
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 20, 2002, 375–391

FUNCTIONS WITHOUT EXCEPTIONAL FAMILY
OF ELEMENTS AND THE SOLVABILITY

OF VARIATIONAL INEQUALITIES ON UNBOUNDED SETS

George Isac — M. Gabriela Cojocaru

Abstract. In this paper we prove an alternative existence theorem for

variational inequalities defined on an unbounded set in a Hilbert space.
This theorem is based on the concept of exceptional family of elements

(EFE) for a mapping and on the concept of (0, k)-epi mapping which is

similar to the topological degree. We show that when a k-set field is without
(EFE) then the variational inequality has a solution. Based on this result

we present several classes of mappings without (EFE).

1. Introduction

The theory of variational inequalities is now very well developed and the num-
ber of papers dedicated to this subject is impressive (see [8], [9], [25], [29]–[33],
[36], [37] and many others). The development of this theory has been stimulated
by the diversity of applications in Physics, Mechanics, Elasticity, Fluid Mechan-
ics, Engineering and Economics. The solvability of variational inequalities has
been studied with several methods based, for example, on coercivity conditions,
on compactness, on the fixed point theory, on KKM-mappings and on the mini-
max theory. Recently, using the topological degree, we introduced the concept of
exceptional family of elements for a function ([19], [3]). Applying this concept we
studied several problems related to complementarity theory ([3], [4], [10]–[21]).
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In his Ph.D. thesis Y. B. Zhao extended the concept of exceptional family of
elements to variational inequalities in the Euclidean space (see [30]).

In [29]–[33], [36] and [37], several existence results are presented. In our
recent paper [22] we introduced the concept of exceptional family of elements
for a completely continuous field in infinite dimensional Hilbert spaces and we
applied this concept to the study of solvability of variational inequalities.

In this paper we will extend the main result proved in [21] to k-set fields
and we will show that several classes of fields are without exceptional family of
elements. This important fact implies the solvability of variational inequalities
on unbounded sets. The main result (Theorem 4.2) will be given using a concept
of (0, k)-epi mapping which is a more refined concept than the topological degree.
From this point of view our paper can be considered as an interesting application
of (0, k)-epi mappings to the study of variational inequalities on unbounded
sets. This is a deep relation and it must be exploited in other future papers on
variational inequalities.

2. Preliminaries

Let (H, 〈 · , · 〉) be a Hilbert space and Ω ⊂ H a non-empty unbounded closed
convex set. Since Ω is closed and convex, then the projection operator onto Ω,
denoted by PΩ is well defined for every x ∈ H. It is well known that for any
x ∈ H, PΩ(x) is the unique element in Ω such that

‖x− PΩ(x)‖ = min
y∈Ω

‖x− y‖.

Given a mapping f :H → H we can consider the following variational inequality
defined by f and Ω:

VI(Ω, f) :

{
find x∗ ∈ Ω such that

〈x− x∗, f(x∗)〉 ≥ 0, for all x ∈ Ω.

It is known ([10], [11]) that the solvability of the problem VI(Ω, f) is equivalent
to the solvability in H of the following equation

(2.1) x = PΩ(x− f(x)).

If X ⊂ H is an arbitrary non-empty subset, we denote by ∂X the boundary
of X, by int(X) the interior of X and by cl(X) the closure of X.

We say that a subset K ⊂ H is a cone if λK ⊆ K for all λ ∈ R+ and we say
that K is a convex cone if

(a) λK ⊆ K for all λ ∈ R+, and
(b) K + K ⊆ K.
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If K ⊂ H is a cone, its dual is (by definition)

K∗ = {y ∈ H | 〈x, y〉 ≥ 0 for all x ∈ K}.

We can show that K∗ is a convex cone.
If D ⊂ H is a non-empty convex set and x ∈ cl(D) then (by definition) the

normal cone of D at the point x is

ND(x) = {ζ ∈ H | 〈ζ, y − x〉 ≤ 0 for all y ∈ D}

or ND(x) = −[TD(x)]∗ where TD is the tangent cone of D at the point x, i.e.

TD(x) = cl
( ⋃

λ>0

λ(D − x)
)

.

The following proposition is a classical known result.

Proposition 2.1. For each x ∈ H, we have that y = PΩ(x) if and only if
x ∈ y + NΩ(y).

3. (0, k)-epi mappings

About the solvability of a variational inequality we will prove in this paper
an alternative theorem which is valid for a much larger class of mappings as the
main result proved in [22].

To prove this new result, we need to introduce a mathematical tool, similar
to the topological degree, but simpler and more refined. This is the concept
of (0, k)-epi mapping, which is a generalization obtained by E. V. Tarafdar and
H. B. Thompson (see [28]) of the concept of zero-epi mapping introduced by
M. Furi, M. Martelli and A. Vignoli in [7].

Now we will give only the definition and the most important properties of
this concept.

Let (E, ‖ · ‖) and (F, ‖ · ‖) be Banach spaces, Ω ⊂ E a subset and f : Ω → F

a mapping. Let A ⊂ E be a non-empty subset. The Kuratowski measure of
noncompactness of A is by definition:

α(A) = inf{ε > 0 | A can be covered by a finite number of sets

of diameter less than ε}.

The measure of noncompactness can be consider in E or in F and it will be
denoted by the same letter α.

It is known that α(A) = 0 if and only if A is relatively compact. A continuous
mapping f : Ω → F is said to be a k-set contraction if for each bounded subset
A of Ω we have α(f(A)) ≤ kα(A), where k ≥ 0. Let Ω ⊂ E be a bounded open
subset in E and p an element in F .
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Definition 3.1 ([7]). A continuous mapping f : Ω → F is said to be 0-
admissible (respectively, p-admissible) if 0 /∈ f(∂Ω) (respectively, p /∈ f(∂Ω)).

Definition 3.2 ([28]). A 0-admissible mapping f : Ω → F is said to be
(0, k)-epi if for each k-set contraction h: Ω → F with h(x) = 0 for each x ∈ ∂Ω,
the equation f(x) = h(x) has a solution in Ω. Similarly, a p-admissible mapping
f : Ω → F is said to be (p, k)-epi if the mapping f − p defined by (f − p)(x) =
f(x)− p, for each x ∈ Ω is (0, k)-epi.

If in Definition 3.2 we replace the term k-set contraction by compact map-
ping (i.e. h(Ω) is relatively compact in F ), then we obtain the concept of 0-epi
mapping introduced in [7] and studied in several papers ([10]). The concept of
(0, k)-epi mapping has the following main properties:

(I) (Existence property) If f : Ω → F is a (p, k)-epi mapping, then the
equation f(x) = p has a solution in Ω.

(II) (Normalization property) The inclusion mapping i: Ω → E is (p, k)-epi
for k ∈ [0, 1[, if and only if p ∈ Ω.

(III) (Localization property) If f : Ω → F is a (p, k)-mappnig and f−1(0)
is contained in an open set Ω1 ⊂ Ω, then f restricted to Ω1 is also
(0, k)-epi.

(IV) (Homotopy property) Let f : Ω → F be (0, k)-epi and h: [0, 1]× Ω → F

be a β-set contraction with 0 ≤ β ≤ k < 1 such that h(0, x) = 0 for all
x ∈ Ω. If f(x) + h(t, x) 6= 0 for all x ∈ ∂Ω and for all t ∈ [0, 1], then
f( · ) + h(1, · ): Ω → F is a (0, k − β)-epi mapping.

(V) (Boundary dependence property) Let f : Ω → F be (0, k)-epi and g: Ω →
F be a β-set contraction with 0 ≤ β ≤ k < 1 and g(x) = 0 for each
x ∈ ∂Ω, then f + g: Ω → F is a (0, k − β)-epi mapping.

4. Exceptional family of elements and the solvability
of variational inequalities on unbounded sets

Let (H, 〈 · , · 〉) be an arbitrary Hilbert space, Ω ⊂ H a non-empty unbounded
closed convex set and f :H → H a mapping. We say that f is a k-set field if
f has a representation of the form f(x) = x − T (x), where T :H → H is a k-
set contraction with 0 ≤ k < 1. When k = 0, we have that f is a completely
continuous field.

Definition 4.1 ([22]). We say that {xr}r>0 ⊂ H is an exceptional family
of elements for the mapping f(x) = x − T (x) defined on H with respect to the
subset Ω if the following conditions are satisfied:

(a) ‖xr‖ → ∞ as r →∞.
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(b) For any r > 0 there exists a real number µr > 1 such that µrxr ∈ Ω
and T (xr) − µrxr ∈ NΩ(µrxr), where NΩ(µrxr) is the normal cone of
Ω at the point µrxr.

The importance of Definition 4.1 is given by the following result.

Theorem 4.2. Let (H, 〈 · , · 〉) be a Hilbert space, Ω ⊂ H an arbitrary un-
bounded closed convex set and f :H → H a k-set field (with the representation
f(x) = x − T (x)). Then the problem VI(Ω, f) has at least one of the following
two properties:

(a) VI(Ω, f) has a solution,
(b) the k-set field f has an exceptional family of elements with respect to Ω.

Proof. We associate to the problem VI(Ω, f) the mapping Φ: H → H de-
fined by

Φ(x) = x− PΩ[x− f(x)] = x− PΩ(T (x))

for any x ∈ H. It is a classical result that the problem VI(Ω, f) has a solution if
and only if the equation Φ(x) = 0 has a solution. We use the following notations:
Sr = {x ∈ H | ‖x‖ = r} and Br = {x ∈ H | ‖x‖ < r}, for any r > 0.

Remark that the identity mapping id(x) = x is a (0, k)-epi mapping on any
set Br with k ∈ [0, 1[ and we consider the mapping h: [0, 1] × Br → H defined
by:

h(t, x) = t(x− PΩ[x− f(x)]− x) = t(−PΩ[x− f(x)]).

The mapping h is a k-set contraction such that h(t, x) = 0 for all x ∈ Br. We
have only the following two situations:

(a) There exists r > 0 such that x + t(−PΩ[x− f(x)]) 6= 0 for all x ∈ Sr and
all t ∈ [0, 1].

In this case applying the homotopy property for (0, k)-epi mappings for h

and id, we have that x+ t(−PΩ[x− f(x)]) = 0 has a solution in Br, that is there
exists x∗ ∈ Br such that x∗ = PΩ[x∗−f(x∗)], which implies that x∗ is a solution
to the problem VI(Ω, f).

(b) For every r > 0 there exist xr ∈ Sr and tr ∈ [0, 1] such that

xr + tr(−PΩ[xr − f(xr)]) = 0.

If tr = 0, we have that xr = 0, which is impossible since xr ∈ Sr. If tr = 1 then
xr −PΩ[xr − f(xr)] = 0 which is equivalent to say that V I(Ω, f) has a solution.

Hence we can say that either the problem VI(Ω, f) has a solution or for any
r > 0 there exist xr ∈ Sr and tr ∈]0, 1[ such that xr = trPΩ[T (xr)].

By Proposition 2.1 we have that

T (xr) ∈
1
tr

xr + NΩ

(
1
tr

xr

)
.
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If we denote by µr = 1/tr for all r > 0, then we have:

(a) ‖xr‖ = r and µr > 1 for all r > 0,
(b) µrxr ∈ Ω for all r > 0,
(c) T (xr)− µrxr ∈ NΩ(µrxr) for all r > 0,

and since ‖xr‖ → ∞ as r →∞, we obtain that {xr}r>0 is an exceptional family
of elements for f with respect to Ω and the proof is complete. �

If for the k-set field f(x) = x − T (x), k = 0, then the mapping f is a com-
pletely continuous mapping. In this case, we can prove Theorem 4.2 applying
the Leray–Schauder alternative. About this classical result the reader is referred
to [1], [2] and [6].

Applying the variant of Leray–Schauder alternative proved with the transver-
sality theory in [6, Theorem 5.1] we obtain the following result.

If Ω is such that 0 ∈ Ω, then in this case (supposing that f is a completely
continuous filed), the exceptional family of elements {xr}r>0, obtained in the
proof of Theorem 4.2 can be selected such that for each r > 0, xr ∈ Ω. Indeed,
since 0 ∈ Ω we apply [6, Theorem 5.1] taking C = Ω and Ur = {x ∈ Ω | ‖x‖ < r}.
The set Ur is open in Ω and its boundary ∂Ur with respect to Ω is the set
{x ∈ Ω | ‖x‖ = r}. Obviously, we have for each r > 0, xr ∈ ∂Ur, that is x ∈ Ω
and ‖xr‖ = r. A consequence of Theorem 4.2 is the following result.

Theorem 4.3. Let (H, 〈 · , · 〉) be a Hilbert space, Ω ⊂ H an arbitrary un-
bounded closed convex set and f :H → H, f(x) = x−T (x) a k-set field on H. If
f is without exceptional family of elements with respect to Ω, then the problem
VI(Ω, f) has a solution.

5. k-set fields without exceptional family of elements

In this section we will present several classes of k-set fields without excep-
tional family of elements with respect to an unbounded closed convex set. Here
f can be supposed a k-set field.

Definition 5.1. We say that a mapping f :H → H satisfies condition (θ, Ω)
with respect to an unbounded closed convex set Ω ⊂ H if there exists ρ > 0 such
that for each couple (x, α) with ‖x‖ > ρ, α ≥ 1 and αx ∈ Ω, there exists y ∈ Ω
such that ‖y‖ < α‖x‖ and 〈f(x), αx− y〉 ≥ 0.

Remark 5.2. If Ω is a closed convex cone, then in this case condition (θ, Ω)
is equivalent to the following condition:

(θ) :

{
there exists ρ > 0 such that for each x ∈ Ω with ‖x‖ > ρ,

there exists y ∈ Ω such that ‖y‖ < ‖x‖ and 〈f(x), x− y〉 ≥ 0.

Indeed, if Ω is a closed convex cone and f satisfies condition (θ), then there
exists ρ > 0 such that for each x ∈ Ω with ‖x‖ > ρ, there exists y ∈ Ω such that
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‖y‖ < ‖x‖ and 〈f(x), x− y〉 ≥ 0. In this case {x ∈ H | there exists α ≥ 1, αx ∈
Ω} = Ω. For all α ≥ 1, αx ∈ Ω, ‖αy‖ < α‖x‖, y ∈ Ω and 〈f(x), αx − αy〉 ≥ 0,
which means that f satisfies condition (θ, Ω). Conversely, if f satisfies condition
(θ, Ω), then obviously f satisfies condition θ with respect to Ω.

We introduced condition (θ) in [14], [20] in Complementarity Theory. There-
fore condition (θ, Ω) is an adaptation of condition (θ) for an arbitrary unbounded
closed convex set Ω ⊂ H. The importance of condition (θ, Ω) is given by the
following result.

Theorem 5.3. Let (H, 〈, 〉) be a Hilbert space, Ω ⊂ H an arbitrary un-
bounded closed convex set and f :H → H a k-set field. If f satisfies condition
(θ, Ω) with respect to Ω then f is without exceptional family of elements and the
problem VI(Ω, f) has a solution.

Proof. Suppose that f has an exceptional family of elements {xr}r>0 with
respect to Ω. Hence {xr}r>0 satisfies Definition 4.1. For each r > 0 we have that
µrxr ∈ Ω where µr > 1 and applying condition (θ, Ω), there exists yr such that
‖yr‖ < ‖µrxr‖ and 〈f(xr), µrxr − yr〉 ≥ 0, for each r > 0 such that ‖xr‖ ≥ ρ.
Therefore for r > 0 such that ‖xr‖ ≥ ρ we have T (xr) − µrxr ∈ NΩ(µrxr), i.e.
ζr = T (xr)− µrxr satisfies the condition 〈ζr, y − µrxr〉 ≤ 0, for all y ∈ Ω, and

0 ≤ 〈f(xr), µrxr − yr〉 = 〈xr − T (xr), µrxr − yr〉
= 〈xr − µrxr − ζr, µrxr − yr〉 = 〈(1− µr)xr − ζr, µrxr − yr〉
= (1− µr)〈xr, µrxr − yr〉+ 〈ζr, yr − µrxr〉
≤ (1− µr)[µr‖xr‖2 − 〈xr, yr〉] < 0,

since 1− µr < 0 and

µr‖xr‖2 − 〈xr, yr〉 ≥ µr‖xr‖2 − ‖xr‖ · ‖yr‖ = ‖xr‖[µr‖xr‖ − ‖yr‖] > 0.

We have a contradiction which implies that f is without exceptional family of
elements. �

Now we give some examples of functions which satisfy condition (θ, Ω). We
suppose that Ω ⊂ H is an unbounded, closed and convex set.

Definition 5.4. A mapping f :H → H is said to be ρ-copositive on Ω if
there exists ρ > 0 such that for all x ∈ Ω, with ‖x‖ > ρ we have 〈x, f(x)〉 ≥ 0.

Proposition 5.5. If f :H → H is ρ-copositive on Ω and there exists x∗ ∈ Ω
such that ‖x∗‖ < ρ and 〈x∗, f(x)〉 ≤ 0 for all x ∈ H with αx ∈ Ω for α > 1 and
‖x‖ > ρ, then f satisfies condition (θ, Ω).

Proof. Indeed, if x ∈ H is such that ‖x‖ > ρ and αx ∈ Ω for α ≥ 1 then
we have 〈x, f(x)〉 ≥ 0 which implies 〈αx, f(x)〉 ≥ 0. Since ‖x∗‖ < ρ ≤ ‖αx‖ and
〈αx−x∗, f(x)〉 ≥ 0, we have that f satisfies condition (θ, Ω) with respect to Ω.�
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Corollary 5.6. If f :H → H is ρ-copositive on Ω and 0 ∈ Ω, then f

satisfies condition (θ, Ω).

Definition 5.7. We say that f :H → H satisfies condition (K) with respect
to Ω if there exists a bounded set D ⊂ Ω such that for all couples (x, α) where
x ∈ H,α ≥ 1 and αx ∈ Ω \D there exists y ∈ D such that 〈f(x), αx− y〉 ≥ 0.

Remark 5.8. Condition (K) is a Karamardian type condition.

Proclaim 5.9. If f :H → H satisfies condition (K) with respect to Ω, then
f satisfies condition (θ, Ω).

Proof. Let D ⊂ Ω be the set defined by condition (K). Since D is bounded,
there exists ρ > 0 such that D ⊂ {x ∈ Ω | ‖x‖ ≤ ρ}. For each couple (x, α) where
x ∈ H, α ≥ 1 and αx ∈ Ω we have ‖αx‖ ≥ ‖x‖ > ρ, which implies αx ∈ Ω \D

and there exists y ∈ D such that 〈f(x), αx − y〉 ≥ 0. Because ‖y‖ ≤ ρ < α‖x‖
we have that f satisfies condition (θ, Ω) on Ω. �

The following condition is inspired by a similar condition introduced by
X. P. Ding and K. K. Tan in [5].

Definition 5.10. A mapping f :H → H satisfies condition (DT) with re-
spect to Ω if there exists two non-empty bounded subsets D0, D∗ ⊂ Ω such
that for each couple (x, α) where x ∈ H, α ≥ 1 and αx ∈ Ω \ D∗ there is an
y ∈ co(D0 ∪ {αx}) verifying 〈αx− y, f(x)〉 ≥ 0.

Proposition 5.11. If f :H → H satisfies condition (DT) with respect to Ω,
then f satisfies condition (θ, Ω).

Proof. Since D0 and D∗ are bounded there exists ρ > 0 such that D0, D∗ ⊂
{x ∈ Ω | ‖x‖ ≤ ρ}. If x ∈ H is such that ‖x‖ > ρ and αx ∈ Ω for some
α ≥ 1, then we have that αx ∈ Ω \ D∗ and by condition (DT) there exists
y ∈ co(D0 ∪ {αx}) verifying 〈αx− y, f(x)〉 ≥ 0. We have

y = λd0 + (1− λ)(αx), with λ ∈ [0, 1] and d0 ∈ D0,

which implies

y = λ‖d0‖+ (1− λ)‖αx‖ < λ‖αx‖+ (1− λ)‖αx‖ = α‖x‖,

since d0 ≤ ρ < ‖x‖. Therefore f satisfies condition (θ, Ω). �

Let (H, 〈 · , · 〉) be a Hilbert space, Ω ⊂ H an arbitrary unbounded closed
convex set and f, g:H → H two mappings. The following notion is a variant of
a notion introduced in [18] for complementarity theory, i.e. when Ω is a closed
pointed convex cone.



Solvability of Variational Inequalities on Unbounded Sets 383

Definition 5.12. We say that f :H → H is asymptotically strongly g-
demimonotone with respect to Ω if there exist a function φ:R+ → R+, an
element u ∈ Ω and a real number ρ > 0 such that:

(a) limt→∞ φ(t) = ∞, and
(b) for each couple (x, α) where x ∈ H, ‖x‖ > ρ, α ≥ 1 and αx ∈ Ω we

have 〈αx− u, f(x)− g(u)〉 ≥ ‖αx− u‖φ(‖αx− u‖).

Proposition 5.13. If f :H → H is asymptotically strongly g-demimonotone
with respect to Ω then f satisfies condition (θ, Ω).

Proof. Assume f satisfies condition (θ, Ω) with respect to Ω. For each
couple (x, α) where x ∈ H, α ≥ 1, αx ∈ Ω and ‖x‖ > max{ρ, ‖u‖} we have
‖u‖ < α‖x‖ and

〈αx− u, f(x)− g(u)〉 ≥ ‖αx− u‖φ(‖αx− u‖),

which implies

〈αx− u, f(x)〉 ≥ 〈αx− u, g(u)〉+ ‖αx− u‖φ(‖αx− u‖).

Since α‖x‖ > ‖u‖ we have ‖αx− u‖ > 0 and

〈αx− u, f(x)〉 ≥ ‖αx− u‖
[〈

αx− u

‖αx− u‖
, g(u)

〉
+ φ(‖αx− u‖)

]
.

Since S1 = {x ∈ H | ‖x‖ = 1} is bounded and considering for u fixed, g(u) as a
continuous linear functional on H, we deduce that there exists γ ∈ R such that〈

αx− u

‖αx− u‖
, g(u)

〉
≥ γ,

for each couple (x, α) where x ∈ H, α ≥ 1, αx ∈ Ω and ‖x‖ > max{ρ, ‖u‖}. Since
Ω is unbounded there exist couples (x, α) such that x ∈ H, α ≥ 1, αx ∈ Ω and
‖x‖ > max{ρ, ‖u‖} and ‖αx− u‖ → ∞ as ‖x‖ → ∞. Because limt→∞ φ(t) = ∞
we have that there exists ρ∗ such that for all couples (x, α) with α ≥ 1, αx ∈ Ω,
‖x‖ > max{ρ, ‖u‖} and ‖αx − u‖ > ρ∗ we have φ(‖αx − u‖) ≥ −γ that is
〈αx− u, f(x)〉 ≥ 0.

If for any couple (x, α) with α ≥ 1, αx ∈ Ω and ‖x‖ > max{ρ, ‖u‖} we take
y = u we have that f satisfies condition (θ, Ω) (since α‖x‖ ≥ ‖x‖ > max{ρ∗ +
‖u‖, ρ} and ‖αx− u‖ > ρ). �

Definition 5.14. We say that f :H → H is scalarly increasing to infinity
on Ω if for each y ∈ Ω there exists a real number ρ(y) > 0 such that for all
couples (x, α), x ∈ H, α ≥ 1, αx ∈ Ω and ‖x‖ ≥ ρ(y) we have

〈αx− y, f(x)〉 ≥ 0.
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Theorem 5.15. If the mapping f :H → H is scalarly increasing to infin-
ity on Ω (supposed to be an unbounded closed and convex set) then f satisfies
condition (θ, Ω).

Proof. Since f is scalarly increasing to infinity then for each y ∈ Ω there
exists a real number ρ(y) > 0 such that for all couples (x, α), x ∈ H, α ≥ 1,
αx ∈ Ω and ‖x‖ ≥ ρ(y) we have 〈αx− y, f(x)〉 ≥ 0.

Fix y0 arbitrarily in Ω with ‖y0‖ > 0. This is possible since Ω is unbounded.
Then there exists a real number ρ0 := ρ(y0) > 0 such that for all couples (x, α),
x ∈ H, α ≥ 1, αx ∈ Ω and ‖x‖ ≥ ρ0 we have

(5.1) 〈αx− y0, f(x)〉 ≥ 0.

If we put ρ∗ = ρ0 + ‖y0‖, certainly we have that (5.1) is satisfied for each couple
(x, α), with x ∈ H, α ≥ 1, αx ∈ Ω and ‖x‖ ≥ ρ∗ ≥ ρ0. Obviously for such
a couple we have α‖x‖ ≥ ‖x‖ > ‖y0‖, which implies that condition (θ, Ω) is
satisfied for f with respect to Ω. �

We denote by conh(Ω) the conical hull of Ω, i.e.

conh(Ω) =
⋃
λ≥0

λΩ.

Definition 5.16. We say that T :H → H is monotonically decreasing on
rays with respect to conh(Ω) if for every α ≥ 1 and every x ∈ conh(Ω) we have

〈x, T (x)〉 ≥ 〈x, T (αx)〉.

Theorem 5.17. If the mapping T :H → H is bounded, monotonically de-
creasing on rays with respect to conh(Ω) and 0 ∈ Ω then the mapping f(x) =
x− T (x) is without exceptional family of elements with respect to Ω.

Proof. Suppose that f has an exceptional family of elements {xr}r>0. For
every xr with ‖xr‖ ≥ 1 we take α = ‖xr‖ and

x =
xr

‖xr‖
=

µrxr

‖µrxr‖
∈ conh(Ω).

Because T is monotonically decreasing on rays with respect to conh(Ω) we have

〈x, T (x)〉 ≥ 〈x, T (αx)〉

or

(5.2) 〈xr, T (x)− T (xr)〉 ≥ 0,
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for any r > 0 with ‖xr‖ ≥ 1. We know that T (xr) − µrxr = ζr ∈ NΩ(µrxr),
which implies that T (xr) = µrxr + ζr where 〈ζr, y − µrxr〉 ≤ 0 for all y ∈ Ω.
From (5.2) we have

0 ≤ 〈xr, T (x)− (µrxr + ζr)〉 = 〈xr, T (x)〉 − 〈xr, µrxr + ζr〉.

Therefore

(5.3) 〈xr, µrxr + ζr〉 ≤ 〈xr, T (x)〉

Since 0 ∈ Ω we have 〈xr, ζr〉 ≥ 0, and since T is bounded there exists M > 0
such that ‖T (x)‖ ≤ M . Considering (5.3) and the fact that µr > 1 we obtain
that

‖xr‖2 = 〈xr, xr〉 ≤ 〈xr, T (x)〉 ≤ ‖xr‖M,

and consequently ‖xr‖ ≤ M , for all r > 0 such that ‖xr‖ ≥ 1, which is impossible
because ‖xr‖ → ∞ as r → ∞. Therefore f is without exceptional family of
elements with respect to Ω. �

In the next definition we adapt for an arbitrary unbounded closed convex set
the condition Isac–Gowda considered for convex cones by Y. B. Zhao (see [31]).

Definition 5.18. We say that f :H → H satisfies condition (IG) with re-
spect to Ω if there exists a real number p > 0 such that the mapping Φ(x) =
‖x‖p−1x− f(x) is monotonically decreasing on rays with respect to conh(Ω).

We have the following result.

Theorem 5.19. Let T :H → H be a bounded mapping. If Ω ⊂ H is an
unbounded closed convex subset such that 0 ∈ Ω and f(x) = x − T (x) satisfies
condition (IG) with respect to Ω then f is without exceptional family of elements
with respect to Ω.

Proof. Assume f has an exceptional family of elements {xr}r>0 with re-
spect to Ω. Because f satisfies condition (IG) we have 〈x, Φ(x) − Φ(αx)〉 ≥ 0,
for all α ≥ 1 and all x ∈ conh(Ω). For every r > 0 such that ‖xr‖ ≥ 1 we take
α = ‖xr‖ and because x = xr/‖xr‖ = µrxr/‖µrxr‖ ∈ conh(Ω) we have

〈x,Φ(x)− Φ(xr)〉 ≥ 0

or

(5.4) 〈xr,Φ(x)− ‖xr‖p−1xr + f(xr)〉 ≥ 0.

We know that f(xr) = x−T (xr) and T (xr) = µrxr +ζr, where 〈ζr, y−µrxr〉 ≤ 0
for all y ∈ Ω. From (5.4) we have

(5.5) 〈xr,Φ(x)− ‖xr‖p−1xr + xr − (µrxr + ζr)〉 ≥ 0.
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Since 0 ∈ Ω we deduce that 〈xr, ζr〉 ≥ 0, and from (5.5) we obtain

〈xr,Φ(x)〉 − ‖xr‖p+1 + ‖xr‖2 − µr‖xr‖2 ≥ 0

or

〈xr,Φ(x)〉 − ‖xr‖p+1 ≥ (µr − 1)‖xr‖2 ≥ 0,

which implies

(5.6) 〈xr,Φ(x)〉 ≥ ‖xr‖p+1.

Because T is bounded we have that Φ is bounded. Therefore there exists
M > 0 such that ‖Φ(xr/‖xr‖)‖ ≤ M and from (5.6) we obtain that ‖xr‖p ≤ M

for all r > 0 such that ‖xr‖ ≥ 1, which is impossible since limr→∞ ‖xr‖ = ∞.
This contradiction implies that f is without exceptional families of elements with
respect to Ω. �

Now we consider a variant of condition (θ, Ω). Suppose Ω ⊂ H to be un-
bounded closed and convex.

Definition 5.20. We say that f :H → H satisfies condition (θ, Ω)S with
respect to Ω if for any family of couples {(xr, αr)}r>0 such that αr ≥ 1, xr ∈ H,
αrxr ∈ Ω and ‖xr‖ → ∞ there exists y∗ ∈ Ω such that

〈αrxr − y∗, f(xr)〉 ≥ 0

for some r > 0 such that αr‖xr‖ > ‖y∗‖.

We have the following result.

Theorem 5.21. Let (H, 〈 · , · 〉) be a Hilbert space, Ω ⊂ H an unbounded
closed convex set and f :H → H a k-set field with the representation f(x) =
x − T (x). If f satisfies condition (θ, Ω)S with respect to Ω then f is without
exceptional family of elements and the problem VI(Ω, f) has a solution.

Proof. Suppose that f has an exceptional family of elements {xr}r>0 with
respect to Ω. Hence {xr}r>0 satisfies Definition 4.1. Consider the family of
couples {(xr, µr)}r>0 as obtained by Definition 4.1. We have µr > 1 for any
r > 0 and ‖xr‖ → ∞ as r → ∞. By condition (θ, Ω)S there exists y∗ ∈ Ω such
that

〈f(xr), µrxr − y∗〉 ≥ 0,

for each r > 0 such that ‖y∗‖ < ‖xr‖ ≤ ‖µrxr‖. Now by the same computation
as in the proof of Theorem 5.3 we obtain a contradiction which implies that f

is without exceptional families of elements. �
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Remark 5.22. Our condition (θ, Ω)S is more general than the condition
used in [32, Theorem 3.1] because in condition (θ, Ω)S the element y∗ is depen-
dent of the family {(xr, αr)}r>0 while in [32, Theorem 3.1] the element y∗ is
independent of the family {xr}r>0.

The following condition is a variant of a condition used by Harker and Pang
in Euclidean spaces in [8].

Definition 5.23. We say that f :H → H satisfies condition (HP) with re-
spect to Ω (supposed to be unbounded closed and convex) if there exists a vector
x∗ ∈ Ω such that the set

ΩI(x∗) = {x ∈ H | there exists α ≥ 1, αx ∈ Ω and 〈f(x), αx− x∗〉 < 0}

is bounded or empty.

Remark 5.24. The set considered by Harker and Pang is

Ω(x∗) = {x ∈ Ω | 〈f(x), x− x∗〉 < 0}.

Obviously we have Ω(x∗) ⊆ ΩI(x∗) and when ΩI(x∗) is bounded or empty
we have that Ω(x∗) has the same property, i.e. Harker and Pang condition is
satisfied.

We obtain the following result.

Theorem 5.25. If the mapping f :H → H satisfies condition (HP) with
respect to Ω, then f satisfies condition (θ, Ω)S.

Proof. Let {(xr, µr)}r>0 be a family of couples such that for each r > 0,
αr ≥ 1, xr ∈ H, αrxr ∈ Ω and ‖xr‖ → ∞ as r → ∞. If there exists a vector
x∗ ∈ Ω such that the set ΩI(x∗) is bounded (or empty), then for r > 0 sufficiently
large and such that ‖xr‖ ≥ ‖x∗‖, we have xr /∈ ΩI(x∗). Because αr ≥ 1 and
αrxr ∈ Ω we must have 〈f(xr), αrxr − x∗〉 ≥ 0. Obviously condition (θ, Ω)S is
satisfied for f with respect to Ω. �

A consequence of Theorem 5.25 is the following result.

Proposition 5.26. Let f :H → H be a k-set field and Ω ⊂ H an unbounded
closed convex set. If f has an exceptional family of elements with respect to Ω,
then for any point x∗ ∈ Ω, the set ΩI(x∗) must be non-empty and unbounded.

Proof. This result is a consequence of Theorems 5.25 and 5.21. �

Y. B. Zhao and J. Y. Han introduced the notion of “p-order coercivity” in
the Euclidean space with respect to a set defined by inequalities and equalities
(see [32]). Now we will consider the notion of p-order coercivity in an arbitrary
Hilbert space H and with respect to an arbitrary unbounded closed convex set
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Ω ⊂ H such that 0 ∈ Ω. Moreover, we will put the notion of p-order coercivity
in relation with our condition (θ, Ω)S and with the notion of scalar asymptotic
derivative. We note also that our notion of exceptional family of elements is
more general than the similar notion used in [32]. Let (H, 〈 · , · 〉) be a Hilbert
space, Ω ⊂ H an unbounded closed convex set.

Definition 5.27. We say that f :H → H is p-order coercive with respect to
Ω if there exists a real number p ∈ ]−∞, 1[ such that

lim
‖x‖→∞

x∈Ω

〈f(x), x〉
‖x‖p

= ∞.

Remark 5.28. When p = 1 we have the classical notion of coercivity used
by many authors in the theory of variational inequalities.

Any coercive mapping is p-coercive but the converse is not true (see [32]).

Proposition 5.29. Let f :H → H be a mapping and Ω ⊂ H an unbounded
closed convex set such that 0 ∈ Ω. If f is p-coercive then f satisfies condition
(θ, Ω)S.

Proof. Suppose that f is p-coercive. If 0 ≤ p < 1 then

lim
‖x‖→∞

x∈Ω

〈f(x), x〉
‖x‖p

= ∞,

implies that

lim
‖x‖→∞

x∈Ω

〈f(x), x〉 = ∞,

and hence condition (θ, Ω)S is satisfied, taking in Definition 5.20, y∗=0. If −∞ <

p < 0, then for any family of couples {(xr, µr)}r>0, αr ≥ 1, xr ∈ H, αrxr ∈ Ω
and ‖xr‖ → ∞ as r →∞, we have (using Definition 5.27), that 〈f(xr), xr〉 ≥ 0
for r > 0 sufficiently large. Obviously for such r > 0 we have 〈f(xr), xr〉 ≥ 0 and
if we take in Definition 5.20 y∗=0 we obtain that f satisfies condition (θ, Ω)S .�

Definition 5.30. Let f :H → H be a mapping and Ω ⊂ H an unbounded
closed convex set. We say that T :H → H is a p-scalar asymptotic derivative of
f with respect to Ω if there exists a real number p ∈ ]−∞, 1[ such that

lim
‖x‖→∞

x∈Ω

〈f(x)− T (x), x〉
‖x‖p

= 0.
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Theorem 5.31. Let f :H → H be a mapping and Ω ⊂ H an unbounded
closed convex set such that 0 ∈ Ω. If f has a p-scalar asymptotic derivative
T :H → H and T is p-coercive with respect to Ω then f satisfies condition (θ, Ω)S.

Proof. The theorem is a consequence of Proposition 5.29 and of the follow-
ing relation:

lim
‖x‖→∞

x∈Ω

〈f(x), x〉
‖x‖p

= lim
‖x‖→∞

x∈Ω

〈f(x)− T (x), x〉
‖x‖p

+ lim
‖x‖→∞

x∈Ω

〈T (x), x〉
‖x‖p

= ∞. �

Comments. In this paper we presented a topological method applicable to
the study of solvability of variational inequalities in an arbitrary Hilbert space
and with respect to an unbounded closed convex set. This method is based
on the concept of (0, k)-epi mapping and on the notion of exceptional family of
elements. In conclusion it is interesting to find other classes of mappings without
exceptional families of elements since this property implies the solvability of
variational inequalities.
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