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SIGN-CHANGING RADIAL SOLUTIONS
FOR THE SCHRÖDINGER–POISSON–SLATER PROBLEM

Isabella Ianni

Abstract. We consider the Schrödinger–Poisson–Slater (SPS) system in R3

and a nonlocal SPS type equation in balls of R3 with Dirichlet boundary

conditions. We show that for every k ∈ N each problem considered admits

a nodal radially symmetric solution which changes sign exactly k times
in the radial variable.

Moreover, when the domain is the ball of R3 we obtain the existence

of radial global solutions for the associated nonlocal parabolic problem
having k + 1 nodal regions at every time.

1. Introduction

We consider the Schrödinger–Poisson–Slater (SPS) problem in R3

(1.1)


−∆u + u + φu− |u|q−1u = 0 in R3,

−∆φ = 4πu2 in R3,

lim
|x|→+∞

φ(x) = 0.

From a physical point of view systems like (1.1) appear is semiconductor theory
to model the evolution of an electron ensemble in a semiconductor crystal (see
[22], [23], [6], [28]). In this context the Poisson potential φ comes from the repul-
sive interactions among electrons while the nonlinear term |u|p−1u is introduced
as a correction to the repulsive Poisson potential to explain different phenomena
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observed from experimentations (for instance in simulations with superlattices
structures).

In particular in the case p = 5/3 this term is usually known as Slater cor-
rection, since it comes from a term that was first introduced by Slater (1951)
as a local approximation for the exchange term in the Hartree–Fock equations
(see [29], [13]). For this reasons we refer to system (1.1) as Schrödinger–Poisson–
Slater system (SPS).

A different justification of system (1.1) can be found also in [4] where it is
proposed as a model formally describing the interaction of a charged particle
with its own electrostatic field.

From a mathematical point of view system (1.1) shows several difficulties,
the nonlinear nature of it being due both to the power-type nonlinearity in the
first equation and to the coupling, and has been object of many investigation
in the last years (we recall among others the papers [1], [2], [4], [9]–[12], [16],
[19]–[21], [26], see also [18]).

As shown by recent results the structure of the solution set of (1.1) depends
strongly on the value of q of the power-type nonlinearity.

For q ≤ 2 and q ≥ 5 system (1.1) doesn’t admit any nontrivial solution (see
[11], [21], [26]), while when q ∈ (2, 5) existence and multiplicity results have been
proved using variational techniques.

Precisely in [10], [21], [26] the existence of at least one nontrivial radial
solution is proved while in [1] they show the existence of infinitely many radial
solutions.

For completeness we recall that mostly these existence results are obtained
through min-max procedures, and one needs to restrict the energy functional to
the natural constrained of the radial functions to overcome the problem of the
lack of compactness of the Sobolev embeddings in the unbounded domain R3.
We also point out that in [1] no information about the sign of the solutions is
given. On the other hand in [2] the existence of a positive ground state solution
has been proved but it is still an open problem whether it is radial or not.

In the present paper we analyze more deeply the structure of the radial bound
states set for problem (1.1).

We show the existence of infinitely many radially symmetric sign-changing
solutions which are distinguished by the number of nodal regions, more pre-
cisely we prove the existence of radial solutions which have a prescribed number
of nodal domains. As far as we know this is the first paper where existence
of sign-changing solution is proved for problem (1.1).

Our proof combines a dynamical and topological approach together with
a limit procedure and it is mainly inspired by [40]. Up to our knowledge this is the
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first time that such a different approach (not variational) is used in the context
of the Schrödinger–Poisson–Slater problems.

We point out that one cannot simply apply the well known Nehari’s method
(see [24]) of piecing together positive and negative solutions on alternating annuli
(see also [3]); indeed it is known that for q = 3 the Nehari manifold’s arguments
for problem (1.1) fail, moreover, even for different values of the exponent q, the
procedure would be quite involved since the solution of the Poisson equation on
each annulus would need global informations on u.

Our main result is the following:

Theorem 1.1. Let q ∈ [3, 5). For every integer k ≥ 2, (1.1) admits a couple
of radial solutions (±u, φ) such that ±u changes sign precisely k−1 times in the
radial variable.

In order to obtain this result we will study first the existence of sign chang-
ing radial solutions for the following semilinear elliptic equation with Dirichlet
boundary condition

(1.2)

 −∆u + u + u

∫
BR

u2(y)
|x− y|

dy − |u|q−1u = 0 in BR,

u = 0 on ∂BR,

where BR is the ball of radius R in R3. This problem, with both local and
nonlocal nonlinearities, has been also investigated in [27] when q ∈ (1, 2).

We recall that solutions of (1.2) are critical points of the energy functional
E:H1

0 (BR)→ R given by

E(u) =
1
2

∫
|∇u(x)|2 dx +

1
2

∫
u(x)2 dx

+
1
4

∫ ∫
u2(x)u2(y)
|x− y|

dx dy − 1
q + 1

∫
|u|q+1(x) dx.

Our second main result is then the analogous of Theorem 1.1 for prob-
lem (1.2):

Theorem 1.2. Let q ∈ [3, 5). For every R ≥ 1 and every integer k ≥ 2,
(1.2) admits a couple of radial solutions ±u changing sign precisely k − 1 times
in the radial variable. Moreover, there exists a constant Ck > 0, independent
of R, such that E(±u) ≤ Ck.

The proof of Theorem 1.2 relies on a dynamical method. We find solution of
the elliptic problem (1.2) looking for equilibria in the ω-limit set of trajectories
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of the associated parabolic problem, namely of

(1.3)


ut −∆u + u + u

∫
BR

u2(y)
|x− y|

dy − |u|q−1u = 0 in BR × [0,∞),

u = 0 on ∂BR × [0,∞),

u( · , 0) = u0 on BR.

This nonlocal initial boundary value parabolic problem has been studied in [17]
by the author himself.

Solutions of elliptic equations via the corresponding parabolic flow can be
found in the literature (we recall among others [7], [9], [25]), in particular here
we follow an approach introduced in [40] in the contest of symmetric systems of
two coupled Schrödinger equations but which can be adapted, with proper modi-
fications, also to scalar equations with odd nonlinearities, like our problem (1.2).

This method consists in selecting special initial data on the boundary of the
domain of attraction of an asymptotically stable equilibrium in order to obtain
equilibria with a fixed number of changes of sign.

It relies on a crucial monotonicity property of the semilinear parabolic prob-
lem (1.3) stating that the number of zeros is not increasing along the flow and
combines the study of the parabolic flow with a topological argument based on
the use of the Krasnosel’skĭı genus.

We underline that, for fixed k, the solutions found in Theorem 1.2 satisfy
an energy bound independent on the radius R of the domain. This is the starting
point to prove Theorem 1.1, through a limit procedure on the radius of the
domain.

Moreover, as a byproduct in the proof of Theorem 1.2 we obtain also the
following result related to the existence of sign-changing global solutions for the
parabolic problem (1.3) that we believe to be of independent interest.

Theorem 1.3. Let q ∈ [3, 5). For any integer k ≥ 2 there exists a couple
±uk: BR × [0,∞) → R of global radial solutions of (1.3) such that, for all t ≥ 0
±uk( · , t) has exactly k − 1 changes of sign in the radial variable.

We point out that all the results in the present paper are obtained for values
q ∈ [3, 5), the case q ∈ (2, 3) being still open.

This is due to the fact that first the existence of solutions for the parabolic
problem (1.3) when q ∈ (2, 3) is still open (see [17]), second the geometric prop-
erties of the energy functional depend strongly on the value of q (see the proof
of Proposition 6.1 where we need to restrict to the case q ≥ 3). We recall also
that it is still an open problem whether the (PS) property holds or not in the
gap q ∈ (2, 3), precisely it has not yet been proved the existence of a bounded
Palais–Smale sequence when q belongs to this gap.
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Our difficulties seem to be strictly related to the ones one finds when dealing
with this open problem.

We briefly describe the paper’s organization.
In Section 2 we collect some notations and preliminaries. In Section 3 we

recall the properties of the nonlocal parabolic problem (1.3) (local and global
existence results, regularity, compactness properties) which have been studied
in [17] by the author himself. Moreover we prove the monotonicity of the number
of zeros along the parabolic flow.

In Section 4 we define a family of finite dimensional spaces (Wk)k∈N such
that the restriction of the energy functional on it is unbounded from below and
bounded from above uniformly on the radius R of the domain. The use of Wk

will be crucial for the proof of Theorem 1.2, in particular to obtain uniform
estimates of the energy.

Section 5 is therefore devoted to the proofs of Theorems 1.2 and 1.3.
Section 6 contains the proof of Theorem 1.1 which is obtained through a limit

procedure on the radius of the balls BR. In particular we controll the number
of zeros while passing to the limit using ODE techniques, Strauss Lemma and
maximum principles.

2. Notations and preliminaries

Let us fix some notations.
BR := {x ∈ R3 : |x| < R} is the ball of R3 of radius R.
For an open Ω ⊆ R3, (Lr(Ω), ‖ · ‖L3(Ω)) is the usual Lebesgue space, we may

also write the norm simply as ‖ · ‖r when there is no misunderstanding about
the integration set.

(W s,r(Ω), ‖·‖W s,r(Ω)) and W s,r
0 (Ω) are the usual Sobolev spaces we may also

write the norm simply as ‖ · ‖s,r when there is no misunderstanding about the
integration set.

In particular we write H1(Ω), resp. H1
0 (Ω) instead of W 1,2(Ω), resp. W 1,2

0 (Ω)
and in this case we may denote the norm simply with

‖u‖ := ‖u‖H1
0 (Ω) =

∫
Ω

(|∇u|2 + |u|2) dx.

Cm,α(Ω) is the subspaces of Cm(Ω) consisting of functions whose m-th order
partial derivatives are locally Hölder continuous with exponent α in Ω.

If Ω is bounded then we denote by (Cm,α(Ω), ‖u‖Cm,α(Ω)) the Banach space
of all the functions belonging to Cm(Ω) whose m-th order partial derivatives
are uniformly Hölder continuous with exponent α in Ω. endowed with the usual
norm.
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D1,2(R3) is the closure of C∞
0 (R3) with respect to the norm

‖u‖D1,2 = ‖∇u‖L2(R3).

The following facts are known (see for instance [15, Lemma 0.3.1]) and [26,
Lemma 2.1]):

Lemma 2.1. For any v ∈ H1(R3) let

φv(x) :=
∫

R3

v2(y)
|x− y|

dy.

Then

(a) φv ∈ D1,2(R3) and there exists C > 0 (independent of v) such that

‖φv‖D1,2 ≤ C‖v‖2.

Hence in particular there exists C > 0 (independent of v) such that

(2.1)
∫∫

w2(x)v2(y)
|x− y|

dx dx ≤ C‖w‖2‖v‖2 for all w ∈ H1(R3).

(b) φv is the unique weak solution in D1,2(R3) of the equation −∆φv = 4πv2

in R3.
(c) If v is radial, then φv is radial and has the following expression

φv(r) =
1
r

∫ +∞

0

v2(s)smin{r, s} ds.

(d) Let vn, v ∈ H1(R3), radial and satisfying vn ⇀ v in H1(R3), then
φvn
→ φv in D1,2(R3).

Here and in the following for v ∈ H1
0 (BR), we write again v also for the

trivial extension of v in the whole R3, which belongs to H1(R3), one has that the
nonlocal term which appears in the equation (1.2) coincides with the restriction
of φv to BR.

Hence if u ∈ H1
0 (BR) is a solution of (1.2) then the couple (u, φu|BR

) is
a solution of the SPS system in the ball

−∆u + u + φu− |u|q−1u = 0 in BR,

−∆φ = 4πu2 in BR,

u = 0 on ∂BR.

We underline that φu is not 0 on ∂BR.

Remark 2.2. If v ∈ W 1,p
0 (BR), p > 3 then φv ∈ C2,α(BR) and satisfies

−∆φv = 4πv2 in BR.
Indeed by Sobolev embedding (p > 3) v ∈W 1,p

0 (BR) ↪→ C0,α(BR) and v = 0
on ∂BR. Let ṽ be the trivial extension of v in B2R then ṽ2 ∈ C0,α(B2R) and so
(see [14, Lemmas 4.2 and 4.4]) φv ∈ C2,α(BR) and satisfies −∆φv = 4πv2 in BR.
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3. The associated parabolic problem

We consider the semilinear nonlocal parabolic initial-boundary-value problem
(IBVP) associated with (1.2) which has been studied in [17]:

(3.1)


∂u

∂t
−∆u + u = F (u) in BR × (0,+∞),

u = 0 in ∂BR × (0,+∞),

u( · , 0) = u0 on BR,

where the nonlinearity is

F (u) := |u|q−1u− u

∫
BR

1
|x− y|

u2(y) dy, q ∈ [3, 5).

Next we fix 3 < p <∞ and we consider the function spaces

X = {u ∈W 1,p
0 (BR) : u radially symmetric},

Y = {u ∈ C1(BR) : u is radial and u = 0 on ∂BR}.

We have the embedding Y ↪→ X ↪→ C(BR).
We recall the following result related to local existence and regularity which

can be found in [17, Theorem 1.1].

Theorem 3.1. For every u0 ∈ X the IBVP (3.1) has a unique (mild) solu-
tion u(t) = ϕ(t, u0) ∈ C([0, T ), X) with maximal existence time T := T (u0) > 0
which is a classical solution for t ∈ (0, T ). The set G := {(t, u0) : t ∈ [0, T (u0))}
is open in [0,∞)×X, and ϕ : G → X is a semiflow on X.

Moreover, the following continuity property with respect to the initial datum
in stronger norm holds (see [17, Theorem 1.1-iv)])

Proposition 3.2. For every u0 ∈ X and every t ∈ (0, T (u0)) there is
a neighbourhood U ⊂ X of u0 in X such that T (u) > t for u ∈ U , and
ϕ(t, · ): (U, ‖ · ‖X)→ (Y, ‖ · ‖Y ) is a continuous map.

In the following we will often write ϕt(u) instead of ϕ(t, u).
The energy E is strictly decreasing along nonconstant trajectories t 7→ ϕt(u0)

in X.
In fact, for a classical solution of (3.1) we have:

(3.2) Ė =
d

dt
E(u) =

d

dt

∫ (
1
2
|∇u|2 +

1
2
|u|2 − 1

q + 1
|u|q+1 +

1
4
φuu2

)
dx

=
∫ (
∇u∇ut + uut − |u|q−1uut + φuuut

)
dx

=
∫ (

−∆u + u− |u|q−1u + φuu

)
ut dx = −

∫
u2

t dx = −‖ut‖22,

this property is crucial in order to prove the following global existence result and
compactness property (see [17, Theorem 1.4] for the proof).
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Theorem 3.3. Let u0 ∈ X and T = T (u0) be such that the function t 7→
E(ϕt(u0)) is bounded from below in (0, T ). Then T = ∞ and for every δ > 0
the set {ϕt(u0) : t ≥ δ} is bounded in W s1,p(BR) for every s1 ∈ [1, 2) and hence
relatively compact in C1(BR).

Corollary 3.4. Let u0 ∈ X and T = T (u0) be such that the function
t 7→ E(ϕt(u0)) is bounded from below in (0, T ). Then T =∞ and the ω-limit set

ω(u0) =
⋂
t>0

ClosY ({ϕs(u0) : s ≥ t})

is a nonempty compact subset of Y consisting of radial solutions of (1.2).

Next we show that the number of nodal regions of a solution of (3.1) is non
increasing along the flow.

Given u ∈ X we define the number of sign changes in the radial variable i(u)
of u as the maximal k ∈ N∪{0,∞} such that there exist points x1, . . . , xk+1 ∈ BR

with 0 ≤ |x1| < . . . < |xk+1| < R and u(xi)u(xi+1) < 0 for i = 1, . . . , k.

Lemma 3.5. Let u0 ∈ X and T = T (u0). Then t 7→ i(ϕt(u0)) is non in-
creasing in t ∈ [0, T ).

Proof. In view of the semiflow properties, it suffices to show the inequality
i(ϕτ (u0)) ≤ i(u0) for a fixed τ ∈ (0, T ). Since u(t) := ϕt(u0) satisfies the
equation

ut −∆u + f(x, t)u = 0 in BR × (0, τ ]

where f(x, t) := 1 + φu(x, t)− |u(x, t)|q−1, to prove the result we can follow the
arguments in [8, Theorem 2.1] (see also [40, Lemma 2.5]). The only thing which
remains to be proved is therefore that f is bounded in BR × [0, τ ].

On this scope we observe that |u|q−1 is continuous and hence bounded in
BR × [0, τ ] (indeed X ↪→ C0,α

r , u( · , t) ∈ X for every t and t 7→ u(t, x) ∈
C([0, T ), X)).

We show now that

φu(x, t) =
∫

BR

u2(y, t)
|x− y|

dy

is continuous and hence bounded in BR × [0, τ ]. The continuity of the function
x 7→ φu(x, t) in BR for fixed t ∈ [0, τ ] is trivial (see Remark 2.2). We fix now
x ∈ BR and show that the function t 7→ φu(x, t) is continuous in [0, τ ].

Let (tn)n ⊂ [0, τ ] tn →n t0, we want to prove that φu(x, tn) →n φu(x, t0).
This follows from the following:

lim
n
|φu(x, tn)− φu(x, t0)| = lim

n

∣∣∣∣∫
BR

(
u2(y, tn)
|x− y|

− u2(y, t0)
|x− y|

)
dy

∣∣∣∣
≤ lim

n
max
y∈BR

∣∣u2(y, tn)− u2(y, t0)
∣∣ ∫

BR

1
|x− y|

dy = 0. �
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4. A finite dimensional subspace of X

In this section we define, for any fixed integer k ≥ 2 a convenient k-dimen-
sional subspace Wk ⊂ X such that the restriction to it of the energy functional
E:H1

0 (BR)→ R defined by

E(u) =
1
2

∫
|∇u(x)|2 dx +

1
2

∫
u(x)2 dx

+
1
4

∫∫
u2(x)u2(y)
|x− y|

dx dy − 1
q + 1

∫
|u|q+1(x) dx

has some “good properties” (it is unbounded below “at infinity” and bounded
from above uniformly in the radius R of the domain).

As we will see, we need to pay particular attention to the case q = 3, since
the geometric properties of the energy E are different (see condition (4.2) below).

The spaces Wk will be useful in next section to prove our results.
First, for 0 < a < b, we define the annulus Aa,b := {x ∈ R3 : a < |x| < b}.
Then we fix k radial functions wi ∈ C2(R3), i = 1, . . . , k with disjoint

supports which satisfy the following properties:{
w1 > 0 in B1/k,

w1 = 0 in R3 \ B1/k,{
wi > 0 in A(i−1)/k,i/k, i = 2, . . . , k,

wi = 0 in R3 \ A(i−1)/k,i/k, i = 2, . . . , k.

We can always assume that

(4.1) ‖wi‖2 = ‖wi‖q+1
q+1, i = 1, . . . , k

(if not we just rescale wi). We also define

Mk := max
i=1,... ,k

‖wi‖2 > 0.

Last, for q = 3, we require also that

(4.2) Mk <
1
k

.

Lemma 4.1. Let

Wk :=
{

w = w(t1,... ,tk) :=
k∑

j=1

tjwj : (t1, . . . , tk) ∈ Rkl

}
⊂ X.

Then there exists Ck > 0 such that

(4.3) E(w) ≤ Ck for all w ∈Wk.
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Moreover,

(4.4) lim
‖w‖→∞
w∈Wk

E(w) = −∞.

Proof. Let w ∈Wk, then w =
∑k

j=1 tjwj where tj ∈ R, j = 1, . . . , k, hence
using the inequality (2.1)

E(w) =
k∑

j=1

[
t2j
2
‖wj‖2 −

|tj |q+1

q + 1
‖wj‖q+1

q+1

]
(4.5)

+
1
4

k∑
i,j=1

t2j t
2
i

∫
B

∫
B

w2
j (x)w2

i (y)
|x− y|

dx dy

≤
k∑

j=1

[
t2j
2
‖wj‖2 −

|tj |q+1

q + 1
‖wj‖2

]

+
1
4

k∑
i,j=1

t2j t
2
i ‖wj‖2‖wi‖2 (‖wj‖q+1

q+1 = ‖wj‖2)

≤
k∑

j=1

[
t2j
2
‖wj‖2 −

|tj |q+1

q + 1
‖wj‖2

]
+

k

4

k∑
j=1

t4j‖wj‖4

=
k∑

j=1

‖wj‖2
[
t2j
2

+
k

4
t4j‖wj‖2 −

|tj |q+1

q + 1

]

≤
k∑

j=1

‖wj‖2
[
t2j
2

+
kMk

4
t4j −

|tj |q+1

q + 1

]
.

Let now be q > 3, then putting 0 < Gk := max
s∈[0,+∞)

gk(s), where

gk(s) :=
[
s2

2
+

kMk

4
s4 − |s|

q+1

q + 1

]
,

from (4.5) it follows that

E(w) ≤
k∑

j=1

‖wj‖2Gk ≤ kMkGk.

Moreover, again from (4.5) we have that lim
‖w‖→+∞

E(w) = −∞, since +∞← ‖w‖

=
k∑

j=1

|tj |‖wj‖ if and only if there exists (at least one) J ∈ {1, . . . , k} such that

|tJ | → +∞.
If q = 3 then

gk(s) =
s2

2
− s4 1− kMk

4
where 1− kMk > 0 by our choice in (4.2) and we proceed in a similar way. �
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Remark 4.2. Each function wj j = 1, . . . , k has support contained in B1,
hence in BR for any R ≥ 1. Therefore the choice of the space Wk as well as the
results in the lemma above are independent on the radius R of the domain of
problem (1.2).

5. Proof of Theorems 1.2 and 1.3

The proof relies on a dynamical method: we find solutions of the elliptic
problem (1.2) looking for equilibria in the ω-limit sets of trajectories of the
autonomous parabolic problem (1.3). In order to obtain equilibria with a fixed
number of changes of sign we need to select in a proper way the initial condition.
This is done following an approach first introduced in [40] in the contest of
symmetric systems of two coupled Schrödinger equations.

This method consists in selecting special initial data on the boundary of the
domain of attraction of an asymptotically stable equilibrium.

It relies on the crucial monotonicity property for the number of zeros along
the flow (Lemma 3.5) and combines the study of the parabolic flow with a topo-
logical argument based on the use of the Krasnosel’skĭı genus. For completeness
we will repeat here the main arguments of [40] adapted to our scalar case.

Since the energy functional E is strictly decreasing along nonconstant tra-
jectories (see (3.2)) and 0 is a strict local minimum for it, it follows that the
constant solution u ≡ 0 is asymptotically stable in X.

Let A∗ be its domain of attraction

A∗ := {u ∈ X : T (u) = +∞ and ϕt → 0 in X as t→ +∞}.

The asymptotic stability of 0, the semiflow properties of solutions of (3.1) and
the continuous dependence of solutions on initial data (Corollary 3.2) imply that
the set A∗ is a relatively open neighbourhood of 0 in X.

As in [40] we denote with ∂A∗ the relative boundary of the set A∗ in X.
Since A∗ is open and 0 is asymptotically stable, the continuous dependence

of the semiflow ϕ on the initial values implies that ∂A∗ is positively invariant
under ϕ.

Moreover, E(u) ≥ 0 for every u ∈ A∗ since E is decreasing along trajectories,
and hence, by continuity, this is true also for every u ∈ ∂A∗. As a consequence by
Corollary 3.4 one has that the solution is global for every initial value u ∈ ∂A∗,
the ω-limit set is nonempty and ω(u) ⊂ ∂A∗.

Since the ω-limit consists of radial solutions of the elliptic problem (1.2), our
aim is to select suitable initial conditions u on ∂A∗ in a way that any element
in ω(u) has k − 1 changes of sign. Following [40] we define therefore the closed
subset of X:

Ak := {u ∈ ∂A∗ : i(u) ≤ k − 1}.
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Lemma 3.5 and the positive invariance of ∂A∗ for the flow ϕ imply that Ak is
a positively invariant set for the flow ϕ.

Using a topological argument similar to the one in [40], we prove hence the
existence of a certain u ∈ Ak \ Ak−1 such that ω(u) ⊂ Ak \ Ak−1, for every
k ≥ 2.

On this scope let’s observe that the parabolic problem (3.1) has an odd
nonlinearity hence the semiflow ϕt is odd and the sets ∂A∗ and Ak, k ≥ 1 are
symmetric with respect to the origin.

For a closed symmetric subset B ⊂ ∂A∗ we denote by γ(B) the usual Kras-
nosel’skĭı genus and we recall some of the properties we will need:

Lemma 5.1. Let A,B ⊂ ∂A∗ be closed and symmetric.

(a) If A ⊂ B, then γ(A) ≤ γ(B).
(b) If h:A→ ∂A∗ is continuous and odd, then γ(A) ≤ γ(h(A)).
(c) If S is a bounded symmetric neighborhood of the origin in a k-dimensio-

nal normed vector space and v: ∂S → ∂A∗ is continuous and odd, then
γ(v(∂S)) ≥ k.

Let O := A∗ ∩Wk, where Wk is the k-dimensional subspace of X defined
at Section 4 (Lemma 4.1). O is a symmetric, bounded (from (4.4)) open neigh-
bourhood of 0 on Wk.

Lemma 5.2. ∂O ⊂ Ak and γ(∂O) = γ(Ak) = k.

Proof. The inclusion ∂O ⊂ Ak is a consequence of the definition of Wk.
Let us compute the genus. From the property (c) of the genus it follows imme-
diately that γ(∂O) ≥ k. Moreover, adapting the arguments in the proof of [40,
Lemma 3.3], one can prove that γ(Ak) ≤ k. The conclusion comes from the
monotonicity property (a) of the genus. �

We define also the closed subsets of ∂A∗

Ct
k−1 := {u ∈ ∂A∗ : ϕt(u) ∈ Ak−1} for t > 0.

Lemma 5.3. Ak−1 ⊂ Ct
k−1 and γ(Ct

k−1) = γ(Ak−1) = k − 1 for every t > 0.

Proof. The proof is trivial once we know that γ(Ct
k−1) ≤ k − 1.

This is a consequence of the property (b) of the genus, indeed

γ(Ct
k−1) ≤ γ(ϕt(Ct

k−1))

since the map ϕt: Ct
k−1 → ∂A∗ is continuous and odd, and γ(ϕt(Ct

k−1)) ≤ k − 1
because of the inclusion ϕt(Ct

k−1) ⊂ Ak−1. �
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Proposition 5.4. There exists u ∈ ∂O \ Ak−1 such that

∅ 6= ω(u) ⊂ Ak \ Ak−1.

Proof. From Lemmas 5.2 and 5.3 ∅ 6= ∂O \ Ct
k−1 ⊂ Ak \ Ak−1 for every

t > 0.
In particular, for any positive integer n, there exists un ∈ ∂O \ Cn

k−1 and,
since ∂O is compact, we may pass to a subsequence such that un → u ∈ ∂O as
n→∞.

Obviously ω(u) ⊂ Ak, as in [40] we now prove that ω(u) ⊂ Ak \ Ak−1.
On this scope we define the sets Yk := {u ∈ Y : i(u) ≤ k−1} (see Section 3 for

the definition of the space Y ). By construction (using the continuity property in
Proposition 3.2) one has that ϕt(u) 6∈ IntY (Yk−1) for every t > 0, which implies
that ω(u) ∩ IntY (Yk−1) = ∅.

On the other hand, if we assume by contradiction that ω(u) ∩ Ak−1 6= ∅
than, since ω(u) consists of radial solutions of (1.2), one can easily show (with
arguments similar to the ones in [40, Lemma 3.1]) that ω(u) ∩ IntY (Yk−1) 6= ∅,
reaching a contradiction. �

The proof of Theorem 1.2 follows from Proposition 5.4 taking any u ∈ w(u).
u is a radial solution for the elliptic problem (1.2) with exactly k − 1 changes
of sign. Moreover, since the energy is non-increasing along trajectories and using
the energy estimate in Wk, (see (4.3)) it satisfies

E(u) ≤ E(u) ≤ Ck.

As a byproduct we obtain also the proof of Theorem 1.3 related to the existence
of global solutions of the parabolic problem (3.1) with the same fixed number
of nodal regions along the flow.

Indeed uk(t) := ϕt(u) is a global solution of the parabolic problem and, from
the positive invariance of the sets Ak, it follows that uk(t) ∈ Ak \Ak−1 for every
t ≥ 0.

6. Proof of Theorem 1.1

For fixed k ≥ 2, let Rn ≥ 1, n ∈ N such that Rn → +∞ as n → +∞,

let un ∈ H1
0 (Bn) be a radial weak solution of the Dirichlet problem in the ball

Bn = BRn

(6.1)

 −∆un + un + un

∫
u2

n(y)
|x− y|

dy − |un|q−1un = 0 in Bn,

un = 0 on ∂Bn,

with precisely (k − 1) changes of sign in the radial variable and which satisfies
the energy uniform bound E(un) ≤Mk (from Theorem 1.2).
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Proposition 6.1 (Uniform H1-bound). There exists Dk > 0 (independent
of n) such that

‖un‖ ≤ Dk for all n ∈ N.

Proof. Since un is a solution it satisfies E′(un)(un) = 0, hence, since q ≥ 3,

Mk ≥ E(un) = E(un)− 1
4
E′(un)(un) =

1
4
‖un‖2 +

q − 3
4(q + 1)

‖un‖q+1
q+1 ≥

1
4
‖un‖2,

namely ‖un‖ ≤ 2
√

Mk. �

Lemma 6.2 (Regularity of un and uniform C2,α
loc -bound). un ∈ C2,α(Bn)

and it is a classical solution of the Dirichlet problem (6.1). In particular, for any
R > 0, there exist nR ∈ N and CR > 0 such that

un ∈ C2,α(BR) and ‖un‖C2,α(BR) ≤ CR for all n ≥ nR.

(The constant CR is independent of n but depends on R, q, α, Dk).

Proof. Let

φn(x) := φun(x) =
∫

u2
n(y)
|x− y|

dy.

Step 1. φn ∈ C0,α(R3). Moreover, for any R > 0, there exists C =
C(α, R,Dk) > 0 such that

‖φn‖C0,α(BR) ≤ C for all n ∈ N.

Since un ∈ H1(R3), it can be proved that φn ∈ D1,2(R3) and that the
following bound holds:

(6.2) ‖φn‖D1,2 ≤ C‖un‖2

where C > 0 is independent of n ∈ N (see Lemma 2.1).
Moreover, by the Sobolev embedding H1(R3) ↪→ L6(R3) we deduce that

u2
n ∈ L3(R3), hence (using for instance [14, Theorem 9.9] in any domain Ω which

contains Bn) φn ∈W 2,3
loc (R3) and −∆φn = u2

n almost everywhere in R3.
Therefore from [14, Theorem 9.11], Sobolev embeddings and (6.2) we obtain:

‖φn‖W 2,3(BR) ≤C(R)(‖φn‖L3(B2R) + ‖u2
n‖L3(B2R))

≤C(R)(‖φn‖D1,2 + ‖un‖2) ≤ C(R)(1 + C)‖un‖2.

The conclusion follows from the Sobolev embedding W 2,3(BR) ↪→ C0,α(BR) and
Proposition 6.1.

Step 2. un ∈ C0,α(R3). In particular, for any R > 0, there exists C =
C(q, α, R,Dk) > 0 such that

un ∈ C0,α(BR) and ‖un‖C0,α(BR) ≤ C for all n

(here un stays for its trivial extension).



Sign-Changing Radial Solutions for the SPS Problem 379

un is a weak solution of the Dirichlet problem

(6.3)

{
−∆un = fn in Bn,

un = 0 on ∂Bn,

where fn := |un|q−1un − (1 + φn)un ∈ L2∗/q(Bn) (φn ∈ C0(Bn) by Step 1). By
Lp-regularity it follows that un ∈ W 2,2∗/q(Bn) and so by a classical bootstrap
argument un ∈ W 2,p(Bn) for a certain p > N/2; by Sobolev embeddings we
conclude that un ∈ C0,α(Bn). Substituting un by its trivial extension (remember
that un = 0 on ∂Bn) one obtains that un ∈ C0,α(R3).

We prove now the uniform C0,α
loc -estimate. We denote by C any constant

which doesn’t depend on n ∈ N but which may eventually depend on q, α, R,
Dk and which may vary from line to line.

Let us observe that, for each fixed R > 0, there exists nR ∈ N such that
B2R ⊆ Bn for all n ≥ nR. Therefore from Sobolev embeddings (p > N/2) we
have for n ≥ nR

(6.4) ‖un‖C0,α(BR) ≤ C‖un‖W 2,p(BR);

moreover, from Lp-estimates (cfr. [14, Theorem 9.11]) and Step 1:

‖un‖W 2,p(BR) ≤C(‖un‖Lp(B2R) + ‖fn‖Lp(B2R))(6.5)

≤C(‖un‖Lp(B2R) + ‖un‖qLqp(B2R)

+ (1 + ‖φn‖C0,α(B2R))‖un‖Lp(B2R))

≤C(‖un‖qLqp(B2R) + ‖un‖Lpq(B2R)) (pq > p).

Remember now that p ≥ 2∗/q is obtained after a finite number m ≥ 0 of iter-
ations (bootstrap procedure) starting from 2∗/q. If p = 2∗/q we can conclude
directly from (6.4) and (6.5), using Sobolev embeddings and Proposition 6.1,
indeed

‖un‖C0,α(BR) ≤ C(‖un‖q + ‖un‖) ≤ C(Dq
k + Dk) = C.

Otherwise, if p > 2∗/q then it is easy to verify that we reduce to the previous
case iterating m times the estimate (6.5) together with the Sobolev embeddings
W 2,Ns/(N+2s) ↪→ Ls, for opportune s > 0. We remark that at each step the
constant involved is independent of n.

The previous argument gives the local estimate only definitely for n ≥ nR.
To extend the result also to the first nR − 1 elements it is enough to substitute
un with its trivial extension for each n ≤ nR − 1 (in this case Bn ⊂ B2R).

Step 3. Conclusion. un is a weak solution of the Dirichlet problem 6.3,
where fn ∈ C0,α(Bn) (from Steps 1 and 2). By elliptic regularity we conclude
that un ∈ C2,α(Bn) and it is a classical solution of the Dirichlet problem.
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To prove the uniform C2,α
loc -estimate we fix any R > 0 and let nR ∈ N such

that B2R ⊆ Bn for all n ≥ nR. Hence for n ≥ nR

‖un‖C2,α(BR) ≤ C(‖un‖C0,α(B2R) + ‖fn‖C0,α(B2R)) ≤ C,

where we have used the Schauder estimates (see for instance [14, Theorem 4.6])
and the uniform local bounds from Steps 1 and 2. �

Proposition 6.3. There exists u ∈ C2(R3) ∩H1(R3), radial such that

unk
→ u in C2

loc(R3).

Moreover, u is a solution of

(6.6) −∆u + u + u

∫
u2(y)
|x− y|

dy − |u|q−1u = 0 in R3.

Proof. Since un is bounded in H1(R3) (Proposition 6.1), one can extract
a subsequence of un, again denoted by un, such that un converges weakly in
H1(R3) and almost everywhere in R3 to a function u. Observe that u ∈ H1(R3)
is spherically symmetric. Moreover, since for any R > 0 the sequence un is
definitely bounded in C2,α(BR) (Lemma 6.2), by Arzela’s theorem and a standard
diagonal process one can also prove that u ∈ C2(R3) and that un converges to u

in C2
loc(R3).
In order to prove that u satisfies equation (6.6) it is enough to pass to the

limit for almost every x ∈ R3 into the equation pointwise satisfied by un definitely
(by Lemma 6.2)

−∆un(x) + un(x) + un(x)φn(x)− |un(x)|q−1un(x) = 0.

To this scope let’s observe that from the compactness result iv) in Lemma 2.1 one
can extract a subsequence of φn, again denoted by φn, such that φn converges
(strongly in D1,2(R3) and hence, by Sobolev embedding D1,2(R3) ↪→ L6(R3))
almost everywhere in R3 to the function φu =

∫ u2(y)
|x−y| dy. �

Lemma 6.4. φn ∈ C2,α(R3) and it is a classical solution of the equation
−∆φn = u2

n in R3. Moreover, for any R > 0, there exists DR > 0 such that

φn ∈ C2,α(BR) and ‖φn‖C2,α(BR) ≤ DR for all n ∈ N.

(The constant DR is independent of n but depends on R, q, α, Dk).

Proof. One can easily prove that u2
n ∈ C0,α(R3) and it is bounded (see

Lemma 6.2, Step 2). Therefore it follows that φn ∈ C2(R3) and satisfies the
equation −∆φn = u2

n in R3 (using for instance the known regularity result about
Newtonian potentials in [14, Lemma 4.2] in any domain Ω which contains Bn).
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The conclusion follows from interior Hölder estimates for solutions of the
Poisson’s equation (for instance [14, Theorem 4.6]), namely φn ∈ C2,α(R3) and,
fixed any R > 0 one has

‖φn‖C2,α(BR) ≤ C(‖φn‖C0(B2R) + ‖u2
n‖C0,α(B2R)) ≤ C for all n,

where the last inequality follows from Steps 1 and 2 in Lemma 6.2. �

Proposition 6.5.

φu :=
∫

u2(y)
|x− y|

dy ∈ C2(R3) ∩D1,2(R3)

and it is a classical radial solution of the equation −∆φu = 4πu2 in R3.

Proof. From Lemma 6.4, using Arzela’s theorem and a standard diagonal
process, one can extract a subsequence of φn, again denoted by φn, which con-
verges in C2

loc(R3) to a function w ∈ C2(R3). Moreover (see Proposition 6.3), one
can extract a subsequence of un, again denoted by un, which converges point-
wise in R3 to the function u. Therefore passing to the limit for almost every x

in R3 into the equation −∆φn(x) = 4πu2
n(x), one can prove that w is a classical

solution of the equation −∆w = 4πu2 in R3.
Last it is clear that w coincides with φu since we already know that φn → φu

almost everywhere in R3 (see the proof of Proposition 6.3).
To conclude we observe that φu ∈ D1,2(R3) and it’s radial because u ∈

H1(R3) and it’s radial (see Lemma 2.1). �

Propositions 6.3 and 6.5 yield the existence of a radial solution (u, φu) for
system (1.1).

Next we prove that u is nontrivial and has exactly (k− 1) changes of sign in
the radial variable.

Lemma 6.6. Let r > 0 be a positive local maximum or a negative local min-
imum point for r 7→ u(r) (resp. r 7→ un(r)). Then

|u(r)| ≥ 1 (resp. |un(r)| ≥ 1).

Proof. Let w = u (resp. un), so writing the equation (6.1) (resp. (6.6)) in
polar coordinates:

−w′′(r)− 2
r
w′(r) = w(r)[|w(r)|q−1 − (1 + φw(r))].

If r > 0 is a local maximum (resp. a local minimum) point for w then

w(r)[|w(r)|q−1 − (1 + φw(r))] ≥ 0 (resp. ≤ 0)

hence, since w(r) > 0 (resp. w(r) < 0)

|w(r)|q−1 ≥ (1 + φw(r)) ≥ 1. �
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Lemma 6.7. There exists R > 0 such that any positive local maximum or
negative local minimum point r ≥ 0 for the function r 7→ u(r) or r 7→ un(r),
satisfies r ≤ R (R doesn’t depend on u nor n but may depend on k).

Proof. By Strauss Lemma (1) (see [5]) and the uniform bound on the H1

norms there exists R > 0 such that

(6.7) |u(x)|, |un(x)| < 1
2
, for any x ∈ R3 \ BR, for any n.

We prove the result for un. The proof for u can be done in a similar way.
For small n such that Rn ≤ R the result is trivial (since un ≡ 0 in R3 \ BR).

Hence let’s consider n such that Rn > R and by contradiction let rn > R be
a maximum (resp. a minimum) for un with un(rn) > 0 (resp. un(rn) < 0). Hence
by Lemma 6.6, |un(rn)| ≥ 1 which contradicts (6.7). �

Lemma 6.8 (Properties of u). Let R > 0 be as in Lemma 6.7.

(a) u 6= 0;
(b) u changes sign;
(c) let r such that u(r) = 0, then

∂u

∂r
(r) 6= 0;

(d) let r such that u(r) = 0, then r ∈ (0, R) and it is isolated.
(e) in every subinterval where r 7→ u(r) changes sign precisely once, r 7→

un(r) also changes sign precisely once for large n.

Proof. To prove (a) we assume by contradiction that u ≡ 0. Then, since
un converges to u in C2

loc(R3) (Proposition 6.3), in particular it follows that

(6.8) max
x∈BR

|un(x)− u(x)| = max
x∈BR

|un(x)| →n 0.

But we know that for each n ∈ N the function r 7→ un(r) changes sign exactly
(k − 1) times and it is regular, hence it has at least (k − 1) positive maxi-
mum/negative minimum points and moreover (Lemma 6.7) these points are all
inside BR. Therefore, from Lemma 6.6 it follows that

max
x∈BR

|un(x)| ≥ 1 for all n ∈ N,

which contradicts (6.8).

(1) Strauss Lemma: let N ≥ 2; every radial function u ∈ H1(RN ) is almost everywhere
equal to a function U(x), continuous for x 6= 0 and such that

|U(x)| ≤ CN |x|(1−N)/2‖u‖H1(RN ) for |x| ≥ RN

where CN and RN depend only on the dimension N .
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To prove (b) we assume by contradiction that u ≥ 0. Then u > 0 by the
strong maximum principle and hence there exists C > 0 such that u ≥ C in BR.
Since un converges to u in C2

loc(R3) (Proposition 6.3), one has that un ≥ C/2 > 0
in BR definitely. Which is absurd since un changes sign is BR.

(c) is a direct consequence of the Hopf’s Boundary Lemma while (d) follows
immediately from (c) and Lemma 6.7.

Last we prove (e). Let (a, b) be an interval where r 7→ u(r) changes sign
precisely once and let r ∈ (a, b) be the unique point in (a, b) such that u(r) = 0.
We want to prove that un changes sign precisely once in (a, b) for large n.

By Lemma 6.7 we may restrict without loss of generality to the case (a, b) ⊆
(0, R), in particular (a, b) is a bounded interval.

Since un converges uniformly to u on compact intervals (Proposition 6.3),
one easily deduces that for n large un changes sign at least once in (a, b).

On the other hand from (c) we know that ∂u
∂r (r) 6= 0, without loss of gener-

ality, we may assume for instance that ∂u
∂r (r) > 0. By continuity ∂u

∂r (r) ≥ α > 0
in a neighbourhood Or ⊆ (a, b) of r, and from the C2

loc-convergence, it follows
that for large n

∂un

∂r
(r) ≥ α

2
> 0 for all r ∈ Or,

namely for large n the function r 7→ un(r) is strictly monotone in Or.
Moreover, by assumption, |u(r)| ≥ β > 0 for r ∈ (a, b) \ Or, therefore from

the C2
loc-convergence also |un(r)| ≥ β/2 > 0 for r ∈ (a, b) \Or, for large n.

Hence we can conclude that for large n the function r 7→ un(r) changes sign
inside Or and exactly once because of the strict monotonicity. �

Proposition 6.9. u changes sign precisely (k − 1) times in the radial va-
riable.

Proof. From Lemma 6.8 we know that there exists an integer m ≥ 1 such
that the function r 7→ u(r) changes sign m times. In particular there exist m

isolated points 0 < r1 < . . . < rm < R such that u(ri) = 0 for any i = 1, . . . , m

and u(r) 6= 0 for r 6= ri, i = 1, . . . , m.
Let us define the partition 0 = x0 < x1 < . . . < xm−1 < xm = R of (0, R)

where xi = (ri + ri+1)/2, i = 1, . . . , m− 1; and let us consider the subintervals
Ik := (xk, xk+1) for any k = 0, . . . , m− 1.

By construction the function r 7→ u(r) changes sign exactly once in each
Ik and so, by point (e) in Lemma 6.8, it follows that for n large the function
r 7→ un(r) changes sign exactly once in each Ik.

Therefore in the interval (0, R) the function r 7→ un(r) changes sign exactly
m times for n large and by Lemma 6.7 it changes sign exactly m times at all.
As a consequence m = k − 1. �

Theorem 1.1 is a direct consequence of Propositions 6.3, 6.5 and 6.9.
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