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A CLASS OF RANDOM CANTOR SETS

Abstract

In this paper we study a class of random Cantor sets. We determine
their almost sure Hausdorff, packing, box, and Assouad dimensions.
From a topological point of view, we also compute their typical dimen-
sions in the sense of Baire category. For the natural random measures
on these random Cantor sets, we consider their almost sure lower and
upper local dimensions. In the end we study the hitting probabilities of
a special subclass of these random Cantor sets.

1 Introduction

In this paper we consider a class of random Cantor sets. This consists of a
sample space Ω and a probability measure P. The sample space Ω contains a
family of compact subsets of [0, 1]d, furthermore Ω is a compact metric space
endowed with the Hausdorff metric. We will compute their almost sure and
typical dimensions. For each object of Ω, we put a natural measure on this
object. We also calculate the local dimensions of these natural measures. In
the end, we study the hitting probabilities of a special subclass of these random
Cantor sets. We start by a description of these random Cantor sets. Closely
related random models have been considered in [4, 5, 33, 34, 35].

1.1 Random Cantor sets

Let {Mk}k≥1 and {Nk}k≥1 be sequences of integers with 1 ≤ Nk ≤Md
k ,Mk ≥

2 for all k. Let

Pn =

n∏
i=1

Ni, rn =

(
n∏
i=1

Mi

)−1

(1.1)
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We denote by Dn = Dn([0, 1]d) the family of r−1
n -adic closed subcubes of

[0, 1]d,

Dn =
{ d∏
`=1

[i`rn, (i` + 1)rn] : 0 ≤ i` ≤ r−1
n − 1

}
and let D =

⋃
n∈NDn. We divide the unit cube [0, 1]d into Md

1 interior disjoint

M1-adic closed subcubes and randomly choose interior disjoint N1 ≤ Md
1 of

these closed subcubes in the following way. We randomly choose a cube among
Md

1 cubes uniformly which means that every cube has the same probability of
being chosen, then we randomly choose an other cube among the remaining
Md

1 − 1 cubes uniformly, and continue this process until we obtain N1 cubes.
Note that each of the closed subcubes has the same probability (i.e.N1/M

d
1 ) of

being chosen, and denote their union by E1. Given En, a random collection of
Pn interior disjoint r−1

n - adic closed subcubes of [0, 1]d. For each cube of En, we
divide it into Md

n+1 interior disjoint r−1
n+1-adic closed subcubes and randomly

choose interior disjoint Nn+1 of these closed subcubes in the same fashion as
above (i.e. we randomly choose a cube among Md

n+1 cubes uniformly, then
we randomly choose an other cube among the remaining Md

n+1 − 1 cubes
uniformly, and continue this process until we obtain Nn+1 cubes). We ask
that the choices are independent for different cubes of En. Let En+1 be the
union of the chosen closed cubes and

Eω = E =

∞⋂
n=1

En

be a random limit set. Let Ω = Ω(Mk, Nk) be our probability space which
consists of all the possible outcomes of random limit sets. For convenience we
will write E ∈ Ω, ω ∈ Ω, or Eω ∈ Ω in the following. Our main object of study
in this paper is the space Ω. Figure 1 shows an example of this construction.

1.2 The topological approach

Let K = K([0, 1]d) be all the compact subsets of unit cube [0, 1]d. We endow K
with the Hausdorff metric. Recall that the Hausdorff distance of two compact
sets E and F of K is defined by

dH(E,F ) = inf{ε > 0 : E ⊂ F ε and F ⊂ Eε},

where Eε = {x ∈ Rd : dist(x,E) < ε}. Observe that Ω = Ω(Mk, Nk) ⊂ K
and Ω is a closed subset of K. Together with the well known fact that K is a
compact space, we obtain that Ω is compact subset of K.
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Figure 1: The first three steps in the construction of E with M1 = 2, N1 =
3,M2 = 3, N2 = 4,M3 = 2, N3 = 2.

Recall that a subset of a metric space X is of first category if it is a
countable union of nowhere dense sets (i.e. whose closure in X has empty
interior); otherwise it is called of second category. We say that a typical
element x ∈ X has property P , if the complement of

{x ∈ X : x satisfies P}

is of first category. For the basic properties and various applications of Baire
Category, we refer to [30, 36].

1.3 Dimension and measure

Let E ⊂ [0, 1]d. For any s ≥ 0, the s-dimensional Hausdorff measure is defined
as Hs(E) = limδ→0Hsδ(E) where

Hsδ(E) = inf
{ ∞∑
n=1

|Un|s : E ⊂
∞⋃
n=1

Un, |Un| ≤ δ, n ∈ N
}
,

and |U | is the diameter of U . The Hausdorff dimension of E is

dimH E = sup{s ≥ 0 : Hs(E) =∞} = inf{s ≥ 0 : Hs(E) = 0}.

For any δ > 0, let N (E, δ) be the smallest number of sets of diameter at
most δ which can cover E. Then the lower and upper box dimensions are
defined respectively as

dimBE = lim inf
δ→0

logN (E, δ)

− log δ
, dimBE = lim sup

δ→0

logN (E, δ)

− log δ
.

If dimBE = dimBE we denote this common value by dimB E and call it the
box dimension of E.
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The packing dimension of E is defined as

dimP E = inf
{

sup dimBFn : F =

∞⋃
n=1

Fn

}
.

The Assouad dimension of E is defined as

dimAE = inf{s ≥ 0 : ∃ C > 0 s.t. ∀ 0 < r < R ≤
√
d,

sup
x∈E
N (E ∩B(x,R), r) ≤ C

(
R

r

)s
}.

The basic relationships of these dimensions are

dimH E ≤ dimBE, dimP E ≤ dimBE ≤ dimAE.

For more details and further properties of these dimensions, we refer to [7, 25]
and especially [24] for the Assouad dimension.

Let ν be a Radon measure on Rd. For x ∈ Rd, the lower and upper local
(pointwise) dimensions of ν at x are defined respectively as

dim(ν, x) = lim inf
r→0

log ν(B(x, r))

log r
, dim(ν, x) = lim sup

r→0

log ν(B(x, r))

log r
.

If dim(ν, x) = dim(ν, x) we denote this common value by dim(ν, x), and call
it the local dimension of ν at x. For further details and basic properties on
the local dimensions of measures, see [6, Chapter 10].

We consider the natural random measure on the random Cantor set. Let
E =

⋂∞
n=1En be a realization. For each n ∈ N, let (Pn, rn are from (1.1))

pn = Pnr
d
n (1.2)

and

µn(A) =

∫
1A∩En

(x)p−1
n dx

where 1F is the indicator function of the set F . Note that for every Q ∈
Dn, Q ⊂ En (we will denote this by Q ∈ En in the following for convenience),
we have µn(Q) = P−1

n . It is clear that µn weakly converges to a measure µ,
see [25, Chapter 1]. We call this measure µ the natural measure on E.
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1.4 Results

There exists a huge literature on computing the ‘almost sure’ dimensions for
many other random fractal sets. We refer to [6, 7, 11, 14, 17, 26, 29] and
reference therein. For the general estimations and the almost sure dimensions
of these random Cantor sets, we have the following result. Let

r(n, n+ k) =

(
n+k∏
i=n

Mi

)−1

, P (n, n+ k) =

n+k∏
i=n

Ni. (1.3)

Figure 2: There are Nn+1 subcubes (dark cubes) of Q (Q ∈ En) which belongs
to En+1, and they uniformly distributed inside the cube Q. Thus there are

nearly Nn+1 subcubes of Q with side length rn/N
1
d
n+1 (depends if N

1
d
n+1 is an

integer or not) which intersect E. In the end, we have Pn+1 interior disjoint

cubes with side length rn/N
1
d
n+1 which intersect E. This follows from the

definition of s2.

Denote

s1 = lim inf
n→∞

logPn
− log rn

, s2 = lim sup
n→∞

logPn+1

− log rn + 1
d logNn+1

, (1.4)

and

s3 = lim sup
k→∞

sup
n∈N

logP (n, n+ k)

− log r(n, n+ k)
. (1.5)

Furthermore let

t∗ = lim inf
n→∞

logPn

− log rn+1 − 1
d logNn+1

, s∗ = lim sup
n→∞

logPn
− log rn

. (1.6)
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Note that if the Nn are bounded then t∗ = s1 and s∗ = s2. Figure 2

‘explains’ why there is rn/N
1
d
n+1 in the definition of s2. Figure 3 ‘explains’

why there is rn+1N
1
d
n+1 in the definition of t∗.

rn+1N
1
d
n+1

Q 2 En

Nn+1

rn

1

Figure 3: There are Nn+1 subcubes of Q which belongs to En+1, and all of
them accumulate at the left bottom of Q. Thus we can consider these Nn+1

subcubes as one cube with side length near rn+1N
1
d
n+1 (depends if N

1
d
n+1 is an

integer or not), and there are Pn such cubes. This follows from the definition
of t∗.

Theorem 1.1. (1) For any E ∈ Ω, we have

t∗ ≤ dimH E ≤ dimBE ≤ s1.

(2) For any E ∈ Ω, we have

s∗ ≤ dimP E ≤ dimBE ≤ s2.

(3) The almost sure Hausdorff dimension and lower box dimension are
maximal, i,e., almost surely

dimH E = dimBE = s1.
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(4) The almost sure packing dimension and upper box dimension are max-
imal, i,e., almost surely

dimP E = dimBE = s2.

(5) For any E ∈ Ω, we have dimAE = s3 provided {Nk} is bounded.
Otherwise, almost surely dimAE = d.

We can also regard the space Ω as a subclass of Moran sets. The di-
mensional properties of Moran sets have been studied extensively, we refer
to [9, 19, 21, 27, 31, 37] and reference therein. The results of Theorem 1.1
are similar to the dimensional results of one dimensional homogeneous Cantor
sets (uniform Cantor sets). An interesting fact is that they have the ‘same’
dimensional formulas (for our case d = 1). For Hausdorff, lower box, upper
box, and packing dimensions of one dimensional homogeneous Cantor sets, see
[9]. For Assouad dimension of one dimensional homogeneous Cantor sets, see
[31]. The Figure 3 corresponds to the partial homogeneous Cantor sets of [9].

Remark 1.2. The above statements (1) and (2) generalize the results of [9]
from one dimensional Moran sets to our model, and the statement (5) when
Nk are bounded generalize the result of [31] from homogeneous Cantor sets
to our model. The proof of dimH E ≥ t∗ is adapted from [9, Theorem 2.1] to
our setting, while the method for the proof of dimBE ≤ s2 is different from
that of [9]. The proof of the statement (5) when Nk are bounded generalize
the method in [31] to high dimension. Our main contribution of Theorem 1.1
is to determine the almost sure dimensions of these random cantor sets for
the case when {Nk}k∈N is unbounded. Our method combines geometric and
probability estimates on the distribution of these random Cantor sets.

Recall that (Ω, dH) is a compact metric space. For the typical dimensions
of these random Cantor sets, we have the following result. For some related
results we refer to [10, 12, 13]

Theorem 1.3. (1) The typical Hausdorff dimension and lower box dimension
are minimal, i.e., for a typical E ∈ Ω, we have

dimH E = dimBE = t∗.

(2) The typical packing dimension and upper box dimension are maximal,
i.e., for a typical E ∈ Ω, we have

dimP E = dimBE = s2.

(3) If {Nk} is unbounded, then for a typical E ∈ Ω, we have

dimAE = d.
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Note that the typical Hausdorff dimension and lower box dimension are
as small as possible, but the almost sure Hausdorff dimension and lower box
dimension are as large as possible. Furthermore the packing dimension, upper
box dimension and Assouad dimension are as large as possible in the sense of
both almost sure dimension and typical dimension.

For the local dimensions of the natural measures supported on these ran-
dom Cantor sets, we have the following result. Let

s∗∗ = lim sup
n→∞

logPn+1

− log rn
.

Theorem 1.4. (1) For any E ∈ Ω, x ∈ E, we have

t∗ ≤ dim(µ, x) ≤ s1.

(2) For any E ∈ Ω, x ∈ E, we have

s∗ ≤ dim(µ, x) ≤ s∗∗.
(3) For P-almost all E ∈ Ω, and µ almost every x ∈ E, we have

dim(µ, x) = s1.

(4) For P-almost all E ∈ Ω, and µ almost every x ∈ E, we have

dim(µ, x) = s2.

Same kind of results have been obtained for other “random” measures,
we refer to [8] and reference therein. For the local dimensions of the Moran
measures, we refer to [18, 22, 23].

Remark 1.5. The dimension of a set has essential connection with the local
dimension of the measure on it, we refer to [6, Proposition 2.3-2.4] for more
details. In fact there are some overlaps between our Theorem 1.1 and Theorem
1.4. Actually Theorem 1.4 (3)-(4) combined with the Propostion 2.3 of [6] and
Theorem 1.1 (1)-(2) implies Theorem 1.4 (3)-(4). We present more details in
the following.

Theorem 1.4 (3) and [6, Proposition 2.3 (a)] implies that almost surely
dimH E ≥ s1. Combining this with Theorem 1.1 (1) which gives dimBE ≤ s1

for any set E ∈ Ω, we obtain Theorem 1.1 (3).
Theorem 1.4 (4) and [6, Proposition 2.3 (c)] implies that almost surely

dimP E ≥ s2. Combining this with Theorem 1.1 (2) which gives dimBE ≤ s2

for any set E ∈ Ω, we obtain Theorem 1.1 (4).
Since our methods for Theorem 1.1 (3)-(4) and Theorem 1.4 (3)-(4) are

different, and the methods are interesting on it’s own, we present them sepa-
rately.
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For the hitting probability of these random Cantor sets, we consider the
special case that Mk = M and Nk = N for all k ∈ N, and we have the
following result. Note that the result is similar to the hitting probability of
fractal percolation (see [28, Theorem 9.5 ]) and random covering sets (see [16]).

Theorem 1.6. Let F be a Borel subset of [0, 1]d with dimH F = α and s =
logN/ logM . Then we have

(1) If α < d− s then almost surely E ∩ F is empty.
(2) If α > d− s then E intersects F with positive probability.
(3) If α > d− s then ‖ dimH(E ∩F ) ‖∞= α+ s− d, where the norm is an

essential supremum in the underlying probability space.

Note that under the condition supk∈NMk <∞, it will become much easier
to prove Theorem 1.1, Theorem 1.3, and Theorem1.4. Our main contribution
of this project is to deal with the case when {Nk}k∈N is unbounded.

The paper is organised as follows. In Section 2 we will show some lemmas
for later use. Theorems 1.1, 1.3, 1.4, and 1.6 are proved in Sections 3, 4, 5,
and 6 respectively. We conclude with additional results and open problems in
Section 7.

2 Preliminary lemmas

We show some useful lemmas in this section.

Lemma 2.1. [6, Proposition 2.3] Let E ⊂ Rd be a Borel set and let µ be a
finite measure. If dim(µ, x) ≥ s for all x ∈ E and µ(E) > 0 then dimP E ≥ s.
Lemma 2.2. [7, Corollary 3.9] Let E ⊂ Rd be a compact and such that
dimB(E ∩V ) = dimBE for all open sets V that intersects E. Then dimP E =
dimBE.

For convenience we put an easy fact about Assouad dimension as the fol-
lowing lemma. For further basic facts on Assouad dimension, we refer to
[24, 31].

Lemma 2.3. Let E ⊂ Rd. If there are sequences {Rn} and {rn} of positive
real numbers with Rn/rn → ∞ as n → ∞, such that for every n there exists
x ∈ E with

N (E ∩B (x,Rn) , rn) ≥
(
Rn
rn

)s
,

then we have dimAE ≥ s.
The following estimate will be used in the proof of Lemma 3.3.
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Lemma 2.4. Let A = {1, · · · , k}, B = {1, · · · ,m}, 1 ≤ k ≤ m. Now we ran-
domly choose n (n ≤ m) numbers from B in the same way as our construction
of random Cantor sets (we randomly choose a number from B uniformly, then
we randomly choose an other number among the remaining m − 1 numbers
uniformly, and continue this process until we obtain nnumbers). Let K be the
random chosen n numbers, then

P(A ∩K 6= ∅) ≥ 1− e−nk
m .

Proof. Note that the random set K will intersect (hit) the set A with prob-
ability one when k + n > m. In the following, we assume that k + n ≤ m.
Let K = {x1, · · · , xn} where xi means the i-th chosen number. Let Ai be the
event {K : xi ∈ B\A}, then

P(

n⋂
i=1

Ai) = P(A1)

n∏
i=2

P(Ai
∣∣ i−1⋂
j=1

Aj)

=

n−1∏
j=0

(1− k

m− j )

≤ e−nk
m .

(2.1)

By the fact that the event (A∩K 6= ∅) is the complement of the event
⋂n
i=1Ai,

we complete the proof.

The following estimate will be used in the proof of Lemma 3.4. For more
details on large deviations estimates, see [1, Appendix A].

Lemma 2.5. Let {Xi}ni=1 be a sequence nonegative independent random vari-
ables with Xi ≤ N and E(Xi) ≥ N/2 for all 1 ≤ i ≤ n. Then

P(

n∑
i=1

Xi < Nn/8) ≤ e−n/8.

Proof. Let λ = 1/N . We apply Markov’s inequality to the random variable
e−λ

∑n
i=1Xi . This gives

P(

n∑
i=1

Xi < Nn/8) = P(e−λ
∑n

i=1Xi > e−n/8)

≤ en/8E(e−λ
∑n

i=1Xi)

= en/8
n∏
i=1

E(e−λXi),

(2.2)
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the last equality holds since {Xi}i is a sequence independent random variables.
For any t ∈ [0, 1] we have

e−t ≤ 1− t/2.

Since λXi ∈ [0, 1] for all 1 ≤ i ≤ n, we have that for all 1 ≤ i ≤ n,

e−λXi ≤ 1− λXi/2,

and hence
E(e−λXi) ≤ 1− E(λXi/2) ≤ e−1/4.

Combining this with (2.2), we finish the proof.

3 Bounds on dimensions and almost sure dimensions

Proof Theorem 1.1 (1). For any E ∈ Ω and k ∈ N, we have N (E, rk) ≤
Pk, and hence

dimBE ≤
logPk
− log rk

= s1.

For convenience, let `k = rk+1N
1
d

k+1, k ∈ N. Suppose t∗ > 0 (t∗ = 0 is the
trivial case). For any 0 < t < t∗, by the definition of t∗, there exist k0 such
that for any k ≥ k0,

Pk ≥ `−tk . (3.1)

Let E ∈ Ω and µ be the natural measure on E. We intend to show that
µ(B(x, r)) ≤ Crt for any ball B(x, r) with r ≤ rk0 where C is a constant. For
0 < r ≤ rk0 , there exists k such that rk+1 < r ≤ rk.

Case 1. `k ≤ r ≤ rk. In this case, the ball B(x, r) intersects at most 3d

cubes of Ek, hence

µ(B(x, r)) ≤ 3dP−1
k ≤ 3d`tk ≤ 3drt (3.2)

Case 2. rk+1 < r < `k. In this case, observe that there exists a constant
C = C(d) such that any ball B(x, r) can intersects at most C( r

rk+1
)d cubes of

Ek+1, and hence

µ(B(x, r)) ≤ C
(

r

rk+1

)d
N−1
k+1P

−1
k ≤ Crd`t−dk ≤ Crt. (3.3)

Thus the mass distribution principle [7, Chapter 4] implies that dimH E ≥ t.
Since this holds for any t < t∗, we obtain that dimH E ≥ t∗.
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Proof of Theorem 1.1 (2). For each k ∈ N, let `k+1 = rk/(Nk+1)
1
d . For

any δ > 0, there exists k such that rk+1 < δ ≤ rk.
Case 1. rk+1 < δ < `k+1. In this case we have N (E, δ) ≤ Pk+1, and hence

logN(E, δ)

− log δ
≤ logPk+1

− log δ
≤ logPk+1

− log `k+1
. (3.4)

Case 2. `k+1 ≤ δ ≤ rk. In this case, we have N(E, δ) ≤ CPk (rk/δ)
d
. Thus

logN(E, δ)

− log δ
≤ logPkr

d
k

− log δ
+ d+

logC

− log δ

≤ logPkr
d
k

− log `k+1
+ d+

logC

− log rk

=
logPk+1

− log `k+1
+

logC

− log rk
.

(3.5)

Taking the upper limit of (3.4) and (3.5), we obtain that

dimBE ≤ s2.

Suppose s∗ > 0. For any t < s∗ there exists a sequence of numbers
{kj}j≥1 ⊂ N with kj → ∞ as j → ∞, such that Pkj ≥ r−tkj for all j ∈ N. Let
x ∈ E, then we have

µ(B(x, rkj )) ≤ 3dP−1
kj
≤ 3drtkj ,

and hence dim(µ, x) ≥ t. Since this holds for all x ∈ E, together with Lemma
2.1 we have that dimP E ≥ t. By the arbitrary choice of t < s∗, we obtain
that dimP E ≥ s∗. Thus we complete the proof.

3.1 Almost sure Hausdorff and lower box dimensions

Let ∂Q be the boundary of Q, define

B̃n =
⋃

Q∈Dn

∂Q and B̃ =
⋃
n∈N

B̃n.

It is clear that B̃ has zero Lebesgue measure and for any x ∈ [0, 1]d\B̃,

P(x ∈ En) = pn.

Recall that pn = Pnr
d
n. For the purpose of estimating the lower bound for

Hausdorff dimension, we need the following estimate.
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Lemma 3.1. For any ε > 0 there exists positive constant C = C(ε, d), such
that

P(x ∈ En, y ∈ En)

p2
n

≤ Cd(x, y)s1−d−ε (3.6)

for all n ∈ N and x, y ∈ [0, 1]d.

Proof. For any ε > 0, by the definition of s1, there exists N ∈ N, such that
Pn ≥ r−s1+ε

n for all n ≥ N which implies that

pn = Pnr
d
n ≥ rd−s1+ε

n . (3.7)

We first assume that x, y ∈ [0, 1]d\B̃ (to make sure that for any n ∈ N there
exists unique Q,Q′ ∈ Dn with x ∈ Q and y ∈ Q′). There is k ∈ N such that

√
drk+1 < d(x, y) ≤

√
drk.

It follows that there exists two distinct cubes Qx, Qy ∈ Dk+1 such that x ∈ Qx
and y ∈ Qy. Therefore, for any n > k we have

P(x ∈ En, y ∈ En) = P(y ∈ En | x ∈ En)P(x ∈ En)

≤ pn
n∏

i=k+1

NiM
−d
i

= p2
np
−1
k .

(3.8)

Now we turn to the estimate of 3.6. Case 1. n ≤ N . In this case we have

P(x ∈ En, y ∈ En)

p2
n

≤ p−2
n ≤ p−2

N ≤ p−2
N (
√
d)d−s1+εd(x, y)s1−d−ε.

Case 2. n > N . In this case there will appear three subcases depending
on d(x, y).

Subcase 1. d(x, y) ≤
√
drn. In this case,

P(x ∈ En, y ∈ En) = P(y ∈ En |x ∈ En)P(x ∈ En) ≤ pn.

Combining this with the estimate (3.7) we obtain

P(x ∈ En, y ∈ En)

p2
n

≤ p−1
n ≤ rs1−d−εn

≤
√
d
d−s1+ε

d(x, y)s1−d−ε.

(3.9)
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Subcase 2. d(x, y) >
√
drN . Applying the estimate (3.8) we have

P(x ∈ En, y ∈ En)

p2
n

≤ p−1
k ≤ p−1

N

≤ p−1
N (
√
d)d−s1+εd(x, y)s1−d−ε.

(3.10)

Subcase 3.
√
drn < d(x, y) ≤

√
drN . Applying the estimates (3.7) and

(3.8), we have

P(x ∈ En, y ∈ En)

p2
n

≤ p−1
k ≤ rs1−d−εk

≤
√
d
d−s1+ε

d(x, y)s1−d−ε.

(3.11)

Let C = p−2
N

√
d
d
, then the estimate (3.6) holds for all x, y ∈ [0, 1]d\B̃.

Note that for every point x and n ∈ N there exist at most 2d cubes of Dn such
that each of these cube contains x. It follows that for any x, y ∈ [0, 1]d

P(x ∈ En, y ∈ En) ≤ 4dP(Qx ∈ En, Qy ∈ En)

whereQx, Qy are two cubes ofDn which contain x and y separately. Thus there
exists a larger constant such that the estimate (3.6) holds for all x, y ∈ [0, 1]d.
For the convenience, we denote this larger constant also by C.

Proof of Theorem 1.1 (3). By Theorem 1.1 (1), it is sufficient to prove
that almost surely dimH E ≥ s1. For any ε > 0, there exists a positive
constant C, such that Lemma 3.1 holds. Applying Lemma 3.1, Fatou’s lemma,
and Fubini’s theorem, we obtain

E
(∫ ∫

d(x, y)−s1+2εdµ(x)dµ(y)

)
≤ lim inf

k→∞
E
(∫ ∫

d(x, y)−s1+2εdµk(x)dµk(y)

)
= lim inf

k→∞
E
(∫ ∫

d(x, y)−s1+2εp−2
k 1Ek×Ek

(x, y)dxdy

)
≤ C

∫
[0,1]d

∫
[0,1]d

d(x, y)−s1+2εd(x, y)s1−d−εdxdy <∞.

(3.12)

This implies that a.s.∫ ∫
d(x, y)−s1+2εdµ(x)dµ(y) <∞. (3.13)
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Thus by applying the energy argument [7, Theorem 4.13], we have that almost
surely dimH E ≥ s1 − 2ε. By the arbitrary choice of ε, we obtain that almost
surely dimH E ≥ s1.

Remark 3.2. Note that the estimate (3.13) implies that dim(µ, x) ≥ s1 − 2ε
for µ almost all x ∈ E, for a proof see the argument in [7, Theorem 4.13].
Together with the estimate (3.12) and the arbitrary choice of ε we obtain that
for P-almost all E ∈ Ω, and µ almost every x ∈ E, we have dim(µ, x) ≥ s1. As
we claimed before in Remark 1.5, we will present a different proof in Section
5.

3.2 Almost sure packing and upper box dimensions

For every Q ∈ Dk, k ∈ N, we define the random set

Ek+1(Q) = {Q′ : Q′ ⊂ Q,Q′ ∈ Ek+1}.

Recall that Q′ ∈ Ek+1 means that Q′ ∈ Dk+1 and Q′ ⊂ Ek+1. In the following
we are going to show that the set Ek+1(Q) is fairly uniformly distributed (this
motivated the formula of the upper box dimension).

Let N∗k+1 = bN
1
d

k+1cd where bxc denotes the integer part of x. For every
Q ∈ Dk, we divide it into N∗k+1 interior disjoint closed subcubes with side
length

r∗k+1 = rk/(N
∗
k+1)

1
d , (3.14)

and denote by C(Q,N∗k+1) the collection of these subcubes. For every Q̃ ∈
C(Q,N∗k+1), define

I(Q, Q̃,Dk+1) = {Q′ ∈ Dk+1 : Q′ ⊂ Q and Q′ ∩ Q̃ 6= ∅}.

By a volume argument, we have

#I(Q, Q̃,Dk+1) ≥ Md
k+1

N∗k+1

(3.15)

where #J denotes the cardinality of a set J . and random variable

XQ = #{Q̃ ∈ C(Q,N∗k+1) : Q̃ ∩ Ek+1(Q) 6= ∅}. (3.16)

Figure 4 shows the relative position of the above geometric objects.
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r⇤k+1

Q

Ek+1(Q)

rn

1

Figure 4: A cube Q ∈ Ek, the set Ek+1(Q) consisting of the dark cubes, a

cube Q̃ ∈ C(Q,N∗k+1).

Lemma 3.3. Let Q ∈ Dk, then for every Q̃ ∈ C(Q,N∗k+1) we have

P
(
Q̃ ∩ Ek+1(Q) 6= ∅

∣∣∣Q ∈ Ek) ≥ 1/2, (3.17)

and hence
E
(
XQ

∣∣∣Q ∈ Ek) ≥ N∗k+1/2. (3.18)

Proof. Applying Lemma 2.4 for

A(Q) = {Q′ ∈ Dk+1 : Q′ ⊂ Q,Q′ ∩ Q̃ 6= ∅},
B(Q) = {Q′ ∈ Dk+1 : Q′ ⊂ Q}),

and the estimate (3.15), we obtain

P(Q̃ ∩ Ek+1(Q) 6= ∅
∣∣Q ∈ Ek)

≥ 1− exp

(
−Nk+1

Md
k+1

#I(Q, Q̃,Dk+1)

)

≥ 1− exp

(
−Nk+1

N∗k+1

)
≥ 1− e−1 ≥ 1/2.

(3.19)
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It follows that

E(XQ

∣∣Q ∈ Ek) =
∑

Q̃∈C(Q,N∗k+1)

P
(
Q̃ ∩ Ek+1(Q) 6= ∅

∣∣∣Q ∈ Ek)
≥ N∗k+1/2.

(3.20)

Thus we complete the proof.

The following proposition contains the second statement of Theorem 1.1
(4).

Proposition 3.4. Almost surely dimBE = s2.

Proof. If {Nk} is bounded then Theorem 1.1 (2) implies that dimBE = s2

for all E ∈ Ω. Furthermore 1.1 (2) clams that dimBE ≤ s2 for any E ∈ Ω.
Thus it is sufficient to prove that almost surely dimBE ≥ s2 for the case that
{Nk} is unbounded.

Suppose s2 > 0. By the definition of s2 (see (1.4)), for any 0 < ε < s2

there exists a sequence {nk}k∈N ⊂ N, n1 ≤ n2 ≤ · · · such that

Pnk+1 ≥ (rnk
/(Nnk+1)

1
d )−s2+ε. (3.21)

Observe that if {Nnk+1}k∈N is bounded, then dimBE ≥ s2 for any E ∈ Ω.
Thus we suppose that Nnk+1 ↗∞ as nk →∞, and Nn1

≥ 2d. It follows that
for all k ∈ N,

N∗nk+1 ≥ 2−dNnk+1. (3.22)

For each k ∈ N, Q ∈ Enk
, by Corollary 3.3 we have

E(XQ) ≥ N∗nk+1/2.

Furthermore, conditional on Enk
, we have that XQ and XQ′ are independent

for any two distinct cubes Q,Q′ ∈ Enk
. Thus applying Lemma 2.5, we obtain

that

P

 ∑
Q∈Enk

XQ < N∗nk+1Pnk
/8
∣∣∣Enk

 ≤ e−Pnk
/8. (3.23)

Recall that
r∗k+1 = rk/(N

∗
k+1)

1
d .

By elementary geometry, there exists a positive constant C = C(d) such that

N (E, r∗nk+1) ≥ C
∑

Q∈Dnk

XQ.
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For each k ∈ N, define the event

Ak =
(
N (E, r∗nk+1) < CN∗nk+1Pnk

/8
)
.

Combining this with the estimate (3.23), we have

P(Ak
∣∣Enk

) ≤ P(
∑

Q∈Enk

XQ < N∗nk+1Pnk
/8|Enk

)

≤ e−Pnk
/8.

(3.24)

It follows that
P(Ak) ≤ e−Pnk

/8.

Since Nnk
↗ ∞ as k → ∞, thus there exists k0 ∈ N such that Pnk

=∏k
i=1Nni ≥ nk for all k ≥ k0, and hence

∞∑
k=1

e−Pnk
/8 <∞.

Applying the Borel-Cantelli lemma, we obtain

P(

∞⋃
m=1

∞⋂
k=m

Ack) = 1,

where Ack means the complement of Ak. Thus we obtain that for almost any
ω ∈ Ω, there exists kω, such that ω ∈ Ak for all k ≥ kω. It follows that for
every k ≥ kω, we have

N (Eω, r∗nk+1) ≥ CN∗nk+1Pnk
/8.

Since N∗nk+1 ≥ 2−dNnk+1 and r∗nk+1 ≥ rnk
/(Nnk+1)

1
d , we have

logN (Eω, r∗nk+1)

− log r∗nk+1

≥ logCN∗nk+1Pnk
/8

− log rnk
/(Nnk+1)

1
d

holds for all k ≥ kω, and hence by the estimate (3.21) we have dimBE
ω ≥

s2 − ε. By the arbitrary choice of ε we finish the proof.

Now we intend to show that almost surely dimP E = s2.

Proof of theorem 1.1 (4). Recall that E =
⋂
n∈NEn. Let {xn}n≥1 be

a dense subset of [0, 1]d, and Bn := B(xn, 1/n) be an open ball. For every
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n ∈ N, by the homogeneous structure of our random Cantor sets, we obtain
that almost surely on E ∩Bn 6= ∅,

dimB(E ∩Bn) = s2.

It follows that almost surely for any Bn (here the order of ‘almost surely’ and
‘for every n ∈ N’ is different from above) with E ∩Bn 6= ∅,

dimB(E ∩Bn) = s2.

Observe that for any E ∈ Ω and any open set U with E ∩ U 6= ∅, there there
is a ball Bn for some n ∈ N such that

Bn ⊂ U, Bn ∩ E 6= ∅.
Hence for almost all E ∈ Ω and any open set U ∩ E 6= ∅,

dimB(E ∩ U) ≥ s2.

Applying Lemma 2.2, we obtain that almost surely dimP E ≥ s2. By the fact
that dimP E ≤ dimBE and the Proposition 3.4, we complete the proof.

3.3 Almost sure Assouad dimension

Proof of theorem 1.1 (5). Assume first that {Nk} is bounded. Let N =
supk≥1Nk. By the definition of s3 we have that for any ε > 0 there exists k0

such that for any k ≥ k0,

sup
n

logP (n, n+ k)

− log r(n, n+ k)
< s3 + ε. (3.25)

Let E ∈ Ω, for any 0 < r < R ≤
√
d, there exist n, k, such that

rn+1 < R ≤ rn, rn+k+1 < r ≤ rn+k. (3.26)

Case 1. k < k0. For any x ∈ E we have

N (B(x,R) ∩ E, r) ≤ 3dNk0+1.

Case 2. k ≥ k0. For any x ∈ E, by estimates (3.25) and (3.26) we obtain

N (B(x,R) ∩ E, r) ≤ 3d
n+k+1∏
i=n+1

Ni

≤ 3dNn+1Nn+k+1

(
rn+1

rn+k

)s3+ε

≤ 3dN2

(
R

r

)s3+ε

.

(3.27)
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Thus we have dimAE ≤ s3 + ε. By the arbitrary choice of ε we obtain
dimAE ≤ s3.

For the lower bound. For any ε > 0, there exists ki ↗ ∞ as i → ∞, such
that for every i

sup
n

logP (n, n+ ki)

− log r(n, n+ ki)
> s3 − ε, (3.28)

and so there exists ni such that

logP (ni, ni + ki)

− log r(ni, ni + ki)
> s3 − ε. (3.29)

It follows that

N (B(x, rni
) ∩ E, rni+ki) ≥ CP (ni, ni + ki)

≥ C
(

rni

rni+ki

)s3−ε (3.30)

where C = C(d) is a positive constant. Applying Lemma 2.3 and the estimate

rni

rni+ki

≥ 2ki →∞ as i→∞,

we obtain that dimAE ≥ s3−ε. By the arbitrary choice of ε we have dimAE ≥
s3. Thus we complete the proof in the case when {Nk} is bounded.

Now suppose {Nk} is unbounded. Since dimAE ≤ d holds for any E ⊂
[0, 1]d, it is sufficient to show that almost surely dimAE ≥ d. Let

{nk}k∈N ⊂ N with Nnk+1 ↗∞ as k →∞.

For every Q ∈ Dnk
, define the event

A = (XQ > N∗nk+1/4).

Recall the random variable XQ defined in (3.16). Thus

E
(
XQ

∣∣∣Q ∈ Enk

)
= E

(
XQ1A

∣∣∣Q ∈ Enk

)
+ E

(
XQ1Ω\A

∣∣∣Q ∈ Enk

)
≤ N∗nk+1P

(
A
∣∣∣Q ∈ Ek)+N∗nk+1/4.

(3.31)

Combining this with Corollary 3.3, we have

P
(
A
∣∣∣Q ∈ Enk

)
> 1/4. (3.32)
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For every k ∈ N, define the event

Ak =
(

there exists Q ∈ Enk
such that XQ > N∗nk+1/4

)
.

Conditional on Enk
, recall that the cubes form Enk+1 are chosen indepen-

dently inside each cube of Enk
. Thus the random variables XQ and XQ′

are independent for any two distinct cubes Q,Q′ of Enk
. Together with the

estimate (3.32) we have

P
(
Ak

∣∣∣Enk

)
≥ 1−

(
3

4

)Pnk

.

It follows that for every k ∈ N,

P(Ak) ≥ 1−
(

3

4

)Pnk

Thus for any m ≥ 1, we have P(∪∞k=mAk) = 1, and hence

P

( ∞⋂
m=1

∞⋃
k=m

Ak

)
= 1. (3.33)

It follows that for almost all ω ∈ Ω, there exists kj = kj(ω) ↗ ∞, such that
ω ∈ Akj for all j ∈ N. Combining this with Lemma 2.3, we obtain that almost
surely dimAE ≥ d. Thus we complete the proof.

4 Typical dimensions

For each cube Q, let zQ ∈ Q be the nearest point of Q to zero vector. For
each n ∈ N let

En = {all the possible En}.

Proof of Theorem 1.3 (1). Theorem 1.1 (1) claims that any element of
E ∈ Ω has dimH E ≥ t∗. In the following we intend to show that a typical set
E ∈ Ω has dimBE ≤ t∗.

For each n ∈ N, let εn = 2
√
drn+1N

1/d
n+1. For each En ∈ En, we choose an

object γ = γ(En) ∈ Ω with

γ ⊂ En, and γ ⊂
⋃

Q∈En

B(zQ, εn).
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Let Γn be the collection of these γ(En), En ∈ En. Observe that for any infinite
set A ⊂ N, the set

{γ : γ ∈ Γn, n ∈ A}
is a countable dense subset of Ω.

By the definition of t∗ there is a subsequence I = {nk}k∈N ⊂ N with
nk ↗∞ as k →∞ such that

t∗ = lim
k→∞

logPnk

− log rnk+1N
1/d
nk+1

. (4.1)

Let Im = {nk ∈ I : nk ≥ m} and

G =
∞⋂
m=1

⋃
nk∈Im

⋃
γ∈Γnk

UdH (γ, rnk+1

√
d),

where UdH (γ, `) is an open set of (Ω, dH) with center γ and radius `. Since
{γ : γ ∈ Γnk

, k ∈ N} is a countable dense subset in Ω, the set⋃
nk∈Im

⋃
γ∈Γnk

UdH (γ, rnk+1

√
d),

is a dense open set in Ω. It follows that the complement of G is of first category.
Let E ∈ G, then there is subsequence {qk}k∈N ⊂ {nk}k∈N with qk ↗∞ as

k →∞ and γqk ∈ Γqk such that

E ∈
∞⋂
k=1

UdH (γqk , rqk+1

√
d).

Observe that
N (E, 2εqk) ≤ Pqk .

Combining this with the definition of εqk and the formula (4.1), we obtain

dimBE ≤ lim inf
k→∞

logPqk
− log 2εqk

= t∗.

Thus we complete the proof.

Remark 4.1. From the construction of γqk , it follows that for any set E ∈
UdH (γqk , rqk+1

√
d), there exists a constant C > 0, such that for any x ∈

E, k ∈ N,
µ(B(x, 2εnk

)) ≥ CP−1
nk
,

and hence dim(µ, x) ≤ t∗.
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Proof of Theorem 1.3 (2). Theorem 1.1 (2) claims that any element E ∈
Ω has dimBE ≤ s2. In the following we intend to show that a typical set
E ∈ Ω has dimP E ≥ s2.

For each n ∈ N, recall that r∗n+1 = rn/(N
∗
n+1)1/d. For each En ∈ En we

intend to choose a set γ = γ(En) depending on the relative size of r∗n+1 and
rn+1.

Case 1. r∗n+1 < 100
√
drn+1. In this case for each En we choose a set γ

with

γ ∈ Ω, γ ⊂ En, γ ∩Q 6= ∅ for any Q ∈ En.

Case 2. r∗n+1 ≥ 100
√
drn+1. For each En we choose a set γ ⊂ En with

γ ∈ Ω, γ ⊂
⋃

Q∈C(Q,N∗k+1)

B(zQ, 5
√
drn+1).

The notation C(Q,N∗k+1) is given at the beginning of Subsection 3.2. In this
case, we may think γ as those En+1 which the cubes of En+1 is well separated.

Let Γn be the collection of these γ(En). Observe that for any infinite set
A ⊂ N, the set

{γ : γ ∈ Γn, n ∈ A}

is a countable dense subset of Ω.

By the definition of s2 there is a subsequence I = {nk}k∈N ⊂ N with
nk ↗∞ as k →∞ such that

s2 = lim
k→∞

logPnk+1

− log rnk
+ 1

d logNnk+1

. (4.2)

Let Im = {nk ∈ I : nk ≥ m} and

G =

∞⋂
m=1

⋃
nk∈Im

⋃
γ∈Γnk

UdH (γ, rnk+1

√
d). (4.3)

Applying the same argument as in the proof of Theorem 1.3 (1), we obtain
that the complement of G is of first category.

Let E ∈ G, then there is subsequence {qk}k∈N ⊂ {nk}k∈N with qk ↗∞ as
k →∞ and γqk ∈ Γqk such that

E ∈
∞⋂
k=1

UdH (γqk , rqk+1

√
d).
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Let µ be the natural measure on E. We are going to present that there exists
a positive constant C = C(d) such that for any x ∈ E ∈ UdH (γqk , rqk+1

√
d),

µ(B(x, r∗qk+1/10)) ≤ CP−1
qk+1. (4.4)

For the above Case 1, we have

µ(B(x, r∗qk+1/10)) ≤ µ(B(x, 10
√
drqk+1)) ≤ C(d)P−1

qk+1.

Now we turn to the Case 2. Since for any x ∈ E ∈ UdH (γqk , rqk+1

√
d) there

exists at most one cube of Eqk+1 intersects B(x, r∗qk+1/10), we have

µ(B(x, r∗qk+1/10)) ≤ P−1
qk+1.

Thus we obtain the estimate (4.4). Together with the formula (4.2), we have

dim(µ, x) ≥ lim sup
k→∞

logC−1Pqk+1

− log r∗qk+1/10
≥ s2.

Since this holds for any E ∈ G and x ∈ E, by Lemma 2.1 we obtain that any
E ∈ G has dimP E ≥ s2. Thus we complete the proof.

Note that the above proof also implies that a typical E ∈ Ω has full Assouad
dimension. We show an outline for the proof.

Proof of Theorem 1.3 (3). Assume {nk} ⊂ N with Nnk+1 ↗ ∞ as k →
∞. Let G be the set in (4.3). Then the structure of γ ∈ Γnk

and Lemma 2.3
imply that any element of G has full Assouad dimension. Thus we complete
the proof.

5 Local dimensions of natural measures

Proof of Theorem 1.4 (1). For every x ∈ E and k ∈ N, we have

µ(B(x,
√
drk)) ≥ P−1

k ,

and hence

dim(µ, x) ≤ lim inf
k→∞

logµ(B(x,
√
drk))

log
√
drk

≤ s1.

On the other hand, it follows immediately from the proof of Theorem 1.1
(1) that

dim(µ, x) ≥ t∗ for all x ∈ E, E ∈ Ω.

Thus we complete the proof.
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Proof of Theorem 1.4 (2). For any x ∈ E, 0 < r < 1, there exists k such
that

√
drk+1 < r ≤

√
drk. Observe that

µ(B(x, r)) ≥ P−1
k+1,

and
logµ(B(x, r))

log r
≤ logPk+1

− log
√
drk

.

Therefore

dim(µ, x) ≤ lim sup
k→∞

logPk+1

− log rk
= s∗∗.

On the other hand, for any k ∈ N,

µ(B(x, rk)) ≤ 3dP−1
k ,

and hence

dim(µ, x) ≥ lim sup
k→∞

logPk
− log rk

= s∗.

Thus we complete the proof.

5.1 Almost sure lower local dimension

We start from the following Lemma.

Lemma 5.1. For any 0 < s < s1, there exists a positive constant C such that
for any fixed x ∈ [0, 1]d,

E
(
µn (B(x, r))

∣∣x ∈ En) ≤ Crs, 0 < r < 1, n ∈ N. (5.1)

Furthermore we have

E
(∫

µ (B(x, r)) dµ(x)

)
≤ Crs. (5.2)

Proof. For 0 < s < s1, by the definition of s1, there exists N such that for
all n ≥ N , Pn ≥ r−sn . For 0 < r < 1, there exists k such that rk+1 ≤ r < rk.

Case 1. n < N . In this case we have

E(µn(B(x, r))|x ∈ En)

≤ E(µn(B(x, r)))P(x ∈ En)−1

≤ 2drdp−1
n ≤ 2dp−1

N rs,

the last inequality holds by pn > pN and 0 < r < 1.
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Case 2. n ≥ N . There will appear three subcases depending on the size of
r.

Subcase 1. r > rN
√
d. In this case, we have

E(µn(B(x, r))
∣∣x ∈ En) ≤ 1

= r−srs ≤ (rN
√
d)−srs.

Subcase 2. r ≤ rn
√
d. In this case we have

µn(B(x, r)) =

∫
1En∩B(x,r)(y)p−1

n dy

≤ 2drdp−1
n ≤ 2drdrs−dn

≤ 2d(
√
d)d−srs.

(5.3)

Since this holds for any n ∈ N, we have

E
(
µn (B(x, r))

∣∣x ∈ En) ≤ 2d(
√
d)d−srs.

Subcase 3.
√
drn < r ≤ rN

√
d. Let I = I(B(x, r), k + 1) be the collection

of cubes of Dk+1 which intersects B(x, r). By a volume argument there exists
a positive constant C1 such that

#I ≤ C1

(
r

rk+1

)d
.

Note that for Q ∈ Dk+1 and x /∈ Q we have

P(Q ⊂ Ek+1, x ∈ En) ≤ Nk+1

Md
k+1

pn,

and hence

P(Q ⊂ Ek+1|x ∈ En) ≤ Nk+1

Md
k+1

.

Combining these with Pk ≥ r−sk , we have

E(µn(B(x, r))
∣∣x ∈ En) ≤

∑
Q∈I

E(µn(Q)
∣∣x ∈ En)

=
∑
Q∈I
x/∈Q

E(µn(Q)
∣∣x ∈ En) +

∑
Q∈I
x∈Q

E(µn(Q)
∣∣x ∈ En)

≤ #I Nk+1

Md
k+1

P−1
k+1 + 2dP−1

k+1

≤ C1(
√
d)d−srs + 2d(

√
d)−srs

≤ Crs.

(5.4)



A Class of Random Cantor Sets 105

We fix a large constant C such that all the above estimates hold. Thus we
obtain the estimate (5.1).

Note that for any open set O ⊂ [0, 1]d × [0, 1]d, we have (see [25, Chapter
1])

µ× µ(O) ≤ lim inf
n→∞

µn × µn(O).

It follows that (let B(x, r) be an open ball)

∫
µ(B(x, r))dµ(x)

=

∫ ∫
1{(x,y):|x−y|<r}dµ(x)dµ(y)

≤ lim inf
n→∞

∫ ∫
1{(x,y):|x−y|<r}dµn(x)dµn(y)

= lim inf
n→∞

∫
µn(B(x, r))dµn(x).

(5.5)

Applying Fatou’s lemma and (5.1), we have

E
(∫

µ(B(x, r))dµ(x)

)
≤ lim inf

n→∞
E
(∫

µn(B(x, r))dµn(x)

)
= lim inf

n→∞

∫
[0,1]d

p−1
n E (µn (B (x, r)) 1En

(x)) dx

= lim inf
n→∞

∫
[0,1]d

E
(
µn (B (x, r))

∣∣x ∈ En) dx
≤ Crs.

(5.6)

Thus we finish the proof.

Proof of Theorem 1.4 (3). For the lower bound, let ε > 0, s > 0 with
s+ ε < s1. Note that for this s, by Lemma 5.1 there is a constant C such that
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the estimate (5.2) holds. Let `j = 2−j for j ∈ N. Then

E

∫ ∞∑
j=1

`−sj µ(B(x, `j))dµ(x)


=

∞∑
j=1

`−sj E
(∫

µ(B(x, `j))dµ(x)

)

≤ C
∞∑
j=1

`−sj `s+εj <∞

. (5.7)

Thus we obtain that a.s.∫ ∞∑
j=1

`−sj µ(B(x, `j))dµ(x) <∞,

and hence for µ-a.e. x

∞∑
j=1

`−sj µ(B(x, `j)) <∞.

Combining this with our choice `j = 2−j , we obtain dim(µ, x) ≥ s. Since this
holds for any s < s1, we have a.s. dim(µ, x) ≥ s1 for µ-a.e. x. Thus we finish
the proof.

5.2 Almost sure upper local dimension

Let `k = rk/N
1
d

k+1, k ∈ N. Applying the similar arguments to Lemma 5.1, we
have the following result.

Lemma 5.2. For any 0 < s < s2, there exists C and a subsequence {`kj}j≥1 ⊂
{`k}k≥1, such that

E
(
µn(B(x, `kj ))

∣∣x ∈ En) ≤ C`skj , j ∈ N. (5.8)

Furthermore we have

E
(∫

µ(B(x, `kj ))dµ(x)

)
≤ C`skj , j ∈ N. (5.9)

Proof sketch. For any s < s2, there exists a subsequence {`kj}j≥1 ⊂
{`k}k≥1 such that Pkj ≥ `−skj for all j ∈ N.
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For each j ∈ N, let `kj be the r in the proof of Lemma 5.1. By the choice
of {`kj}j≥1, it is sufficient to consider Subcase 2 and Subcase 3 in the proof

of Lemma 5.1. Moreover we use the estimate Pkj ≥ `−skj at the estimates (5.3)

and (5.4). Thus we complete the proof.

Proof of Theorem 1.4 (4). Lemma 2.1 and Theorem 1.1 (2) imply that
for any E ∈ Ω,

dim(µ, x) ≤ s2

holds for µ-almost every x ∈ E.
For the lower bound. Suppose s2 > 0. Let ε > 0, s > 0 with s + ε < s2.

Applying Lemma 5.2 and the same argument as in the estimate (5.7), we
obtain

E
(∫ ∞∑

j=1

`−skj µ(B(x, `kj ))dµ(x)
)

≤ C
∞∑
j=1

`εkj ≤ C
∞∑
j=1

2−kjε

<∞

. (5.10)

By the same argument as in the proof of Theorem 1.4 (3), we complete the
proof.

6 Hitting probabilities

In this section, we study the hitting probabilities of random Cantor sets in
Ω(M,N). Note that the Hausdorff dimension of any E ∈ Ω is logN/ logM =:
s. The methods we use in the following proof are mainly from [6, Chapter 8],
[32] (first-Moment and second-Moment methods) and [35].

Before we give the proof, we first show the following heuristic calculation.
For F ⊂ [0, 1]d, define

Fn = {Q ∈ Dn : Q ∩ F 6= ∅}.

Suppose #Fn roughly equals Mnα. We simply denote it as #Fn ∼ Mnα.
Observe that

E(#(Fn ∩ En)) ∼Mnα

(
N

Md

)n
= M (α+s−d)n.

Therefore Theorem 1.6 should follows from the relationships between α and
d− s.
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Proof of Theorem 1.6 (1). Recall that dimH F = α and α + s < d. Ap-
plying the equivalent definition of Hausdorff dimension ([7, Chapter 2.4]), we
have that for any ε > 0, there exists a sequence of interior disjoint cubes
{Qi}i∈N ⊂ D, such that F ⊂ ⋃∞i=1Qi and

∞∑
i=1

|Qi|d−s < ε. (6.1)

Recall that |Q| is the diameter of Q. For any Q ∈ Dn, n ∈ N, we have

P(Q ∩ E 6= ∅) ≤ P( there exists Q′ ∈ En with Q′ ∩Q 6= ∅)
≤ 3d(NM−d)n = 3dM (s−d)n ≤ 3d|Q|d−s.

(6.2)

Here we used the condition N = Ms. Observe that

(E ∩ F 6= ∅) ⊂
∞⋃
i=1

(E ∩Qi 6= ∅).

Combining this with the estimates (6.1) and (6.2), we obtain

P(E ∩ F 6=∅) ≤
∞∑
i=1

P(E ∩Qi 6= ∅)

≤ 3d
∞∑
i=1

|Qi|d−s < 3dε.

(6.3)

We complete the proof by the arbitrary choice of ε.

Proof of Theorem 1.6 (2). Let ε > 0 such that 0 < 2ε < α+ s− d. Since
dimH F = α, by [7, Theorem 4.10] there exists a compact subset K ⊂ F
such that dimH K > α− ε. Furthermore, by [7, Theorem 4.13] there exists a
probability measure λ on K such that for all 0 < β < α− ε,

Eβ(λ) :=

∫ ∫
d(x, y)−βdλ(x)dλ(y) <∞. (6.4)

For each n ∈ N, defining

Kn = {Q ∈ D∗n : Q ∩K 6= ∅}

where D∗n denotes the modification of Dn such that the elements of D∗n form
a partition of [0, 1]d.
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Let
Kn = {Q ∈ D∗n : Q ∩K 6= ∅}

(We may consider Kn as a subset of [0, 1]d for convenience of notation). For
ω ∈ Ω, define the random set

Kω
n = {Q ∈ Kn : Q ⊂ Eωn}.

Let p := N/Md, define the random measure

νωn = p−nλ
∣∣
Kω

n
(6.5)

where λ
∣∣
Kω

n
is the measure λ restricted to Kω

n . Let

Kω =

∞⋂
n=1

Kω
n .

Since K is a compact set, we obtain that for any ω,

Kω ⊂ K ∩ Eω ⊂ F. (6.6)

In the following we intend to show that νω(Kω) > 0 with positive probability,
where νω is the weak limit measure of νωn .

The random sets {Kω
m}1≤m≤n give rise to an increasing filtration of σ-

algebras Fn. For any Q ∈ Dn, we have

E(λ(Q ∩Kn+1)
∣∣Q ∈ Kn) = pλ(Q) = pλ(Q ∩Kn)

and
E(λ(Q ∩Kn+1)

∣∣Q /∈ Kn) = 0.

Therefore E(λ(Q ∩Kω
n+1)

∣∣Fn) = pλ(Q ∩Kω
n ). In fact this estimates holds for

any Q ∈ D∗k, k ∈ N. It follows that

E(νωn+1(Q)
∣∣Fn) = p−n−1E(λ(Q ∩Kω

n+1)
∣∣Fn)

= p−nλn(Q ∩Kω
n ) = νωn (Q).

Thus the sequence {νn(Q),Fn}n∈N is a martingale sequence. Applying the
same argument as in [6, Lemma 8.7], we see that almost surely νωn weakly con-
verges to a measure νω. Furthermore, applying Lemma 3.1 and the condition
(6.4) we obtain

E((νn([0, 1]d))2) = p−2nE(λ(Kn)2)

= p−2nE(

∫ ∫
1Kn×Kn

(x, y)dλ(x)dλ(y))

≤ C
∫ ∫

d(x, y)s−d−εdλ(x)dλ(y) <∞.
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It means that {νn([0, 1]d)}n∈N is an L2-bounded martingale. Thus by [6,
Corollary 8.4] we obtain that

E(ν([0, 1]d)) = E(ν1([0, 1]d)) = 1,

and hence νω([0, 1]d) > 0 with positive probability. Note that for any ω ∈
Ω, we have νω([0, 1]\Kω) = 0. It follows that νω(Kω) > 0 with positive
probability. By the inclusion (6.6) we complete the proof.

Proof of Theorem 1.6 (3). Let ε > 0 such that 0 < 2ε < α + s − d and
t = α+ s− d− 2ε. We use the same notations as in the previous proof.

Applying Fatou’s lemma, Fubini theorem, and Lemma 3.1, we obtain

E
(∫ ∫

d(x, y)−tdν(x)dν(y)

)
≤ lim inf

n→∞
E
(∫ ∫

d(x, y)−tdνn(x)dνn(y)

)
= lim inf

n→∞
E
(∫ ∫

d(x, y)tp−2n1Kn×Kn
(x, y)dλ(x)dλ(y)

)
≤ C

∫ ∫
d(x, y)−td(x, y)s−d−εdλ(x)dλ(y)

≤ C
∫ ∫

d(x, y)−α+εdλ(x)dλ(y) <∞.

. (6.7)

The last inequality holds by the choice of λ, see estimate (6.4). Recall that
νω(Kω) > 0 with positive probability. As before this implies that

dimH(Kω) ≥ α− ε

with positive probability. By the arbitrary choice of ε, we complete the proof.

Remark 6.1. Applying the similar argument to [32, Chapter 7], we show a
different proof from above for Theorem 1.6 (2) in the following.

Proof Sketch. For any ε > 0, there exists a compact subset K ⊂ F , such
that dimH K = α− ε. We choose small ε satisfies

α+ s > d+ 2ε. (6.8)

Recalling E =
⋂∞
n=1En. Since K is a compact set, we have

(E ∩K 6= ∅) =

∞⋂
n=1

(En ∩K 6= ∅).
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Observe that the events (En ∩K 6= ∅) is monotone decrease, hence we have

P(E ∩K 6= ∅) = lim
n→∞

P(En ∩K 6= ∅). (6.9)

For each n ∈ N, defining

Kn = {Q ∈ D∗n : Q ∩K 6= ∅}
where D∗n denotes the modification of Dn such that the elements of D∗n form
a partition of [0, 1]d.

Let λ be a probability measure on K such that for any 0 < β < α− ε,

Eβ(λ) :=

∫ ∫
d(x, y)−βdλ(x)dλ(y) <∞. (6.10)

Let p = N/Md, defining

Yn =
∑
Q∈Kn

p−n1En(Q)λ(Q), n ∈ N

where 1En
(Q) = 1 when Q ⊂ En, otherwise equal zero. For any Q ∈ Kn, we

have P(Q ⊂ En) = pn. It follows that

E(Yn) = λ(Kn) = 1, n ∈ N. (6.11)

Note that for any n ∈ N,

(Yn > 0) ⊂ (En ∩K 6= ∅). (6.12)

Observe that there exists a positive constant C1 = C1(d) such that for any
Q,Q′ ∈ Kn, n ∈ N, and x ∈ Q, x′ ∈ Q′, we have

P(Q ⊂ En, Q′ ⊂ En) ≤ C1P(x ∈ En, x′ ∈ En).

Note that the equality holds when x and x′ are interior point of Q and Q′

respectively. Applying Lemma 3.1, the conditions (6.8) and (6.10), we obtain

E(Y 2
n ) =

∑
Q∈Kn

∑
Q′∈Kn

p−2nλ(Q)λ(Q′)P(Q ⊂ En, Q′ ⊂ En)

≤ C1

∑
Q∈Kn

∑
Q′∈Kn

p−2n

∫
Q

∫
Q′

P(x ∈ En, x′ ∈ En)dλ(x)dλ(x′)

≤ C1C2

∑
Q∈Kn

∑
Q′∈Kn

∫
Q

∫
Q′
d(x, x′)s−d−εdλ(x)dλ(x′)

= C1C2Ed−s+ε(λ) <∞.
(6.13)
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Here the constant C2 comes from Lemma 3.1.
By the Cauchy-Schwarz inequality, we obtain

E(Yn)2 = E(Yn1(Yn>0))
2 ≤ E(Y 2

n )P(Yn > 0),

and hence (Paley-Zygmund inequality)

P(Yn > 0) ≥ E(Yn)2

E(Y 2
n )

. (6.14)

Combining this with estimates (6.11) and (6.13), we obtain

P(Yn > 0) ≥ E(Yn)2

E(Y 2
n )
≥ 1

C1C2Ed−s+ε(λ)
:= δ > 0.

Applying the estimates (6.9) and (6.12), we obtain

P(E ∩ F 6= ∅) ≥ P(E ∩K 6= ∅)
= lim
n→∞

P(En ∩K 6= ∅)

≥ lim inf
n→∞

P(Yn > 0) ≥ δ.

Thus we complete the proof.

7 Further results and questions

7.1 Some examples for exceptional sets

Here we present some examples of exceptional sets for the almost sure type
results in the case d = 1 (i.e. any element of Ω is a subset of [0, 1]). For
{nk}k≥1 ⊂ N, we consider the space Ω = Ω(3nk , 2nk). In fact our examples will
always look like Ω(3nk , 2nk), but the sequences {nk} are different in different
examples. It is clear that for any {nk}k≥1 ⊂ N the classic Cantor ternary set
C ∈ Ω, and it is well known that

dimH C = dimA C =
log 2

log 3
. (7.1)

For convenience, let sk =
∑k
j=1 nj .

Example 7.1. Let nk/sk → 1 as k → ∞, then there exists E ∈ Ω such that
dimBE = 0.
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Proof. Note that for any {nk}k≥1 ⊂ N, Theorem 1.1 (3) claims that almost
surely

dimH E = dimBE =
log 2

log 3
.

While Theorem 1.3 (1) implies that for a typical E ∈ Ω, dimB E = t∗ = 0.
However, we show a concrete example in the following for clearness. For n1, we
divide [0, 1] into 3n1 interior disjoint 3n1-adic closed intervals and choose 2n1

closed intervals of them from the left part of [0, 1]. They are interior disjoint
and their union is [0, 2n13−n1 ]. Let E1 be the collection of these 2n1 intervals.
Given Ek, the collection of 2sk closed intervals with the same length 3−sk .
For every interval I ∈ Ek, we divide it into 3nk+1 interior disjoint 3sk -adic
closed intervals and choose 2nk+1 closed intervals of them from the left part
of I (see Figure 5), and let Ek+1 be the union of the chosen closed intervals.
Let E =

⋂
k≥1Ek. Note that nk/sk → 1 implies that sk/nk+1 → 0. For every

k ∈ N, we have

N(E, rk+1Nk+1) ≤ Pk,

and hence
logPk

− log rk+1Nk+1
=

sk log 2

sk log 3 + nk+1 log(3/2)
→ 0.

It follows that dimBE = 0. Thus we complete the proof.

Example 7.2. Let nk/sk → 1 as k →∞, then almost surely

dimP E = dimBE = 1,

and hence the Cantor set is an exceptional set for Theorem 1.1 (4).

Proof. By a straight calculation, we have

logPk+1

− log(rk/Nk+1)
=

sk+1 log 2

sk log 3 + nk+1 log 2
→ 1 as k →∞.

The claim follows by Theorem 1.1 (4) and (7.1).

Example 7.3. Let nk →∞. Then Theorem 1.1 (5) claims that almost surely
dimAE = 1. Thus the Cantor set C is an exceptional set.
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rk+1Nk+1

I 2 Ek

1

Figure 5: There are 8 subintervals of I which belong to Ek+1, and all of them
accumulate at the left part of I. We can think this as the one dimensional
version of Figure 3.

7.2 Typical local dimension

Recall that for any E ∈ Ω, there is a natural measure µ on E. We can also
study the typical local dimensions for these natural measures.

Proposition 7.4. (1) For a typical E ∈ Ω, and all x ∈ E, we have

dim(µ, x) = t∗.

(2) For a typical E ∈ Ω, and all x ∈ E, we have

dim(µ, x) ≥ s2.

Proof. The claim (1) follows from the Remark 4.1 and the proof of Theorem
1.1 (1). The claim (2) follows immediately from the proof of the Theorem 1.3
(2).

We do not know whether we can obtain equality in the above claim (2).

7.3 Normal numbers

It is clear that the Cantor ternary set does not contain any normal numbers,
but things are different when we add randomness. We have the following result
for our random Cantor sets under the natural measure µ. For the definition
of normal numbers and further results, see [2].

Proposition 7.5. Almost surely for E ∈ Ω, we have that µ-almost all x ∈ E
is a normal number.

This follows by Borel’s normal numbers theorem and the following Lemma.
Recall that Borel’s normal number theorem claims that almost every (with
respect to Lebesgue measure) real numbers are normal. The following Lemma
(observation) is due to Pablo Shmerkin.

Lemma 7.6. Let F ⊂ [0, 1]d with L(F ) = 0. Then almost surely µ(F ) = 0.
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Proof. Let ε > 0, then there is an open set U ⊃ F with L(U) < ε. Note that
µ(U) ≤ lim infn→∞ µn(U), see [25, Theorem 1.24]. Applying Fubini’s theorem
we obtain

E(µn(U)) = E(

∫
1(U∩En)(x)p−1

n dx) = L(U).

Combining these with Fatou’s lemma, we have

E(µ(F )) ≤ E(µ(U)) ≤ lim inf
n→∞

E(µn(U)) ≤ L(U) < ε.

By the arbitrary choice of ε, we finish the proof.

7.4 Tube null sets

A set E ⊂ Rd(d ≥ 2) is called tube null if for any ε > 0, there exist countably
many tubes {Ti} covering E and

∑
i w(Ti)

d−1 < ε. Here a tube T with width
w = w(T ) > 0 is the w/2- neighborhood of some line in Rd. We refer to [3]
for the background and more details on tube null sets. In [34], the following
result is proved.

Proposition 7.7. If supk∈NMk < ∞ and the almost sure Hausdorff dimen-
sion is larger than d− 1, then almost surely E is not tube null.

It is natural to ask that how about the case supk∈NMk = ∞. Another
interesting question is that what will happen if there is no randomness. For
instance, what happens for the self-similar sets of Ω(M,N), that is the ele-
ments of Ω(M,N) we take the same position for the chosen subcubes in every
step during our construction. For the self-similar sets, see [7, Chapter 9].

Question 7.8. Is every self-similar set of Ω(M,N) tube null (exclude the
trivial one with N = Md)?

Note that the classical Marstrand-Mattila projection theorem (see e.g [7,
25]) implies that any set E ⊂ Rd with dimH E < d − 1 is tube null, see [3,
Proposition 7]. Thus it is sufficient to consider the self-similar set of Ω(M,N)
with Hausdorff dimension larger or equal d− 1 for above question.

We can also consider which kind of self-similar set or self-affine sets are
tube null. In [15], the author proved that the Koch snowflake curve is tube
null. In fact we can apply the similar arguments to [15] to obtain that the
Sierpiński triangle is tube null also, we omit the details here. For self-affine
sets and Bedford-McMullen carpets, see [7, Chapter 9].

Question 7.9. Is every Bedford-McMullen carpet tube null (exclude the trivial
carpet which is the unit cube)?
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7.5 Lower dimension

The lower dimension can be considered as the dual of Assouad dimension. It
is defined as follows:

dimLE = sup
{
s ≥ 0 : ∃ C > 0 s.t. ∀ 0 < r < R <

√
d,

inf
x∈E
N (E ∩B(x,R), r) ≥ C (R/r)

s
}
.

The lower dimension was introduced by Larman, see [20]. For the recent
works on the Lower dimension, we refer to [11] and references therein. For our
random Cantor sets, if {Nk} is bounded then we have the dual result for the
lower dimension.

Proposition 7.10. If {Nk} is bound, then for any E ∈ Ω we have

dimLE = lim inf
k→∞

inf
n∈N

logP (n, n+ k)

− log r(n, n+ k)
.

Proof Sketch. If {Mn} is bound, then we obtain the result by the similar
argument as in the proof for Assouad dimension.

For the case {Mn} is unbound. Observe that any set E ∈ Ω has lower
dimension zero. Thus it is sufficient to show that the formula also give the
zero value. This follows from the fact that for any k ∈ N,

inf
n∈N

logP (n, n+ k)

− log r(n, n+ k)
= 0.

Thus we complete the proof.

We do not know the general result for the lower dimension of these random
Cantor sets when {Nk} is unbound. We show two examples in the following
with special sequence Mk, Nk.

Example 7.11. If there exists a subsequence {nk} ⊂ N such that Mnk
↗

∞ and lim infnk→∞
logNnk

logMnk
= 0, then any element of Ω(Mn, Nn) has lower

dimension zero.

Proof. Let E ∈ Ω. For any ε > 0, there exists N such that nk ≥ N implies
logNnk

/ logMnk
< ε. Note that there exists C > 0 which depends on d only

such that for any x ∈ E,

N (E ∩B(x, rnk−1), rnk
)

≤ CNnk
≤ CMε

nk
= C

(
rnk−1

rnk

)ε
.
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By the condition that Mnk
↗ ∞, we obtain that dimLE ≤ ε, and hence

dimLE = 0 by the arbitrary choice of ε.

This example responds an interesting fact of lower dimension that is if a
set E has isolate point then E has lower dimension zero.

Example 7.12. Let Mn = 2n and Nn = 2nd − 1. Then any element of
Ω(Mn, Nn) has lower dimension d.

Proof Sketch. Let E ∈ Ω. Note that there exist positive constants C1, C2

such that for any x ∈ E, 0 < R <
√
d,

C1R
d ≤ L(E ∩B(x,R)) ≤ C2R

d.

Hence there exists C3 such that for any x ∈ E, 0 < r < R <
√
d,

N (E ∩B(x,R), r) ≥ C3

(
R

r

)d
.

Thus the claim follows by the fact that any set of Rd has lower dimension less
or equal than d.
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