 that the locally bounded subsets of 
s and s can be identified under a~ and that a~n is a topological isomor- 
phism for the TO topologies we conclude that  ~ . . . . .  E and ~ .... E are topologically 
isomorphic. This proves Theorem 3. 

Finally to check (iii) of Theorem 2 we take inductive duals of ~ . . . . .  E and 
~ , ~ E .  (The inductive dual of a locally convex space F is the inductive limit 
F / : = l i m y  (F~, II" IIv) where V ranges over a fundamental neighbourhood system at 

the origin.) Our statement follows since (@ ...... E)'i~(T'(~E), 7~o) ([2]). [] 
For a nuclear power series space E, the existence of a topological isomorphism 

between s and s implies that  E is stable ([4, Theorem 10]). We give an 
example to show that  the analogous result does not hold for Banach spaces. 
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L e m m a  3. Let X be a Banach space such that X ~ is stable and has the ap- 
proximation property. If every continuous linear mapping from X to X ~ is compact 
then E(2X) is topologically isomorphic to s 

Proof. Compactness of the linear mappings and the approximation property 
on X t imply s163  where | denotes the injeetive tensor 

product.  Similarly, s  Since X ~ is isomorphic to its square, the 
methods used in Lem m at a  1, 2 and Proposition 1 can be adapted to prove that  
XtQ~X r is isomorphic to its square, X t ~ , , , X  ~ is isomorphic to its square and 

[] 

Example 1. Let ft denote the set of all ordinals less than or equal to the first 
uncountable ordinal. By [15] the Banach space C(ft)  is not stable. However C(g t ) ' ~  
11 (f~) and ll(f~) is stable and has the approximation property and, moreover, every 
continuous linear map  from C(f~) to ll (ft) is compact  since C(ft)  does not contain 
any copy of 11. By Lemma 3, s163 and we conclude that  stability 

is not always required in our previous results. 

The above example leads natural ly to the following question: If E and F are 
Banach spaces and E' ~ F' does this imply that p(n E) ~P(~ F) for all n? Using the 

arguments of Lemma 3 we give a partial  positive answer. 

P r o p o s i t i o n  4. Let E and F denote Banach spaces such that E ~ is isomorphic 
to F ~. If E ~ has the Schur property and the approximation property then P(nE) is 
isomorphic to P(nF) for every nEN.  

Proof. By our hypothesis E and F do not contain ll and have the Dunford-  
Pettis property. Let G=E or F.  By [14, Corollary 3.4] the n-fold projective tensor 

product  @n,~G does not contain 11 and hence every continuous linear mapping from 
@n_ldrG to G / is compact.  By the method of Lemma 3 we obtain s t 
and s Since E ' ~ F ' ~ G '  this implies P(~E)~P(~F)  and completes 

the proof. D 
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