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HOMOLOGY INDEX BRAIDS
IN INFINITE-DIMENSIONAL CONLEY INDEX THEORY

MARIA C. CARBINATTO — KRZYSZTOF P. RYBAKOWSKI

Dedicated to the memory of Olga Ladyzhenskaya

ABSTRACT. We extend the notion of a categorial Conley—Morse index, as
defined in [20], to the case based on a more general concept of an index
pair introduced in [12]. We also establish a naturality result of the long
exact sequence of attractor-repeller pairs with respect to the choice of in-
dex triples. In particular, these results immediately give a complete and
rigorous existence result for homology index braids in infinite dimensional
Conley index theory.

Finally, we describe some general regular and singular continuation
results for homology index braids obtained in our recent papers [6] and [7].

1. Introduction

The concept of the categorial Morse index for flows on locally compact spaces
is a refinement of Conley index. It was developed by Conley [8] and his students
(mainly Kurland [14]). Roughly speaking, the categorial Morse index (or Conley—
Morse index) I(.S) of a compact isolated invariant set S (relative to a given flow)
is a connected simple system and a subcategory of the homotopy category of
pointed spaces with objects (N1/Na, [N3]) where (N1, N3) is an index pair in
some compact isolating neighbourhood N of S. The morphisms of I(S) are
inclusion or flow induced. Later Franzosa [9]-[11] used a somewhat more general
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concept of an index pair and an ensuing categorial Conley—Morse index, more
suitable for applications to Morse-decompositions and homology index braids.

The Conley index theory and the categorial Conley—Morse index were ex-
tended by Rybakowski [19], [20] to semiflows on (not necessarily locally compact)
metric spaces. The isolating neighbourhoods in that theory are required to sat-
isfy an admissibility condition, making the theory applicable to various classes
of evolution equations. The concept of index pairs in this extended theory is
analogous to that used in [8] and [14].

Parts of Franzosa’s theory of Morse-decompositions and homology index
braids were extended by Franzosa and Mischaikow [12] to the setting of [19]
and [20]. These authors use a definition of index pairs which is the analogue of
Franzosa’s definition in the locally compact case.

Motivated by [12] we define in the present paper a categorial Conley—Morse
index C(S) whose objects are generated by index pairs in the sense of [12] (rather
than index pairs as defined in [19]). We also establish existence of C(S) (Propo-
sitions 4.1 and 4.2) and prove that certain types of inclusion induced morphisms
lie in C(S) (Propositions 4.4 and 4.5). These results are not only of interest
in themselves but they are also needed for a precise definition of long exact se-
quences of attractor-repeller pairs in the non-locally compact case considered
here.

Simplifying slightly the approach of Kurland [16] we also define the category
of connected simple systems in a given category K. Moreover, for a given con-
nected simple system C in I and a functor ® from C to a module category, we
define the image module ®(C) (cf Section 3).

All this allows us, in Section 5, to define the long exact homology sequence
of an attractor-repeller pair (A, A*) in S, associated with a given index triple
(N1, N3, N3) for (S, A, A*). In Theorem 5.1 we prove that this sequence is inde-
pendent of the choice of (N7, Na, N3).

These results also resolve some technical issues which remained open in the
derivation of the homology index braid as outlined in [12] (the hints given on
pp. 282-283 of [12] are insufficient for that). In particular, we can now proceed
exactly as in [9] and [12] to obtain a precise definition of the homology index braid
for a given (partially ordered) Morse-decomposition. This is done in Section 6,
in which we also discuss morphisms from one homology index pair to another.
In particular, we define inclusion induced morphisms between homology index
braids and show that, under a certain nesting property, these morphism are
isomorphisms.

In Section 7, which is based on our recent paper [6], we consider a sequence
Tn, 1 € Ny, of local semiflows on X and a sequence (7, Sy, (Mp.n)pep), n € No,
of Morse-decompositions such that (m,,Sy, (M )pep) regularly converges to
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(70, S0, (Mp.0)pep). We state the nested index filtration theorem (Theorem 7.3),
which immediately implies a general (regular) continuation result for homology
index braids and Morse-decompositions (Theorems 7.4 and 7.6). We apply this
result to Galerkin approximations of semilinear parabolic equations.

Finally, in Section 8, based on our recent work [7], we state a nested in-
dex filtration theorem in the context of singular perturbation problems (The-
orem 8.5), which implies a general singular continuation result for homology
index braids and connection matrices (Theorem 8.6). We apply this result to
reaction-diffusion equations on thin domains.

2. Preliminaries

The purpose of this section is to recall a few concepts from Conley index
theory and to establish some preliminary results needed later in this paper.
We assume the reader’s familiarity with the (infinite-dimensional) Conley index
theory, as expounded in the papers [19] and [20] (or the book [21]), and with the
papers [9], [11] and [12].

Let X be a topological space. Choose an arbitrary, but fixed point p ¢ X.
Let A, Y be subspaces of X. Suppose first that YN A # (. Define an equivalence
relation on Y by letting x ~ y if and only if x =y or x, y € Y N A. We denote
by Y/A the quotient space of Y modulo this equivalence relation. We write [A]
to denote the equivalence class of any member = of Y N A. Set-theoretically,
[A] =Y N A. We endow Y/A with the quotient topology.

Now let Y N A = (). We endow the set X’ := X U{p} with the sum topology,
ie. U is open in X U{p} if and only if UN X is open in X. Setting Y’ := Y U{p},
A’ := {p} we define Y'/A" and [A’] as above and set Y/A := Y'/A’" and [4] :=
[A']. Note that [A] = {p} this time.

With our choice p ¢ X the following simple result holds.

PROPOSITION 2.1. IfA CY C X then the pair (Y, A) is uniquely determined
by the pointed space (Y/A,[A]).

PRrROOF. If A # (), then A = [A] while Y is the union of all equivalence classes
of the relation ~, i.e. Y = JY/A. f A=0,then Y ={y e X |{y} € Y/A}. O

REMARK. If A, Y are subspaces of a topological space X, we will often
denote the pointed space (Y/A,[A]) simply by Y/A. This should not lead to
confusion.

For the rest of this paper, unless otherwise specified, X is a metric space, 7
is a local semiflow on X and all (the relevant) concepts are defined relative to .

Suppose that Y is a subset of X. By Inv; (Y), resp. Inv_ (Y), resp. Inv, (V)
we denote the largest positively invariant, resp. negatively invariant, resp. invari-
ant subset of Y. Moreover, let the function py = py»:Y — RU {oo} be given
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by

(2.1)  py(z):=sup{t > 0| znt is defined and x7[0,t] C Y }.

It is clear that

(22) #HY,Y' CcXandzeY NY', then pyny(x) = min(py (x), py(x)).

Y is called m-admissible if Y is closed and whenever (z,), and (t,), are such
that t,, — oo and z, 7 [0,¢,] C Y for all n € N, then the sequence (z,,7t,), has a
convergent subsequence. We say that 7 does not explode in Y if whenever x € X
and z7t € Y as long as a7t is defined, then xnt is defined for all ¢ € [0, 00[. YV is
called strongly m-admissible if Y is m-admissible and 7 does not explode in Y.

Let N and Y be subsets of X. The set Y is called N-positively invariant if
whenever z € Y, t > 0 are such that zx [0,¢] C N, then z7 [0,t] C Y.

Let N, Y7 and Y5 be subsets of X. The set Y5 is called an exit ramp for N
within Y1 if whenever z € Y7 and xnt’ ¢ N for some t' € [0, 00|, then there exists
a to € [0,¢'] such that x7 [0,t0] C N and x7ty € Ya.

If Y7 and Y5 are subsets of X then Y5 is called an exit ramp for Yy if Y5 is
an exit ramp for NV within Y7, where N = Y;.

DEFINITION 2.2. Let B C X be a closed set and x € 9B. The point z is
called a strict egress (respectively strict ingress, respectively bounce-off) point
of B, if for every solution o:[—d1,d2] — X of 7 through z, with 6; > 0 and
0o > 0, the following properties hold:

(a) There exists an g2 € ]0,d2] such that o(t) & B (respectively o(t) €
Intx (B), respectively o(t) € B), for t € ]0, e2].

(b) If 1 > 0, then there exists an 1 € ]0,d1[ such that o(¢) € Intx(B)
(respectively o(t) & B, respectively o(t) ¢ B), for t € [—1,0].

The set of all strict egress (respectively strict ingress, respectively bounce-
off) points of B is denoted by B¢ (respectively B, respectively B’). Moreover,
we call B~ := B° U BY the exit set of B and Bt := B* U B® the entrance set
of B. B is called an isolating block, if 9B = B¢ U B* U B® and B~ is closed. If
B is also an isolating neighbourhood of an invariant set S, then we say that B
is an isolating block for S.

If B is an isolating block then (B, B™) is an example of an index pair in B.
More generally, we have the following definition.

DEFINITION 2.3. Let N be closed in X. A pair (Ny, N2) is called an index
pair in N (relative to ) if:
(a) Ny and Ny are closed and N-positively invariant subsets of N;

(b) Ny is an exit ramp for N within Ny;
(¢) Inv,(N) is closed and Inv,(N) C Intx (N7 \ Na).
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DEFINITION 2.4. A pair (N7, Ny) is called a Franzosa—Mischaikow-index pair
(or FM-index pair) for (w,S) if:
(a) Nj and Nj are closed subsets of X with No C Ny and N3 is Nj-positively
invariant;
(b) Nj is an exit ramp for Ny;
(¢) S is closed, S C Intx(N; \ Nz) and S is the largest invariant set in
Clx (N1 \ N2);

PROPOSITION 2.5 (cf. [12]). Let (N1, Na) be a pair of closed subsets of X
with No C N7.

(a) If S is an isolated invariant set, Ny is an isolating neighbourhood of S
and (N1, Na) is an index pair in Ny, then (N1, Na) is an FM-index pair
for (m,S).

(b) If (N1, N2) is an FM-index pair for (w,S) and N is an isolating neigh-
bourhood of S with N1 \ Ny C N, then N1 N N is an isolating neigh-
bourhood of S and (N1 N N, Ny N N) is an index pair in Ny N N.

PROPOSITION 2.6. Let N1, No and N be closed subsets of X with N1\ Ny C
N. Then the inclusion induced map

J: (Nl ﬁN)/(NQ ﬂN) — Nl/NQ
is an isomorphism in the category of pointed spaces.

PROOF. Proposition 1.6.2 in [21] implies that j is a continuous map. More-
over, there is an inclusion induced map (in the sense of Definition 1.6.1 in [21])
k:N1/N2 — (N N N)/(N2 N N) which is also continuous (by Proposition I1.6.2
in [21]).

We need to show that k is the inverse of j. Let z € (Ny N N)/(N2 N N).
If z = [z], where x € (N; N N) \ (N2 N N), then j(z) = [z] € N1/N3 and so
k(j(2)) = [z] € (Nt N N)/(N2N N). Otherwise, z = [N2 N N] and j(z) = [No].
Thus, k(j(z)) = [N2 N NJ, since k and j are base-point preserving maps.

Let z € Ni/Ny. If z = [z], where © € Ny \ Na, then k(z) = [z] € (N1 N
N)/(NenNN) and x € (N; N N)\ (N2 N N). Therefore, j(k(z)) = [z] € N1/Na.
Otherwise, z = [Na] and k(z) = [N2 N N] and so j(k(z)) = [Na]. O

DEFINITION 2.7. Let S be a compact invariant set and (A4, A*) be an attr-
actor-repeller pair in S, relative to . A pair (By, Be) is called a block pair (for
(m, S, A, A*)) if By is an isolating block for A*, By is an isolating block for A,
B := By U Bs is an isolating block for S and B; N By C By N B;.

If (B, B) is a block pair then (B, B; U B~,B™) is an example of an FM-
index triple:
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DEFINITION 2.8. Let S be a compact invariant set and (A, A*) be an attr-
actor-repeller pair in S relative to w. A triple (N7, No, N3) with N3 C No C N;
is called an FM-indez triple (for (w, S, A, A*)) if (N1, N3) is an FM-index pair
for (m,S) and (N2, N3) is an FM-index pair for (7, A).

PROPOSITION 2.9 (cf. [12]). Let (Ni, Na2, N3) be an FM-index triple for
(m,S, A, A*). Then (N1, Ns) is an FM-index pair for (w, A*).

For the rest of this paper we fix a (commutative) ring I' and a I'-module G.
Given a chain complex C, we denote by H,(C), g € Z, the homology of C' with
coefficients in G.

Recall (cf. [11]) that a sequence

Cl$>02i>03

of chain maps is called weakly exact if keri = 0, po¢ = 0 and the map
H,(p): Hy(Cy/imi) — H,(Cs) is an isomorphism for each ¢ € Z. Here, the
map p:Cy/imi — Cj is the (uniquely determined) chain map with p o Q = p,
where Q: Co — C3/imi is the quotient map.

Given a weakly exact sequence

01$02L>03

and ¢ € Z, define 5q: H,(C3) — Hy—1(C1) by 5q = 0iq 0 Hy(p)™!, where
Owq: Hy(Cy/imi) — Hy_1(Ch) is the connecting homomorphism in the long exact
sequence induced by the short exact sequence

0 Ch : Cy @ CQ/IHIZ*}O

Using elementary homology theory we obtain the following result.
PROPOSITION 2.10 (cf. [11]). Given a weakly exact sequence
C) ——Cy 2 Cy
the corresponding homology sequence

Hq 7‘ HCI( ) 5‘1
— v H ) 2 b)) 2 B () 2 Hy (1) ——

is exact. Moreover, given a commutative diagram

01%02L>03

N

C ﬁézﬁé?)
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of chain maps with weakly exact rows, the induced long homology ladder

Hy(3) Hq(p) Oq
S H(Cy) =25 Hy(Co) =2 Hy(C3) —— Hy_1(Cy) ——>

Hq(fl)l Hq(fz)l J{Hq(fs) lqu(fl)

— Hy(Ch) PGy Hy(C2) 727 Hq(Cs) = Hy1(Cr) —

q
1s commutative.

If Y is a topological space, then A(Y) denotes the singular chain complex
(see [23]). If (Y, B) is a topological pair, we define

C(Y/B) = C(Y/B{[B]}) := A(Y/B)/A({[B]}).
As usual, we set
H,(Y/B):=H,C(Y/B)), q¢€L.
Thus,
(2.3) for q € Z, H,(Y/B) is the g-th singular homology group of the pair
(Y/B,{[B]}), with coefficients in G.

PROPOSITION 2.11 (cf. [11] and [12]). Let (N1, N3, N3) be an FM-indez triple
for (m, S, A, A*) with Clx(Ny \ N3) strongly m-admissible. Then the inclusion
induced sequence

(2.4) N2 /N3 —— N1 /N3 —"— N1 /N»
of pointed spaces induces a weakly exact sequence
C(Na/N3) —— C(Ny/Ns) —— C(Ny/Na)
of chain maps.
Propositions 2.10 and 2.11 thus imply the following result.

PROPOSITION 2.12. Let (N1, Na, N3) be an FM-index triple for (n,S, A, A*)
with Clx (N1 \ N3) strongly w-admissible. Then the long sequence

Hq(i) Hqy(p) 9q
(2.5)  —> Hy(No/N3) == Hy(Ny/N3) -5 Hy(Ny /No) —% Hy_1(Ny/N3) —»

induced by (2.4) is exact.

There is a similar result for Alexander—Spanier cohomology [23]. More pre-
cisely, let HY, q € Z, denote the g-th Alexander—Spanier cohomology functor
with values in G. If Y and B are closed in X and B C Y, then the strong
excision property of Alexander—Spanier cohomology implies that the quotient
map

Q= Qvy,:(Y,B) — (Y/B,{[B]})
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induces a module isomorphism

HY(Q): H'(Y/B,{[B]}) — H'(Y.B), q€L.
Again we set H1(Y/B) := H1(Y/B, {[B]}) for short. In other words,

(2.6) forq € Z, H1(Y/B) is the g-th Alexander—Spanier cohomology group
of the pair (Y/B, {[B]}), with coefficients in G.

Therefore, given a triple (N1, Na, N3) of closed sets in X with N3 D Ny D N3
we can define, for each q € Z, the map

99: H™'(Ny/N3) — H9(Ny/N>)

by
5(1 = Hq(QN1,N2)_1 09" o Hq+1(QN2»N3)’

where 07*: HtY(Ny, N3) — H9(N7, N>) is the connecting homomorphism of the
exact cohomology sequence for the triple (N7, Na, N3).

From the cohomology sequence of space triples we thus obtain the following
result.

PROPOSITION 2.13. Let (N1, N2, N3) be a triple of closed sets in X with
N7 D No D Nj3. Then inclusion induced sequence

Ny /N3 : Ni1/Ns £ Ni/N,

induces a long exact cohomology sequence

H(3) H(p) b .
— Hq(Ng/Ng) — Hq(Nl/Ng) — Hq(Nl/NQ) — ITI-qu (NQ/NQ,) —

3. Categories of connected simple systems

In this section, simplifying a little the approach by Kurland [16], we will
define categories of connected simple subsystems of a given category. We will
also define images of connected simple systems under functors with values in a
category of modules. These notions are required for a precise development of
the categorial Conley—Morse index and the long exact (co)homology sequence of
an attractor-repeller pair.

Let K be a fixed category. The letters C, C' and C” will denote subcategories
of JC which are connected simple systems.

Given objects A, B in C and objects A’, B’ in C' and o € Morg(A, A7),
B € Morg (B, B') we say that « is related to 5 in K relative to (C,C’) (and we
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write aoe,¢/ 8 or just apf) if and only if the following diagram commutes (in ):

A—= A

|

B~ B

Here, f (resp. f') are the unique elements of Morc (A, B) (resp. More: (A’, B')).
Since f and f’ are isomorphisms (in K), it follows that apf implies Boa. More-

over, the diagram
[e3%

A—— A
IdAJ( JIdA
A——A
commutes, so apa. If the diagrams
A" a B—sp
fJ lf’ and QJ lg/
B T} B’ C——C
commute, then so does the diagram
A——= A
go,fl L{]'Of/
C——C

Thus apB and Boy imply that apy. It follows that o = g¢ ¢/ is an equivalence
relation on the set

(3.1) 0(C,C") == J{Morx (4, A') | A € Obj(C) and A’ € Obj(C")}.

Given a € Q(C,C'), let [a] = [a],, .,
We define a category [K] whose objects are all the subcategories of K which

be the equivalence class of «.

are connected simple systems. Given objects C and C" in K, let Morx(C,C’) be
the set of all ¢ for which there is an a € Q(C,C") with ¢ = [a].

(In order to make the morphism sets mutually disjoint, as is required in
the definition of a category, one should more precisely consider ordered triples
(¢,C,C") rather than just ¢ to be morphisms from C to C’. We shall not bother,
however.)

Given ¢ € Mor(x)(C,C’) and ¢" € Mor)(C',C") let a: A — A" and o': C" —
A” be such that ¢ = [o] and ¢’ = [@/]. Let f’ be the unique element of
More: (A’,C") and define ¢’ o ¢ := [0’ o f' o a]. We claim that this definition
is independent of the choice of a and o’. In fact, if 3: B — B’ and §': D' — B”
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are such that ¢ = [8] and ¢’ = [#] and ¢: B’ — D’ is the unique element of
More/ (B’, D’), then the following diagram commutes:

o ' o'

A A/ C/ A//
/ ! "
B—>B —— D' — B

Here, the vertical arrows are the unique morphisms in the respective connected
simple systems. It follows that (o o f'oa)gc.c (8 0g' o f) and so [@ o f' o] =
[0’ o ¢’ o 8] which proves our claim.

Thus the composition ¢ o ¢’ is well-defined and is clearly associative. Indeed,
the consideration of sequences of the form

! o £ o

A— A c’

A///

implies that (& o f"oa')o ffoa=a" o f"o(a’ o f oa). Thus, if ( =[],
¢ =[a/] and ¢" =[], we have

("ol )o¢=la"0f"odlofa] =[(a" o f"oa')o f oa]
and
"o(("ol)=[a"]o[d o ffoa]l=[a" o f"o(a o f oa).
Hence, (" o¢')o ¢ = ("o (¢' o). Moreover, the commutativity of the diagram

Ida
A—— A

1)

B Idp B,

where f is the unique element of Mor¢ (A, B), shows that Id4 oIdg and so [Id 4] =
[Idp] for any two objects in C. We set Id¢ := [Id 4], where A is any object in C.
Clearly whenever ¢ € Morx(C,C’), then there are objects A and A’ in C and C’
respectively, such that ¢ = [a], where o € Mory (A4, A"). Thus Id4 oa = « and
aoldg = asoldero( = ¢ and ( o Ide = (. It follows that Ide is an identity
for the composition in [K] and so [K] is, indeed, a category, which we term the
category of connected simple systems in KC.

If C, C' are objects in [K] and a € Q(C,C’) (with Q(C,C’) being defined
in (3.1)), then ¢ := [o]
to (C,C").

REMARK. The present definition of the category [K], while conceptually

0 o 18 called the morphism in [K] induced by o, relative

(hopefully!) simpler, is equivalent to the definition of the category CSS(K)
given in [16] in the sense that [K] and CSS(K) are isomorphic categories.
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Now, suppose ® is a covariant functor from K to the category Mod(T") of
modules over the (commutative) ring I'. Let C be an object of [K]. Let S = S¢
be the disjoint union of all ®(A), where A is an arbitrary object of C. Thus,
formally we have

S=8:= |J @) x{4}.
A€eObj(C)
On S = S¢ define a relation R = R¢ as follows:

(x, A)R(y, B) if and only if y = ®(f)xz, where f is the unique mor-
phism in C from A to B.

Clearly, R is an equivalence relation on S. Let S/R be the set of equivalence
classes of R and Q = Q¢: S — S/R given by

Q((z,A) =[(z,A)|r for (z,A) €S

be the canonical quotient map. In the sequel we write :I\D(C) = S5/R.

For each A € Obj(C), the map Q4 = Q¢ a: ®(A) — B(C) given by Qa(z) =
Q((z,A)) for x € ®(A) is easily seen to be bijective. Moreover, if (x, A)R(y, B)
and (7, A)R(y, B), then (z +4 %, A)R(y +5 ¥, B) and (A -4 z, A)R(\ -5 y, B)
for every A € T'. Here, for every C € Obj(C), +¢ (resp. -¢) is the addition
(resp. scalar multiplication) in the I'-module ®(C'). Therefore, there is a unique
addition + = +¢ and scalar multiplication - = -¢ in &)(C) such that for every
A € Obj(C), the map Q4 is a I'-module isomorphism. The I'module @(C) is
called the image module of C under ®.

Now let C and C’ be objects of [K] and A € Obj(C), A’ € Obj(C’') be arbi-
trary. If F' is a morphism in Mod(T") from ®(A) to ®(A’), then define the map
(F):®(C) — @(C") by

<F> = QC’,A’ o) F o] QC,Ail-
Then (F') is a I'-module homomorphism. Moreover,

PROPOSITION 3.1. Suppose A, B € Obj(C), A’, B' € Obj(C’). If the dia-
gram

d(A) — B(A)
<I>(f)l l‘i’(f’)
®(B) —— @(B)

commutes, then (F) = (G), where f (resp. f') is the unique morphism in C (resp.
C') from A to B (resp. from A’ to B’).

PROOF. Let n € ®(C) be arbitrary. Then there exist an 2 € ®(A) and a
y € ®(B) such that n = Q ((z, A)) = Q ((y, B)). It follows that y = ®(f)x. Now

(FY(n) =(Qa o FoQa ") (n) =QaFx
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and
(@G)(n) = (@B oG oQp™1)(n) = Qp(Gy) = Qe G(P(f)x) = Qp (P(f') Fa).

Notice that Qp(B(f)Fz) = Q(®(f')Fx, B) = Q((Fz,A) = Qu(Fa).
This implies that (F')(n) = (G)(n). The proposition is proved. O

The following result is obvious.

PRrROPOSITION 3.2. Let C, C' and C" be objects of [K] and A € Obj(C),
A" € Obj(C"), A” € Obj(C") be arbitrary. Let F be a morphism in Mod(T') from
D(A) to D(A”) and F’ be a morphism in Mod(T") from ®(A’) to ®(A”) then

(F'oF) = (F")o (F).
If (F, F') is exact, i.e., ker F' =im F, then so is ((F), (F")).

We call the assignment F' +— (F) the (-)-operation (associated with ®).

4. The categorial Conley—Morse index

In this section we will extend the notion of the categorial Morse index
from [20] in the sense that index pairs (and quasi-index pairs) will be replaced
by FM-index pairs.

Let K be the homotopy category of pointed spaces. If 7 is a local semiflow
defined in a metric space X and S is an isolated w-invariant set admitting a
strongly m-admissible isolating neighbourhood, then we define a subcategory
C(S) = C(m, S) as follows. The objects of C(S) are the pointed spaces (E,p) =
(N1/Na, [N2]), where (N1, Na) is an FM-index pair for (7, S) and Clx (N7 \ N2)
is strongly m-admissible.

Given two objects (E,p) and (E,p) in C(S), Proposition 2.1 implies that
there are unique FM-index pairs (Ny, N) and (N3, Ny) for (7, S) with Cly (Ny \
Ny) and Cly(N; \ M) strongly m-admissible such that (E,p) = (N1/Na, [Na])
and (E,p) = (N1/Na,[Ns]). Let N and N be arbitrary strongly m-admissible
isolating neighbourhoods of S with Ny \ Ny € N and Ny \ Ny C N (e.g. we may
take N = Clx (N1 \ N2) and N = ClX(ﬁl \]\72)) Then Proposition 2.5 implies
that (N3 NN, Ny N N) and (]\71 N N,NQ N ]V) are index pairs in Ny N N and
Nin N, respectively. Therefore, there is a unique morphism 7: Ny /Ny — 1\71/1%
in K making the following diagram commutative in K.

(N1 N N)/(Ny N N) —2 (N, 0 W) /(N 0 V)

(4.1) J la

Nl/N2 Nl/ﬁg

T



HoMmoroGy INDEX BRAIDS 47

Here, « and a are the homotopy classes of the inclusion induced maps defined
in Proposition 2.6 and (3 is the unique morphism from (Ny N N)/(N2 N N) to
(N1NN)/(N2NN) in the categorial Conley—Morse index I(m, S) as defined in [19]
or [21].

PrOPOSITION 4.1. The definition of T is independent of the choice of the
sets N and N.

PROOF. Let N’ and N’ be some other strongly m-admissible isolating neigh-
bourhoods of S with Ny \ Ny C N’ and N, \ N, C N'.

First we will assume that N’ C N and N’ C N. Then we have the following
diagram in K:

’

(Ny N N') (N O N') =2 (R A N7) /(N 0 V)

| |

(N1 N/ (N2 N N) ——— (Ny N N) /(N2 1 N)

Ni/N, ]Vl/]\Nfg

T

Here, v and 7 are inclusion induced maps and ' is the unique morphism from
(Ny N N")/(Na 0 N') to (Ny N N')/(No N N') in the categorial Conley—Morse
index I(m,S). Notice that 8, v and 7 are also morphisms in I(7,S). Therefore,
the upper diagram is commutative. Thus, the following diagram also commutes.

’

(Ny N N')(Ny O N') =2 (R A N7) /(N 0 V)

aowJ l&o%

NI/N2 \j\vfl/ﬁg

T

Therefore, we have proved the proposition in the case N’ C N and N’ C N. The
general case can be reduced to this particular one by considering the intersections
N’'N N and N’ N N. This completes the proof. O

Using Proposition 4.1 we now define the set of morphisms of C(w, S) from
(E,p) = (N1 /N3, [Na)) to (E,p) = (N1/Na, [Ny]) as the singleton {7} where 7 is
defined in (4.1). The morphism composition in C(, S) is that of K. With these
definitions the following result holds.

PROPOSITION 4.2. C(m,S) is a subcategory of K and a connected simple
system.

PROOF. Let (E,p), (E,p) and (E’,p') be objects in C(m,S). It follows
from Proposition 2.1 that there are unique FM-index pairs (N7, Na), (N1, Na)
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and (N],N}) for (m,S) with N = Clx(N; \ Na), N = Clx(N; \ N2) and
N’ = Clx(Ny \ N)) strongly m-admissible isolating neighbourhoods such that
(B.p) = (Ni/Nos [Na]), (B.5) = (Na/No, [No]) and (E',p') = (N}/Ng, [NG]).
The following diagram

(N; N N) /(N2 N N) —25 (N 1 VY /(N 0 V) —2 (N 1 NY) /N 0 N7

QJ Js Ja/

Ny /N, N1/N, = Ni/N;

T

shows that the composite of two morphisms in C(mw,S) is also a morphism in
C(m,S). Moreover, the commutative diagram

(N1 N N)/(N; N N) —25 (N; N N) /(N2 0 N)

N1/N N1/N

Id

shows that the identity morphism Idg ,) of K lies in C (m,S) for every object
(E,p) of C(w, S). Therefore, we have shown that C(, ) is a subcategory of K.
Since for each two objects (E, p) and (E, p) of C(r, S) there is exactly one mor-
phism in C(r, §) from (E, p) to (E, p), we have that C(, S) is a connected simple
system. O

We can now make the following definition.

DEFINITION 4.3. Given an isolated m-invariant set S admitting a strongly n-
admissible isolating neighbourhood, set H,(x,S) := d(C(m,S)), where ® = H,,
q € 7, the ¢-th singular homology functor with coefficients in G (cf. (2.3)).
The graded module (Hy(7,S))qez is called the homology Conley index of S. If
® = HY, where H?, q € Z, denotes the g-th Alexander—Spanier cohomology
functor (cf. (2.6)), then (HY(m, S))4ecz, where H(w, S) := ®(C(m,S)), q € Z, is
called the cohomology Conley index of S.

In the remaining part of this section we will show that certain inclusion
induced maps in K between objects of C(m, S) are morphisms of C(r, .S).
The first result is almost obvious.

PROPOSITION 4.4. Let (N1, N») and (N1, Ny) be FM-index pairs for (w,S)
with

(4.2) N\ Ny = Ny \ N,

such that
N = Clx(Nl \ NQ) = Clx(Nl \Ng)
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is strongly m-admissible. Then the inclusion induced map
T:Nl/NQ — ]\71/&2

in K lies in More(x,s)((N1/Nz, [N2]), (N1/Na,[Ns])) and so is an isomorphism,

PROOF. By (4.2) there is a commutative diagram

(N1 N N)/(Ny N N) —2 (N, A N) /(W5 A N)

(43) J la

NI/NQ Nl/f\?g

T

and the map (@ is a morphism of I(m,S). (Cf. Definition 9.2 in [21].) The
proposition now follows from the definition of C(r, S). O

The next proposition is harder to prove.

PROPOSITION 4.5. Let (N1, N) and (Ny, Ny) be FM-index pairs for (m,S)
such that Clx (N1 \ N) and Clx(Ny \ Na) are strongly w-admissible. Assume
that (N1, N3) C (]\71,2%). Then the inclusion induced map Ny /Ny — Nl/ﬁg
in K lies in More(r,s)((N1/N2, [Na]), (N1 /N3, [N3))) and so is an isomorphism

The rest of this section is devoted to the proof of Proposition 4.5.

Let N, Y be subsets of X such that Y C N. For s > 0, define

(44) Y *=Y"3N):={x e X |thereisan s, 0 < s’ < s, such that
zms' is defined, 7 [0,s'] C N and zws’ € Y }.

PROPOSITION 4.6. Let s € ]0,00[ and (N1, N3) be an FM-index pair for
(m,S) such that m does not explode in N1\ Na. Then (N1, Ny °(N1)) is an FM-
index pair for (m,S).

PROOF. We need to prove that the conditions of Definition 2.4 are satisfied
for the pair (N1, Ny °(Ny)). We only verify that

(4.5) N5 °(Ny) is a closed set.

The other conditions are trivial to check. To prove (4.5) let (z,,),, be a sequence
in Ny *(Nyp) such that x,, — x as n — oo. Since z, € N, °(Ny) for all n € N, it
follows that for each n € N, there exists an s}, € [0, s] such that z, 70, s],] C Ny
and x,7s!, € Ny. Since (s],), is a bounded sequence, without loss of generality,
we can assume that there exists an s’ € [0, s] such that s), — s’ as n — co. We
need to show that © € Ny *(Ny). Now this will certainly be the case if xms’ is
defined.
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First suppose that pn, () = 0. It follows that there exists a 7 € ]0, ] such
that a7 is defined and zw7m ¢ N;. Since x, — x as n — oo, it follows that
there exists an n, € N such that z, 77 is defined and x,77 ¢ N; for all n > n..
Hence s,, < 7 for all n > n,. Hence s’ < 7 and so zws’ is defined.

Assume now that py, (z) > 0. We have two cases.

First suppose that a7 [0, pn, (z)[ € Ny \ Na. Since 7 does not explode in
Ny \ N, it follows that zmpy, (x) is defined. Moreover, there exists a ¢ > 0 such
that zm(pn, (z) + ) is defined and z7(pn, (z) +6) ¢ N1. Hence s, < pn, (x) +0
for all n sufficiently large and so s’ < pn,(z) + d. This implies that zws’ is
defined.

If zm [0, pn, ()] & N1\ N2, there exists aty € [0, pn, ()] such that zwty € Na.
If ¢y < s then & € N5 °(N7) and we are done. If ¢g > s > s’ then x7s’ is defined
and we are done again.

This proves that Ny *(NN7) is closed. O

PROPOSITION 4.7. Let S # () be an isolated invariant set and N be a strongly
m-admissible isolating neighbourhood of S. Then there is a 0y € ]0,00[ and for
all § €10, d¢], there is an isolating block Bs for S with Bs C N such that

(a) B52 (- Bt$17 (352)_ - (Bgl)_ for all §2, 61 € ]0,(50] with 6o < 61;

(b) whenever (8,)n and (x,)n are sequences such that 8, — 0T as n — oo
and x, € Bs, for all m € N, then there is a subsequence of (xy,)y that
converges to an element of Inv_(N).

PRroOOF. The proposition follows from the proof of Theorem 1.5.1 in [21]. O
LEMMA 4.8. Let (N1, Ny) and (Ny,Ny) be FM-index pairs for (m,S) such

that Clx (N \ Na) and Clx (N \ Na) are strongly 7-admissible. Then, there exist
an s € [0,00[, an isolating neighbourhood Ly of S and an index pair (L1, Ly) in

Ly such that
(L1,Ls) C (N1,N3*) and (L1, La) C (N, N5 *),

where Ny = Ny *(Ny) and Ny ® = Ny *(Ny).

ProOOF. If S = (3, define L1 = Ly = (). Let us assume that S # (). Define
N := Clx (N1 \ N2)NClx (N1 \ N3). Thus, N is a strongly m-admissible isolating
neighbourhood of S. Let dg € ]0,00[ and (Bs)sejo,s,] be as in Proposition 4.7.
We claim that
(4.6)  there are an sy € ]0,00[ and a dp € ]0,8] such that (Bs)~ C

N, *(N1) N Ny *(Ny) for all s € [sg, 00 and 6 € ]0, &g)-

Suppose that (4.6) does not hold. Then there exist sequences (s )n, (0)n and

(Zn)n such that s, — oo and §, — 07 as n — oo and for each n € N, x,, €
(Bs,)~ \ (N5 *(N1) N Ny °"(Ny)). Proposition 4.7 implies that there exists a
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subsequence of (x,,),, denoted again by (z,)n, and an z € Inv_(N) such that
Zn — & as n — oo. It follows that z € Invy (Ny) N Invy (Ny).

As z,, ¢ Ny " (Ny) N Ny *"(Ny), it follows that for each n € N, 2,7 [0, s,] C
Ny \ N; or 2,70, sn] cN \ N,. Since s, — 00 as n — 00, this implies that
z € Inv} (N;)UInv; (Ny) (cf. Theorem 1.4.5 in [21]) and so z € S. However, z,, €
(Bs,)” C (Bs,)~ and this implies z € SN (Bs,)~ = 0 which is a contradiction.
This proves (4.6).

Fix an s € [sg,00[ and a 6 € ]0,d¢]. Define

Li:=Bs and Ls:= (B(;)_.

Thus, L is an isolating neighbourhood of S and (L1, Ls) is an index pair in L;.
Moreover, L1 C N and so, L; C Ny and Ly C Ny. Inclusion (4.6) implies that
Ly C Ny ? and Ly C N, ®. The proof is complete. O

PROOF OF PROPOSITION 4.5. Define N := Clx (N;\N3) and N := Cly (Ny\
]\72) Pr0p051t10n 2.5 implies that (N7 N N, N2 N N) is an index pair in Ny N N
and (N1 N N Ng ON) is an index pair in N1 NN and so (N1 N N,N2N N) and
(N; NN, Ny N N) are FM-index pairs for (,S).

Lemma 4.8 implies that there are an s € [0, oo[, an isolating neighbourhood
L, of S and an index pair (L1, L) in Ly such that

(L1,Ly) € (Ny NN, (NaNN)™*) and (L1, Ls) C (N1 NN, (Na N N)~%),

where (NyNN)~% = (NoNN)~5(NyNN) and (NoNN)~* = (NoNN) (NN N).
Consider the following diagram in K:

Li/Ly =% (Ny N N)/(Na N N)™* 225 (Ny N N)/(Ny* N N) —25 Ny /Ny °

{ s |-

Li/Ly = (Ny N N)/(No N N) ™% 5 (N N N)/(Ny * N N) == N1 /Ny *

where, Ny * = Ny *(Ny), Ny° = Ny *(N;) and the morphisms 7, and oy, i €
{1,...,6}, are inclusion induced maps and (s is the unique morphism from
(N N N)/(Ny* N N) to (N; N N)/(Ny* N N) lying in I(r,S). Since all the
morphisms in the left rectangle lie in I(mr, S), the left rectangle commutes and
all the maps are isomorphisms. Hence

(4.7) 056065:0{60@400630a1_10a2_1.

Moreover, the full rectangle, obtained by taking out (s, is inclusion induced and
commutes. Thus

(4.8) Tg O QU5 O (g O (U] = (Ug O (ry O Q3.
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Equalities (4.7) and (4.8) imply that ag o 3s = 75 0 a5. In other words, the right
rectangle also commutes.
By the definition of C(, S) we thus see that the inclusion induced morphism
Ts is a morphism in C(w,S). Now consider the following diagram of inclusion
induced maps:
Ni/Ny —*= N /N;*

| |-

j\vfl/ﬁg T} Nl/]vz_g
It follows that this diagram commutes. If we show that o and & are morphisms in

C(m,S), then it follows that « is also a morphism in C(7, S) and the proposition
is proved. To show that « is a morphism in C(m,.S) consider the diagram

(N1 N N)/(Ny N N) — (N, 1 N) /(N3 1 N)

| |

Ny /N, Ny /Nj*

Since N1 \ Ny ® C Ny \ N2 C N, it follows from the definition of C(mw,S) and
Proposition 4.1 that « is a morphism in C(r, S). Analogously, we prove that &
is a morphism in C(m, S). The proof is complete. O

5. Attractor-repeller pairs
and long exact sequences in (co)homology

For the rest of this section let S be a compact m-invariant set and (A, A*) be
an attractor-repeller pair of S relative to .

Let (N1, Na, N3) be an FM-index triple for (7, S, A, A*) such that Clx (N7 \
N3) strongly m-admissible. Then, by Propositions 2.12 and 2.13, the inclusion
induced sequence

Ny /N3 : Ni1/Ns £ Ni/N,

of pointed spaces induces the long exact sequences

H, () H,(p) 3,
—— H,(Ny/N3) =25 H,(Ny/N3) =% Hy(Ny /Ny) — H,_1(Ny/N3) —

and

H(s HY aq
— HY(No/N3) 2 Ha(N, JNy) 2 5 (N, /No) 2 a1 (N, /Ng) —

By Proposition 3.2 and Definition 4.3 we obtain the long exact sequences

Hq i Hq 5q
5.1) — H,(m A) D 7,9 Y i a0 S o (7 A) —
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and

(87

HI(q HY
EO g )P o a0 H(r, A)

(5.2) «—— H(m, A)
The purpose of this section is to show that these sequences are independent of
the choice of FM-index triples. More precisely we will prove the following result:

THEOREM 5.1. If (N1, Na, N3) and (Nl,ﬁg,ﬁg) are FM-indez triples for
(m, S, A, A*) with Clx(Ny \ N3) and Clx(Ny \ N3) strongly m-admissible, then
the diagrams

Ho (i) Hq(p) 9,
—— Hy(No/N3) =25 H,(Ny/N3) ==5 Hy(Ny/Ny) — H,_1(Ny/N3) —

(53) Hq(LA)J( Hq(LS)J lHq(LA*) Jqu(LA)

— Hy(N2/N3) s Hq(ﬁl/ﬁs)mffq(ﬁl/ﬁz) ? Hy 1(N2/N3) —

q
and

— HI(Na/Na) &2 Ha(Ny Ng) C2 (N, /Np) <2 HI+L (N /Ny —

(5.4) Hgmﬁ stﬁ TH‘I(LM) THW(LA)

— H(Ny/Ny) ¢— HU(Ny /Ny) &= HI(Ny /Ny) <= HT (Np/Ny) —
H(7) H(p) 54
commute, where 14 is the unique morphism from No /N3 to Ng/ﬁg inC(m, A), ts

is the unique morphism from Ni/Ns to Nl/]\~/3 in C(m,S) and 14+ is the unique
morphism from Ni/Na to N1/Ny in C(m, A*).

In view of Theorem 5.1 and Proposition 3.1 we have

(Hy(0)) = (H, (), (Hy(p) = (H,(3) and (9) = (0y). q€Z.

Therefore the sequence (5.1) is indeed independent of the choice of an FM-index
triple and exact (by Proposition 3.2). This sequence is called the homology index
sequence of (w, S, A, A*). Similarly, we see that sequence (5.2) is independent of
the choice of an FM-index triple and exact. This sequence is called the cohomol-
ogy index sequence of (mw, S, A, A*).

The rest of this section is devoted to the proof of Theorem 5.1. We need

some preliminary results.

PROPOSITION 5.2. Let s € ]0,00[ and let (N1, N2, N3) be an FM-index triple
for (m, S, A, A*) such that m does not explode in N1 \ N3. Then (N1, Na U N5 *,
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N3 %), where Ny ° = N3 *(N1), is an FM-indez triple for (w, S, A, A*). Moreover,
the inclusion induced diagram of pointed spaces

NQ/N3 _— Nl/N3 _— Nl/NQ

| J J

(NQ UNB_S)/NP’_S — Nl/N3_S *)Nl/(NQ UN3_S)
commutes.
ProOOF. The proof is a simple exercise, using Proposition 4.6. g

LEMMA 5.3. Suppose that (N1, No, N3) and (Nl,ﬁg,]vg) are FM-index tri-
ples for (m, S, A, A*) with Cly (N1 \ N3) and Clx (Ny \ N3) strongly m-admissible.
Then there exist a T € [0, 00[ and an FM-index triple (L1, Lo, L3) for (7, S, A, A*)
such that

(5.5)  both (L1, Ly, Ls) C (N1, NoUN3 ", N5 ") and (L1, Ly, L3) C (N1, NoU
N7 N3"), where Ny 7 = Ny "(N1) and Ny ™ = Ny ™ (Nq).

Proor. If S = (), define Ly = Ly = L3 = (). Let us assume that S # 0.
Define N := Clx(N; \ N3) N Clx(N; \ N3). Thus, N is a strongly m-admissible
isolating neighbourhood of S. Let dg € ]0,00[ and (Bs)se)o,s5,) be as in Propo-
sition 4.7 (with the present choice of the set N). Proceeding as the proof of
Lemma 4.8 we see that there are an s € ]0,00[ and a dg € ]0, 6] such that

(5.6) (Bs)~ C Ny *(Ny) N N3 °(Ny) for all s € [sg,00] and & € ]0,dg].

Fix s; € [sg,00[ and define N{ := Nj, Nj := Ny U Ny (Ny), Nj :=
Ny *(N1), Nj = Ny, Nj := Ny U Ny ™ (Ny) and Nj == Ny (Wy). It follows
from Proposition 5.2 that (N7, N4, N3) and (Ny, Ni, N}) are FM-index triples
for (m,S, A, A*). Moreover,

(5.7) (Bs)~ € NyN N4 for all § €10, 3]

We claim that

(5.8)  there exists an 5o € ]0, co[ and a 6, € ]0, 8o] such that BsN(N;UN3) C
N, (NI AN (NY) for all s € [So, 00| and & € 10, 81].

Suppose that (5.8) does not hold. Then there exist sequences (s )n, (0)n and
(Tn)n such that s, — oo and §, — 0T as n — oo and for each n € N, z,, €
(Bs, N (N§UN§)\ (N3~ (N)) N Nj " (NY)).

Proposition 4.7 implies that there exists a subsequence of (z,),, denoted
again by (z,)n, and an z € Inv__(N) such that z,, — z. Hence

2 € Inv; (Cly (N1 \ N3)) N Inv; (Clx (N7 \ N3)).
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Since x, ¢ N{ " (N{)N Kf;is" (N{) for all n € N, it follows that for each n € N,
2 [0, 5,] € NI\ N4 or 2,7 [0, s,] C NJ \JV;, Since s, — 00 as n — oo, this
implies that 2 € Inv; (Clx (N} \ N})) U Inv} (Clx (N} \ N4)) (cf. Theorem 1.4.5
in [21]). Since Nj = Ny, N3 C Nj, N, = Ny and N3 C N}, it follows that
z € Inv} (Clx(Ny \ Ns)) UInv} (Cly(Ny \ N3)) and so 2 € S. We thus obtain
that z € SN (N5 U Né) = () which is a contradiction and so our claim is proved.
Fix an s € [Sg,00[ and a § € |0, 61]. Define

Ly = B57
Ly := (Bs N (N, N N3)) U (Bs N (N4 UNSY),
Ls := Bs N (N} U N3).

Since Bs C N C N1 N Nl we obtain that

(5.9) LiCNy and L, C Ny

Inclusion (5.8) implies that Ly C Ny U N4 ™*(N1), Ly € Ny UN, (N), Ls C
N4 7°(N{) and Ls C ]f\fviﬁ)_g(ﬁi) Let x € N} *(N7). Thus, there is an s’ € [0, s]
such that zws’ is defined, z7 [0,s'] € Ni = N; and zws’ € Ni. Since zws’ €
Nj = N5 °'(Np), it follows that there is an s” € [0,s1] such that (zms’)ws” is
defined, (z7s’)w [0, s”] C Ny and (z7ws’)mws” € N3. Thus, zx [0,s” 4+ s'] C Ny and
zm(s” + ') € N3 with 0 < s” + ¢ < s+ s1. In other words, z € N37(5+51)(N1).
Therefore,

(5.10) Ly © Ny U N3 ™1 (Ny) U N3~ GF$)(Ny) € Ny U N3 ™7 (IVy),
where 7 := s + s1. Moreover
(5.11) Ls C N573(N}) € N3~ G+ (Ny) = Ns~7(Ny).

Analogously we obtain that

(5.12) Ly € Ny UN;* (Ny) UN; “T0(Ny) € Ny UN; (V)
and
(5.13) Ls € Nj (N{) € Ny “F9(Ny) = Ny 7(My).

Inclusions (5.9)—(5.13) imply the inclusions in (5.5).

To finish the proof we need to show that (L, Lo, L3) is an FM-index triple
for (m,S, A, A*).

We claim that (L, L3) is an FM-index pair for (7,.5). Indeed, notice that
S C Intx(Ly) and SN (N§UNS) = 0. Thus, S C Intx(L; \ L3) and so S C
Inv,(Clx (L1 \ L3)). On the other hand, L; \ L3y C Ni\ N4 and this implies that
Inv,(Clx(L; \ L3)) C Inv,(Clx (N7 \ N§)) = S.
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Let 2 € L3 and t > 0 be such that 7 [0,¢] C L;. Hence, z € Ly N (N4 U N})
and so z € N3 U N3 Since N3 is Nji- p081tlvely invariant and N3 is N1 -positively
invariant, it follows that a7 [0,¢] C Nj U N3 so zm [0,t] C Lg and so L3 is Ls-
positively invariant.

Let x € L; be such that z7t ¢ L, for some ¢ > 0. Since (Bs, By ) is an
index pair in Bs, there is a ¢’ € [0, ¢[ such that z7 [0,t'] C Ly and zwt’ € (Bs)~
Inclusion (5.7) implies that zxt’ € NjN N} and so znt’ € Ls. Thus Ls is an exit
ramp for L;. The proof of our claim is complete.

We now claim that (L, L3) is an FM-index pair for (m, A). Note that A C
Inty (N4) N Intx(N}), A € S C Intx(Bs) and AN (Bs N (N4 UNS)) = 0 so
A CIntx(L2\Ls) and so A C Inv,(Clx(Lz\ L3)). On the other hand, Lo\ L3 C
NJ\ Nj and this implies that Inv,(Clx(La \ L3)) C Inv,(Clx (N5 \ Nj)) = A.
Let z € Lg and ¢t > 0 be such that 27 [0,#] C Ly. Thus € N} U Nj. Since
N} is Nj-positively invariant and N} is Nj-positively invariant, it follows that
27 [0,4] € NjU N4, Recall that Ly C Bs. Thus, zx [0,t] C L3 and so Lg is
Lo-positively invariant. Let x € Lo be such that znt ¢ Lo for some ¢ > 0. We
need to show that there exists a t' € [0, ¢[ such that x7 [0,¢'] C Ly and znt’ € Ls.
Since x7t ¢ Lo, it follows that zmt ¢ Bs N (N4 N Nj) and znt ¢ By N (N U N3)
Suppose first € Bs N (N5 N J\E) Set t' := me(NémN;)( x). By (2.1), anr is
defined and xmr € Bs N (N4 N NJ) for all r € [0,¢'[. Therefore, we cannot have
t <t sot €0,t]. Moreover, zx[0,t'] C By N (N4 N Nj), since Bs N (N} N N})
is closed. By (2.2) we have that ¢ = pp,(x) or t' = py;(z) or t' = Py (z). In
the first case it follows that zmt’ € Bs~ C By N (N4 U N4) = Ls; in the second
case zmt’ € N} so zwt’ € Bs N (N4 U N4) = Ls and in the third case znt’ € N}
so zmt’ € Bs N (N4 U N4) = Ls.

Suppose now that z € Bs N (N4 UN3). In this case, define ¢’ := 0. The proof
of the lemma is complete. O

PROOF OF THEOREM 5.1. Let (Ny, N3, N3) and (N, Na, N3) be two FM-
index triples for (m,S, A, A*) with Clx(N; \ N3) and CIX(KG \]\73) strongly
m-admissible. Let s > 0 and (L1, Lo, L3) be an FM-index triple for (r, S, A, A*)
such that the conclusions of Lemma 5.3 holds. Proposition 4.5 and Proposi-
tion 5.2 imply that the inclusion induced diagram (5.14) of pointed spaces com-
mutes. Passing to homology in diagram (5.14) we obtain the commutative dia-
gram (5.15) (in which we set My := Ny U N5 and M, := Ny U N;S) made of
four long homology ladders. An application of Proposition 4.5 shows that the
vertical morphisms in diagram (5.15) are isomorphisms. Thus we can reverse
the vertical arrows in the second and fourth ladders. Composing the resulting
ladders, we obtain the commutative diagram (5.3), completing the proof in the
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singular homology case.

Ny /N3 —— Ny /N3 —2— N1 /Ny

l | l

(NaUN;3*)/Ng* — N1 /N3 * — N1/(N2 U N3 *)

T T T

(514) L2/L3 —_—> Ll/Lg EE— Ll/LQ
I A A
(N2 U N3 ®)/Ng® — N1 /Ng® — N1 /(N U Ng™®)

T T T

NQ/KB —;> N1/1\~73 —5> NI/NZ

(5.15)

Hy(4) Hy(p) 9y
—— H,(Ny/N3) =5 H,(Ny/N3) =5 Hy(Ny/Na) — Hy_1(No/N3) —

! ! l !

— H,(My/N3®) — Hy(N1/N3®) — Hq(N1/Ms) — Hy_1(M2/N3*) —

T T T T

e Hq(LQ/Lg) e Hq(Ll/L3) —_— Hq(Ll/LQ) —_— qul(LQ/Lg) E—
1 1 l 1
— Hy(My/N3*) = Hy(N1/N3™*) = Hy(Ny/Mp) — Hy 1 (My/ N3 *) —

T T T T

— H,(Ny/Ns) P Hq(ﬁl/ﬁg)qu(ﬁl/NQ) — H, 1(Ny/N3) —
The proof for the Alexander—Spanier cohomology is analogous. 0

6. Morse decompositions and (co)homology index braids

Recall that a strict partial order on a set P is a relation < C P x P which
is irreflexive and transitive. As usual, we write = < y instead of (x,y) € <. The
symbol < will be reserved for the less-than-relation on R.

For the rest of this paper, unless specified otherwise, let P be a fixed finite
set and < be a fixed strict partial order on P.

A set I C P is called a <-interval if whenever i, j, k € P, i, k € I and
1 < j <k, then j € I. By Z(<) we denote the set of all <-intervals in P. A set
I is called a <-attracting interval if whenever i, j € P, j € I and i < j, then
1 € I. By A(=<) we denote the set of all <-attracting intervals in P. Of course,
A(=) C Z(=).

An adjacent n-tuple of <-intervals is a sequence (I;)7_; of pairwise disjoint
<-intervals whose union is a <-interval and such that, whenever j < k, p € I;
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and p’ € I, then p’ £ p (i.e. p < p’ or else p and p’ are not related by <). By
Z,(<) we denote the set of all adjacent n-tuples of <-intervals.
Let S C X be a compact m-invariant set. A family (M;);cp of subsets of S
is called a <-ordered Morse decomposition of S if the following properties hold:
(1) The sets M;, i € P, are closed, m-invariant and pairwise disjoint.
(2) For every full solution o of 7 lying in S either o(R) C M} for some
k € P or else there are k, | € P with k <1, a(c) C M; and w(o) C M.

Let S be a compact invariant set and (M;);cp be a <-ordered Morse de-
composition of S. If A, B C X then the (7, S)-connection set CSr s(A, B) from
A to B is the set of all points € X for which there is a solution o: R — S of 7
with ¢(0) =z, a(o) C A and w(o) C B.

For an arbitrary <-interval I set

M(I) =My s(I)= | CSzs(M;, My).
(i,5)€IXI
An indez filtration for (7, S, (M) pep) is a family N' = (N (I)) ;e () of closed
subsets of X such that
(1) for each I € A(<), the pair (N(I), N(0)) is an FM-index pair for
(m, M(I)),
(2) for each I, Iy € A(<), N(I1NI3) = N(I;) N N(I3) and N(I; U I3) =
N(I;)UN(I).
N is called strongly m-admissible if N(P) is strongly m-admissible. An existence
result for such index filtrations was established in [12].
Let N be a strongly m-admissible index filtration for (m, S, (M,)yep). For
J € Z(=) the set M(J) is an isolated invariant set and we write

H,(J)=Hy(rm,J) := Hy(n,M(J)), q€Z.

If (I,J) € Zao(<), then (M(I),M(J)) is an attractor-repeller pair in M (I.J),
where IJ := I UJ. Let B be the set of all p € P\ (IJ) for which there
isap € IJ with p < p'. It follows that B, BI, BIJ € A(<). Moreover,
(N(BIJ),N(BI),N(B)) is an FM-index triple for (m, M (I.J), M(I), M (J)) with
Clx(N(BIJ)\ N(B)) strongly m-admissible. The inclusion induced sequence

pr,Jg

N(BI)/N(B) —% N(BLJ)/N(B) "5 N(BIJ)/N(BI)
induces the homology index sequence

(Hy(p1,5)) (Br,1,q)
EEE—

ol () D g Hy(J) =222 g (1) —

of (m, M(IJ),M(I),M(J)). Let (I,J,K) € Z3(<) and define H := {p € P |
there is a p’ € IJK with p < p'}. It follows that H € A(<) and (H,I,J, K) €
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Z4(=<). Hence, HI, HIJ, HIJK € A(<). Define Ny := N(HIJK), Ny :=
N(HIJ), N3 := N(HI) and N4 := N(H). We obtain the following inclusion
induced diagram

N3/N,

(

(6.1) A
P2 /
\

Ny /Na

Ny /Ny

T Na/N;
Ny /N <

of pointed spaces. Applying Propositions 2.10 and 2.11 to diagram (6.1) and then
using the (- )-operation together with Proposition 3.2 we obtain the commutative

diagram
H,(I) et
<Hq(ll)> <02,q> q
] — \
gy HaTD) i,y | o)
H,(IJK) : H,y(J)
a (Hqy(pa) (Hy(is)) 4
[T —  \_
(6.2) Ha@) | g (g Hq(JK)% ¢]<al,q>
| ,
Hquo/ i

I)

(02,q) (Hg-1(i1) a-1(
T / \ o
03,9 i{ qu q 1 Hy_1(i2)) \)(Hq—l(m))

H,_ H,_1(IJK)

&\/2

Since all morphisms in diagram (6.2) are in the long exact homology sequences
of the appropriate attractor-repeller pairs, it follows that diagram (6.2) is inde-
pendent of the choice of an admissible index filtration for (w, S, (M,)pepr). The
following concept is thus well defined.

DEFINITION 6.1 ([9], [12]). The collection of all the homology indices
Hy(m, M(J)), q€Z, J€I(<),

and all the maps (H,(iz.7)), (Hy(pr.s)) and (9;.5.4), (I, J) € T(<) is called the
homology index braid of (w, S, (My)pep). We denote it by H (7, S, (Mp)pep)-
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For the rest of this section assume that, for i = 1, 2, m; is a local semiflow
on the metric space X;, S; is an isolated invariant set and (M, ;)pep is & <-
ordered Morse decomposition of S;, relative to m;. Write M;(I) = M, s, (I),
H,(I) = H(m;, M;(I)) and H; := H(m;, Si, (Mps)pep), fori =1, 2 and I € Z(=<).

Suppose 0 := (0(J)) sez(<) is a family 6(J): Hi(J) — Ha(J), J € Z(=<), of
I-module homomorphisms such that, for all (I, J) € Z5(<), the diagram

(Hq(i1,7)) (Hq(pr, J)) <¢91 J)
=

—— Hi(]) Hyg(I)) ——= H14(J) —— H141(I) ——

(6.3) leqm leq leqm loql(n
2,4(

—— Hyy(I) ——— IJ) q(J) ——— Hag1(I) ——

2
(H (ZI 7) a(p1, 7) (B1,1)

commutes. Then we say that 6 is a morphism from Hi to Hy and we write
0: H1 — Ha. If each 6(J) is an isomorphism, then we say that 6 is an isomorphism
and that H; and Hs are isomorphic homology index braids.

REMARK 6.2. If H; and Hs are isomorphic homology index braids, then, by
Proposition 1.5 in [10], H; and Hz determine the same collection of connection
matrices and the same collection of C-connection matrices.

We will now introduce an important class of morphisms between homology
index braids. Let Ny = (N;(I))1c.a(<) be a strongly m;-admissible index filtration
for (m;, Si, (Mypi)pepr), @ =1, 2. Assume the nesting property

Ni(I) C No(I), 1€ A(<).

For J € Z(<) choose I, K € A(=<) with (I,J) € Zo(<) and K = I.J. Then, for
i=1,2, (N;(K), N;(I)) is an FM-index pair for M;(.J), relative to ;. The inclu-
sion induced map a: N1(K)/N1(I) — Na(K)/N3(I) induces a homomorphism

0(J) = Oy n (J): H (1, Mo () — H (72, Ma(J))

defined by

04(J) := (Hq(a)), q€Z
Of course, this homomorphism depends on the choice of A, i = 1, 2, but we
claim that

(6.4) 64(J), ¢ € Z, is independent of the choice of I and K.

In fact, if I’ and K’ € A(<) are such that (I’,J) € Z(<) and K’ = I'J then
property (2) of index filtrations implies that N;(K) \ N;(I) = N;(K') \ N;(I"),
i =1, 2, (see Proposition 3.5 in [9] and its proof, which is also valid in our case)
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so there is an inclusion induced, commutative, diagram of pointed spaces

N1 (K)/N1(I) —*— Ny(K)/No(I)

| |

Ni(K")/N1(I") —= Na(K')/No(I')

By Proposition 4.4, the (homotopy classes of the) vertical maps are morphisms
of C(m;, M;(J)), i = 1,2. Thus, passing to homology and using Proposition 3.2
we see that

(Hy(o)) = (Hq(d)), q€Z,
which is exactly what we claim.

We write

Ony N = (0N N, () sez(<)-
We also claim that Oa, a,:H1 — He. In fact, let (I,J) € Zo(<) and let B
be the set of all p € P\ (IJ) for which there is a p’ € IJ with p < p/. Tt
follows that B, BI, BIJ € A(<). Setting, for i = 1, 2, Ny, = N;(BIlJ),
Ny; = N;(BI) and N3; = N;(B) we see that (N1;, Na;, N3;) is an FM-index
triple for (m;, M;(1J), M;(I), M;(J)) with Clx (N1, \ N3,), for i =1, 2, strongly
m;-admissible. Moreover, by Propositions 2.10 and 2.11, the inclusion induced
diagram

Na /N3y — Ni1/Ngi —— Ni,1/Nay

| J J

Ns.9/N3 o — Ni2/N3 o — Ni2/Ns o

induces the commutative long homology ladder

Hy (i) Hy (p) 9q
— Hq(NQ’l/N371) — Hq(N171/N371) JHQ(NLl/Ng’l) — Hq_l(N271/N371) —

(65) J{’Y‘; l’)’q l,y(;/ l'yél
— Hy(N2,2/N32) — Hy(N12/N32) — Hy(N12/Na2) = Hy1(Na2/N32) —
Hq (i) Hq(p) o

Applying the (- )-operation to (6.5) and noting that, for all ¢ € Z, 0,(1) = (v;),
04(1J) = (7q) and 0,4(J) = (v;) (in view of (6.4)) we obtain from Proposition 3.2
a commutative diagram of the form (6.3). This proves our second claim.

We call 6 := (0(J)) jez(<) the inclusion induced morphism from Hy to Ha.

We now obtain the following result:

PROPOSITION 6.3. Fori=1,2 let

Ni= (Ni(D)reasy and N; = (Ni(I))rea<)
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be strongly m;-admissible index filtrations for (m;, Si, (Mp,i)pep). Assume the
nesting property

(6.6) Ni(I) C No(I) € Ny(I) € No(I), I € A(<).
Then the inclusion induced morphism On;, n;, s an isomorphism.

PRrOOF. Let J € Z(<) be arbitrary, a := Oy, n,(J), b = 0y, 5 (J) and
c:=10 7. /\72(J ). Then boa and co b are isomorphisms, being induced by maps
lying in the same connected simple system (the categorial Conley—Morse index
of (m, Mi(J)) and (ma, Ma(J)), respectively). It follows that a, b and ¢ are
isomorphisms. This proves the proposition. g

REMARK 6.4. Analogous definitions and results hold for Alexander—Spanier
cohomology with the obvious modifications.

7. Regular continuation of (co)homology index braids

Let m,, n € Ny, be local semiflows on the metric space X. We say that the
sequence (T, )nen converges mg and we write m, — mo if whenever z,, — z¢ in X,
t, — to in [0,00[ and zgmoto is defined, then z,m,t, is defined for all n large
enough and x,m,t, — xomoty in X.

Given Y C X we say that Y is (7, ),-admissible if Y is closed and whenever
(2n)n and (t,), are such that t,, — 0o, ,mpt, is defined and x,m, [0,t,] C Y
for all n € N then the sequence (z,m,t,), has a convergent subsequence.

The following continuation result for Morse decompositions was established
in [5].

THEOREM 7.1 (cf. Corollaries 3.5 and 3.6 in [5]). Let m,, where n € Ny,
be local semiflows on X and N be a closed subset of X which is strongly m,-

admissible for every n € Ng. Moreover, assume that

(71)  m, — 7w and N is (Tn,, )m-admissible for every subsequence (7, )m

of (Tp)n-

Suppose that S := Inv.,(N) C Inty (N) and (Mp.0)pep is a <-ordered Morse
decomposition of Sy relative to my. For each p € P, let 5, C N be closed in X
and such that Mpo = Inv. (Z,) C Intx(Z,). (Such sets E,, p € P, always
exist.) Forn € N and p € P set Sy, := Inv, (N) and My, :=Inv, (E,). Then
there is an m € N such that whenever n > @ and p € P then S, C Intx(N),
My, CIntx(Z,) and the family (Mpn)pep is a <-ordered Morse decomposition

of S, relative to m,,.

REMARK 7.2. It follows from [5, Theorem 3.3 and the proof of Corollary 3.5]
that Theorem 7.1 remains valid if we replace assumption (7.1) by the following
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weaker assumption:

(7.2)  Whenever (n,,)m, is a sequence in N with n,, — oo and, for every
m € N, u,, is a full solution of 7, lying in Kﬂ then there is a
subsequence (U, )i of (Um)m and a full solution ug of my such that
Um,, (t) — uo(t) as k — oo, uniformly for ¢ lying in compact subset
of R.

However, we require the stronger assumption (7.1) in Theorem 7.3 below.
We can now state the nested index filtration theorem proved in [6]:

THEOREM 7.3 (cf. Theorem 3.4 in [6]). Assume the hypotheses (and thus also
the conclusions) of Theorem 7.1 and let @ be as in that theorem. Then there is
an ny > n such that for every n € Ny with n = 0 or n > ny there exist strongly
Tp-admissible index filtrations Ny, = (Np(I))rea(<) and N, = (Nn(I)),eAH)
for (mn, Sny (Mpn)pep) such that the following nesting property holds:

(7.3) No(I) C No(I) C No(I) € No(I)  for alln > ny and I € A(<).

Theorem 7.3, Proposition 6.3 and Remark 6.2 immediately imply the follow-
ing continuation result for homology index braids and connection matrices.

THEOREM 7.4 (cf. Theorem 3.5 in [6]). Under the hypotheses of Theorem 7.3
the homology index braids H(mo, So, (Mpo)pep) and H(my, Sn, (Mpn)pep)), n >
ny1, are isomorphic and determine the same collection of connection matrices and

the same collection of C-connection matrices.
Let us make the following definition.

DEFINITION 7.5. Let A be a metric space. A family (7, Sx, (Mp.a)pep)rea
is called S-continuous if for every Ao € A there is a neighbourhood W), of Ag
in A and there are closed subsets Ny,, Epx, C Ny,, p € P, of X such that
for every A € W), 7y is a local semiflow on X, Sy is a (compact) my-invariant
set, (Mp a)pep is a Morse decomposition of Sy, relative to my, Ny, is a strongly
my-admissible isolating neighbourhood of Sy and, for p € P, 5, 5, is an isolating
neighbourhood of M, 5, relative to m). Moreover, whenever A\, — Ag in W),
then my, — my, and Ny, is (7, )n-admissible.

We can now state our second continuation result for homology index braids
and connection matrices proved in [6].

THEOREM 7.6 (cf. Theorem 3.7 in [6]). Let A be a metric space and let
(7, Sx, (Mp x)pepr)rca be an S-continuous family. Then for every A € A the
homology index braid Hy := H(mwx, Sx, (Mp x)pep) is defined and for every Mg €
A there is a neighbourhood W of Ao in A such that Hy is isomorphic to Hy, for
every A € W. In particular, if A is connected, then Hy, and Hy, are isomorphic
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for all A1, Ao € A and determine the same collection of connection matrices and
the same collection of C'-connection matrices.

REMARK 7.7. Both Definition 7.5 and Theorem 7.6 can be generalized to
topological spaces A satisfying the first countability axiom, because that is all
we use in the proof of Theorem 7.6.

Theorems 7.4 and 7.6 refine the corresponding homotopy invariance results
for the (infinite dimensional) Conley index established in [19] (or [21]). The con-
vergence and admissibility assumptions make these results applicable to various
classes of parameter dependent evolution equations (e.g. parabolic or damped
hyperbolic equations on bounded domains and even some parabolic equations
on unbounded domains, see the recent paper [17]).

In [6] we show that homology index braids for certain types of parabolic
equations are isomorphic to the corresponding homology index braids of their
(sufficiently high dimensional) Galerkin approximations. In the rest of this sec-
tion we will describe these results.

For the rest of this section let X be a real Hilbert space and A: D(A) C
X — X be a positive selfadjoint operator with compact resolvent. Let (¢, ),en
be a complete X-orthonormal basis of X consisting of eigenfunctions of A. Let
P,: X — X be the orthogonal projection of X onto the subspace spanned by the
first n eigenfunctions. Moreover, set @, := I — P,, where [ is the identity map
on X. Note that A is sectorial on X and so it generates a family (X%)ae[0,00]
of fractional power spaces. Given a € [0,1] and a locally Lipschitzian map
g: X* — X we denote by 7, the local semiflow on X generated by the abstract
parabolic equation (see [13])

w=—Au+g(u), uweX*
The following result has been proved in [22] (see Theorem 4.3 and Proposition 4.4
in [22]).

PROPOSITION 7.8. Let f: X* — X be Lipschitzian on bounded subsets of X
Forn e N and 7 € [0,1] let fr-: X* — X be defined by

foz(u) =1 =7)f(u) + 7P f(Pou), ue X

Let N C X be bounded and closed. Furthermore, let (N, )m be a sequence in N
with Ny, — 00 and (T,,)m be an arbitrary sequence in [0,1]. For every m € N let
Um be a full solution of ws, ~_  lying in N. Then there is a sequence (my)x with
my, — 0o and there is a full solution u of 7y lying in N such that wpm, (t) — u(t)
in X<, uniformly for t lying in compact subsets of R.

In [6] we prove the following continuation results for Morse decompositions
and homology index braids (see Corollaries 3.9 and 3.10 in [6]).



HoMmoroGy INDEX BRAIDS 65

COROLLARY 7.9. Let f: X* — X and fn ., n € N, 7 €0,1], be as in Propo-
sition 7.8. Let N be bounded and closed in X with S := Inv,,(N) C Intxa (V).
Moreover, let (Mp)pecp be a <-ordered Morse decomposition of S, relative to
my. For each p € P let Z, C N be closed in X* such that M, = Inv,,(Z,) C
Intxa(Z,). Forn € N, 7 € [0,1] and p € P define S, » = Invy, (N) and
My, = Invﬂfn,T (Ep). Then there is an ng € N so that whenever nyz ng and
T € [0,1], then S, C Intxa(N), My, . C Intxa(Z,), p € P, and the family
(Mp,n,7)pep is a Morse decomposition of Sy -, relative to 7y, .

COROLLARY 7.10. Let ng be as in Corollary 7.9. Then for n > ng and
7 € [0,1] the homology index braid of (7, _,Sn 7, (Mpn,r)pep) is isomorphic to
the homology index braid of (m¢, S, (Mp)pcp).

Given n € N and f as in Proposition 7.8 we may consider the local semiflow
m, = 7, generated on the finite dimensional space Y, := P,(X%) = P,(X) by
the ordinary differential equation

(7.4) U= —Au+ Pp,f(Pyu), u€Y,.

The local semiflow 7], is the n-Galerkin approzimation of 7.
Moreover, let m;, = 7 be the semiflow generated on Z, := @Q,(X) by the
evolution equation

(7.5) u=—Au, u€Z,.

If f, == fn1 = Pno fo P, then, by Proposition 4.2 in [22] and its proof,
the space Y, is positively invariant relative to the local semiflow 7y, and every
bounded 7y, -invariant set is included in Y;, and is 7] -invariant. Moreover, every
m, -invariant set is 7y, -invariant. Setting

Sn = Sn,l and Mp’n = Mp,n,la pe P7

we thus see that, whenever n > ng, then S, is a compact 7} -invariant set and
(M, 1) pep is a Morse decomposition of S,,, relative to 7,. Moreover,

Mfrfn,Sn(I) = Mﬂib,Sn(I) = Mn(l)7 Ie I(<)~

Choose an arbitrary strongly 7, -admissible index filtration N}, = (N}, (I))rea(<)
for (n],, Sn, (Mpn)pep). (Strong m),-admissibility means, in this finite-dimen-
sional case, simply that N'(P) is bounded in Y,,.) Let B = B,, be the closed
unit ball in Z,,. Since |un!'t|z, < e Pnt|u|yz, for some B3, € ]0,00[ and all u € Z,,
and t € [0, oo[ it follows that, relative to )/, B is an isolating block for {0} with
empty exit set, so in particular, B is positively invariant.

We define N,(I) := N,(I)+ B = N/,(I) x B, I € A(<). It is now a
simple exercise to show that N, = (Nn(I))rea(<) is a strongly 7y, -admissible
index filtration for (my, ,Sn, (Mp n)pep). Since N)(I) C N,(I) for I € A(=<)
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there is an inclusion induced morphism Ox 7, = (a7 n, (J)) sez(<) from the
homology index braid H,, of (7], Sn, (Mp.n)pecp) to the homology index braid H,,
of (7, Sn, (Mp,n)pep). We claim that O x;, is an isomorphism. In fact, let J €
Z(<) be arbitrary. Choose I, K € A(<) with (I,J) € Zo(<) and K = IJ. Let
¢: N} (K)/N/}(I) = Nn(K)/N,(I) be inclusion induced and ¢: N,,(K)/N,(I) —
N/ (K)/N](I) be induced by the canonical projection y+z +— y of X* =Y, ®Z,
onto Y,. It follows that i o ¢ is the identity on N, (K)/N/ (I) while ¢ o9 is
homotopic to the identity on N, (K)/N,(I) via the homotopy N, (K)/N,(I) x
[0,1] — N, (K)/N,(I) induced by the homotopy X x [0,1] — X, (y+2,7) —
y+ (1 — 7)z. The homotopy axiom for singular homology now implies that the
map
Ony N, (T): H (0, M () — H(wg,,, M ()

(which is induced by ¢) is an isomorphism.

Using Corollary 7.10 we have established the following homology index braid
continuation for the problem (cf. Theorem 3.11 in [6]).

THEOREM 7.11. If ng € N is as in Corollary 7.10, then, for all n > ng,
the homology index braids of (mw¢, S, (My)pep) and (), Sy, (Mp n)pep) are iso-
morphic so their share the same connection matrices and the same C-connection
matrices.

8. Singular continuation of (co)homology index braids

In this section we will state the Singular nested indez filtration theorem and
the Singular continuation principle for homology index braids and connection
matrices proved in [7].

Let (Xo,do) be a metric space. Let ¢y € ]0,00[ and for each € € ]0,¢¢] let
(Yz,d:) be a metric space and 0. € Y be a distinguished point of Y. The open
ball in Y; of center in v and radius 8 > 0 is denoted by B.(v,3). Analogously,
Bc[v, A] is the closed ball in Y, of center in v € Y. and radius 5 > 0.

For each € € ]0,¢q] define the set Z. := X x Y.. Endow Z. with the metric

T ((u,v), (W', v") := max{ do(u,u),de(v,v")} for (u,v), (' ,v") € Z..

Given a subset V of Xy, 8 > 0 and ¢ € |0,&9] define the ‘inflated’ subsets
[V]es of Z. as follows:

[Vl]e,s :={(u,v) € Z: |u €V and v € Cly,(B:(0:, 7))}

Let € € ]0,ep], m (resp. mp) be a local semiflow on Z. (resp. on Xj), Se
(resp. Sp) be an isolated invariant set relative to m. (resp. mg) and (Mpc)pep
(resp. (Mp0)pepr) be a Morse decomposition of S. (resp. Sp) relative to 7.
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(resp. mo). Let N = (N:(I))rea(<) be a strongly m.-admissible index filtra-
tion for (7, Se, (Mp.c)pep) and Ny = (No(I))re.a(<) be a strongly m-admissible
index filtration for (mg, So, (Mp,0)pecp)-

Let 1 € ]0, oo[ and suppose that the following singular nesting property holds:

N.(I) C [No(I)]e,, forall I € A(=).

For J € Z(<) choose I, K € A(<) with (I,J) € Zy(<) and K = IJ. Then
(N (K), N.(I)) is an FM-index pair for M_(J), relative to 7. and (No(K), No(I))
is an FM-index pair for My(J), relative to mg. The composition of the inclusion
induced map from N.(K)/N(I) to [No(K)len / [No(I)]e,, followed by the map
from [No(K)lc., / [No(I)]en to No(K)/No(I) induced by the projection onto the
first factor induces, via the (- )-operation, a homomorphism

[Ole.nneno (): H (e, Mc () — H (o, Mo(J)).

Of course, this homomorphism depends on the choice of € € ]0,¢], n € ]0, 00],
N. and Ny, but we claim that

(8.1)  [OleyN. N, (J) is independent of the choice of I and K.

In fact, if I’ and K’ € A(=<) are such that (I',J) € Zo(<) and K’ = I'J then
property (2) of index filtrations implies that N.(K) \ N.(I) = N.(K') \ N.(I")
and No(K) \ No(I) = No(K') \ No(I') (see Proposition 3.5 in [9] and its proof,
which is also valid in our case). It follows that

[NO(K)]EW \ [NO(I)}EW = [NO(K/)]a,n \ [NO(II)]E,n

and so there is an inclusion induced, commutative, diagram of pointed spaces

NE(Kl/Ne( ) — [No(K)le.n / [No(D)]e.n
Ne(K')/Ne(I") —— [No(K")]en / [No(I")]e.n

Moreover, the diagram

[No (K EJZ\[ )]an"NO(K)\[NO(I)
[No(K")]e,n / [No(I")]ey — No(K")/No(I")

commutes, where the vertical maps are inclusion induced and the horizontal maps
are projection induced. Composing these two diagrams we obtain a commutative
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diagram

Ne(EK)/Ne(I) —=— No(K)/No(I)

| |

N (K NL(I') — No(K')/No(I")

where, by Proposition 4.4, the (homotopy classes of the) vertical maps are are
morphisms in C(m., Mc(J)) (resp. in C(mg, Mo(J))). Thus, passing to homology
and using Proposition 3.2 we see that

which is exactly what we claim. We write

[9]5»77:-/\[5 No = ([@]E,W,Ng No (J))JEI(<)~

We also claim that [©]. , v Ay He — Ho. In fact, let (I,J) € Zo(<) and let
B be the set of all p € P\ (IJ) for which there is a p’ € IJ with p < p'. Tt
follows that B, BI, BIJ € A(=). Setting Ny . = N.(BIJ), N3 = N.(BI) and
Ng’g = Ng(B) and NI,O = No(BIJ), NQ’() = N()(BI) and N3’0 = No(B> we see
that (N1, No e, N3 o) is an FM-index triple for (mw., M (1), M.(I), M.(J)) and
(N1,0, N2,0, N3 o) is an FM-index triple for (mo, Mo(IJ), Mo(I), Mo(J)). More-

over, composing the inclusion induced commutative diagram

N5 /N3 . - Ni./Ns —r Ni1./Na,

| | |

[N20le.n / [Ns0leqy —— [N10]en / [Ns0le.y —5— [N10lem / [N2,0]e.n
with the inclusion and projection induced commutative diagram

[N20le.n / [N30les — [N10lem / [N3.0]e —— [N1,0len / [N20lem

J J J

Ns /N30 —_— Ni/Ns o —_— Nio/Nao
yields a commutative diagram

NZ,E/NB,E % Nl,s/NB,E L Nl,e/NQ,e

| J J

Ns.0/N30 — Ni/Nso — Ni0/Nao
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which induces the following long homology ladder

(p)
s Hy(Nae/Nso) S H (N2 N5 o) L H (N /N3.o) 25 Hy oy (No /N3.0) —

N

— Hq(NQ,o/N:s,o)Hji)Hq(Nl,o/N3,0)H?D)Hq(N1,0/N2,0) éﬁ H,_1(N2o/N30) —

1

Applying the (- )-operation to diagram (8.2) and using (8.1) together with Propo-
sition 3.2 we obtain a commutative diagram of the form (6.3). This proves our
second claim.
We call [O]c ., . .N, & singular inclusion induced morphism from H. to Hy.
We now obtain the following analogue of Proposition 6.3.

PROPOSITION 8.1. Let ¢, (ms,Se, (Mp.<)pep) and (mo, So, (Mp,o)pep) be as
above. Suppose that there are p, 17 € ]0,00[ are such that Cly.(B:(0:,p)) and
Cly, (B:(0:,7)) are contractible to 0.. Let No = (No(I))rea(<) and Ny =
(NO(I))IG.A(<) be strongly mo- admzsszble indez filtrations for (mo, So, (Mp.0)pep),
Ne = (Ne(D))rea(<) and N. = (N, (1)) rca(<) be strongly m.-admissible index
filtrations for (me,Se, (Mp.e)pep) and such that the following singular nesting
property holds:

(83)  N(I)C[No(D)les € No(I) C [No(D)]ez  for all I € A(=).
Then H(mo, So, (Mp)pep) and H(we, Se, (M c)pep)) are isomorphic.

In the next two definitions, introduced in [3], (7.).e0,c,) is @ family such
that, for every ¢ € |0, eg], 7 is a local semiflow on Z.. Moreover, 7, is a local
semiflow on Xj.

DEFINITION 8.2. With the notation introduced above, we say that the family
(m2)ee)o,e0) cOnverges singularly to mo if whenever (g,), and (t,), are sequences
of positive numbers such that &, — 0, ¢, — tg as n — oo, for some ¢y € [0, 00|
and whenever ug € Xy and w,, € Z. are such that I'. (wy, (ug, 0, )) — 0 as
n — oo and ugmoty is defined, then there exists an ng € N such that for all
n > ng, Wnpme, ty, is defined and T'¢,, (w,me, tn, (uomoto, be,)) — 0 as n — oo.

DEFINITION 8.3. Let 3 be a positive number and N be a closed subset of Xj.
We say that N is a singularly strongly admissible set with respect to 3 and the
family (m2)eep0,c,) if the following conditions are satisfied:
(b
(¢) whenever (g,,), and (t,), are sequences of positive numbers such that

(m

(a) N is a strongly mp-admissible set;
) for each € € ]0, g¢] the set [N]; g is strongly m.-admissible;
)

en — 0, t, — 00 as n — oo and whenever w, € Z. is such that
Wy e, [0,t,] C [N]e, g, then there exist a up € N and a subsequence
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of the sequence (w, 7., t,), of endpoints, denoted again by (w, 7., ty)n,
such that I'c (wpme, tn, (4o, 0e,)) — 0 as n — oo.

The following singular continuation result for Morse decompositions was es-
tablished in [5].

THEOREM 8.4 (cf. Corollaries 4.14 and 4.15 in [5]). Assume (7c)zejo,e0] 5
a family of local semiflows that converges singularly to the local semiflow g,
8 €]0,00[ and N isa singularly strongly admissible set with respect to 3 and
(T)eefo,e0)- Moreover, suppose that Sy := Inv, (N) relative to 7o and (Mp0)per
is a <-ordered Morse decomposition of Sy relative to my. For each p € P, let
2, C N be closed in Xo and such that Mo = Inv, (Z,) C Intx,(Z,). (Such
sets 2, p € P, always exist.)

Let n € 10,0]. For e € 10,e0] and p € P set S; := Invﬁa([]\Nf]E,,,) and
M, :=Inv, ([Eplc,n). Then there is an € € ]0,e0] such that for every e € |0, €]
and p € P, S, C IntZE([J\N/']E,n) and the family (Mp <)pep is a <-ordered Morse
decomposition of S. relative to ..

We can now state the singular nested index filtration principle established
in [7].

THEOREM 8.5 (cf. Theorem 3.9 in [7]). Assume the hypotheses (and thus also
the conclusions) of Theorem 8.4 and let € > 0 be as in that theorem. Let Bo €
0, 3 be fized. Then there are p, 7l € 0, Bo] and an e € ]0,£] such that for every
£ € [0,ec] there exist strongly m.-admissible index filtrations Ne = (Ne(I))rea(<)
and N, = (NE(I))IEA(-<) for (me, Se, (M, c)pep) such that the following singular
nesting property holds:

(84) N.(I) C [No(D)]le5 € N.(I) € [No(D)]es for all I € A(<) and
€ €1]0,e].

Theorem 8.5, Proposition 8.1 and Remark 6.2 immediately imply the fol-
lowing Singular continuation principle for homology index braids and connection
matrices.

THEOREM 8.6 (cf. Theorem 3.10 in [7]). Assume the hypotheses of The-
orem 8.5. Suppose that there exists an By > 0 such that for all € € ]0,¢0)
and all n € 10, Bo] the set Cly,(B:(0:,m)) is contractible to 8.. Then there ex-
ists an €. € |0,€] such that the homology index braids H(mg, So, (Mp)pep) and
H(me, Sey (Mpe)pepr)), € € 10,ec], are isomorphic and determine the same collec-

tion of connection matrices and the same collection of C'-connection matrices.

Theorem 8.6 refines the corresponding singular Conley index continuation
principle established in [3].
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We will now briefly illustrate Theorem 7.4 by applying it to the thin domain
problem considered in [18] and [1]. More extensive applications will appear in
a subsequent publication. We assume the reader’s familiarity with [18] and [1]
and only recall some of the relevant notations and definitions.

Let M and N be positive integers. Write (x,y) for a generic point of
RM x RM. Let Q be an arbitrary nonempty bounded domain in R™ x RY with
Lipschitz boundary and let ¢ > 0 be arbitrary. Define the symmetric bilinear
form a.: H*(2) x H*(2) — R by

1
ac(u,v) = / (un - Vv + ?Vyu . Vyv) dx dy
Q

and let b be the scalar product (-, -)r2(q). Let A-: D(A:) € HY(Q) — L*(Q2) be
the linear operator generated by the pair (a.,b). We define on H'(2) the scalar
product

(u,)e = ac(u,v) + blu,v), u,ve HY(Q)

and the corresponding norm
lule := (ac(u,u) + [ulfe) '/ we HY(Q)

which is equivalent to the usual norm on H'((Q).
We also define the “limit” space H!(Q2) by

HYQ) ={ue H(Q)| V,u=0}.

Note that H!(Q) is a closed linear subspace of H!(Q) so H.() is a Hilbert space
under the usual scalar product of H*().
Furthermore, define the space L2(2) to be the closure of the set H!(2) in
L2(Q). Tt follows that L2(€2) is a Hilbert space under the scalar product of L?(2).
Now let ag: HX(Q2) x H!(Q) — R be the “limit” bilinear form defined by

ao(u,v) ::/Vu~V’udmdy:/Vzu~vadxdy.
Q Q

Finally, let by be the restriction of the scalar product b to L2(€) x L2(2). Denote
by Ag the operator generated by the pair (ag, bo).

Now let g9 € ]0, 1] be arbitrary and (f:).c[0,c,) be a family satisfying hypoth-
esis (A1) introduced in Definition 2.6 in [1]. For € € ]0,eq] let m. be the local
semiflow on H'(2) generated by the solutions of the evolution equation

W= Acu+ fo(u).

Moreover, let mg be the local semiflow on H1(Q) generated by the solutions of
the evolution equation

= Aou + fo(u).

We will need the following singular convergence result proved in [1].
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PRrROPOSITION 8.7 (cf. Corollary 2.15 in [1] and its proof). Let (g), be an
arbitrary sequence of positive numbers convergent to zero. Moreover let t € [0, 00|
and (tn)n be a sequence in [0, 00[ converging to t. Finally, let ug € HX(Q) and
(tun)n be a sequence in H*(Q) such that |u, — ugl|., — 0 n — oco. Assume that
upmot is defined. Then, for all n € N large enough, w,m., t, is defined and

|tn e, tn — womotle, — 0 asn — oo.

For all ¢ € ]0,g0] set 0. := 0 € HY(Q) and let Q.: HY(Q) — HY(Q) be
the orthogonal projector onto H!(Q) with respect to the scalar product (-, - )e.
Let Xo := H!(Q) be endowed with the usual norm of H'(Q) and dy be the
corresponding metric on Xo. Moreover, let Y. := (I — Q.)(H'(£2)) be endowed
with the norm | - |. and let d. be the corresponding metric on Y;. Set Z. :=
Xo x Y. 2 HY(Q) and note that the norm

I, 0)lle = masc{ul s . o]}, (u.v) € Xo x e,

is equivalent to the norm | - | on H'(Q) with constants independent of € € ]0, g¢].
Let T'. be the metric on Z. generated by the norm || - ||-.

The remarks just made imply that, for every € € ]0, g¢], 7. is a local semiflow
on Z. and mg is a local semiflow on X, while Proposition 8.7 just says that
(T2)e€]o,e0) Singularly converges to 7.

Now an application of Lemma 2.21 in [1] shows that whenever 5 > 0 and N
is closed and bounded in Xy then N is singularly admissible with respect to 3
and the family (7. ).co,c0]-

It is clear that for all € € ]0,¢0] and all 8 € 10, 00| the set Cly, (B:(6., 3)) is
contractible to 6..

We thus obtain the following corollary of Theorems 8.4 and 8.5.

THEOREM 8.8. Let 3 be a positive number and N C HL(Q) be closed and
bounded. Suppose that (M,)pep is a <-ordered Morse decomposition of Sy =
Inv,, (N) relative to mg. For each p € P, let £, C N be closed in Xo and such
that

M, =Inv,,(E,) C Intx,(E,).
Moreover, for every I € I(<), let 21 C N be closed in Xy and such that

Mﬂ'mSo (I) = Invﬂ'() (EI) - Inth (E[)

For e € 10,e0] and p € P set Mpy(e) := Invy_([Eple,3). Then there is an € €
10, e0] such that for every e € ]0,€] the family (My(€))pep is a <-ordered Morse
decomposition of S, :=Inv._([N]c g) relative to m.. Moreover,

MI(€) = MTK'E,SE = IIIVWE([E]}&-’Q) C Intzg([EI]gﬁ), Ie I(%)
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Finally, the homology index braids H(mo, So, (Mp)pep) and H(me, Se, (Mpc)pepr))
are isomorphic and determine the same collection of connection matrices and the

same collection of C-connection matrices.
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