Holomorphic functions, measures and BMO

V. Nestoridis

Introduction

The central subject of this paper is an extension of the following result:

Theorem 1 ([2], [3]). Let f be in the disc algebra (more generally in H') and
let z, be a point in the open unit disc. Then there is an interval I on the unit circle T
with length |1], 0<|I|=2r, such that f(z,)=1/\I| [ f do, where ¢ denotes the Lebesgue
measure on 'T.

We extend the above theorem to the general case of finite strictly positive con-
tinuous measures on T, under the supplementary restriction that f(z.)¢f(T). In
the particular case where u is the Lebesgue measure, Theorem 1 implies that the
hypothesis “f(z9)¢ f(T)” is not needed. However, this restriction is not superfluous
in the general case; see § 4, prop. 19 for a relevant counterexample.

The above extension is purely topological in nature. We prove that for any
complex continuous function fon T and any complex number w¢ f(T), the following
are equivalent:

a) For every finite strictly positive continuous measure g on T, there is an
interval JCT such that w=1/u() f,fdu.

b) f has non-zero winding number with respect to w.

This equivalence enables us to determine the range of the BMO norm of
@oU, where ¢ is any given continuous unimodular function on T and U varies in
the set of all homeomorphisms of T onto itself. In the case where ¢ has non-zero
winding number with respect to 0, we show that ¢oU has BMO norm equal to
1 for all U. If ¢ has zero winding number with respect to 0, then the BMO norm
of @oU can be made arbitrarily close to zero and does not exceed

5+ suplo(e)— o (e
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The basic background needed in this paper can be found in [7], [12], [9].
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§ 1. Averages of holomorphic functions

In this section we prove the extension of theorem 1 mentioned in the intro-
duction.

We denote by C=R? the plane and by T the unit circle. M denotes the set
of finite strictly positive measures on T, which are continuous in the sense that
they do not have point masses. We recall that a Borel measure p is called strictly
positive on a topological space X, if p(¥)=0 for all non-empty open subsets V
of X. We refer to [8], [11], [12] for basic information concerning measures.

By the term interval of T we mean any arc of T with strictly positive length
less than or equal to 27. We reserve the letter I for such intervals and || denotes
the length of 7, 0<|I|=2r.

If a function f defined on T, or on a larger set, is integrable with respect to
some measure u€M (i.e. f€L(,), then f; , denotes the u-average of fon the interval
I of T: f;,,=1/u(l) f,fdu. The set of all interval averages of f with respect to
p is denoted by A4,(f): A,(f)={f1,,: ICT interval with length |I|, 0<|I|=2n}.

If fis a complex continuous function on T and w a complex number in
C\J(T), then the winding number of f with respect to w is an integer counting
how many times f wraps around w; see [4], [9], [13].

The winding number of a constant function is obviously zero. Any two func-
tions which are homotopic in C\{w} have the same winding number with
respect to w.

Now we prove:

Proposition 2. Let f be a complex continuous function on the unit circle T and
w a point in C\J(T). If f has non-zero winding number with respect to w, then w
is a u-interval average of f for all peM.

Proof. Let pcM. For ¢€(0,n] and e~€T we denote by I, , the interval
I, ,={e": x—e<O<x+s). We define F(s,e*)=f; , for O=<e=2z and
F(0, ¢¥)=f(e™). Since p€M and f is uniformly continuous on T, the map F is
continuous on [0, 2x]XT. Therefore it defines a homotopy between the constant
function F(r, ™) and F(0, e™)=f(e™).

If w¢A,(f), then the homotopy F takes values in C\{w}. It follows that
F(n, ™) and f have the same winding number with respect to w. Since F(m, &)
is constant, f must have zero winding number with respect to w. This contradicts
the hypothesis. ||

A complex function belongs to the disc algebra 4(D), if it is continuous on
the closure D of D and holomorphic in D; see [5], [7], [10], [12] for information
concerning the disc algebra, Blaschke products, inner function and H= functions.
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Suppose f€ A(D). If z, is a point of D such that f(z,)¢ f(T), then according
to the argument principle, fir has non-zero winding number with respect to f(zo)-

Proposition 2 implies now f(z,)€ 4,(f) for all ucM. Thus, we obtain the desired
extension of theorem 1:

Theorem 3. Let fc A(D) and zy¢D such that f(zo)¢ f(T). Then for every
finite strictly positive continuous measure p on T, there is an interval ICT such

that fz)=1{p(1) [1fdn. W

For all p€M, zeT and all continuous functions f on T, the average f; , con-
verges to f(z), as I shrinks to z. This observation together with theorem 3 proves
the following

Corollary 4. f(DYC A,(f) for all peM and feA(D). |

Another corollary of theorem 3 is the fact that the u-BMO norm of non-con-
stant finite Blaschke products equals 1.

For u€M, ocL)(z) and p€[l, +) the p-BMO norm of ¢ with respect to
1 is defined by

1 i/p
polloll =syp [ lo—onsle ]

If ¢ is unimodular p-almost everywhere (ie. |p(e¥)|=1 p-a.c.), then an
easy computation shows that

2.ulllolll = {1~ [inf o, 7.
On applying the triangular inequality we also find
valllelll = 1-inf ey, .
Since , ,|||l@]|| increases with p we have
1-inf loy,u| =, ,lllelll = {1-inf o} = 1,

for all p€[l,2] and unimodular functions ¢.

Suppose that B is a non-constant finite Blaschke product. Then B¢ A(D) and
0 B(D)\B(T). Theorem 3 implies that min, |By,,|=0 for all uéM. Since B is
unimodular on T we obtain:

1= 1~inf |By,,| = /I8l = {1 —inf |Br, Y2 =1, 1=p=2.
Thus we have proved:

Proposition 5. , ,|||B]||=1 for every non-constant finite Blaschke product B,
pell, 2] and peM. §
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The proof of Proposition 5 applies more generally to any continuous uni-
modular function ¢ on T with non-zero winding number. Therefore , [|l¢|||=1
for any such ¢, u€¢ M and p<il, 2).

In the particular case, where p is the Lebesgue measure on T, the hypothesis
“f(z0)4 A(T)” is not needed in theorem 3 and proposition 5 holds for any non con-
stant inner function (see [2], [3]).

In §4 below we offer counterexamples related to the results of the present
section. In particular we show that the hypothesis “f(Z,)4f(¢)” is not superfluous
in theorem 3.

§ 2. The converse of proposition 2

In this section we prove the converse of proposition 2.

Proposition 6. Suppose that a complex continuous function f on the unit circle
T has zero winding number with respect to some point wECN\f(T). Then for
every a<inf,_,|f(2)—w| there is pueM such that |w—f, 4> for all averages
J1,. onintervals ICT. |

Propositions 6 and 2 imply theorem 7.

Theorem 7. Let f: T—~C be a continuous function and w a point in C\f(T).
Then we A,(f) for all p€ M if and only if f has non-zero winding number with respect
row |

For the proof of proposition 6 we approximate the function f—w/|f—w]| by
unimodular step functions, that is, functions of the form: g=37¥ e“"x,x, where
2+ER, y; denotes the characteristic function of 7 and I,CT, k=0, ..., N is a finite
family of two-by-two disjoint intervals covering T.

We omit the elementary proofs of lemmas 8 and 9 below, which will be used
in the proof later on.

Lemma 8. Let g be a complex unimodular step function and uc M. Then we have:

a) The set A,(g) is a compact subset of D.

b) If |g;, =6 for all intervals I, then there is =6 such that |g; ,|=5 for all
I's. B

Lemma 9. Suppose AcC, O¢R, §<8=|4|=1 and 0=t<1/2(6—0). Then
|A+1e/141]=>5. B

Let O<r<mn/4 and N=1 beaninteger. Then A, (r) will denote the set of com-
plex unimodular step functions ¢= 37" ey,  such that L={e": ¥, =0<"Y,,}
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with Yo<Yi<.. <Yy <Yy=Y,+2n, LR, |Ag—Ay_q|<r and |4 —4,,4]<r for
all k=0, ..., N—-2.

Let @€ A4(r), N=3. Without loss of generality we may assume that Ay_;=1,
for all k=0, ..., N—1. Then we consider the maps:

YN—I_YN—2

w(f) = Yy o+ (0—-Yy_») Yy—Yy_a

F(e® = o® for Yy ,=0=7Yy,
F®) =€ for Yo=0<Yy_,.

We observe that F maps I, onto itself for k=0, ..., N—3 and F maps Iy_,u
Iy_, onto Iy_,.

Lemma 10. Let @€ Ax(r), N=3 and F be the map associated to ¢ as above.
Then we have:

a) F: T->T\UIy_1 Is a measurable bijection.

b) For any interval I of the form I={e": y=0<¢), n<&=n+2=r, the set
[=F~Y(I)=F~Y({I~1Iy_,) is either an interval or the empty set.

¢) The function g=@oF belongs to Ay_,(r).

Proof. Parts a) and b) can be easily verified. We prove part c).

The function g has the form g=3Y"%e'%X 1> Where I,={c": Yi=0<¥1)
¥,=Y, for 0=k=N-2 and ¥,_,=Yy=7¥,+2n. The inequalities | —Aei,|<r
for 0=k=N-3 hold because @€Ay(r). Since |Ay_ps—Ay_i|<r and
[Ay—1—2A|<r the assumption Ay_;=A, for all k=0,..,N—1 implies that
An—g> M€([Ay_1—r, Ay_i]. Therefore |Ay_,—Ay|<r. It follows gedy_,(r)- §

Lemma 11. Let @€ Ay(r), O<r<mn/d4, N=3 and g=¢@oF as above. We suppose
that there is a measure vEM such that |g; ,|>cosr for all intervals ICT. Then
the measure u defined by du(e")= ATy, do(F (") +v/|Iy_,] X1,_ 40 belongs
to M for all v=0. If v=0 is close enough to O, then |p; ,|=>cosr for all inter-
vals 1.

Proof. The map F~1: T\Jy_;~T is a measurable bijection by lemma 10a.
Since v€M, the measure py, du(e”)=xr_p,_ dv(F~1(e")), is strictly positive
on T\Jy_; and does not have any point masses. Since du=du, +v/|{Iy_,| Xry_, 90
it follows that peM for all v=0.

By hypothesis cosr<|g; /=1 for all I’s. Hznce, using lemma 8b, there is
d>cosr such that |g; /=8 for all I's. Let Iy_s=Iy_,Uly_,, =1, for
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k=0,..,N—3 and let g=min {v(ly) ;0=k=N-2}>0. We shall show |¢; ,|>
cosr for all I’s, provided that 0<v<1/2(6—cosr)o.

First we consider the case where the interval I contains at least one I; with
0=j=N-2. Then theset I=F 1(I)=F~*(I\Jy_,) contains ij=F‘1(Ij); it follows
that o(l)=v(I))=¢. We also have |g; /=8, because [isan interval(lemma 10b).

One can easily verify that:

f gdv + 11 Iy ll veitn -1
Pre = (f)+I;ﬁ}N 1
[Iy-1]
It follows that
_gI,v+tei}'N‘1 . - II(\IN_II v 1 a
Prp = 111 , with O0=t= Tl oD <5 (0 —cosr).

Since 6=|g; /=1 lemma 9 implies |¢, ,|>cosr.

We consider now the case where the interval I does not contain any I; with
0=j=N-2. Then either ICL, Ul ,, with 0=k=N-3 or ICIy_,uly_;vl,. In
both cases ¢, , is of the form

_ oei% 4 Beits +yeits
PLu a+B+y
and |6,—06, <r, |0,—0, <r.

with «,8,y=0, f=0

It follows that ¢, , belongs to the convex hull of an arc of T with opening strictly
less than 2r. Therefore |@; ,|>cosr and the proof is complete. |

Proposition 12. Suppose @€ Ay(r) for some N=1 and O<r<n/4. Then there
is peM such that @y ,|=>cosr for all intervals TIC.

Proof. For N=1 the function ¢ is unimodular and constant on T. Therefore
lor,/=1=>cosr for all ucM and all I’s. For N=2 the function ¢ takes at most
two values e'*o, e with |l,—2A,|<r, A9, 4,€R. Therefore for any ucM and any
interval 7 we have |o; ,|>cos r/2>cosr.

Let N=3. By induction we assume the lemma to be true for N—1 and we
prove it for N.

Let @eAy(r) and F: T-T\Jy_; be associated to ¢ as in lemma 10. Then
g=@oFcAy_,(r) according to lemma 10c.

By the induction hypothesis there is »€M such that |g; ,J=>cosr for all I's.
Now lemma 11 gives a measure u€M such that |¢; |>cosr for all I’s and the
proof is complete. |

We are ready now to prove proposition 6.
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Proof of proposition 6. Without loss of generality we may assume w=0. We
also have f(e*)=|f(e")]e® with b some real function continuous on [0, 2x].
Since f has zero winding number with respect to w=0, we have b(0)=5b(2n).

Obviously lim,.q(—&-+cos 2¢)=1=a/inf | f|. Therefore we may choose 0<g<
n/8 such that —e+cos 2e=a/inf | f].

Let A be a real step function on [0, 27) such that

2(0) = }ir?,,}”(t) =b(0) and |A(P)—b()| <e

for all 6€[0, 27). We may also assume that A is right continuous.

We consider the unimodular step function ¢(e*)=e*®. One can easily check
that @€ Ay(2¢) for some N=1. By proposition 12 there is a measure »€M such
that |p; ,|>cos2¢ for all intervals IcT.

Since |f7| f1—¢|=Ib—2l<s, it follows that

Vop f 0o RN _*
mfzm"”’=‘<"“' v(I)fI(lfI o) v RE 7

We consider now the measure uc¢M defined by du=dv/|f|. Then u(l)=
f11/| f| do<v(@)/inf | f]. 1t follows that

> C0s2e—& >

> (inf [f])-

>0

L f L r f
ol = lu(l) [iiq o

and the proof is complete. |j

Remarks. a) A slight modification in the proof shows that the measure p in
proposition 6 can be chosen so that du(e’)=h(0) dd, with h a C* strictly positive
2n-periodic function.

b) Let f: T->C\ {0} be a continuous function and ucM. We define y(6)=
f2 f(e*) du(e™), 6¢R. Obviously y(2nn--0)=ny(2r)+7y(f) for every integer n and
0=60=2n. The map 7y defines a continuous (locally) rectifiable curve whose length
s satisfies ds(0)=| f(e")| du(e®®). We also have dy/d0=f(e"®) du/df, df-almost every-
where. Since u¢M, wehave du/d0=0. Therefore Arg dy/d0= Arg f(e"), d-almost
everywhere on the set 02du(e)/d0. In particular Arg dy/d0=Arg f(e'®) for all s,
provided that p is of the form du=h df, with & a strictly positive 2n-periodic con-
tinuous function. Therefore the tangent of y follows the argument of f.

We also have the inequalities:

_pO)—@)| _ 1

1
7= Vel = [s@o=st@y] = mfiyy /oe

Iflle
for all intervals I={e®: 0;<0<0,}, 6,<0,=0,+2n.
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It is obvious now that the condition |f; ,|>a=0 for all I’s is equivalent to a
local chord-arc condition

7(05) —7(6,)
5(02) —s(0y)

Thus, proposition 6 and remark a) imply that for every continuous 2zn-periodic
real function b, there are C?! curves y such that Argy’=d and

y(62) —v(6,)
5(02) —s(6y)

Conversely, an alternative proof of proposition 6 could be based on the existence
of a curve y with the above properties. This is more or less the approach in the
proof of proposition 19 (§4).

c) A slight modification in our proofs yields the best possible inequality |¢, ,|>
cos r/2 instead of |¢;,,|=>cosr (proposition 12), which is actually enough for our
purposes in proposition 6 and theorem 7.

=>d=>0 foral 0 =6,=0+2n

1=

>¢>0 for 0, <0,<06;+2n.

§ 3. BMO norm of unimodular functions

For any pucM and ¢cL,(u) the 2-BMO norm of ¢ with respect to u is defined
as follows:

1 1/2
ol = aulloll = sup [ [, lo—onuPda] -

In the particular case of the Lebesgue measure o on T we write |||¢||| instead of
Jlelll We refer to [1], [6], [7] for information about BMO.

Let L be the set of topological homeomorphisms of T onto itself. For ¢ any
continuous function on T, we denote L= {||lpoUl]||; U€L}. Then one can easily
see that Lo={,|llp]||; ucM}.

Our purpose in this section is to determine the set L¢ for any continuous uni-
modular function ¢ (see prop. 15). Towards this end we use results from the previous
sections and lemmas 13 and 14 below.

Let ¢ be a continuous unimodular function on T and let u€M. Asin §1,
Mol ={1~linf, lp,,J}* and 0=,llloll=1, ie. Loclo, 11

Lemma 13. Let ¢ be a continuous unimodular function on T and p,v€M. For
any t€[0, 1] we denote p,=tv+(1—1t)u. Then the map t—g, ,(t)=inf; (cp,,”t| is
continuous on [0, 1]. It follows that Lo is a subinterval of [0, 1].

Proof. Obviously p,¢M. Suppose that for all p,v€M the function g, , is
continuous on [0, 1]. Then the map t—»utlll(plll=l/l-lg,,,.,(t)|2€L<p is also con-
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tinuous. The intermediate value theorem implies that the range of this map is an
interval containing the values |[|o[||=, |ll¢||| and ||¢|l|=, |llo|l|. Since L=
{/lo|l|; u€e M}]0, 1], it follows that Le is a subinterval of [0, 1].

The proof will be completed if we show the continuity of the map g,, ,.

Let ¢>0. The uniform continuity of ¢ on T implies the existence of a positive
integer n such that |p(e”®)—¢@(e™)|<e/2 for all |0—¢]=2n/n. For such an n, we
split T into 2x intervals I, ..., I,, of equal lengths n/n. Let & be the minimum of
u(hy), ..., u(ly), v(Ly), ..., v(ly,). Since p and v are strictly positive measures, J is
strictly positive. We denote

x = £@M+o(D + |u(T)+v(T)[?
o 02
We shall show that for all intervals 7T and all #, £,€[0, 1] with |f,—#,|<¢/K the
following inequalities hold: [¢; u | —E<l0p,, |< 1,4, | +¢. Then taking the infima
1 2 1
over all I’s we obtain

gu,v(tl)“a = gu,v(tz) = gu,v(t1)+8’
which proves the continuity of g, -
Let ICT be an interval of length |I], 0<|I|=2n. We distinguish two cases:
O0<|I|<2n/n and 2r/n=|I|=2x.
In the first case, we choose a point « in I. Then |p(z)—¢@(a)|<eg/2 for all
z€I and
1 €
910 —0 @] = 5 [, lo@ =9 @ du(2) < 5

for all ¢¢[0, 1]. Therefore

|(PI, e, @1, u,zl = |(PI, u,‘-(P(a)[ + |¢I, u,=—¢(“)| <é&.

It follows that
|(P1,utl|‘8 = I(PI,M,J < I‘PL#,IH'E-

In the case 2n/n=|I|=2n, the interval I contains at least one of the intervals
I, ..., 1I,. It follows that u()=é for all r¢[0, 1]. Therefore

|01, 1, = Pt | = IKI(IS /, <pd(uu—u,2)+[p;1(7)—ﬁ5) /, ¢dﬂt,'

= |h—1) ”m;”m+ '“_t2|'“§2r)+”m| [u(D)+o(T)| = K(t,—1y).

Since |, —1,|<¢/K, we have I‘Pl.u, =1 <6 which implies |¢;,, |_8<|¢Lut,l<
1 2 1
ko[,”tl|+£. .
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Lemma 14. Let ¢ be a complex continuous unimodular function ¢ on T. We
denote  A={weC: |w|<1, and w=1/u(T) f; @ du for some pucM} and B=
{weC: |w|<1 and w=1/u(l) [, ¢ du for some u€ M and some interval ICT}. Let
I be the interior of the convex hull of the arc ¢(T). Then A=B=T.

Proof. The inclusion AcB is obvious. To show BCI let w=¢; ,€B.
We consider » the measure defined by »(X)=pu[p~2(X)] for all Borel sets
XCT. Then » is supported on ¢(T) and it is strictly positive on it. We also have
w=1/o(o(I)) [, z dv(z). Therefore w belongs to the convex hull of ¢(J). Since
w|<1, the arc @(J)cT must have strictly positive length. The bary-center w of
a strictly positive measure vj,q, on an arc ¢(I) with strictly positive length, belongs
always to the interior of the convex hull of @ (I)Ce(T). Thus weI' and we proved
Bcr.

It remains to show I'CA. Let werl'. Then there are points w,=¢(z), z;€T,
i=1,2,3 such that w is in the interior of the triangle with vertices w;, w,, w;. One
can easily find discs D; centered at w;, i=1, 2, 3 with the following property: for any
choice w;eD;, i=1,2,3, the point w is in the interior of the triangle with vertices
Wy, Wy, Wi

For any zéD we denote by u, the (normalized) Poisson kernel associated
with z (see [5], [7), [10], [12]). We extend ¢ from T to D setting (p(z)zf o du, for
all zeD. This extension is the harmonic extension of ¢ and is continuous on D.
Therefore there are points z;€D close enough to z; such that ¢(z))¢D;, i=1,2,3.
It follows that w is a convex combination of ¢(z}), i=1,2, 3:

w=3° to(z) with 0=¢,3 =1

Consider the measure u=37_, t;n;. Then uc M, u(T)=1 and Yu(T) [ ¢ du=
> to(z)=w. Since wel' we have |wj<l. It follows that wc4. Thus we
proved I'cd. |}

Proposition 15. Let ¢: T—T be a continuous unimodular function on T. If ¢
has non-zero winding number with respect to O, then Lo={1}. If ¢ is constant then
Lo={0}. In the case where @ is non-constant with zero winding number with respect to
0, we denote by &€(0,2rn) the length of the arc ¢(T). Then Lo=(0,sin ¢/2) for
O0<e=n/2 and Le=(0,1] for n<e=2m.

Proof. Obviously Lo={D} when ¢ is constant. If ¢ has non-zero winding
number, then proposition 2 implies that min; |g; ,|]=0 for all ucM. It follows
JAlloll|=1 for all ue M. Therefore Lo={1}.

‘We consider now the case of a non-constant ¢ with zero winding number
with respect to 0. Lemma 13 assures that Lo is a subinterval of [0, 1]. Proposition 6
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implies that for every n=0, there is ucM with ,||l¢|||<#n; therefore inf Lp=0.
Lemma 14 implies that sup Lo=sup,.r¥1—|wP. It follows that sup Ly=1 for
n<e=2n and sup Lo=sing/2 for O<e=n.

Since ¢ is non-constant, we have 0¢ Lo. If O<e=m, then cos &/2¢ {|w|: wel}
and sine/25,|||p]|| for all ucM; therefore Lep=(0,sin¢/2). If n<e=2m, then
0cr and ,||¢|||=1 for some ucM. It follows that 1€Lp and Lo=(0,1]. |

§ 4. Counterexamples

This section contains comments and couterexamples related to the results of
§ 1. Propositions 16 and 17 give examples of functions f not in 4(D) such that for
some pu€M the set 4,(f) is not dense in f(D). The example in proposition 16 is
in H=, while the one in proposition 17 is not holomorphic but it is open in D and
continuous on D. Finally proposition 19 gives an example of a function f€A(D)
such that 4,(f) does not contain f(D) for some u€M, although f(D)€A~m as
expected.

Proposition 16. There are an infinite Blaschke product f and an absolutely con-
tinuous measure p strictly positive on T such that A,(f) is not dense in f(D) and

2.l Il <1

Proof. Consider f an infinite Blaschke product, whose zeros accumulate
everywhere on T. Let 0<8<1 and E={e’cT: Re f(e®)>4}. Then it is known that
|[EnI|=0 for all intervals ICT; see [15], chapter VII for a related result. It
follows that the absolutely continuous measure u, du=Xgdf, is a strictly
positive measure on T.

Obviously |f7./=Re f;,>6 for all intervals I. Therefore . /|| f|l|=
{1—inf; | £, ,I2y/?=(1-6%)"*<1. Since 0¢f(D) and |fy,,|>6=>0 for all I's, we
see that 4,(f) is not dense in f(D). J

The above counterexample, communicated to the author by W. Rudin, shows
that corollary 4 and proposition 5 do not extend to H> functions and to general
absolutely continuous measures.

Theorem 3 and corollary 4 extend easily in the case of functions goU with
g€ A(D) and U any homeomorphism of D onto itself. For any non-constant func-
tion g€ A(D) the composition goU is continuous on D, open in D and light, i.e.
for any weC the set (goU)*(w) does not have accumulation points in D (see
[14]). Our next proposition shows that theorem 3 and corollary 4 are not in general
true for open-continuous functions which are not light.
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Proposition 17. There is a function f: D—~C continuous on D and open in
D such that A,(f) is not dense in f(D), where o denotes the Lebesgue measure on T.

Proof. Consider the function A(x+iy)=|y|exp (x+i/[y]) for x, yeR, y=0
and A(x)=0 for xcR. Then without great difficulty, one can check that the map
h: C—~C is continuous and open. It is also easy to see that A(z,)¢4(T) for some
zo€D.

Since h(e~")=h(e®) for all O¢R, it follows that /; has zero winding number
with respect to any point in C\/(T). In particular %y has zero winding number
with respect to #(z,). Proposition 6 implies now the existence of a measure ucM
such that h(zo)qzzh)-.

Since u€M, there is a homeomorphism U of D onto itself such that
w(T) d02n=du(U(e"®)). This implies A,(h)=4,(hoU), where o denotes the
Lebesgue measure on T. Let f=hoU and z=U"1(z,)€¢D. Then f is continuous
on D, open in D and f(D)3f(2)=h(z0)4A,(h)=A4,(f). It follows that 4,(f) is
not dense in /(D). |

Theorem 1 shows that in the particular case of the Lebesgue measure the hypo-
thesis “f(z,)¢f(T)” is not needed in theorem 3. Proposition 19 below gives a counter-
example of a function f€A4(D) and a measure pu€M such that f; ,>0 for all
intervals ICT, although 0¢f(D). Certainly 06f(7T), by theorem 3. We see, there-
fore, that the hypothesis “f(z,)§f(T)” is not superfluous in theorem 3. Equivalently
theorem 1 fails in the general case of measures uc M.

In the example of proposition 19 the set 4,(f) is dense in f(D), by corollary 4.
Therefore although 4,(f) avoids 0, it must meet every disc centered at 0. This is
an essential difference with the previous counterexamples and we expect a more
delicate construction. The idea of this construction follows from lemma 18 whose
straightforward proof is ommited; see also remark b in § 2.

Lemma 18. Let f: T—C be a continuous function and pcM. We denote
§0)=[5 f(e") du(e™) for 0<O0=4n. Then we have:

a) 9 is continuous on [0, 4r) and defines a rectifiable curve.

b) f1,,#0 for all intervals ICT, if and only if §(A)#¥(B) for all 0=A4<
B=A+42r<4n.

c) If § is one-to-one on [0, 4x], then f; ,#0 for all intervals ICT.

d) Let ICT be an open interval and suppose that y; du(e)=yh(e'®)d6 with
h a strictly positive continuous function. Then 7 (0)=f(e*)h(e"®) for all €®cl. More-
over, if f(e®)#0 on I, there are continuous determinations of Arg¥y and Argf
on I such that Argf=Arg¥’.

To construct the desired counterexample we will start with a function
fEA(D) satisfying: 0¢f(D), f(1)=0,f(e®)=0 on T—{1} and limg.,o+ Argf(e)=
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limg_,s,. Argf(e®)= —c, where Argf(e"®) is a continuous determination of the
argument of f(¢’®) on (0, 27).

Then we construct a curve y: [0, 2n]~C such that Argy’ =Argf, y(0)=0
and § is one-to-one on [0, 4z}; where =y on [0, 2z] and F(@)=y(Q2n)+y(0—2n)
on [2m,4n]. This is possible because limy., Arg f(e®)=lim,._,,,. Arg f(e?®)= —co.

Next we try to find a measure u on T such that 5(6)= f o fdu. Then f; ,#0
for all I’s according to lemma 18c.

We state now proposition 19 and we give a more detailed proof.

Proposition 19. There are fc A(D), u¢ M and z,€ D such that f(z,)=0¢Au(f).

Proof. We consider the function A(z)=z(z—1) exp (z+1/z—1); then A€ A(D).
Let Q denote the simply connected domain containing 0 and bounded by the Jor-
dan curve

i0. - - __71 _1- ... _]/3—5 <_1_} {l i0y . = SE_}.
{e :0=0=2n 3}u{2+1t_. > _t=2 U 2(1+e ).0__0__2 ;

then QcD (see figure 1). Let ¢: D—~Q be a conformal mapping from D onto
Q, such that @(1)=1. Then the function f=hoe is in A(D) and f(1)=f(z,)=0,
where z,=¢1(0)¢D. One can also easily check that f satisfies the conditions:

i) f(€®)#0 for all e®cT\{l1}. A continuous determination of Arg f(e),
0<B0<2n, satisfies lim,_q. Arg f(e’®)=1limq_ . Arg f(e®)= —co. There is 6,€(0, 27)
such that Argf(e®) is strictly increasing on (0, 6,] and strictly decreasing on
[0, 27).

ii) There is 6=>0 such that |f(e®)| |[Arg f(e?)=d on (0, 2x).

Figure 1

Let now y be a continuous rectifiable curve in C starting from 0. We denote
by K€(0, +<=) its total length and we parametrize y by arc-length: y: [0, K]>S5~
y(S)EC, y(0)=0. We suppose that y has continuous derivative y’(S) on (0, K).
Then [y'(S)[=1 and 7'(S)=exp(fArgy’(S)) for all S¢(0,K). We define
§: [0, 2K]~C as follow: §=y on [0, K] and y(S)=y(K)+7y(S—K) for S¢[K, 2K].
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We suppose that the conditions iii), iv) and v) below are satisfied.

iii) The map ¥ is one-to-one on [0, 2K].

iv) There is Sy€(0, K) such that a continuous determination of Arg y’(S)
is strictly increasing on (0, Sp), strictly decreasing on [S,, K) and satisfies
limg_. Argy'(S)=lims.x- Argy’(S)=—c and Argy'(S))=Arg f(e").

v) f (’f |Arg y'(S)| ds<e=, where Argy’ is the determination of the argument
of y" in iv).

We assume for the moment the existence of a curve y with the above properties.
At the end of the proof we shall give an example of such a curve.

Properties i) and iv) imply the existence of a unique increasing homeomorphism
[0, 27]30 > S(6)€[0, K] such that S(0)=0, S(8))=S,, SQn)=K and Argf(e?)=
Arg y’(s(6)) for all 0€(0,2r). We define S(6)=S(2n)+S(6—2n)=K+S(0—2n),
for 2n=0=4n. Obviously S: [0, 4n]—~[0,2K] is an increasing homeomorphism
such that S(0)=0, S(27)=K, S(4n)=2K and Arg7(S(0))=Argf(?) for all
0¢(0, 4n), 0+2n.

We define u by the relation du(e®®)=dS(6)/| f(e)|, 0<8<2n. Since S is strictly
increasing, u is a strictly positive measure on T. Moreover the continuity of .S implies
that u does not have point masses. Properties ii) and v) imply that g is afinite
measure:

f 02“ du(e®) = f :%Q;T = % f 02 |Arg f(e®)|dS(6)

1 T ’ 1 4
=5 [T |Argy (S@)[dS©) = 5 [ *|Argy (5)ldS <e=.

We see, therefore, that uc M.
Let 0=0=2n. Then

it ity f(ei‘)
Jo F@due) = [} 7557 450
- f: SHATES(eit) ds() = f: eiArgy’(S(t))dS(z)
_ fosw) FABY () Is = f:(") Y (S)dS = y(S(©)—y(S(0))

=7(5©) = 7(S()).

Similarly [? f(e") du(e")=5(S(0)) for 2n=0=4n. The map 7 is one-to-one
on [0, 4z] by condition iii). Since S is injective, it follows that the map 6 —~ f S fdu=
5(S(0)) is one-to-one on [0, 4n]. Lemma 18c implies now that J1,,#0 for all
intervals IcT.

It remains to give an example of a double spiral y satisfying all above require-
ments. Such a curve is represented in figure 2:



Holomorphic functions, measures and BMO 297

Yo Yo+ YiK=3+Yg
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Y- \\
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V-3 \\_/I
-
Y1 Y-14+y{K) =3+V¥4

Figure 2

We denote by y,, n=0, £1, £2, ... semicircles with centers on the real axis
which are contained in the upper half-plane for even #» and in the lower half-plane
for odd n. The semicircle y, has as diameter the segment [1,3+5/8]. For
n=2,4,6, ... the diameter of 1y, is [3—5/2"*% 3+ 5/2"*%. For n=1,3,5, ...
the diameter of y, is [3—5/2"*%, 3+5/2"%2. The diameter of 7, is the segment
[-27*1 2" for n=—2, ~4, —6, .... Finally for n=—1, =3, -5, ... the diameter
of p,is [—27 2%+1],

We give to y, the positive orientation for n<0 and the negative one for n=0.
Then one can check that a rotation of the curve >* 2y, satisfies all the require-
ments relative to the curve y. |

Acknowledgement. I wish to express my thanks to A. Greenleaf, J. Harper,
J. H. B. Kemperman, D. Marshall, S. Pappadopoulou, S. Pichorides, N. Varo-
poulos and many others not listed here, for helpful discussions.

References

1. BAERNSTEIN, A. II, Analytic functions of bounded mean oscillation, in: Brannan, D. A. and
Clunie, J. G. (eds.), Aspects of contemporary complex analysis, pp. 3—36, Academic
Press, London, 1980.
2. DanNIkas, N. and NesTORIDIS, V., Interval averages of H? functions and B.M.O. norm of inner
functions, in: Harmonic Analysis, Proceedings, Cortona, Italy 1981, Lecture Notes
in Mathematics 992, pp. 174—192, Springer-Verlag, Berlin etc., 1982.
. DaNIkas, N. and NEsSTORIDIS, V., A property of H* functions, Complex Variables Theory Appl.
4 (1985), 277—284.
. DugunDIL, J., Topology, Allyn and Bacon, Boston, 1978.
DuUREN, P., Theory of H? spaces, Academic Press, New York, 1970.
. FEFrERMAN, C. and STEIN, E., HP spaces of several variables, Acta Math. 129 (1972), 137—193.
GARNETT, J., Bounded analytic functions, Academic Press, New York, 1981.
. Hawmos, P., Measure theory, Van Nostrand, New York, 1950.
. HockiNg, J. and Young, G., Topology, Addison-Wesley, Reading, 1961.
HorrmaN, K., Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, 1962,
. RoYDEN, H., Real analysis, Macmillan, New York, 1963.

w

mPLVXNaLA

bk



298 V. Nestoridis: Holomorphic functions, measures and BMQO

12. RupIN, W., Real and complex analysis, McGraw-Hill, New York, 1974.

13. WALLACE, A., An introduction to algebraic topology, Pergamon Press, London, 1957.

14. WHYBURN, G., Topological analysis, Princeton University Press, Princeton, 1964.

15. Zvgmunp, A., Trigonometric Series, vol. 1, Cambridge University Press, Cambridge, 1959.

Received December 3, 1984 V. Nestoridis
Department of Mathematics
University of Crete
Heraklion
Crete
Creece



