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Lazzeri’s Jacobian of oriented
compact Riemannian manifolds

Elena Rubei

Abstract. The subject of this paper is a Jacobian, introduced by F. Lazzeri (unpublished),
associated with every compact oriented Riemannian manifold whose dimension is twice an odd
number. We study the Torelli and Schottky problem for Lazzeri’s Jacobian of flat tori and we
compare Lazzeri’s Jacobian of Kahler manifolds with other Jacobians.

1. Introduction

The subject of this paper is a Jacobian, introduced by F. Lazzeri (unpublished),
associated with every compact oriented Riemannian manifold of dimension twice an
odd number.

In the literature there are already “analogous” Jacobians associated with com-
pact Kéhler manifolds: Weil’s and Griffiths’ Jacobians, introduced in the 50’s and
the 60’s, respectively (see [W] and [G], and also [C|, [GH], [Wel], [Gre| and [L1]).

Definition 1.1. Let (M, g) be a compact Kahler manifold of complex dimension
m. Let Q be the (1,1)-form associated with g. Let peN with p<m—1.

Suppose  is rational, then the pt* Weil’s Jacobian is the following abelian
variety: the torus

H»YY(M, R)/(H?**'(M,Z)/torsion)

with the complex structure given by —C and the polarization whose real part is
R(a, B)= [,; an*B, where Weil’s operator C: H4(M,C)—H(M,C) is the linear
operator that is multiplication by *~® on H*® (it takes HY(M,R) into HY(M,R)
and, if ¢ is odd, then C%?=-1).

The p* Griffiths’ Jacobian is the complex torus

H? (M, C)/(FPT (M) +HP* (M, Z)) = FPH (M) /7 5 e (HPYH (M, 2)

Fr+l Fp+1
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with the complex structure given by i on FP+1(M) (we use the notation F}(M):=
@®. tbeq, a1 1 @b(M,C) and omit the subscript ¢ when no confusion can arise).

More recently Lazzeri introduced the following Jacobian.

Definition 1.2. If (M, g) is a compact oriented Riemannian manifold of dimen-
sion 2m=2(2k+1), then Lazzeri’s Jacobian of (M, g) is the following principally
polarized abelian variety: the torus

H™(M,R)/(H™(M,Z)/torsion)

with the complex structure given by the operator * and the polarization whose
imaginary part is Z(a, 8)=— [, aAB, o, B H™(M, Z).

(The operator x: H™(M,R)— H™(M,R), defined through the isomorphism of
H™(M,R) with the space of harmonic m-forms, has square —1, so it induces a
complex structure on H™(M,R) and one can easily see that our complex torus is
really a principally polarized abelian variety since, on H™(M, R), the form || ap T F
is positive definite, [, -A-=[,,*-A*- and [, -A- is principal.)

To compare Weil’s and Griffiths’ Jacobians with Lazzeri’s Jacobian we need
some notation.

Notation and recalls 1.3. (See [C], [W], [GH], [Wel], [Gre] and [L1].) Let (M, g)
be a compact Kéhler manifold of complex dimension m. Let Q be the (1, 1)-form
associated with g.

For all geN odd, we define

J(M):= € H*MC),

a+b=q
a—b=1 (mod 4)

the i-eigenspace of C.

Let L be the operator on the set of forms on M defined by Ln=QAn and A
the adjoint operator of L. A form 7 is said to be primitive if An=0. The operators
L and A induce operators, again called L and A, on H(M,C), and ac H(M, C)
is said to be primitive if Aa=0. Every form w of degree ¢ can be written uniquely
in the form w:ZTZ(q—m)+ L™w,, where w, is a primitive form of degree ¢—2r and
z*:=max{0,z}. Analogously a€ HI(M,C) can be written uniquely in the form
a:ZTZ(q_m)+ L"a,, with a, primitive in H9727(M, C). Define

K =K(M,g)

= {aeH"‘(M,C)

a= Z La,, a, e H"?"(M,C) primitive},
r>0
r=—m(m+1)/2 (mod 2)
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/ '
K'=K'(M,g)

= {aEH"‘(M, C)

o= Z La,, a,€ H" (M, C) primitive}.
r>0
r=1-m(m+1)/2 (mod 2)

Let (M, g) be a compact Kéhler manifold of dimension m=2k+-1. Consider the
decomposition H™(M, C)=K (M, g)®K’(M, g). In Section 3 we see that *=C'on K
and x=—C on K’. Observe that H™(M,R)=(H™(M,R)NK)®(H™(M,R)NK’).
Then the k*® Griffiths’, the k" Weil’s and Lazzeri’s Jacobians of (M, g) are the same
real torus, H™(M,R)/(H™(M, Z)/torsion), with different complex structures:

~C for the k*" Weil’s Jacobian;

C'H'"(M,R)OKEB_Cle(M,R)nK' for Lazzeri’s Jacobian;

| rtaimesmannierigany ® ~Clintaine Jm(Mynrr+ sy for the K Griffiths’ Ja-
cobian.

(From this we see that the “change” of the complex structure depends on the
complex structure of M for Griffiths’ Jacobian and Weil’s Jacobian, and on the class
of Q for Lazzeri’s Jacobian and Weil’s Jacobian, and that, for Kihler manifolds,
Lazzeri’s Jacobian depends only on the complex structure of M and on ).

Lazzeri’s Jacobian and the k** Weil’s Jacobian are principally polarized abelian
varieties(') (also if  is not rational) and the real part of the polarization is the
same, [, A%

If m=1, i.e. M is a compact Riemannian surface with a hermitian metric,
we have that Lazzeri’s Jacobian, Weil’s Jacobian and Griffiths’ Jacobian (with the
polarization given by — [, -A- on H™(M,Z)) are the same (in fact, if m=1, i.e.
k=0, we have K={0} and J;NF!'={0}) and they are isomorphic to the usual
Jacobian.

The advantage of Lazzeri’s Jacobian with respect to Weil’s and Griffiths’ ones
is that it is definable not only for compact Kéihler manifolds, but for any compact
oriented Riemannian manifold whose dimension is twice an odd number. Unfortu-
nately Lazzeri’s Jacobian of Kahler manifolds, as Weil’s Jacobian, does not vary
holomorphically (see Section 3), while Griffiths’ one does.

(1) Observe that the polarization of Lazzeri’s Jacobian is principal if and only if the po-
larization of Weil’s Jacobian is principal, in fact: let Ty, and Z; be the imaginary parts of the
polarizations of Weil’s Jacobian and Lazzeri’s Jacobian, respectively, and let B be a basis of
H™(M,Z). Consider a basis A=.4;U.A> such that A; is a basis of H™(M,R)NK and A3 is a
basis of H™(M,R)NK' and such that the determinant of the matrix expressing B as a function of
Ais 1. We have detg Ty =det 4 Zw =t det 4 Iy =+ detg Zy,. Thus |detg Iw|=1 < |detg Ir|=1.



384 Elena Rubei

The outline of the paper is the following. In Section 2 we study the Torelli and
Schottky problems for Lazzeri’s Jacobian of flat tori. Section 3 deals with Lazzeri’s
Jacobian for Kihler manifolds, and in Section 4 we examine Lazzeri’s Jacobian of
a bundle.

Notation 1.4. Let
Ay, := {principally polarized abelian varieties of dimension h}/isomorphisms,

let Hp be the h-Siegel upper half space and pn: Hp— Ap, be the projection.

Let k€N and m=2k+1. Let RC{(M, g)|M is an oriented compact C*° man-
ifold of dimension 2m and g is a Riemannian metric on M}.

Let (M, 41), (Mz,g2)€R. We say that (M, g )~(Maz,g2) if and only if there
exists an orientation preserving diffeomorphism f: M; — M, and a C*° map t: M; —
R* such that (My,tg:)€R and f*gy=tg;. Let

T=Tr:R/ ~—> A1/2)bm(m)

be the map sending the class of (M, g) into Lazzeri’s Jacobian of (M, g).
Now fix M and a symplectic basis S of H™(M,Z)/torsion with respect to
— Jys -A- and let RC{g|g is metric on M}. Then Tx can be lifted to a map

T= ffR,S: R /conformal equivalence — H (1 /2)p,, (M)
(91, g2€ R are conformally equivalent if and only if there exists a C™ map t: M >R*
such that g, =tgz).
First (in Section 2) we study the case of flat tori.

Definition 1.5. Let ~ be the equivalence defined in Notation 1.4. Define

Fa={(R"/A,g)|A is a lattice and ¢ is a flat metric on R®/A}/ ~.

Observe that here the equivalence ~ becomes (R™/A, g)~(R"/A’,g’) if and
only if there exists an orientation preserving map f:R"/A-—+R"™/A’ induced by a
linear map R"—R" such that f*g’=cg for some ceR*, where the orientation is
the standard one for R™ (in fact, if (R"®/A, g) and (R™/A’, ¢’) are equivalent for ~
through a map ¢, then ¢ is given by an affine map R*—»R").

To study Lazzeri’s Jacobian of flat tori, we first observe that

F.={(R"/Z",g)|g is a flat metric on R"/Z"}/ ~.
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Then we fix a symplectic basis of H™(R"/Z", Z) with respect to — fR,, jzn N and
study the map

T {(R"/Z",g)|g is a flat metric on R™/Z"}/conformal equivalence — Hn,

where n=2m=2(2k+1) and N:=1 dim A™ R™. Using the study of T, we study the
quotient map

T:F,={(R"/Z",g)| g is a flat metric on R"/Z"}/ ~— An.

We prove the following theorem.

Theorem A. (i) Chosen any symplectic basis of H™(R™/Z",Z) with respect
to — fR,,/zn -A-, the map

T: {919 is a flat metric on R™/Z"}/conformal equivalence —» Hyn

15 injective.

(if) Lazzeri’s Jacobian of a generic flat oriented torus has no nontrivial auto-
morphisms as a principally polarized abelian variety.

(iii) The map T: Fn— AN is generically locally injective.

Then we study the image of T (and thus the image of T, since obviously
ImT=pn(Im f)), see Theorem B.

In Section 3 we consider Lazzeri’s Jacobian of Kéahler manifolds. We saw that
it depends only on the complex structure and on the class © of the (1,1)-form
associated with the metric. In Proposition C we fix @ and we study when the
map associating Lazzeri’s Jacobian with the complex structure is holomorphic and
we observe another local “Torelli theorem” for Lazzeri’s Jacobian, which holds in
particular for another class of Ricci-flat metrics (K&hler-Einstein ones on complex
manifolds with trivial canonical bundle). One could conjecture that Tr is locally
injective if R is a set of Ricci-flat metrics on a manifold M.

Finally in Section 4 given a bundle F— M, we study when there is a holomor-
phic map from Lazzeri’s Jacobian of M into Lazzeri’s Jacobian of F' and we study
when it is injective (Proposition D).

We think that one can easily find open problems about Lazzeri’s Jacobian, for
instance to study Prym-Tyurin varieties for it, the relationship with the theory of
degeneration of abelian varieties and to continue with the study of Schottky and
Torelli type problems.
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2. The case of tori with flat metrics
2.a. Some lemmas of linear algebra

In order to study Lazzeri’s Jacobian of flat tori, it is useful to state some lemmas
from linear algebra.

Notation 2.1. Let meN, V be an R-vector space of dimension n=2m and
{vi}j=1,...n be a basis of V. Let R:={(i1, ... ,im)EN™|1<i; <...<im<n}. We call
the basis {v;=v;, A...Av; }1er of A™ V lericographically ordered if we order it by
ordering the multiindices of R by the lexicographic order.

Let IT:={I=(1, 42, ... ,im) EN™|1<i3<...<i,,<n}. If I€Z, we choose one of
the multiindices J such that we obtain (/,J) from (1,...,n) with an even number
of transpositions and we call it /. Let E={I|I€Z}. Now take the multiindices in
Z in the lexicographic order and call them I, Ir,.... The symmetric lezicographic
order is the order Iy, Iy,..., I, I,... of the multiindices of ZUE. We call the
basis {v;}1ezue of A™ V' symmetrically lexicographically ordered if we order it by
ordering the multiindices of ZUE by the symmetric lexicographic order.

Lemma 2.2. Let meN and n=2m. Consider the set of positive scalar prod-
ucts on R™ up to conformal equivalence. The map, defined on this set, sending
the class of a positive definite scalar product into its operator » on A™(R™)V, is
injective.

Proof. Given a scalar product on R™ and v, weR"™, we have that v_tw if and
only if there exists an m-subspace S of R™ such that S1w and S3v, and this is
equivalent to the existence of o€ /\m_1 R", a simple (i.e. of the kind v1 A...Avp,_1)
such that wA*(aAv)=0 and aAv#0. Thus * determines the conformal struc-
ture. O

Lemma 2.3. Let Q be a real upper triangular n x n matriz, where n=2m. Us-

ing the lexicographically ordered set R as the set of multiindices, the matriz \™ Q is

AcC
B D
ically ordered multiindices TUE, then B=0, A is upper triangular and D lower

triangular.

upper triangular. Moreover, if \™ Q:( ), using the symmetrically lexicograph-

We leave the proof to the reader.

Lemma 2.4. Let (2 be a real upper triangular n x n matriz, where n=2m, with

det Q=1. Let /\mQ:(g g), using the multiindices TUE ordered by first taking

the multiindices in T in any order Ky, Ko,..., and then taking K, 1?2, ... (e.g. the
symmetric lexicographic order). Then we have
(a) A'D=I,
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(b) for I€Z and J€E,

0, if I and J have more than one indez in common,
(A7'C) 1y = LSy

1,1

, if I and J have only the indez | in common.

Proof. If P and @Q are two multiindices, then Qp ¢ will denote the determinant
of the minor (P, Q) of 2. We will denote the j*! column of by v; and v;— ;e
by ’l_)j.

(a) Let I=(i1,...,im)€Z and J=(jy, ..., jm)EE. We have

(A'D)jse1A..Nen=) Q5105 je1A...Aen
Sex

= (Z 93,1631 /\.../\esm) A (Z QT’Jetl /\.../\etm)

Sez TeE
=( Z Qs,Iesll\.../\esm)/\( Z QT,Jeh/\.../\etm)
SeTuE TeTUE
Z’Uil/\.../\’l),‘m /\’Ujlf\.../\’l)jm
{ 0, if J#I,
eiN...Neq, if J=1,

where S=(s1,...,Sm), T=(t1,...,tm), and the third equality holds because Q5 ;=0
for S€&€ and I€7T and egAer=0if S,TcZ or S,Tc€.

(b) Let I=T'=(ty,...,tm)€E and J=(j1,-.-,jm)€E, and observe that they nec-
essarily have some index in common. Let [=t,=j;. We have, using (a),

(A71C)rse1 A Nep = (DPC)p5e1 A... Aen
= (Z QKTQK,J)el/\.../\en
KeZ

= Vg, A AUy, ANUj, A A — T, ALAT;)
=V, A AU, AUG A AL
=0y A AU, AV AL AY; _ AQ e A AL AT
= Tgy Ao Ap,, ATj A AT, A 11 AT, A AT

0, if T and J have more than one index in common,
= Q1

€
1

where ¢ is the sign of the permutation taking (L1, .., tm, 515 - s Js—1, 1, Jot1s -1 Jm)
into (1,...,n). O

eiA...Ae,, if T and J have only the index ! in common,
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2.b. Proofs of Theorems A and B

Notation 2.5. Let P,:={AeM(nxn,R)|A=A!, A>0 and det A=1} and let
Tn:={T€M(nxn,R)|T lower triangular, T}j ;>0 for all j and detT=1}.

Remark 2.6. (i) The set
{(R"/Z",9) | g is a flat metric on R™/Z"}/conformal equivalence

is in bijection with P,, and thus with T,.
(ii) We have that

Fn={(R™/Z",g)|g is a flat metric on R*/Z"}/ ~= P,/ SL(n, Z)
(where AeSL(n,Z) acts on P, by P> A*PA, PcP,) and we endow this set with
the quotient topology induced by the set in (i).
Notation 2.7. Let n:=2m=2(2k+1) and N:=1(").

We want to study the map
T {(R"/Z",g) | g flat metric on R™/Z"}/conformal equivalence= P, =T, — Hn
(after fixing a symplectic basis of H™(R"/Z", Z) with respect to [, 2z -A-) and
T:F,={(R"/Z",g)|g is a flat metric on R*/Z"}/ ~= P,/SL(n,Z) — An.

We recall that H?(R"/Z",R) is in bijection with the set of harmonic g-forms,
which are the translation invariant g-forms, and thus H(R"/Z",R)=A%R")Y
and HY(R"/Z",Z)=\(Z")" (see [LB] or [M]).

In the next proposition, after choosing a symplectic basi/s\ for H™(R"/Z",Z)
with respect to — fRn Jzn N\ We write explicitly the image of T of the torus R"/Z"
with the flat metric given by the matrix L!L as a function of L.

Proposition 2.8. Let LeGL(n,R).

Let
e (AQ) C(L)
A ):<B(L) D(L))’

using the symmetrically lexicographically ordered set TUE as set of multiindices.

Set .
(0) (0 aw) (50)
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and define Z(L)=X(L)+iY(L)e M(N x N, C).

Let det L>0. Let {dz;}j=1,.,n be the standard basis of (R™)V. Consider
the symmetrically lexicographically ordered basis {dzy=dx; A...Adziy,, }1cTue a8
symplectic basis for H™(R™/Z"™, Z) with respect to — [g., Jzn N

Then T(R"/ Z",L'L)=Z(L) (the orientation of R™/Z™ is given by the stan-
dard one of R™).

Proof. Let b; be the columns of L~!, they are an orthonormal basis of R™
for the metric L*L. The matrix representing the symmetrically lexicographically
ordered basis {dz;}1c7ue s a function of the symmetrically lexicographically or-

dered basis {6} }sczue of H™(R"/Z"R) is A**'(L1)*=(4 ). Thus the ma-

trix expressing {dz,*dz;};cz (Z lexicographically ordered) as a function of the
symmetrically lexicographically ordered basis {b} };czue is (g _AB ) and the one
expressing {dzr}ice as a function of the symmetrically lexicographically ordered

-1
basis {b} }rezue is (g) Thus the matrix (g _AB) (g) expresses {dzr}1ce as a
function of {dz;, *dz; };c7z. Thus we have proved that the period matrix of Lazzeri’s
Jacobian of (R"/Z", L*L), taking the symmetrically lexicographically ordered basis

{dz;}1ezue as symplectic basis, is Z(L). O

Proof of Theorem A. We use Proposition 2.8 and its notation.

(i) Since harmonic forms on tori are the translation invariant forms, by Lemma
2.2, we conclude (i).

(ii) Let S:=Spyn(Z).(}) If Fy:={z€Hn|o(z)=2} for c€S*:=5\{Id}, we
have to prove that 7,\Z~(U,cs- F-) is an open dense subset of T, (Z defined
in Proposition 2.8). The openness follows from the fact that S acts properly and
discontinuously on #Hy (see [LB}, p. 218). To prove the density, it is sufficient (by
Baire’s theorem) to prove that for all 0€S*, the set 7,,\Z~!(F,) is an open dense
subset of 7. Since Z~!(F,) is defined by polynomial equations, we have only to
prove that 7,\Z~(F,)#0, i.e. that Z(T,)CF, implies o=Id.

Let 0€S be the map Z+—(MZ+N)(PZ+Q)™! and suppose that Z(T,)CF,.
Obviously, Z€F, if and only if ZPZ+ZQ=MZ+N.

Let LET,. For every c€R* let L(c) be the matrix obtained from L by mul-
tiplying L;; by ¢ *~! and the other entries of L by c. We have Z (L(c))=
c*+2Z(L), by the definition of Z. Since Z(L(c))€F, for all ccR*, we have
B Z(LYPZ(L)+c**2(Z(L)Q—MZ(L))—N=0 for all ccR* and L€T,. Thus

(%) We define Span(2):={ (5§ ) eM(2N x2N, Z)| (5 'g)' (e '3):(‘,’ o)} which
acts on Hy by (z ?) Z=(6Z+%)(BZ+a)™! (see [LB], Chapter 8).
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(1) N=0;

(2) Z(L)PZ(L)=0 for all LeT,;

3) Z(L)Q—MZ(L)=0 for all LeT,.
Hence, Q=(M?*)~! by (1) and the fact that €S, and P=0 and M =Q by (2) and
(3), taking L=1I. Thus M is orthogonal. From (3) we have Y(L)YM=MY (L) and
this implies that M is diagonal (take L such that Y'(L) is diagonal with the diagonal
elements different from each other). Being M orthogonal and diagonal, M must be
diagonal with only +1 on the diagonal. Still from Y (L)=MY (L)M ™}, taking L
such that Y (L) is not diagonal, we obtain M =1.

(iit) This follows right away from (i) and (ii), since S acts properly and discon-
tinously on Hy. O

Remark 2.9. The map T: F,,— Ay is not injective.

In fact, considering a diagonal matrix F'€7, and its inverse matrix F~1 we
have C(F)=B(F)=C(F~')=B(F~1)=0 and A(F)=A(F~1)"!, D(F)=D(F~})~1
(using the notation of Proposition 2.8). Thus Y(F~1)=Y(F)~! and X(F )=
X(F)=0. Then Z(F)=—Z(F~!)~1. Hence the Z’s differ by an element of Spyx(Z).
Thus Lazzeri’s Jacobians of (R™/Z", F?) and of (R™/Z",(F~!)?) are isomorphic
principally polarized abelian varieties.

But we can choose F in such a way that there does not exist A€SL(n, Z) such
that A*F2A=(F~1)2. In fact A!F2A=(F~")? is equivalent to FAF being orthogo-
nal and, e.g., if we take as F' the diagonal matrix whose diagonal is (1, ...,1, 3, 3,6),
we have that there does not exist A€SL(n,Z) such that FAF is orthogonal, and
thus there does not exist A€SL(n,Z) such that A*F2A=(F~!)2. Hence F? and
(F~1)2 (€ P,,) do not represent the same element in 7, (see Remark 2.6).

Now we will choose a particular symplectic basis and use Proposition 2.8 and
Lemmas 2.3 and 2.4 to study the image of T (and then the image of T, since
obviously it is equal to py(ImT)).

Theorem B. Let {dx,,...,dx,} be the standard basis of (R™)V. Take the
symmetrically lexicographically ordered basis {dxy=dz; A...\dz;,, }1czUE 05 @ sym-
plectic basis of (H™(R™/Z",Z), - [;. /7 -A-) and indez the entries of the matrices
in My by the lericographically ordered set T.

Then ImT={X +iY €Hy|(1) and (2) hold}, where

(1) Y=EE!, where Er j=det(S);y, I,J€Z, for some upper triangular nxn
matriz S with determinant 1 and S; ;>0 for j=1,...,n;

3,3 Z
(2) X15=0, if I and J have more than one index in common (I,J€I).

Proof. Let L€T,. Using Lemmas 2.3 and 2.4 and the notation of Propo-

sition 2.8, we have /\”‘“(L-l)t:(’“o”) ( A(CL(;’:;_I). Hence, X(L)=A(L)"'C(L)
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and Proposition 2.8 and Lemma 2.4 imply the claim for X. Moreover, Y(L)=
A7HL)(A7Y(L))t, where A(L); j=det((L™')%);.s. So Y(L)=A"Y(L)(A~}(L))t=
AL"YY(A(L™Y))t, where A(L™'); y=det(L!); ;. Taking E=A(L™') and S=L* we
finish the proof by again using Proposition 2.8. [J

3. The case of Kihler manifolds
3.a. A lemma and Abel’s map

First we prove the lemma we used in the introduction to compare Lazzeri’s
Jacobian of compact Kihler manifolds with Weil’s and Griffiths’ Jacobians.

Notation 3.1. Here the operator *, defined as usual on real forms, is extended
to complex forms by C-linearity, as in [C] and [W].

Let M be a complex manifold. Weil’s operator C is the linear operator defined
on the forms of bidegree (a,b) by Cn=i"%n (observe that C takes real forms to
real forms). If M is of kihlerian type, then C induces on H4(M, C) the operator
we already called C in the introduction.

Lemma 3.2. Let (M, g) be a hermitian manifold of complex dimensionm. Let
n be an m-form on M. If we write n=Y", 5 L™ with 1, being primitive (m—2r)-
forms, we have that

=Y (-1, op=) " L7 Cny.
r>0 r>0
Then we can decompose the space of m-forms into the two parts
o= 52 1,

r>0
T even

7, primitive (m—2r)- form,s}

and

{7’2 Z L™y,
r>0
r odd

On the first part +=(~1)(™"+m)/2C and on the second part *=(—1)(m’+m)/2+1¢,

Ny primitive (m—2r) -forms}.

Proof. In [C], p. 26, or [Wel] it is proved that if w is a primitive p-form on M
and r<m—p, where m=dimc M, then

(—1)p(P+1)/24)

LT
Hew (m—p-r)!

L™ P 7"Cuw.
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Applying it, with p=m—2r, to each term L"n, of the sum n=3}_ 5, L., we
obtain
M=xd L= wLne =3 (- T L Oy
r>0 r>0 r>0
Since CL=LC, we have Cn=)_ _,CL™»=3_,5,L"Cny. O

Corollary 3.3. Let (M,g) be a compact Kéhler manifold of complex dimen-
sion m. Consider the operators * and C on H™(M,C). We have that x=C on K
and x=—C on K’ (see Notation 1.3).

Let (M, g) be a compact Kahler manifold of complex dimension m=2k+1.
Notation 3.4. If HI(M,C)=V®W, 7yw will denote the projection onto V.

Observe that Jpm=(Jn,NK)®(J»NK’). Analogously as in the introduction, we
have that the k*® Weil’s Jacobian, the k" Griffiths’ Jacobian and Lazzeri’s Jacobian
are the real torus J,,,(M)/w(H™(M,Z)), where 7 is = I (M), T D) with different
complex structures. We describe the situation in Table 1.

Table 1.
Jacobian H™(M,R)/(H™(M, Z)/torsion) | Jn(M)/n(H™(M,Z))
k*h Weil's -C —i
kth Griffiths’ C|{n+ﬁln€Jm(M)nm} i|Jm(M)nm
O —C|(ntalnetm(M)nFe+1 (M)} D —1| 1, (M)NF*+1 (M)
Lazzeri’s Clammrynk®—Clummrynk: | i1, a0k ®—ils,. (K

Notation 3.5. Set J, (M):=(K(M, g)NJm(M))®K'(M, g)NJm(M).

Remark 3.6. (i) We have T(M, g):J’{"(M)/WJ;n(M),.;Zn—(M—)(Hm(M’ Z)) with the
complex structure given by i and the imaginary part of the polarization (a, )=
- fM(a+a)/\(ﬁ+,3)-

(ii) Seeing T'(M,g) as J,,(M)/n(H™(M,Z)), we can define an Abel-Jacobi
map g for k-cycles also for Lazzeri’s Jacobian. Let Zy be a k-cycle in M and set
B(Zy):={Z k-cycle homologous to Zg}. Let {t1,...,%} be a basis of J;,(M). If
Z€B(Zy) and C is a (2k+1)-chain with 8C=2Z—Zy, let p(Z):= ([ %1, ---> Jow)e
T(M).

One can easily see that the definition is good (in an analogous way as in [L2],
p- 131) and, by the same calculation as in [G], p. 826, that x is not holomorphic in
general.
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3.b. Some remarks on holomorphic variation and injectivity of Lazzeri’s
period map

We saw that Lazzeri’s Jacobian of a compact Kahler manifold (M, g) of odd
dimension depends only on the complex structure of M and on the class Q of the
(1,1)-form associated with g. In this subsection we will fix 2 and we will study
when the map T, associating Lazzeri’s Jacobian with the complex structure, is
holomorphic and we will see that its differential is injective if Ky =0.

Let (M, g) be a compact Kihler manifold of dimension m and let Q be the class
of the (1, 1)-form associated with g. Consider a smooth deformation of the complex
structure M—A, A30 a polycylinder.

Notation 3.7. We let M, be the fibre over t and let ¢ be a C* trivialization
M—M x A (possibly restricting A), ¢ induces diffeomorphisms ¢;: My — M. Let
0: To(A)— H'(O) be the Kodaira-Spencer map, where Ty(A) is the holomorphic
tangent space to A at 0 and ©=0(T'9(M)).

We recall the definition of Griffiths’ and Weil’s period maps.
Griffiths’ period map GF: A—Gc(fF, HY(M, C)) (possibly restricting A) is the
map
t— Go(t) = (¢ )" FE (M),
where f§:=dim FP(M) for p,qeN.
If ¢>0 is an odd integer, Weil’s period map Wy: A—Gc (1b,, HY (M, C)) (pos-
sibly restricting A) is the map

Lt We(t) = (th_l)*Jq(Mt)'

By Griffiths’ calculation [G], p. 812, (see also [Gre], p. 33), if ¢(t) is a smoothly
varying harmonic (g—r,r)-form on M;, ¢=¢(0) and - is the contraction, we have

(1) %:g(%)-gb, which is of type (q—T—l,H'l),
(2) Qg;(%) =g(%) -¢, which is of type (g—7r+1,7~1).

Thus, while G is holomorphic and Im dG?(0) is in Hom(H?977, HP~La-P+1y) the
map W is not holomorphic. More precisely, if g€ FP(M), then

aGr(0) ? 6
ot O =T g rp o) ("(Zﬂ') '¢) 29(5) *
G (0) o

5 ) =T g pe ) (9(55) '(b) =0



394 Elena Rubei

While, if ¢ is odd and ¢€J,(M), then

MO ) s (o(2) #) o 2) 4

?‘Vy(@ =TT, o) (9(%) '¢) ="(%) ?

Finally we recall that in [G], p. 844, Griffiths proved that if K3 =0, then the
maps H'(©)—Hom(H™°, H™~11) and H(6)—»Hom(H®™, H"™1) given by the
contraction are injective, then, if also p is injective, dG7(0) is injective.

Now let m be odd.

Definition 3.8. Let A":={t€ A| there exists a Kihler metric on M; whose (1,1)-
form is of class ¢7(Q2)}.

Fix a symplectic basis S of H™(M,Z) with respect to — [,,-A- and, for all
tcA’, a Kahler metric g, on M; whose (1,1)-form is of class ¢;(f2). Define

T: 8" — Hy 2y (a1)

as the map sending ¢ to the matrix in H(12)s,,(m) representing T'(M, g;) with the
symplectic basis ¢;S.

Observe that the map T (which is the composition of the map t—(¢; HY* gy
with 21':5} () gt}) does not depend on the choice of g;, but only on S and 2. It
describes how Lazzeri’s Jacobian depends on the complex structure (after fixing ).

To study when T is holomorphic and injective, set L£(t):=(¢; 1)*J (M;)e
Gc(5bm, H™(M, C)) for te A’ (Lazzeri’s period map).

Let ¢p€J} (M). By (1) and (2) we have

%(@ =T E©,0) (9(%> '¢) N 9(%) ¢

20 ) =remien (e(5)¢) =e(5)

See T(My, g:) as ‘C(t)/wﬁ(t),EZt—)(Hm(M 2)) (see Remark 3.6). Chosen a basis {w;(t)}

of L(t), let (;E,Eg) be the matrix expressing w;(t) as a function of S§. Then

T(t):—E(t)F(t)_l. Thus 7T is holomorphic if and only if £ is holomorphic and
T is injective if and only if £ is injective. By the remark just before Defini-
tion 3.8, if p is injective, the map dW(0) is injective and then W is locally in-
jective. Hence also L is locally injective, in fact (¢; *)*(K(M;,g:))=K(M,g) and
(67 1) (K'(My, 9.))=K'(M, g), thus W(t)=(L()NK (M, g))®LHNK (M, g), and
injectivity of W implies injectivity of £ and £. Thus we have the following result.
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Proposition C. Let (M,g) be a compact Kihler manifold of odd complex
dimension m and S) be the class of the form associated with g. Fiz a symplectic
basis S of H™(M,Z) and consider a smooth deformation of the complez structure
M=A, for which we use Notation 3.7 and 3.8. Suppose that A’ is a neighbourhood
of 0. Then

(a) T: A'—H is holomorphic at 0 if and only if o(To(A))-(K(M, g)NJpm (M)
K'(M, g)NJ,,(M))=0, where - is the contraction;

(b) if Kpe=0 and g is injective then T is locally injective at 0.

The example of Mattuck in [G], p. 588, which shows that Weil’s Jacobian does
not always vary holomorphically, shows also that Lazzeri’s Jacobian does not always
vary holomorphically (i.e. that the condition in (a) of Proposition C is not always
satisfied).

Remark 3.9. If Kpr=0 we can take as g, the Kdhler-Einstein metric whose
(1,1)-form is of class ¢} () (it exists uniquely by Calabi-Yau’s theorem, see [SP]).

4. Lazzeri’s Jacobian of a bundle

Definition 4.1. An element X of a lattice A is primitive if there does not exist
a N eA, N#+), such that AeZN.

Proposition D. Let (M,gn) and (N,gn) be Riemannian compact oriented
manifolds of dimension 2(2k+1) and 2(2s), respectively. Let p: F—M be a bun-
dle with fibre N and structure group GCDIff(N) and suppose that gy is G-
invariant. Consider the metric on F induced by gy and gn. Suppose there exisis
A€ H?*(N,Z)/torsion such that A#0, xy A=\ and A is G-invariant.

We can define a holomorphic map ex: T(M)—T(F) (we omit the metrics) such
that

(1) if Or and Opr are the polarizations of T(F) and T(M), respectively, then
ex0r=(fy A*A)0nr;

(2) ex is injective if one of the following conditions holds:

(a) fy AA:A=1;

(b) F=MxN and X is primitive;

(c) H*(N,Z) is free and G-invariant.

Proof. Let us define ex:T(M)—-T(F). If F=MxN we can define e) sim-
ply as the map induced by the map H?**!(M,R)—>H?*+!*25(M x N,R) defined
by m—nAX. More generally, define A€ H?*(F,Z) in the following way: if U is
a trivializing open subset of M, let Al,-1(y):=n*\, where 7 is the composition
of a C* trivialization p~!(U)—»Ux N with the projection UxN—N. Define
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Ex: H*+1(M,R)— H%+1+2s(F R) by Ej(n)=p*nAA. The map Ej induces a map
ex:T(M)—T(F).

The fact that xy A=\ implies at once that e is holomorphic.

Let us prove that e30p=(f, AA*A)0r. Let {Ua}o be a trivializing covering
of M and let ¥, be a partition of unity for this covering. Let ¢, be the partition
of unity for the covering {p~!(U,)} of F, defined by ¢o(y)=va(p(y)). Let w1, wr€
H?+1(M R). We have

[ BswnBren) =3 [

o ' (Ua

ZZ/ Pawi AAAW2 AN

o UaxXN

IZ/ ¢aw1/\w2/\/\/\*/\
o UaxXN

ZZ/ ¢aw1Aw2/ AA®A
" Jua N

:(/I.V/\/\*/\)/Mwl/\wg.

If (a) holds then the map e is injective since it is a homomorphism of princi-
pally polarized abelian varieties and preserves the polarization. It is easy to verify
that (b) implies that ey is injective. Finally, if (c) holds, then e, is injective by the
theorem of Leray-Hirsch (see [S], p. 258). O

) PaEr(w1)AEx(w2)

Consider Kahler manifolds. A completely analogous statement holds for the
k'h Weil’s Jacobian of M and (k+s)*" Weil’s Jacobian of F with the condition
*y A=A replaced by CxyA=\. As to Griffiths’ Jacobians, if we replace the condition
*NA=X with “X is of type (s,s)” in the hypotheses, we have that there exists a
holomorphic map from the k** Griffiths’ Jacobian of M into the (k+s)*® Griffiths’
Jacobian of F' and it is injective if (b) or (c) hold.
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