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1. Introduction 

In this paper we continue our investigation begun in [3] of problems of char- 
acterizing all the interpolation spaces with respect to a given Banach couple. More 
specifically we show that a rather large class of Banach couples ~ =  (AQ, A1) are 
Calder6n pairs, that is, A is an interpolation space with respect to ~ if and only 
it has the property that aEA and K(t, b; _A)<=t;(t, a; _74) for all t=>O implies 
that bEA. We refer to [3] and also [17] and [1] pp. 83, 128, for detailed definitions 
and for a discussion and bibliography of earlier results of this type, and take this 
opportunity to correct our inadvertent omission in [3] of the contributions of Mitja- 
gin [10] and Cotlar (unpublished). 

We shall continue to use the notation and terminology of [3] together with 
that of [1]. In some cases we have made minor and unambiguous modifications of 
terminology from [3] in favour of the usage in [1]. 

We shall also use the following notions (cf. [4]). 

Definition. Let A=(A0, A1) and B=(B0, B1) be two Banach couples and let 
A and B be intermediate spaces with respect to A and 2 respectively. Then A and 
B are relative interpolation spaces with respect to .4 and B if every linear operator 
TESf(Ao, Bo) n ~(A1, B1) also maps A into B. A and B are relative K spaces if 
aEA, bES(B)=BQ+B1 and K(t, b; B)<=K(t, a; A) for all t > 0  implies that bEB. 
.4 and 2 are relative Calder6n pairs if all relative interpolation spaces A and B are 
also relative K spaces, that is, all possible interpolation results can be described 
in terms of K functional inequalities. 

Note that in all the above definitions one must take care to write the two couples 
or two spaces in the correct order. For example (see [4]) (L 1, L~), (L =, L~) are 
relative Calder6n pairs but (L =, LT) and (L 1, L~) are not. 

Analogously to the case when A=B, to show that .4 and 2 are relative Cal- 
derdn pairs it clearly suffices to show that for any a E I; (-~), b E 2; (2) with K(t, b; B) <= 
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K(t, a, A) for all t > 0  there exists an operator TC~(Ao, Bo)ca ~---~(A1, B1) with 
Ta=b. 

The plan of the paper is as follows: 
In Section 2 we show that for any Banach couple A=(Ao,  An) and any num- 

bers 0Q, 01 in (0, 1) and P0, Pl in [1, ~] the couple of  real interpolation spaces -40, ~ = 
(A00,,o, "401,pl) is a Calder6n pair. In fact by a result which is proved in Section 4 
we have the same result for the couple (Ao, p, do, ~) for all 0E(0, 1) and all p~(0, ~]. 
Furthermore the same methods enable us to show that (A0o,po, A01,,) and 
(B~o,p 0, B,~,pl) are relative Calder6n pairs, where B =  (B0, B0 is another arbitrary 
Banach couple, for any choice of 00 ,01 ,~o,~S(0 ,  1) and po,plC[1, ~o]. The 
basic result of Section 2 together with a very brief indication of  its proof  was an- 
nounced in [1] and also in [17]. In a more recent note [6] V. I. Dmitriev and V. I. Ov6in- 
nikov gave a more elaborate outline of  the proof  and some more abstract generalisa- 
tions of the result. 

In Section 3 we answer a question posed by A. A. Sedaev by showing that 
the couple (AP(cp), L ~) is Calderdn. Here AP(~o) is the space normed by 1t fl[a,(<o)= 
(fof*(t)P~p(t)dt) J/o where l<_-p<~ and tp(t) is any nonincreasing locally inte- 
grable function. In fact we show that (AP(cp~), L ~) and (AP(~02), L =) are relative 
Calderdn pairs for any functions ~0t(t) and ~0~(t) each having the same properties 
as ~o (t). 

In Section 4 we consider spaces which may fail to be Banach and show that 
(l p, l =) is Calder6n for 0<p_-  < co. As already mentioned this enables an extension 
of the results of  Section 2. 

In Section 5 we ask some questions related to the preceding results and also 
pose a problem for the couple (L p, W ~,p) consisting of an L p space and Sobolev 
space on R" or T". For  p r  this is not a Calder6n pair but we are able to obtain 
necessary conditions on all its interpolation spaces along the lines of  results given 
in [3] Section 3. 

We mention that a forthcoming paper [4] will give a detailed discussion of 
K-monotone spaces or K-spaces and also some results concerning relative Calderdn 
pairs. 

It is a pleasure to acknowledge some helpful discussions with Gunnar  Sparr. 

2. (A0o,po, Aol,pl) is a Calder6n pah 

For 0 < p < ~  and 0=<0~1, let l~ denote the complete (quasi) normed space 
of scalar valued sequences re.)2=_ = with II(c.)]]tg=(2's ~ [2-"~ ~o. Anal- 
ogously l o is defined by II(c.)]lz;~=sup~=_~ [2-"%.1. Let /I=(A o, AO be an arbi- 
trary Banach couple. The space Ao,p may be defined to consist of those elements 
a~_.Y(.4) for which ][a]lxo,,.=]l(K(2n, a; A))lllg is finite, for 0 < 0 < 1 ,  O < p _  -<~o. 
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For l<=po,pl<=~ and 0<0o, 01<1 Sparr's theorem [16, 17, 3] implies that 
[lpo t 00, lff~) = I d' is a Calder6n pair. The proof which we shall give that ('40o,po, -d01,px) = 
.4p,~ is a Calder6n pair amounts to showing that the above two couples are almost 
"bl-pseudoretracts" of each other (as defined in [11] p. 22). 

Lemma 1. Given any aE~ (A) there exists a linear map S from Z (4) into 
lg~ such that Sa=(K(2", a; A_))~=_~ and for all bEAo.p 0 < 0 < 1 ,  0<p<=~,  
SbEI p with llSblltg<-_llbll~o,p. 

Proof. For each n=0,  §  +_2, ... K(2",-  ;_4) is a norm on 27(.d). There 
exist linear functionals l,, n=0 ,  +_ 1, •  . . . .  on I;(4) such that ll,(b)l~_K(2", b; Zt) 
for all b~s(X)  and in particular l,(a)=K(2", a; A). Let Sb=(l,(b))2=_=, then 
S clearly has all the required properties. 

Lemma 2. Let 0o, 01E(0, 1), po,plE(O, ~]. Given any aES(Ao,~)=Aoo,po+ 
Aox,p~, there exists a linear operator T mapping Z(I-~) into Z(Ao.~) such that T maps 
lgj boundedly into Ao~,,,, j = 0 ,  1 and T((K(2", a; ~))--a.  

Proof(cf. the "fundamental lemma" [1] p. 45). For each n=O, +_1, +_2 .... 
choose g.EAo, h.EA1 such that g.+h.=a and IIg.llao+2"llh.lla <_-(1 +e)K(2", a; ft.) 
for some e>0. Since aEZ(Ao.p) one can readily deduce that for a.=g.-g .+l= 
h.+l-h. ,  ~,.~=_= ]la.llx(~)< ~ and ~ = _ ~  a.=a. For each sequence (b.)~=_=EZ(I~) 

bn an 
let T((b.))=~.~=_= "K(2", a; A) 

From slight variants of  estimates which we shall obtain below it will be clear 
that the above sum converges absolutely with respect to the norm of I; Q]), and so 
T((b.)) is a weU defined element of S (A). Clearly T((K(2", a; A)))= a. It remains 
to show that T maps lffj boundedly into "40j.p. (cf. [13] Thm. 5.7 p. 243 and [14] 
Thm. 10, p. 49). Suppose (b.)ElffJ. Then 

K(2", T((b.)); J~) N Z 2 = - =  Ib.I X(2", a.; A)/K(2", a; A) 

<-- ~Y~'=_= [b.I min (l[a.llao, 2mIla,lla~)/K(2 ", a; A) 

< 3(1+~) ~'n=_= Ib, I rain (K(2", a; ~), 2re-"K(2 ", a; .~))/K(2", a; ~) 

--- 30 +~)Z~=-~ Ib.I min (1, 2m-"). 
If p j--_> 1 

112-"~ K(2", T((b )); A)ll,pj 

3(1 +~)ll(bn)lllffj [Imin (2-"~ 2"~176 

For p~<l  
[2-m~ T((b.)); .4)]"~ 

3P~(1 § z ~ = - =  ( 2-"~ Ib.I) v~ min (2-0~~ (m-n), 2"~(1-~ (m-.)). 
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So 
I [T((b))[ ]%,,~ ~ 3 (1 + e)[[(b.)[lz~j Ilmin (2 -~ 2(1,~ 

Thus in all cases T maps loPJ into -40j,pj with norm bounded by a number which 
can be chosen as close as we please to 

/ 1 
Coj, pj = 3 [ 

(1 
where pf. =rain (1, p j). 

+ 
1 ] lip* 

(1 - 2 - ( 1 - ~  1) 

Remark 1. There are obvious analogues of  the above two lemmata with lo e 
replaced by Lv((O, ~), t-~ but the analogue of the second lemma only holds 
for pj=> 1. 

Corollary 1. From Lemmata 1 and 2 it.follows immediately that for each a E S, (Ao,~) 
and each t>O, 

K(t, (K(2", a; -4))7=- ~ ; l{) <= K(t, a ; A#, ~) 

=< max (Coj pj)K(t, (K(2", a; A)),~_=; l~). 
j = 0 , 1  

Remark 2. The above corollary provides a formula for K(t, a; Ao,~) to within 
equivalence, cf. Holmstedt [7]. Note that the formula here also applies when 0o= 0~. 
One could seek a more explicit expression using the K functional for a pair of weighted 
L p. spaces. (See [I] exercise 2, p. 124, and [3] p. 234; the "transformation" used in 
[3] was in fact introduced long ago by Stein and Weiss.) By such a procedure, for 
pQ=p~, 0o~01 one readily recovers Holmstedt's formula. However, for Por we 
obtain an expression, which appears to be rather more unwieldy than Holmstedt's, 
in terms of  the non increasing rearrangement of  the sequence 2~"K(2 ", a; ,4) or 
the function t~K(t, a; A) with respect to a suitably weighted measure n ~ on the 
integers or tP-ldt on (0, ~). Here a=(poOo-plO1)/(pl-Po ) and 

fl = PoP1 (01 - Oo)/(pl-Po). 

Theorem 1. Let 0~, 01C(0, 1) and Po, p1s ~] be chosen such that I~=(l~,  I~'~) 
is a Calder6n pair, then for any Banach couple .4=(A 0, A1) , the couple A0,~= 
(Aoo,po' Aol,v) is a Calder6n pair. 

Proof. It suffices to show that if g, fCs p) with K(t, g; Ao,~)<=K(t,f; A~,p) 
for all t > 0  then there exists an operator U~(~Oo,  po)C~ Aa(A01,pl) satisfying 
Uf=g. Now by Corollary 1 and the hypothesis o n f a n d  g there exists an operator 
VCLP(l~Oo) n ~(lff~) which maps the sequence K(2",f;  .4) to the sequence K(2", g; .~). 
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By Lemma 1 
sU=(K(Z",f; 
-La(lff~, Aox.p) 
U= TVS. 

there exists an operator SESY(~oo,po, l~) n ~(Ao~.p~, l~) such that 
~))~=_= and by Lemma 2 there exists an operator TE s -~O,,po) n 
such that T(K(2 ", g; .4))=g. The required operator U is given by 

Remark 3. By Sparr's theorem [16, 17, 3] the hypotheses of the above theorem 
hold for all p0,plE[1, ~] 0o, 0~E(0, 1). We shall show in Section4 that (l~, lo )  
is a Calder6n pair for all pE(0, ~] 0E(0, 1) thus enlarging the range of  parameters 
for which the theorem is valid. We note that Sparr [16, 17] also obtained results 
for L p spaces with exponents p < l ,  but in the case of nonatomic measure spaces 
for which an analogue of Lemma 2 does not hold. 

If  -~=(A0, A0 and B=(B0,  B1) are two different Banach couples then an 
obvious adaptation of  Theorem 1 shows that ~o,p and Bo,~ are relative Calderdn 
pairs. In fact by almost identical reasoning the corresponding result holds for the 
two couples A~,~=(_~Oo,po,~o~,p) and B~,~=(B,0,p0, B,~,p) where the parameters 
0o, 01 ~o, ~1 may take any values in (0, 1) and P0, P~ are in [1, co]. 

3. The couple (A/'(~o), L ~) 

In this section we give another example of  the use of "pseudoretract" techniques 
which arose in the proof of  Theorem 1. Let (X, S,/~) be a measure space. For each 
/~-measurable function f (x)  on X we denote the non increasing rearrangement of  
f (x)  byf*(t) ,  0 < t <  co. Let ~o(t) be a locally Lebesgue integrable decreasing func- 
tion on (0, oo). For l_-<p<~ we define the Lorentz space AP(~o) on (X, S,/~) 
to consist of all (equivalence classes of) measurable functions f(x) for which the 
norm I[ fl[Ap(q0 = (fof* (t)PtP (t) dt) lip is finite. 

An example of a Banach couple which is not an "exact" Calder6n pair was 
constructed by Sedaev and Semenov using a suitable three dimensional version 
of the couple (Al(q~), L=), (see [15] or [1], p. 127). We shall show here however 
that in general (A 1 (~0), L =) is a Calder6n pair. Specifically if f and g are in A 1 (q0 + L~ 
with K(t,g; AX(~o),L=)<=K(t,f; AI(~o),L ~) for all t ~ 0  then there exists an 
operator TE~(AI(qg))n s ~) such that Tf=g. This answers a question posed 
by A. A. Sedaev. In fact we obtain the following more general result which imme- 
diately implies that for any functions ~ox and ~o2 satisfying the above conditions, 
(AP(qh), L =) and (AP(q~2), L ~) are relative Calder6n pairs (cf. also [5]). 

Theorem 2. Let (Xx, ~ ,  #0 and 0(2,272, #3) be measure spaces and let ~o~(t), 
~o2(t ) be non increasing locally integrable functions on (0, ~). Let AP(q~k) denote the 
Lorentz space of functions on (Xk, Zk, #,) corresponding to ~Ok(t), k = l ,  2 where 
pE[1, ~). Let .4=(AP(90, L~~ and B=(AP(q~2),L=(dt~2)). I f  fEZ(A) and 
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gEX(B) and K(t,g; B)<:K(t,f; A) for all t>0 ,  then there exists an operator 

TE s ,p (AP ((P 1), AP ((P 3)) n s (L= (d/~l), L= (d#2)) 

such that Tf=g. The constant %<-_2 depends only on p and ~1= 1. 

Proof. In the light of  results of  [2] (for the non a-finite case see also [3]) we can 
assume without loss of  generality that (X1, 271, /q) = (X2, X2,/~2) = (0, oo) equipped 
with Lebesgue measure, and also that f and g are non negative non increasing and 
right continuous, so that f ( t )=f*( t ) ,  g(t)=g*(t). As in the proof  of Theorem 1 
we shall construct T as the composition of three operators T =  UVW as indicated 
in the following diagram: 

(A"(~O, L ~) w , (L~(~o~dx) ' L= ) v , ( r~(~ax) ,  L~ ) ~_~  (A~(~), L"). 

Here LP(gokdX) denotes the L p space on (0, ~)  normed by 

[IhllL-(~,~u~) = (fo l h ( x ) lP~~  1/" for k = 1, 2. 

(i) Construction and properties of the operator W: We simply take the identity 
operator Wh (x) = h (x). In view of the inequality f o h (x) p gox (x) dx <- f 2 h* (x), ~ol (x) dx 
(cf. e.g. [8], p. 257) l,V~s LP(~o~dx)) c~ ~ I ( L  ~, L~). 

(ii) Construction and properties of  U: I f  f o  g~ we define positive 
numbers bn, n=0 ,  _+ l, .+_2 . . . .  for which f~o ~ p~(t)dt=2 ~. I f  fo ~o~(t)dt=I< 
define b, only for negative n, such that fbo, go2(t)dt=2"I; thus we may consistently 
take b0 = ~o in this case. We now define an auxiliary operator U1 by 

_ h(t)~p~(t)dt)(f;._le~(t)dt ) ZE~..~.+~) 

for each hELP(go2dt)+L ~. The summation over n is from - - ~  to ~ if I = c o  
and from - ~  to - 1  if I < ~ .  

IUlh(x)l" ~ 2.(fi~2_11h(t)l~o2(Odt)P(fib" ~02(t)dt)-'ZEO, b.+~)(x) 

<=z.(f2 ~ Ih(t)l"e~(t)dt)(f2" e~(t)dt)-lZE0.~~ 
n - 1  n - 1  

Since this last sum is a non increasing function of X we see that 

[[ Ul hl[Pp(~ ) < 
2 = 

Since g is non increasing we obviously have 

4 z .  fb~ [h(t)lP~P2(t)dt = 4][hl[~p(~#~). 

Ulg(x)>-g(x) for all x. Thus if we 
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g(x)Ulh(x)  
define U by Uh(x)= then U g = g  and 

vlg(x) 

U E ~41/p(L~(q)2 dx), AP(cp2)) n s ~, L'~ 

(iii) Construction and properties of V: Using arguments almost identical to 
those in the proof  of Theorem 5.2.1 [1] p. 109, we cart readily show that for each t > 0  

(f~'~") g* (x). ~o~(x) dx) "~ <= l((t, g; A~(~), L ~) 
and 

K(t, f ;  AP(qgI), L ~) ~ ~ . ( f  o ~('' f*(x)P ~Ol(X) dx} 'Ip 

where the functions Uk(t) k =  1, 2 are defined by the conditions 

fo"~(~ for all t < ( f  ~ ~Ok(X)dx) lip and ut ( t )=~o  

otherwise, and the constant ap satisfies l<=ap-<2 with a l = l .  
We may consider f and g as functions on a measure space (Y, S, v) where Y 

consists of two disjoint copies of (0, oo). Y = R + , ~ u R + , 2  with dv=~ok(x)dx on 
R+,k, a n d f a n d  g are supported on R+,I and R+,2 respectively. Letting F(t)  and 
G(t) denote the non increasing rearrangements o f f  and g respectively with respect 
to the measure v we see that for each t > 0 :  

fop e(,)~ ds = f"'(" g(x)~,p=(x)ax < ~ r ~176 f~" o = 1' *to f(x)P g~ (x) dx = a p p F(s) p ds 

and thus by the results of [9] there exists an operator VE s c~ of~,(L*~(dv)) 
with Vf= g. In fact we can have 

VE s ( L p ( (p~ dx), L p (go 2 dx)) n .~,, (L = (~o~ dx), L ~ (go 2 dx)). 

From the properties of U, V and W it is now evident that 

T =  UVWE ~I/,,,,~(A~'(q~O, AP(q~2))n,Sf~p(L~,L ~) and T f  = g, 

completing the proof  of the theorem. 

4. (Ig, t o )  for 0 < p  < oo 

As already mentioned in Section 2, (IS, 10) is a Calderdn pair for all p, 0 < p <  oo 
and all 0E(0, 1), in fact for all real 0. To establish this it suffices of  course to con- 
sider the case 0=  0 and to prove the following theorem which is of course well 
known for p ~ l  ([2, 9, 10]). 
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Theorem 3. Let 0 < p <  co and let f ,  gClP+l ~ with 

g*(s), ds f*(s)" ds (1) 

for all positive t. Then there exists an operator QE~'sl/~(lP)n-W21/p(l ~) such that 

Qf=g. 

Proof. We can of course suppose that both f=(f,)~~ 1 and g = ( g , ) ~  are 
non negative sequences. Let f * - - ( f * ) ~  and g * = ( g * ) l  be the non increasing 
rearrangement sequences o f f  and g, that is, for each n=>l, f*=f*( t ) ,  tE[n-1, n) 
and similarly for g*. We shall show that (1) implies the existence of an operator 
V~L~'(lOc~.~q'(l ~) with Vf*=g*. Let us first establish the existence of  operators 
S and T in .Lax(l ") ca .oqal(l ~) such that Sf=f* and Tg*=g. The desired operator 
will then be given by Q =  TVS. 

Let a = l i m , _ = f * .  Let J={nl f ,>a}  and J*={nlf~*>a}. J a n d  J* are either 
both infinite or both finite with the same cardinality. On J* f *  assumes any given 
value f l>a  at most finitely many times. The sets {nlf,=fl} and {n[f*=fl} have 
the same finite cardinality and so there exists a one to one map rc of  J* onto J such 
that f , ( , )= f*  for all n~J*. There exists an infinite subsequence (m(n))~=~ of 
the positive integers such that lim,_oo f, ,( ,)=a.  Let co be a Banach limit, that is 
co~(l=) * with norm 1 and co ((h,)) =lim,.oo h, for all convergent sequences (h.)~'. 

We can now define the operator S which maps any given sequence (h,)~= 1 
to the sequence 

(Sh)k -= hn(k) for k ~ J* 

= co((h,.(.))) for k~ J*. 

It is clear that S is in s and -W(l ~176 with bound 1 and Sf=f*. The operator T 
is constructed in an almost identical fashion. We may take m(n )=n  in this case. 
For each sequence (h/)~~ we define 

(Th)k = h~-~(k ) for k ~ J  
= co((h,)) gk/a for k~ J, 

where here a, J, J*  and rc are defined exactly as above but for the sequence (g,)~=l 
instead of for (f .)~.  

We now turn to the construction of  the operator V which maps f * =  ( f*)  to 
g - ( g , ) , = l .  At this point we may drop the asterisks and consider non increasing 
sequences f =  (f , )~,  g = (g,)7, with non increasing rearrangement functions f *  (t) = 
f ( t )  and g*(t)=g(t) satisfying (1). Let F be the finite or infinite sequence of  
consecutive positive integers n for which g,>O. The inequalities (1) imply the 
existence of a strictly increasing sequence (a.),~ r of positive numbers such that: 

<= n and fro ~ f(s)" ds = g(s). as (2) an 
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for each nCF. Let a0=0 and for each nCF let k(n) be the integer for which 2 k(")--- 

an-an_l<2 k(O+l. Then 

g" = f".-1 g(s), as = f]~ f(s)V ds <=,fa"-x,7,,_ 1 +2u("'+lf(s)P ds <= 2 fa,_,~,_ ~ +2k("'f(s)P ds. 

Partition F into X={nCFI2k(")<= 1/2}, F0={nCF[2k(')= 1} and Y={n~Ft2k(")>=2}. 
We shall need the following lemma. 

Lemma A. 7here exists a one to one map ~ of Y into X such that {(n)<n  for 
each n~ Y. 

Proof Let y(1), y(2), y(3) . . . .  be a list in increasing order of the elements 
of Y and let x(1), x(2), x(3), ... be a list in increasing order of the elements of X. 
The map { will be given by {(y(n))=x(n) for n = l ,  2 . . . .  card Y. We need only 
show that x(n)<y(n) for all such n. Fix n and let m be the greatest integer such 
that x(m)<y(n). In other words, of the y(n) integers 1, 2, ..., y(n), n integers 
are in  Y, m a r e i n X a n d  y ( n ) - n - m  are in  F0. Clearly ,a 2v=12k(O=<ax ~ 2  for each 
2EF and so 

y(n) => ~v=l~'Y(") 2k(~) = ~ r, v ~y~-,-j 2k(~) + ~ c r ~ ,  ~_~y(,)2k(~ + ~ x,~_~(,) 2k(~) 

>= 2n+ y(n)--n--rn. 

It follows that n<=m and so x(n)<=x(m)<y(n). This completes the proof of 
Lemma A, and we proceed with the proof of Theorem 3. 

The next step is to construct an operator /I0 which maps f to gZxuro. Let 
z(1), z(2), z(3), ... be a list in increasing order of the elements of X w F o and let 
11, 12, . be intervals defined by /1=[0, 2 k(zm)) and I . =  [~"-l=a 2kO(vl), ~"=1 2k(z(v))) 
for n > l .  Each interval I. meets at most two of  the intervals J,.=[m, m + l ) .  Let 
j(n) be the smallest integer m such that J,. c~I. is non empty. For any fixed m, 
U j(.)=,. I,, is an interval of length less than 2. 

Let V~ be a linear operator mapping lP+l ~ into the space of  step functions 
on [0, ~) which are constant on each interval I . .  For  each h-(h . )~=j ,  V~h will 
be the function which equals hj(.) on I..  Let (M, p) be the measure space generated 
by the sets I.  acting as atoms with p ( / . ) =  II.1 = 2  k(z(n)). Then Va maps l = into L=(p) 
with norm 1. V1 also maps l v boundedly into LP(lO with bound 2 j/p since 

fulV~hlVd~=Z~=~lh,  l '~( ~ Im)<=ZZ~=llh, f .  
j( )= 

We observed earlier that 

f;~-~ +2k(n) gP, <= 2 f(s)Pds for each nEr. (3) 
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Now if n = z ( m ) E X u F  o we also have 

f,, f(s),'ds<= f, Gf)"d,. (4) 
a n  - 1 m 

These inequalities follow immediately from the facts that f(s) is non increasing, 
that I/,,1=2 k("), and that the left endpoint of I m is 

: z..,,,=l : az(m)-i : an-1. 

Let 112 be a linear operator from LP(I~)+L~(p) into lP+I ~ such that for any 
step function h=~,~=~ hmZ~,ELP(p)+L~(#) the sequence V2h={(V2h),,}~=~ is 
given by 

(V~h)n=O whenever nEY or n~F.  

(V~h). = hmlI,.[ x/p whenever n = z ( m ) E X u F o .  

II2 clearly has bound 1 as an element of both ~(LP(It), l p) and .~e(L ~ (/~), l~). The 
operator V2V~E Ls ca ~q'l(l ~) and, by (3) and (4), ((II2 V~f),) '= f l  m (V~f)Pds>= 
(1/2)g n " (where n=z(m))  for each n E X w F o .  Let V0 be given by V2V1 followed 
by the operator which multiplies the n th element of the sequence by g,/(V~ V l f ) , ,  
n E X u F o .  Then VoE~l&,(lP)ca~_q~zl/p(l~), and (Vof ) .=g .  for all nEXwFo and 
(Vof).  = 0 for n r X w F0. Finally we may construct V with the help of the mapping ~. 

For each hElP+l = let Vh={(Vh).}~=a be given by 

(Vh). = (Vo h)n for n E X u Fo 

=(gdg~(.))(V0h)~(.) for n E Y  

= 0  for n~F. 

Vf=g and VESYs~/p(lP)c~ ~2~/p(l=). This completes the proof of Theo- Clearly 
rem 3. 

5. Further comments and questions 

It seems likely that one can establish that quite a number of other interpola- 
tion couples are Calderdn, perhaps using techniques related to those of the preceeding 
sections. In attempting to work towards the solution of Peetre's problem [12] of 
determining general conditions to characterize Calderdn couples the following ques- 
tions seem natural, if rather difficult. 

(1) Is every pair of rearrangement invariant spaces a Calderdn couple? 
(2) Does there exist a mutually closed couple (see [3], p. 218) )/-=(A0, At) 

which is not Calderdn but nevertheless all of the complex interpolation spaces 
Xt01 are K-monotone? We note the existence of couples such as (LI(R), C(R)) 
([3] p. 217) which are not mutually closed but do have the latter two properties. 
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(3) In every case where it has been possible to show that a given couple ~ is 
Calderdn the proof  has been related to Sparr's result for pairs of weighted L p spaces 
or a special case of that result. Is the Calder6n property very much an "L p'' phenom- 
enon or can one find examples of  couples A which bear little or no relation to L p 
spaces and yet are Calder6n pairs? Initially for example one might consider couples 
of Orlicz spaces. 

In the remainder of this section we discuss a sequel to the investigations begun 
in Section 3 of  [3]. There we discovered that for various non-Calder6n couples 
.4 all interpolations spaces A have a property weaker than K-monotonicity; if fE A 
and g~Z(.4) with K(t,g; .~)~w(t)K(t, f;  A) for all t where the function w(t) 
has certain properties then gCA. We wish to consider such results for the important 
couple W= (L p, W a'p) where W 1,p denotes the usual Sobolev space of functions 
which together with their first derivatives are in L p, the underlying space being Rn 
or T", (as in [1], Chapter 6) with l < p <  ~.  This is not a Calder6n pair when p C 2  
([3] p. 218) but one can show that it has the following weaker property (cf. [3] Sec- 
tion 3, Theorems 1 and 2). 

Theorem 4. Let w(t) be a positive measurable function such that for some posi- 
tive number e f~ [min (e, w(t))]P*dt/t< ~, where p . = m i n  (p, 2). Let A be an inter- 
polation space for W. Then if fEA and g6Z(W) such that K(t, g; W)<=w(t)K(t,f; W) 
for 0 < - t ~ l  then gEA. 

Proof. As a first simplification we may deduce tha t  in fact K(t,g; W)<= 
wl(t)K(t,f; W) where f l  o wl(t)P*dt/t< ~ using an argument identical to that in 
the proof  of Theorem 1 of  [3] p. 221. Then, using "averages" Wm-- f2= 1 w~(t)dt/t - - . / 2  - 
we deduce further that K(2 m, g; W)~const .  winK(2 m, f;  W) for every non-positive 
integer m, with "9' wP*< ,~. Using this condition we shall construct a bounded ~ . . m ~ 0  m 

linear operator T: W ~ W  such that Tf=g. 
As a second simplification we observe that it suffices to carry out the analogous 

construction when W is replaced by the couple E=(LP(I~), LP(I~)), where LP(I~) 
u = R n denotes the space of sequence valued functions u(x)= { k(X)}k= o on with norm 

( fR-( -~=0 12k~Uk(X)IZ)P/2dx) ~/p" From this one may deduce the result for W using 
the operators ~ and J defined in [1], p. 150, and the fact that W is a retract of E 
([1] Theorem 6.4.3 p. 151). For  any u :  {Uk(X)}~S(L)=L~(I~) it is a routine matter 
to show that for each t > 0 :  

~ K(t, u; L) "< ]](~k=o Im n(1, t2k)uk(X)l")X/2!lLp(R. ) < K(t, U; L). 

Now suppose f={fk(x)} and g={gk(X)} are in Z(L) and K( t ,g ;E)~  
w(t)K(t , f;  L) for 0<=t<_-I where w(t) is as above and so for some sequence win, 
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~,,<-o wP,, *< ~, we have for each m=<0, 

Ng-m(x)[[Lp ~ [I(~'~'=o Imin(1, 2"+k)gk(X)i2)l/21lLp 

wm [[(2;=0 [min (1, 2m+k)fk(x)i2)i/z{iV,. 

We now proceed rather as in the proof  of  Lemma 1 of  [3], p. 219. For  each nega- 
tive integer m LP(I~) can be renormed by I/uN,,=][(2~=o Imin (1, 2"+k)Uk(X)I=)'/=NL.. 
Thus there exists a continuous linear functional lm on LP(I~) with 

l~(f)  = Ilfll,, and IIm(U)I <= Ilu/I,, 

for all u={uk(x)} in LP(I~). 
We now define the operator T: L-,-L by 

Zu (x) = {l-k(U) gg(x)/l[f[I -k}ff=0. 

It is clear that Tf=g and it remains only to verify that T is bounded on LP(12o) 
and LP(I~). In fact if ~ = 0  or 1 

2-"=lluL.-<-IIuIILpo~) for any u = {Uk(X)}ELI'(I~). 
Therefore 

IITU]IL~{,:) <= I/(2~'=o 12t~llul[-kgk(X)/[IfN-~12)aL21lL~ 

<-- [[(2~=0 Igk(x)/llfll-kIZ)X/21[LPHUIIL"O: ) 

-<- ( Z L  o Iig~ (x)/llfll _~ 112,.,)*/~tlulI L'<,:, <= ( Z  ~<=o w~)~/~llu/I L".:, 
provided p => 2. 

For  p <  2 we have similarly 

IITUIIL,,<,:) <- It<2;:o Igk(x)/llfll --ki2)I/2[ILP lIUIILPe: ) 

Ilf Z;:o Ig~(x)lllfll-kiP)I/PlILP Ilull .<,:, 

( ~ = o  (11 g,<ll v./ll f II -k)P) '/p Ilu ILL-,.) 

<= (~m~_O W~)VP IlulIL'~,~). 

This shows that T is bounded on L'(I~) with norm not exceeding (~',._~o w~*) '1,* 
and completes the proof. 

It is well known that for each 0C(0, 1) and l < p < ~ ,  

Wo mi~(z,p) ~ W~ol c = ~ .  Wo~max(2,  p) 
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(cf. [1], p. 152, Theorem 6.4.4), and,  using H r l d e r ' s  inequali ty and these two con- 

t inuous inclusions, we can readily see tha t  in the case where A = Wt0 l, Theo rem 4 
holds with the condi t ion on w(t) weakened to f~ [min  (e, w(t))]'dt/t<oo, where 
r = p * * = 2 p / ] p - 2  I. Indeed in this case p** is the best  possible exponent .  Suppose 
tha t  2 < p < o ~  and 1 / p < e < l ;  then for  any r > p * *  there exist funct ions f ( x )  

and k(x)  on the torus T such tha t  fEWt,I(T ) but  k~[Wt,l(T) even though 
I=f~ [K(t, k; W) /K( t , f ;  W)]~dt/t is finite. In  fact  these are precisely the funct ions 
which we used to show tha t  W is not  Calder6n (see [3] p. 218 and [18] pp. 472--474),  
As already noted  in [3] p. 218 IIk(x+h)-k(x)lls Ihl ~ log -1/2 (1/Ih[) and 
[1f(x+h)-f(x)Ns for  all h, xC[0 ,2rc]~T.  I t  fol- 

lows tha t  
K(t, k; W)/K(t, f ;  W) <: const, logl/p-x/2+~(1/t). 

I f  ( 1 / p - 1 / 2 + ~ ) r < -  1 it is easy to deduce tha t  the integral I is finite, (we have 

only to est imate the in tegrand for  small values o f  t) and the last inequality can be 
fulfilled by choosing e to satisfy 0 <  e <  I / p * * - 1 / r .  (The construct ion o f f  and k 
works  for  all such e.) 

On the basis o f  these remarks  we are natural ly  led to ask whether  in Theo rem 4 
one can w e a k e n t h e  hypothesis  on w(t) by replacing p ,  by  p**, and thus obtain  in 
some sense a best  possible weak K-monoton ic i ty  result  for  the couple W. 
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