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A CLASS OF RANDOM CANTOR SETS

Abstract

In this paper we study a class of random Cantor sets. We determine
their almost sure Hausdorff, packing, box, and Assouad dimensions.
From a topological point of view, we also compute their typical dimen-
sions in the sense of Baire category. For the natural random measures
on these random Cantor sets, we consider their almost sure lower and
upper local dimensions. In the end we study the hitting probabilities of
a special subclass of these random Cantor sets.

1 Introduction

In this paper we consider a class of random Cantor sets. This consists of a
sample space €2 and a probability measure P. The sample space {2 contains a
family of compact subsets of [0, 1]¢, furthermore  is a compact metric space
endowed with the Hausdorff metric. We will compute their almost sure and
typical dimensions. For each object of €2, we put a natural measure on this
object. We also calculate the local dimensions of these natural measures. In
the end, we study the hitting probabilities of a special subclass of these random
Cantor sets. We start by a description of these random Cantor sets. Closely
related random models have been considered in [4, 5, 33, 34, 35].

1.1 Random Cantor sets

Let { M}, }i>1 and {Ng}r>1 be sequences of integers with 1 < N, < Mg7 M;, >

2 for all k. Let .
Py=1INi rn = (H Mz-) (1.1)
i=1 =1
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We denote by D,, = D,([0,1]%) the family of . '-adic closed subcubes of
[0, 1),

and let D = |J,,cyy Pn. We divide the unit cube [0, 1]% into M{ interior disjoint
M;-adic closed subcubes and randomly choose interior disjoint Ny < M of
these closed subcubes in the following way. We randomly choose a cube among
M cubes uniformly which means that every cube has the same probability of
being chosen, then we randomly choose an other cube among the remaining
M{' — 1 cubes uniformly, and continue this process until we obtain N; cubes.
Note that each of the closed subcubes has the same probability (i.e.Ny /M) of
being chosen, and denote their union by E;. Given F,,, a random collection of
P, interior disjoint r;; ! - adic closed subcubes of [0, 1]%. For each cube of E,,, we
divide it into M, ; interior disjoint r,, H—adlc closed subcubes and randomly
choose interior disjoint NV,, ;1 of these closed subcubes in the same fashion as
above (i.e. we randomly choose a cube among M ni1 cubes unlformly7 then
we randomly choose an other cube among the remaining MZ 11 — 1 cubes
uniformly, and continue this process until we obtain N, 1 cubes). We ask
that the choices are independent for different cubes of E,,. Let E, ;1 be the
union of the chosen closed cubes and

—FE= ﬁEn
n=1

be a random limit set. Let Q@ = Q(Mjy, Ni) be our probability space which
consists of all the possible outcomes of random limit sets. For convenience we
will write £ € Q,w € Q, or E“ € ) in the following. Our main object of study
in this paper is the space 2. Figure 1 shows an example of this construction.

Zg’l"n, (i¢ + D)ry] : Ogiggrgl—l}

H",:]p~

1.2 The topological approach

Let IC = K([0, 1]¢) be all the compact subsets of unit cube [0, 1]¢. We endow K
with the Hausdorff metric. Recall that the Hausdorff distance of two compact
sets E and F of K is defined by

dy(E,F)=inf{e >0: E C F* and F C E°},
where B¢ = {z € R? : dist(z, E) < €}. Observe that Q = Q(Mj, Ny) C K

and € is a closed subset of K. Together with the well known fact that K is a
compact space, we obtain that €2 is compact subset of .



A Crass oF RaNDoM CANTOR SETS 81
J h [ |

Figure 1: The first three steps in the construction of £ with M; = 2, N; =
3, My =3,Ny =4, M3 =2, N3 =2.

Recall that a subset of a metric space X is of first category if it is a
countable union of nowhere dense sets (i.e. whose closure in X has empty
interior); otherwise it is called of second category. We say that a typical
element x € X has property P, if the complement of

{z € X : x satisfies P}
is of first category. For the basic properties and various applications of Baire
Category, we refer to [30, 36].
1.3 Dimension and measure

Let E C [0,1]%. For any s > 0, the s-dimensional Hausdorff measure is defined
as H°(E) = lims_o H3(E) where

o0 o0
H3(E) = inf{ SO Ec | UnUnl <6ime N},
n=1 n=1

and |U] is the diameter of U. The Hausdorff dimension of E is
dimy E =sup{s > 0: H*(E) = oo} =inf{s > 0: H*(E) = 0}.

For any § > 0, let N'(F,d) be the smallest number of sets of diameter at
most d which can cover E. Then the lower and upper box dimensions are
defined respectively as

log NV(E, 5), TmpF = lim sup log NV(E, 5).

dimz F = lim inf
o 1?561 —logé 50 —logd

If dimp E = dimpE we denote this common value by dimp E and call it the
box dimension of F.
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The packing dimension of F is defined as

dimp F = inf { supdimgF, : F = [‘J Fn}

n=1
The Assouad dimension of E is defined as

dimy E=inf{s >0:3C >0st. V0<r<R<Vd,

sup N (E 1 B(x, R), 1) < C (R)s}.

zeE
The basic relationships of these dimensions are
dimg F < dimgF, dimp F < dimpFE < dimy F.

For more details and further properties of these dimensions, we refer to [7, 25]
and especially [24] for the Assouad dimension.

Let v be a Radon measure on R%. For z € R?, the lower and upper local
(pointwise) dimensions of v at x are defined respectively as

logv(B —— log v(B
dim(v, x) = lim inf M, dim (v, z) = limsup M'
=0 logr r—0 log r

If dim(v, z) = dim(v, z) we denote this common value by dim(v, z), and call
it the local dimension of v at x. For further details and basic properties on
the local dimensions of measures, see [6, Chapter 10].

We consider the natural random measure on the random Cantor set. Let
E =2, E, be arealization. For each n € N, let (P,,r, are from (1.1))

DPn = Pan

n

(1.2)

and

in(A) = / L, (2)p; da

where 1 is the indicator function of the set F'. Note that for every @ €
Dn,Q C E,, (we will denote this by @ € E,, in the following for convenience),
we have y,(Q) = P, 1. Tt is clear that ju, weakly converges to a measure i,
see [25, Chapter 1]. We call this measure p the natural measure on E.
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1.4 Results

There exists a huge literature on computing the ‘almost sure’ dimensions for
many other random fractal sets. We refer to [6, 7, 11, 14, 17, 26, 29] and
reference therein. For the general estimations and the almost sure dimensions
of these random Cantor sets, we have the following result. Let

n+k -1 n+k
r(n,n+k) = (H Mi> , P(n,n+k) =[] Vi (1.3)

Figure 2: There are N,, 11 subcubes (dark cubes) of Q (Q € E,) which belongs
to En+1, and they uniformly distributed inside the cube @. Thus there are

1 1

nearly N,y subcubes of @ with side length r,,/N,’, | (depends if N,J, ; is an

integer or not) which intersect E. In the end, we have P, ;1 interior disjoint
1

cubes with side length r,/N,’,, which intersect E. This follows from the

definition of ss.

Denote
log P, log P,
s1 = liminf o8 , So = limsup o8 T +l , (1.4)
n—oco —logr, n—oo —logr, + 510g Npiq
and los P )
s3 = lim sup sup w. (1.5)
k—oo0 neN —logr(n,n—l—k)
Furthermore let
log P, log P,
t* = liminf o8 , s =limsup o8 (1.6)

n—oo —logry41 — 510g Nyjq n—oo —logry
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Note that if the IV,, are bounded then t* = s; and s* = s5. Figure 2
1
‘explains’ why there is r,/N,7 | in the definition of sp. Figure 3 ‘explains’

1
why there is 7,11 N,/ | in the definition of ¢*.

QEEII

1
r N d
Tn+1 N n+1

Nn+l

>

Figure 3: There are N,11 subcubes of () which belongs to E, 11, and all of
them accumulate at the left bottom of ). Thus we can consider these N, 41

1 1
subcubes as one cube with side length near r, 1 N,?, ; (depends if N7 , is an
integer or not), and there are P,, such cubes. This follows from the definition
of t*.
Theorem 1.1. (1) For any E € Q, we have

t* <dimy F <dimgF < s7.

(2) For any E € ), we have
s* < dimp F < dimpgF < s5.

(8) The almost sure Hausdorff dimension and lower box dimension are
mazximal, i,e., almost surely

dimg F =dimgFE = s7.
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(4) The almost sure packing dimension and upper box dimension are maz-
imal, i,e., almost surely

dimpE = HBE = So.

(5) For any E € Q, we have dima E = s3 provided {Ny} is bounded.
Otherwise, almost surely dima E = d.

We can also regard the space 2 as a subclass of Moran sets. The di-
mensional properties of Moran sets have been studied extensively, we refer
to [9, 19, 21, 27, 31, 37] and reference therein. The results of Theorem 1.1
are similar to the dimensional results of one dimensional homogeneous Cantor
sets (uniform Cantor sets). An interesting fact is that they have the ‘same’
dimensional formulas (for our case d = 1). For Hausdorff, lower box, upper
box, and packing dimensions of one dimensional homogeneous Cantor sets, see
[9]. For Assouad dimension of one dimensional homogeneous Cantor sets, see
[31]. The Figure 3 corresponds to the partial homogeneous Cantor sets of [9].

Remark 1.2. The above statements (1) and (2) generalize the results of [9]
from one dimensional Moran sets to our model, and the statement (5) when
Ny, are bounded generalize the result of [31] from homogeneous Cantor sets
to our model. The proof of dimy E > t* is adapted from [9, Theorem 2.1] to
our setting, while the method for the proof of dimgFE < s, is different from
that of [9]. The proof of the statement (5) when Nj are bounded generalize
the method in [31] to high dimension. Our main contribution of Theorem 1.1
is to determine the almost sure dimensions of these random cantor sets for
the case when {Nj}ren is unbounded. Our method combines geometric and
probability estimates on the distribution of these random Cantor sets.

Recall that (2, dy) is a compact metric space. For the typical dimensions
of these random Cantor sets, we have the following result. For some related
results we refer to [10, 12, 13]

Theorem 1.3. (1) The typical Hausdorff dimension and lower box dimension
are minimal, i.e., for a typical E € Q, we have

dimy F =dimgFE = t*.

(2) The typical packing dimension and upper box dimension are maximal,
i.e., for a typical E € Q, we have

dimpE = MBE = S2.
(8) If {Ny} is unbounded, then for a typical E € Q, we have
dimy F =d.
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Note that the typical Hausdorff dimension and lower box dimension are
as small as possible, but the almost sure Hausdorff dimension and lower box
dimension are as large as possible. Furthermore the packing dimension, upper
box dimension and Assouad dimension are as large as possible in the sense of
both almost sure dimension and typical dimension.

For the local dimensions of the natural measures supported on these ran-
dom Cantor sets, we have the following result. Let

ok . IOg PTH‘l
§** = limsup ————.
n—oo - 10g Tn

Theorem 1.4. (1) For any E € Q,x € E, we have
t* < dim(p,z) < s1.
(2) For any E € Q,x € E, we have
s* < ﬁ(u,x) < s**.
(3) For P-almost all E € ), and p almost every x € E, we have
dim(p, ) = s1.
(4) For P-almost all E € ), and p almost every x € E, we have
dim(u, z) = ss.

Same kind of results have been obtained for other “random” measures,
we refer to [8] and reference therein. For the local dimensions of the Moran
measures, we refer to [18, 22, 23].

Remark 1.5. The dimension of a set has essential connection with the local
dimension of the measure on it, we refer to [6, Proposition 2.3-2.4] for more
details. In fact there are some overlaps between our Theorem 1.1 and Theorem
1.4. Actually Theorem 1.4 (3)-(4) combined with the Propostion 2.3 of [6] and
Theorem 1.1 (1)-(2) implies Theorem 1.4 (3)-(4). We present more details in
the following.

Theorem 1.4 (3) and [6, Proposition 2.3 (a)] implies that almost surely
dimy E > s;. Combining this with Theorem 1.1 (1) which gives dimgFE < s1
for any set F € 2, we obtain Theorem 1.1 (3).

Theorem 1.4 (4) and [6, Proposition 2.3 (c)] implies that almost surely
dimp E > sy. Combining this with Theorem 1.1 (2) which gives dimpFE < s
for any set E € €2, we obtain Theorem 1.1 (4).

Since our methods for Theorem 1.1 (3)-(4) and Theorem 1.4 (3)-(4) are
different, and the methods are interesting on it’s own, we present them sepa-
rately.
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For the hitting probability of these random Cantor sets, we consider the
special case that M = M and N, = N for all £k € N, and we have the
following result. Note that the result is similar to the hitting probability of
fractal percolation (see [28, Theorem 9.5 |) and random covering sets (see [16]).

Theorem 1.6. Let F be a Borel subset of [0,1]% with dimg F = a and s =
log N/log M. Then we have

(1) If &« < d — s then almost surely ENF is empty.

(2) If & > d — s then E intersects F with positive probability.

(3) If a« > d—s then | dimpg (ENF) ||oo= a+ s —d, where the norm is an
essential supremum in the underlying probability space.

Note that under the condition supycy My < 0o, it will become much easier
to prove Theorem 1.1, Theorem 1.3, and Theorem1.4. Our main contribution
of this project is to deal with the case when { Ny }ren is unbounded.

The paper is organised as follows. In Section 2 we will show some lemmas
for later use. Theorems 1.1, 1.3, 1.4, and 1.6 are proved in Sections 3, 4, 5,
and 6 respectively. We conclude with additional results and open problems in
Section 7.

2 Preliminary lemmas

We show some useful lemmas in this section.

Lemma 2.1. [6, Proposition 2.3] Let E C R? be a Borel set and let j be a
finite measure. If dim(u,x) > s for allx € E and p(E) > 0 then dimp E > s.

Lemma 2.2. [7, Corollary 3.9] Let E C R be a compact and such that
dimp(ENV) =dimpF for all open sets V' that intersects E. Then dimp £ =
dimBE.

For convenience we put an easy fact about Assouad dimension as the fol-
lowing lemma. For further basic facts on Assouad dimension, we refer to
[24, 31].

Lemma 2.3. Let E C Re. If there are sequences {R,} and {r,} of positive
real numbers with Ry, /r, — 00 as n — 0o, such that for every n there exists
x € E with

N(ENB(z,Ry,),rn) > (RH)S,

T'n

then we have dimy4 FE > s.

The following estimate will be used in the proof of Lemma 3.3.
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Lemma 2.4. Let A={1,--- k},B={1,--- ,m},1 < k <m. Now we ran-
domly choose n (n < m) numbers from B in the same way as our construction
of random Cantor sets (we randomly choose a number from B uniformly, then
we randomly choose an other number among the remaining m — 1 numbers
uniformly, and continue this process until we obtain nnumbers). Let K be the
random chosen n numbers, then

PANK #£0)>1—e .
PRrROOF. Note that the random set K will intersect (hit) the set A with prob-
ability one when k +n > m. In the following, we assume that k£ + n < m.
Let K = {z', -+, 2™} where 2' means the i-th chosen number. Let A; be the
event {K : z' € B\ A}, then

P(() Ai) = P(Ay) [T PCA | ﬁ A;)
nl 2.1
= H(1 — ]i ) 1)
=0 MY
< e_%.

By the fact that the event (ANK # 0) is the complement of the event (', A4;,
we complete the proof. O

The following estimate will be used in the proof of Lemma 3.4. For more
details on large deviations estimates, see [1, Appendix A].

Lemma 2.5. Let {X;}!_; be a sequence nonegative independent random vari-
ables with X; < N and B(X;) > N/2 for all 1 <i <n. Then

P() X; < Nn/8) <e /5.
i=1

ProOOF. Let A = 1/N. We apply Markov’s inequality to the random variable
e~ *2i=1 Xi This gives

P() " X; < Nn/8) =P(e A =iz Xi > /%)
=1

< eMBE (e 2= X (2.2)

= e"F[[E(e ),

i=1
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the last equality holds since {X;}; is a sequence independent random variables.
For any ¢ € [0, 1] we have

et <1—t/2.
Since AX; € [0,1] for all 1 < i < n, we have that for all 1 <i < n,
e M <1 - \X;/2,

and hence
E(e ™) <1-E()\X,/2) <e V4,

Combining this with (2.2), we finish the proof. O

3 Bounds on dimensions and almost sure dimensions

PRrROOF THEOREM 1.1 (1). For any £ € Q and k € N, we have N (E,r;) <

Py, and hence
log P,
dimgpFE < 087k _ S1.
—log r

1
For convenience, let £y = 111 N;!, |,k € N. Suppose t* > 0 (t* = 0 is the
trivial case). For any 0 < ¢t < t*, by the definition of ¢*, there exist kg such
that for any k > ko,

P, >0t (3.1)

Let £ € © and p be the natural measure on E. We intend to show that
wu(B(z,7)) < Cr' for any ball B(z,r) with r < ry, where C'is a constant. For
0 < r <ry,, there exists k such that ri1 <r <ry.

Case 1. ¢, < r < ri. In this case, the ball B(x,r) intersects at most 3d
cubes of Ey, hence

p(B(z,r)) < 3Pt < 34 < 3%t (3.2)

Case 2. 141 < r < {. In this case, observe that there exists a constant
C = C(d) such that any ball B(z,r) can intersects at most C(—"—)? cubes of

Tk+1

FE11, and hence

d
r _ _ _
w(B(z,r)) <C (Tk+1> NkJrllPk L<orted < ort. (3.3)

Thus the mass distribution principle [7, Chapter 4] implies that dimpy F > ¢.
Since this holds for any ¢ < t*, we obtain that dimgy £ > t*. O
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PROOF OF THEOREM 1.1 (2). For each k € N, let {51 = rk/(NkH)%. For
any ¢ > 0, there exists k such that rp11 < 9 < ry.
Case 1. 741 < 6 < fg41. In this case we have N'(E,§) < Pyy1, and hence

log N(E,0) _ log Pr1 _ log Py
—logd — —logd — —loglii1’

(3.4)

Case 2. £i11 < 0 < rg. In this case, we have N(E,§) < CPy (Tk/5)d. Thus

log N(E,9) < log Pyré log C
—logd — —logé —logé
log Py d log C (3.5)
— —log iy —log g,
_ log Pry1 log C
- —loglpy1  —logry

Taking the upper limit of (3.4) and (3.5), we obtain that
diimBE S S2.

Suppose s* > 0. For any t < s* there exists a sequence of numbers
{kj}j>1 C N with k; — oo as j — oo, such that Py, > rk_jt for all j € N. Let
x € F, then we have

w(B(z,ry;)) < 3‘7lP,;1 < 3‘17“2]_,

and hence dim(u,z) > t. Since this holds for all z € F, together with Lemma
2.1 we have that dimp E > t. By the arbitrary choice of ¢ < s*, we obtain
that dimp EF > s*. Thus we complete the proof. O

3.1 Almost sure Hausdorff and lower box dimensions

Let 0Q be the boundary of @, define

Enz U 8Qand§:U§n.

QeDy, neN
It is clear that B has zero Lebesgue measure and for any = € [0, 1]d\§ ,
P(z € E,) = py.

Recall that p, = P,r%. For the purpose of estimating the lower bound for
Hausdorff dimension, we need the following estimate.
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Lemma 3.1. For any € > 0 there exists positive constant C = C(e,d), such

that
P(x € E,,y € Ey)

I
for alln € N and x,y € [0,1]%.

< Cd(a,y)~° (3.6)

PrOOF. For any ¢ > 0, by the definition of s;, there exists N € N, such that
P, > r;*1"¢ for all n > N which implies that

pn = Pprd > pd=site, (3.7

We first assume that z,y € [0,1]%\B (to make sure that for any n € N there
exists unique @, Q" € D,, with € Q and y € Q’). There is k € N such that

\/37’;6“ < d(z,y) < Vdrg.

It follows that there exists two distinct cubes Q, Qy € Dy41 such that x € Q,
and y € Q. Therefore, for any n > k we have

P(zxe E,,yc E,) =Py€ E, |z € E,)P(zx € E,)

Spn H NiMiid (38)
i=k+1

=pipy

Now we turn to the estimate of 3.6. Case 1. n < N. In this case we have

P(LE € Enay € En)

P2 <pp’ <oy <Py (VAT () T
n

Case 2. n > N. In this case there will appear three subcases depending
on d(z,y).
Subcase 1. d(z,y) < Vdry. In this case,

P(JC SITRS En) = P(y € E, | T E En)]P)('T € En) < Pn-
Combining this with the estimate (3.7) we obtain

IP)(:L' € Enva € Eﬂ) < p;l < 7,.21*1175
3 (3.9)
d—s
<vVd " d(a,y)m e
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Subcase 2. d(z,y) > Vdry. Applying the estimate (3.8) we have

P(z € E,,y € E, L
: p2 : <P sy (3.10)
< PR (VA )

Subcase 3. Vdr, < d(x,y) < Vdry. Applying the estimates (3.7) and
(3.8), we have

P(z € EnQ,y € E,) < prt < e
I (3.11)
d—s
S \/g 1+Ed(x,y)517d76'

d ~

Let C = py*Vd , then the estimate (3.6) holds for all z,y € [0,1]%\B.

Note that for every point x and n € N there exist at most 2¢ cubes of D,, such
that each of these cube contains z. It follows that for any x,y € [0, 1]¢

P(z € E,,y € E,) <4'P(Q, € E,,Q, € E,)

where @), @, are two cubes of D,, which contain x and y separately. Thus there
exists a larger constant such that the estimate (3.6) holds for all z,y € [0, 1]<.
For the convenience, we denote this larger constant also by C. O

PROOF OF THEOREM 1.1 (3). By Theorem 1.1 (1), it is sufficient to prove
that almost surely dimyg E > s;. For any € > 0, there exists a positive
constant C, such that Lemma 3.1 holds. Applying Lemma 3.1, Fatou’s lemma,
and Fubini’s theorem, we obtain

E <//d(x,y)Sl+2€du($)dﬂ(y))

< liminf E <//d(z,y)Sl+2€d#k($)dﬂk(y))

k—

(3.12)
= likmianE (//d(m,y)_sl+2sp;21EkxEk (x,y)dmdy)
— 00

< C/ / d(z,y) "1 25 d(z, y) 1~ dady < oo.
[0,1]¢ J[0,1]¢
This implies that a.s.

//aaw*ﬁ%wmmmw<m. (3.13)
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Thus by applying the energy argument [7, Theorem 4.13], we have that almost
surely dimy E > s; — 2¢. By the arbitrary choice of ¢, we obtain that almost
surely dimyg FE > s7. O

Remark 3.2. Note that the estimate (3.13) implies that dim(y,x) > s1 — 2¢
for p almost all z € E, for a proof see the argument in [7, Theorem 4.13].
Together with the estimate (3.12) and the arbitrary choice of £ we obtain that
for P-almost all F € Q, and p almost every x € E, we have dim(p, x) > s1. As
we claimed before in Remark 1.5, we will present a different proof in Section
5.

3.2 Almost sure packing and upper box dimensions

For every @ € Dy, k € N, we define the random set

Ern(Q)={Q: Q' CcQ,Q € Exp1}.

Recall that Q' € Ej11 means that Q' € Di1q and Q' C Ex11. In the following
we are going to show that the set Ey.1(Q) is fairly uniformly distributed (this
motivated the formula of the upper box dimension).

1
Let Ny, = | N2 ,]* where |x] denotes the integer part of . For every
Q € Dy, we divide it into Ny, interior disjoint closed subcubes with side
length

Thor =76/ (Ngy1)?, (3.14)
and denote by C(Q, N;,,) the collection of these subcubes. For every Qe
C(Q, Ni, ), define

1(Q,Q,Drs1) = {Q €Drp1 : Q' C Qand Q' NQ # 0}
By a volume argument, we have

~ Mé
#I(Q7Qapk+1) > kel (315)

= *
Nk+1

where #J denotes the cardinality of a set J. and random variable
Xo =#{Q €C(Q,Niy1) : QN By (Q) # 0} (3.16)

Figure 4 shows the relative position of the above geometric objects.
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A
=
Y

Figure 4: A cube Q € E}, the set FEj1(Q) consisting of the dark cubes, a
cube Q € C(Q, Nj, ).

Lemma 3.3. Let QQ € Dy, then for every @ € C(Q, Ny, ) we have

P(QNE(Q £0]Qe E) =172, (3.17)

and hence
E(Xo|Q € Er) 2 N /2. (3.18)

ProoOF. Applying Lemma 2.4 for
AQ) ={Q €Dy :Q' CQ,Q'NQ #0},
B(Q) ={Q € Diry1: Q' C Q}),

and the estimate (3.15), we obtain

P(Q N Ex1(Q) #0|Q € Ey)
>1—exp (— N1 #I1(Q, @aDk—H))

d
Mk+1

(3.19)
>1—exp ( Nk+1>

*
Nk+1

>1—e'>1/2.
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It follows that

EXel@eB)= Y. P(QNEn(@Q#0|Qe )

QEC(Q,N{ ) (3.20)
> Nija/2.
Thus we complete the proof. O

The following proposition contains the second statement of Theorem 1.1
(4).
Proposition 3.4. Almost surely dimgpFE = s5.

PROOF. If {N;} is bounded then Theorem 1.1 (2) implies that dimpE = s3
for all E € Q. Furthermore 1.1 (2) clams that dimgE < s, for any E € €.
Thus it is sufficient to prove that almost surely dimgE > so for the case that
{N} is unbounded.

Suppose s; > 0. By the definition of sy (see (1.4)), for any 0 < & < s
there exists a sequence {nyreny C N,ny < ng <--- such that

Pt 2 (T /(Npyog) @) 7524, (3.21)

Observe that if {N,, +1}ren is bounded, then dimgE > sy for any E € (.
Thus we suppose that N,, +1 00 as ng — 0o, and Ny, > 2¢. Tt follows that
for all £ € N,

Ni 1> 27Ny s (3.22)

For each k € N,Q € E,,,, by Corollary 3.3 we have
E(Xq) = N}, /2.

Furthermore, conditional on F,,, we have that Xg and X are independent
for any two distinct cubes @, Q' € E,,, . Thus applying Lemma 2.5, we obtain
that

P Y Xq<Nj1Pu/8|E,, | <P/t (3.23)
QEEy,,

Recall that

1
Ter1 = Tk/(Npy1) 2.

By elementary geometry, there exists a positive constant C' = C(d) such that

N(E,r; )>C > Xq.
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For each k € N, define the event
Ak = (N(E,’r‘;kJrl)

< CN; (1P, /8).
Combining this with the estimate (3.23), we have

P(Ak‘Enk) < ]P)( Z Xq < N;:k+1PTLk/8‘ETLk)
QEEn,

(3.24)
<e Tk /8,
It follows that
P(Ag) < e /8,

Since N,, oo as k — oo, thus there exists ky € N such that P,, =
[15_, Ny, > ny, for all k > ko, and hence

o0
Ze_P"k/S < 00.

k=1

Applying the Borel-Cantelli lemma, we obtain

P 4D =1,

m=1k=m

where A§, means the complement of A;. Thus we obtain that for almost any
w € Q, there exists k,, such that w € A for all k > k,. It follows that for
every k >k, we have

N(Ew7/r:k+1) > CN;k+1Pnk/8'

Since Ny, 1 > 27Ny, 11 and r% 1 > 15, /(Nyyt1) 4, we have
log N (E*, 17, 41)

logCON;y, 1P, /8
— log r:kﬂ

~ —log rnk/(]\/vn;le)é

holds for all k > k,, and hence by the estimate (3.21) we have dimgE“ >
s9 — &. By the arbitrary choice of € we finish the proof.

O
Now we intend to show that almost surely dimp E = ss.

PROOF OF THEOREM 1.1 (4). Recall that E = (1, cy En. Let {2,}n>1 be
a dense subset of [0,1]¢, and B,, := B(z,,1/n) be an open ball. For every
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n € N, by the homogeneous structure of our random Cantor sets, we obtain
that almost surely on E N B,, # (),

dlimB<E N Bn) = S9.

It follows that almost surely for any B,, (here the order of ‘almost surely’ and
‘for every n € N’ is different from above) with E N B,, # 0,

diiInB(E N Bn) = So.

Observe that for any E € Q and any open set U with ENU # (), there there
is a ball B,, for some n € N such that

B,cU B,NE #0.
Hence for almost all E € Q and any open set U N E # (),
EB(E n U) > S9.

Applying Lemma 2.2, we obtain that almost surely dimp E > s5. By the fact
that dimp E < dimpF and the Proposition 3.4, we complete the proof. O

3.3 Almost sure Assouad dimension

PROOF OF THEOREM 1.1 (5). Assume first that {Ny} is bounded. Let N =
supy>1 Ni. By the definition of s3 we have that for any € > 0 there exists ko
such that for any k > ko,

lrllp m < s3+e. (3.25)
Let E€Q, forany 0 <r < R < V/d, there exist n, k, such that
Tl < R <7Tny Tngk1 <7 < rpyk. (3.26)
Case 1. k < k. For any x € F we have
N(B(z,R)NE,r) < 3¢Nk+1,

Case 2. k > k. For any x € E, by estimates (3.25) and (3.26) we obtain

n+k+1
NB(z R)NE,r)<3* [ N
1=n-+1
s3+e
< 3dNn+1Nn+k+1 (rn-i-l ) (327)
Tn+k

s3+
< 39N2 <R> i E.
- r
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Thus we have dimg E < s3 4+ . By the arbitrary choice of £ we obtain
dimy F < s3.
For the lower bound. For any ¢ > 0, there exists k; oo as ¢ — oo, such
that for every i
log P(n,n + k;)

> —¢, 3.28
S%pflogr(n,n+k‘i) % F ( )

and so there exists n; such that

log P(n;,m; + ki)
—logr(ni, ni + k;)

> 53— €. (3.29)

It follows that
N(B(z,rn,) NE,rp,4k,) > CP(ng,m; + k;)

o) (30
Tni+k;
where C' = C(d) is a positive constant. Applying Lemma 2.3 and the estimate
L22’“—>ooasi—>oo,
Tni+k;

we obtain that dim4 F > s3—e. By the arbitrary choice of € we have dim4 £ >
s3. Thus we complete the proof in the case when {N} is bounded.

Now suppose {Nj} is unbounded. Since dimy E < d holds for any E C
[0,1]¢, it is sufficient to show that almost surely dim4 E > d. Let

{nk}keN C N with Nnk-i-l oo as k — oo.
For every @ € D, , define the event
A= (Xqg >Ny, 11/4).

Recall the random variable X defined in (3.16). Thus

E (XQ ‘ Qc Enk>

—E (XQ1A ‘ Qe En) +E (XQ1Q\A ‘ Qe En> (3.31)

< N;, P (4 ] Q€ Bi) + Nj i /4.
Combining this with Corollary 3.3, we have

P (A ] Qe En) > 1/4. (3.32)
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For every k € N, define the event
Ap = ( there exists Q € E,, such that Xq > Ny ,/4).

Conditional on E,,, recall that the cubes form FE,, ;; are chosen indepen-
dently inside each cube of E,,. Thus the random variables Xg and X¢
are independent for any two distinct cubes Q, Q" of F,, . Together with the

estimate (3.32) we have
P
3\ "k
>1—-1- .
]P’(Ak‘Enk) > 1 (4)

It follows that for every k € N,

P(Ay) > 1— (i)P

Thus for any m > 1, we have P(Up2,, Ax) = 1, and hence

P ( ﬁ G Ak> =1, (3.33)

m=1 k=m

It follows that for almost all w € €, there exists k; = k;(w) * oo, such that
w € Ay, for all j € N. Combining this with Lemma 2.3, we obtain that almost
surely dim 4 E' > d. Thus we complete the proof. O

4 Typical dimensions

For each cube @, let zg € @ be the nearest point of () to zero vector. For
each n € N let
&, = {all the possible E, }.

PrROOF OF THEOREM 1.3 (1). Theorem 1.1 (1) claims that any element of
E € Q has dimy F > t*. In the following we intend to show that a typical set
E € Qhas dimgE < t*.

For each n € N, let &, = 2\/arn+1N;<_Lil. For each E,, € &,, we choose an
object v =~(E,) € Q with

v C E,, and v C U B(zq,en)-
QEE,
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Let T',, be the collection of these y(E,), B, € &,. Observe that for any infinite
set A C N, the set
{y:vyeT,,ne A}
is a countable dense subset of 2.
By the definition of t* there is a subsequence I = {ng}reny C N with
ng ' oo as k — oo such that

log P,

(4.1)

t* = lim

1/d °
k=0 —log i, 11N,

Let I, = {nx € I : nj; > m} and

g= ﬂ U U UdH(’Y’TTLk-‘rl\/g)’

m=1ng€l,, YEL L,

where Uy, (7,£) is an open set of (€2, dy) with center v and radius ¢. Since
{y:v€T,,,k € N} is a countable dense subset in €, the set

U U UdH(’Y?’rnk‘Fl\/g)?

ng€lm Y€,

is a dense open set in Q. It follows that the complement of G is of first category.
Let E € G, then there is subsequence {qx }ren C {ng treny With g, /00 as
k — oo and v,, € Iy, such that

Ee ﬂ Udu (’ququkJrl\/a)'
k=1
Observe that
N(E,2e,,) < P,.

Combining this with the definition of ¢4, and the formula (4.1), we obtain

log Py,

dimgp F < liminf =t*.

k—oo —log2eq,
Thus we complete the proof. O]

Remark 4.1. From the construction of v, , it follows that for any set £ €
Udyy (Vg Tans1Vd), there exists a constant C' > 0, such that for any z €
E. keN,

W(B(,260,)) = CP;!

ng ?

and hence dim(u, ) < t*.
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PROOF OF THEOREM 1.3 (2). Theorem 1.1 (2) claims that any element E €
Q) has dimgE < s,. In the following we intend to show that a typical set
FE € Q has dimp E > s5.

For each n € N, recall that i, = r,/(Ny,;)/4. For each E, € &, we
intend to choose a set v = y(£,) depending on the relative size of 7}, ,; and
Tn—i—l-

Case 1. 7,4 < 100v/drp41. In this case for each E, we choose a set v
with

yEQ, YC E,, yNQ # 0 for any Q € E,,.

Case 2. 1,1 > 100\/&T,L+1. For each F,, we choose a set v C E, with

vyeN, vC U B(zQ,5\/grn+1).
QeC(Q,Nyy )

The notation C(Q, Ny, ) is given at the beginning of Subsection 3.2. In this
case, we may think v as those F,, 1 which the cubes of E, ;1 is well separated.

Let T'), be the collection of these y(E,). Observe that for any infinite set
A C N the set

{y:yeT,,ne A}

is a countable dense subset of ).
By the definition of sy there is a subsequence I = {nj}reny C N with
ng /00 as k — oo such that

S59 = lim 10g Pry 1
27 oo — logry, + é log Ny, +1 .

(4.2)

Let I, = {ni € I : nj > m} and

g= ﬂ U U UdH(’Y’T’ﬂk‘l’l\/g)' (43)

m=1ng€l,, ’yank

Applying the same argument as in the proof of Theorem 1.3 (1), we obtain
that the complement of G is of first category.

Let E € G, then there is subsequence {qx}ren C {ng treny with g 00 as
k — oo and v,, € Iy, such that

Ee ﬂ UdH(’quaquJrl\/a)'
k=1
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Let p be the natural measure on E. We are going to present that there exists
a positive constant C' = C(d) such that for any = € E € Uy, (Yau > "qe+1Vd),

u(B(z, ) 11/10)) < CP, Y. (4.4)
For the above Case 1, we have
u(B(x,75 11/10)) < p(B(x, 10Vdrg, 1)) < C(d) Py L.

Now we turn to the Case 2. Since for any x € E € Uy, (g, Tgn+1Vd) there
exists at most one cube of Ey, 1, intersects B(z,7; 11/10), we have

W(B(x, 75, 41/10)) < P L.

Thus we obtain the estimate (4.4). Together with the formula (4.2), we have

S logC~1P,
dim(u, ) > lim sup o8 il > o,

k00 —logT;k_H/lO -

Since this holds for any £ € G and =z € E, by Lemma 2.1 we obtain that any
FE € G has dimp F > s5. Thus we complete the proof. O

Note that the above proof also implies that a typical E € €2 has full Assouad
dimension. We show an outline for the proof.

PROOF OF THEOREM 1.3 (3). Assume {n;} C N with N,,, 41 " oo as k —
oo. Let G be the set in (4.3). Then the structure of v € I';,, and Lemma 2.3
imply that any element of G has full Assouad dimension. Thus we complete
the proof. O

5 Local dimensions of natural measures
PROOF OF THEOREM 1.4 (1). For every « € E and k € N, we have
,[L(B(I, \/&Tk)) = ij_l’

and hence

S S1.

1 B d
dim(p, ) < lim inf og jUB(x, Vdr))
k—o0 log \/g'f'k
On the other hand, it follows immediately from the proof of Theorem 1.1
(1) that
dim(p,z) > t* forallx € E, E € Q.

Thus we complete the proof. O
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PROOF OF THEOREM 1.4 (2). For any z € E,0 < r < 1, there exists k such
that \/&T}c+1 < r < V/dry. Observe that

u(B(z,r)) > P,

and
log u(B(z,r)) _ log P
logr = —logVdry
Therefore log P
T . og k41 Kok
dim(p, z) < limsup ——— = s™".
(’u ) k:~>oop - IOg Tk

On the other hand, for any k € N,
w(B(z,ry)) < 3P 1,

and hence log P
T . og Ik
dim(pu, z) > limsu =35
(,u ) k:—)oop - 10g Tk

Thus we complete the proof. O

*

5.1 Almost sure lower local dimension
We start from the following Lemma.

Lemma 5.1. For any 0 < s < s1, there exists a positive constant C such that
for any fived x € [0,1]%,

E (0, (B(x,r))‘a:EEn) <Crf,0<r<1l,neN. (5.1)

Furthermore we have

E (/,u (B(z,71)) du(m)) < Cr®. (5.2)

PrOOF. For 0 < s < s1, by the definition of s1, there exists N such that for
alln > N, P, > r_°. For 0 <r <1, there exists k such that ryy; <7 <rg.
Case 1. n < N. In this case we have

E(pn(B(x, 1))z € E,)
< E(a(B(a, )Pz € E,) "
S 2d7,dp;1 S 2dpElrs’

the last inequality holds by p, > py and 0 < r < 1.
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Case 2. n > N. There will appear three subcases depending on the size of
.

Subcase 1. r > rx+v/d. In this case, we have
E(pin(B(z,7))|z € Ey) <1
=75 < (TN\/(?)fsrs.

Subcase 2. r < rn\/g. In this case we have

polBlor)) = [ 15,0 Wy dy
< 2dpdp—1 < odpdys—d (5.3)
< 24(Va)srs.
Since this holds for any n € N, we have
E (un (B(z,7)) |x € En) < 2d(\/g)d75rs.

Subcase 3. Vdr, < r < ryvVd. Let T =Z(B(z,r),k + 1) be the collection
of cubes of Dj; which intersects B(z,r). By a volume argument there exists
a positive constant Cy such that

d
47 < O ( ! ) .
Tk+1
Note that for @ € Diyq and x ¢ @Q we have

N,
P(Q C Epy1,x € B,) < —2tLy

and hence
P(Q C Ext1|z € E,) <

Combining these with P, > r, ®, we have

E(u(Bla,r)|e € By) < 3 E(ua(@Q)]e € Ey)
QeT

=Y E(a(@)r € B,) + > E(un(Q)|z € Ey)

Qez Qez
o¢Q@ oe@ (5.4)

N,
< 47 kd+1
M4

< CL (V)"0 4 24(Va) o

< Crs.

-1 dp—1
Pk+1 +2 Pk+1
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We fix a large constant C' such that all the above estimates hold. Thus we

obtain the estimate (5.1).

Note that for any open set O C [0,1]% x [0, 1]¢, we have (see [25, Chapter

1])

It follows that (let B(z,r) be an open ball)

[ B r)duta)
Shnrggf// 1{(x,y):|x—y\<7‘}d,un(x)dﬂn(y)

=liminf [ p,(B(z,r))dp,(x).

n—r00

Applying Fatou’s lemma and (5.1), we have

e ([ uB )

< liminfE ( / pin(B(z, T))d,un(oz)>

n—oo

n— oo

~ liminf / P 'E (i (B (2,7)) 1, () do
[0,1]¢

= lim inf E (pn (B (z,71)) !x € E,)dx

nree Joape

< Cr®.

Thus we finish the proof.

(5.6)

PROOF OF THEOREM 1.4 (3). For the lower bound, let ¢ > 0,s > 0 with
s+¢€ < s1. Note that for this s, by Lemma 5.1 there is a constant C' such that
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the estimate (5.2) holds. Let £; =277 for j € N. Then

B( [ 306 B )inta)

Jj=1

S rE (/M(B(x,ﬁj))du(x))- (5.7)

j=1

<O T < oo
j=1
Thus we obtain that a.s.
/Zf;su(B(m,Ej))d,u(m) < 00,
j=1
and hence for p-a.e. x
Zf;SM(B(w,fj)) < 0.
j=1

Combining this with our choice ¢; = 277, we obtain dim(p,x) > s. Since this
holds for any s < s1, we have a.s. dim(u,x) > s; for p-a.e. . Thus we finish
the proof. O

5.2 Almost sure upper local dimension

1
Let ¢y = r /N 1,k € N. Applying the similar arguments to Lemma 5.1, we

have the following result.

Lemma 5.2. For any0 < s < sy, there exists C and a subsequence {{y, }j>1 C
{lk}r>1, such that

E (Mn(B(z,ij))‘x S En) < CEZ],, 7 €N (5.8)
Furthermore we have

E ( / M(B(x,fkj))du(x)) <ce, jeN (5.9)

PROOF SKETCH. For any s < sg, there exists a subsequence {{;};j>1 C
{gk}kzl such that ij > g,;_s for all j € N.
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For each j € N, let 4, be the r in the proof of Lemma 5.1. By the choice
of {lk,}j>1, it is sufficient to consider Subcase 2 and Subcase 3 in the proof
of Lemma 5.1. Moreover we use the estimate Py, > E,:js at the estimates (5.3)
and (5.4). Thus we complete the proof. O

PrROOF OF THEOREM 1.4 (4). Lemma 2.1 and Theorem 1.1 (2) imply that
for any F € Q, -
dim(p, ) < s9

holds for p-almost every x € E.
For the lower bound. Suppose so > 0. Let € > 0,8 > 0 with s + & < sg.
Applying Lemma 5.2 and the same argument as in the estimate (5.7), we

obtain
B [ 30 6 uB. b )du(z)

> < (5.10)

By the same argument as in the proof of Theorem 1.4 (3), we complete the
proof. O

6 Hitting probabilities

In this section, we study the hitting probabilities of random Cantor sets in
Q(M, N). Note that the Hausdorff dimension of any E € 2 is log N/log M =:
s. The methods we use in the following proof are mainly from [6, Chapter 8],
[32] (first-Moment and second-Moment methods) and [35].

Before we give the proof, we first show the following heuristic calculation.
For F' C [0,1]¢, define

Fn:{QED7LQmF7é®}

Suppose #F, roughly equals M™®. We simply denote it as #F,, ~ M"®.
Observe that
no N A" (a+s—d)n
E#(FnNEn)) ~M"™ | 305 =M :
Therefore Theorem 1.6 should follows from the relationships between « and
d— s.
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PROOF OF THEOREM 1.6 (1). Recall that dimyg F = o and a+ s < d. Ap-
plying the equivalent definition of Hausdorff dimension ([7, Chapter 2.4]), we
have that for any € > 0, there exists a sequence of interior disjoint cubes
{Qi}ien C D, such that F C |J;=, Q; and

dol@il" " <. (6.1)
=1

Recall that |@)| is the diameter of ). For any Q € D,,,n € N, we have

P(QNE # 0) < P( there exists Q' € E,, with Q' NQ # 0)

6.2
S Sd(NM—d)n — 3dM(S—d)’n S 3d|Q‘d—s' ( )

Here we used the condition N = M*. Observe that

o0

(EnF#£0)c | J(EnQ; #0).

i=1

Combining this with the estimates (6.1) and (6.2), we obtain
P(ENF #0) <> P(ENQ; # 0)
i=1
o0
<3%) Qi1 < 3%,
i=1

We complete the proof by the arbitrary choice of ¢. O

PROOF OF THEOREM 1.6 (2). Let € > 0 such that 0 < 2¢ < a+ s —d. Since
dimyg F = «, by [7, Theorem 4.10] there exists a compact subset K C F
such that dimpy K > a — e. Furthermore, by [7, Theorem 4.13] there exists a
probability measure A on K such that for all 0 < 8 < o — g,

&Qy://aaw*ﬁ@mxw<m. (6.4)
For each n € N, defining
K,={QeD;:QNnK #(}

where D}, denotes the modification of D,, such that the elements of D} form
a partition of [0, 1)%.
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Let
K,={QeD: :QNK # 0}
(We may consider K, as a subset of [0,1]¢ for convenience of notation). For
w € (Q, define the random set

Ky={QeK,:QCE/}.
Let p := N/M?, define the random measure
vy = jzf”/\{K;f (6.5)

where | o 18 the measure A restricted to KJ;. Let

o0
=) Kz
n=1
Since K is a compact set, we obtain that for any w,

KYCKNEYCF (6.6)

In the following we intend to show that v*(K“) > 0 with positive probability,
where v is the weak limit measure of v,

The random sets {K¥ }1<m<n give rise to an increasing filtration of o-
algebras F,,. For any ) € D,,, we have

E(A@N Kn+1)‘Q € K;,) =pA\Q) = pAQ N Ky)
and
EA@nN Kn+1)|Q ¢ K,)=0.

Therefore E(A(Q N K, )| Fn) = pA(Q N KE). In fact this estimates holds for
any @ € Dy, k € N. It follows that

E(Vru;-q-l(Q)‘fn) = p_n_lE()‘(Q N Ks+1)‘fn)
=p "M(Q@NK}) =v(Q).

Thus the sequence {v,(Q), Fr }nen is a martingale sequence. Applying the
same argument as in [6, Lemma 8.7], we see that almost surely v% weakly con-
verges to a measure v*. Furthermore, applying Lemma 3.1 and the condition
(6.4) we obtain

E((vn([0,1]%))%) = p*"E(A(K,)?)
pAE( //1K w K (T, y)dN(x)dA(y))
<C / / d(z,y)* " EdA\(z)d\(y) < oo
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It means that {v,([0,1]%)},en is an L2-bounded martingale. Thus by [6,
Corollary 8.4] we obtain that

E(v([0,1]%)) = E(n([0,1]%)) = 1,

and hence v*([0,1]¢) > 0 with positive probability. Note that for any w €
2, we have v*([0,1\K%) = 0. It follows that v*(K*“) > 0 with positive
probability. By the inclusion (6.6) we complete the proof. O

PROOF OF THEOREM 1.6 (3). Let ¢ > 0 such that 0 < 2¢ < o+ s —d and
t = a4+ s —d— 2¢. We use the same notations as in the previous proof.
Applying Fatou’s lemma, Fubini theorem, and Lemma 3.1, we obtain

E ( / / d(x,y)_th(x)d’/(y)>
< liminf B ( / / d(x,y)tdl/n(x)d’/n(y)>

— liminfE ( / / (e, ) p 2 g vk, (x,y)dA(a:)dA(y)) (6.7)

n—roo

<c [ [y dw.yarman)
< C//d(:v,y)_“J“Ed)\(a:)d)\(y) < o0

The last inequality holds by the choice of A, see estimate (6.4). Recall that
v¥(K¥) > 0 with positive probability. As before this implies that

dimH(K‘”) Z o —¢€

with positive probability. By the arbitrary choice of €, we complete the proof.
O

Remark 6.1. Applying the similar argument to [32, Chapter 7], we show a
different proof from above for Theorem 1.6 (2) in the following.

PROOF SKETCH. For any € > 0, there exists a compact subset K C F', such
that dimyg K = o — €. We choose small ¢ satisfies

a+s>d+2e. (6.8)

Recalling £ = ﬂzo:l E,,. Since K is a compact set, we have

(ENK #0)= [ (E.NK #0).
n=1
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Observe that the events (E, N K # () is monotone decrease, hence we have
P(ENK #0) = nll)II;o P(E, NK #0). (6.9)
For each n € N, defining
K,={QeD,:QNK #0}

where D}, denotes the modification of D,, such that the elements of D} form
a partition of [0, 1)%.
Let X be a probability measure on K such that for any 0 < § < o — ¢,

_ / / d(z,y)~Pd\(@)dA(y) < oo. (6.10)
Let p = N/M?, defining

=Y p 15, (QANQ), nEN

QEK,

where 15, (Q ) =1 when @ C E,, otherwise equal zero. For any @ € K,,, we
have P(Q C E,) = p™. It follows that

E(Y,) = XK, =1, neN. (6.11)
Note that for any n € N,
(Y, >0) C (E,NK #0). (6.12)

Observe that there exists a positive constant C; = C;(d) such that for any
Q,Q € K,,neN,and z € Q,2' € Q', we have

P(Q C Ean/ - En) < OIP(CU S Enazl € En)

Note that the equality holds when x and z’ are interior point of Q and Q'
respectively. Applying Lemma 3.1, the conditions (6.8) and (6.10), we obtain

= > > PTAMQMQ)PQC B, Q' C EBy)

QEK, Q' €K,
<G Y > p // (x € Ep, 2’ € Ey)d\(z)d\(z")
QeK, Q' eK,
§0102 // (z,2") "4 d\(x)d\ (")
eK QeK, '

= 01C28d75+5( ) < Q.
(6.13)
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Here the constant (3 comes from Lemma 3.1.
By the Cauchy-Schwarz inequality, we obtain

E(Y,)? = E(Yal(y,>0)* < E(Y,2)P(Y, > 0),

and hence (Paley-Zygmund inequality)

(6.14)

Combining this with estimates (6.11) and (6.13), we obtain

E(Y,)? | 1

=0 > 0.
E(Y;2) = C1Co€q—s4c(N)

P(Y, > 0) >

Applying the estimates (6.9) and (6.12), we obtain

P(ENF#0)>P(ENK #0)
= lim P(E, N K #0)

> liminf P(Y,, > 0) > 4.
n—oo

Thus we complete the proof. O

7 Further results and questions

7.1 Some examples for exceptional sets

Here we present some examples of exceptional sets for the almost sure type
results in the case d = 1 (i.e. any element of € is a subset of [0,1]). For
{nr}r>1 C N, we consider the space Q = Q(3™*,27). In fact our examples will
always look like (3™, 2"k), but the sequences {ny} are different in different
examples. It is clear that for any {nj}r>1 C N the classic Cantor ternary set
C € Q, and it is well known that

log 2

i = di = . 1
dimpy C = dimy C Tog 3 (7.1)

: k
For convenience, let s, = >

j=1 ;.

Example 7.1. Let n;/siy — 1 as k — oo, then there exists E € Q such that
@BE =0.
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PrOOF. Note that for any {ny}r>1 C N, Theorem 1.1 (3) claims that almost
surely

log 2
dimg B = dimp E = —2

log3’

While Theorem 1.3 (1) implies that for a typical E € Q, dimg E = t* = 0.
However, we show a concrete example in the following for clearness. For ny, we
divide [0, 1] into 3™ interior disjoint 3™ -adic closed intervals and choose 2™
closed intervals of them from the left part of [0,1]. They are interior disjoint
and their union is [0,2"37™]. Let E; be the collection of these 2" intervals.
Given Ej, the collection of 2%¢ closed intervals with the same length 37%.
For every interval I € Ej, we divide it into 3™**+! interior disjoint 3°*-adic
closed intervals and choose 2#+1 closed intervals of them from the left part
of I (see Figure 5), and let Fy1 be the union of the chosen closed intervals.
Let E =(),>; Ex. Note that ny/s; — 1 implies that s;/np+1 — 0. For every
k € N, we have

N(E,ry4+1Ng+1) < Py,

and hence
log P, _ si log 2 o
—logrg+1Nkr1 sk log3 + ngiq log(3/2)
It follows that dimzF = 0. Thus we complete the proof. O

Example 7.2. Let ng/sp — 1 as k — 0o, then almost surely
dimp F = dimgE =1,

and hence the Cantor set is an exceptional set for Theorem 1.1 (4).

PROOF. By a straight calculation, we have

log P41 B Sk+1log 2

= —1as k — oo.
—log(rg/Ng+1) sk log3+ ngiqlog?2

The claim follows by Theorem 1.1 (4) and (7.1). O

Example 7.3. Let ny — co. Then Theorem 1.1 (5) claims that almost surely
dimy E = 1. Thus the Cantor set C' is an exceptional set.
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"1 Nps1

I € E;

Figure 5: There are 8 subintervals of I which belong to Ej1, and all of them
accumulate at the left part of I. We can think this as the one dimensional
version of Figure 3.

7.2 Typical local dimension

Recall that for any E € €, there is a natural measure p on E. We can also
study the typical local dimensions for these natural measures.

Proposition 7.4. (1) For a typical E € Q, and all x € E, we have
dim(p, z) = t*.
(2) For a typical E € Q, and all x € E, we have
dim(u, z) > so.

PROOF. The claim (1) follows from the Remark 4.1 and the proof of Theorem
1.1 (1). The claim (2) follows immediately from the proof of the Theorem 1.3
(2). O

We do not know whether we can obtain equality in the above claim (2).

7.3 Normal numbers

It is clear that the Cantor ternary set does not contain any normal numbers,
but things are different when we add randomness. We have the following result
for our random Cantor sets under the natural measure p. For the definition
of normal numbers and further results, see [2].

Proposition 7.5. Almost surely for E € Q, we have that p-almost all x € E
is a normal number.

This follows by Borel’s normal numbers theorem and the following Lemma.
Recall that Borel’s normal number theorem claims that almost every (with
respect to Lebesgue measure) real numbers are normal. The following Lemma
(observation) is due to Pablo Shmerkin.

Lemma 7.6. Let F C [0,1]¢ with L(F) = 0. Then almost surely u(F) = 0.
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PROOF. Let € > 0, then there is an open set U D F with L(U) < e. Note that
w(U) < liminf, o pin (U), see [25, Theorem 1.24]. Applying Fubini’s theorem
we obtain

E(pn (1)) = E / Ve, (2)p7 dz) = L(U).

Combining these with Fatou’s lemma, we have

E(u(F)) < B(u(U)) < liminf B, (U)) < £U) < <.

n—roo

By the arbitrary choice of €, we finish the proof. O

7.4 Tube null sets

A set E C R4(d > 2) is called tube null if for any ¢ > 0, there exist countably
many tubes {T;} covering E and >, w(T;)?~! < e. Here a tube T with width
w = w(T) > 0 is the w/2- neighborhood of some line in RY. We refer to [3]
for the background and more details on tube null sets. In [34], the following
result is proved.

Proposition 7.7. If sup,cy My < oo and the almost sure Hausdorff dimen-
sion is larger than d — 1, then almost surely E is not tube null.

It is natural to ask that how about the case sup,cy My = 0o. Another
interesting question is that what will happen if there is no randomness. For
instance, what happens for the self-similar sets of Q(M, N), that is the ele-
ments of Q(M, N) we take the same position for the chosen subcubes in every
step during our construction. For the self-similar sets, see [7, Chapter 9].

Question 7.8. Is every self-similar set of Q(M,N) tube null (exclude the
trivial one with N = M?)?

Note that the classical Marstrand-Mattila projection theorem (see e.g [7,
25]) implies that any set £ C R? with dimyg E < d — 1 is tube null, see [3,
Proposition 7]. Thus it is sufficient to consider the self-similar set of Q(M, N)
with Hausdorff dimension larger or equal d — 1 for above question.

We can also consider which kind of self-similar set or self-affine sets are
tube null. In [15], the author proved that the Koch snowflake curve is tube
null. In fact we can apply the similar arguments to [15] to obtain that the
Sierpinski triangle is tube null also, we omit the details here. For self-affine
sets and Bedford-McMullen carpets, see [7, Chapter 9].

Question 7.9. Is every Bedford-McMullen carpet tube null (exclude the trivial
carpet which is the unit cube)?
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7.5 Lower dimension

The lower dimension can be considered as the dual of Assouad dimension. It
is defined as follows:

dimLE:SHp{SZO:HC>OS.t.V0<T<R<\/;i,

myWEmM@Rwﬁzcmﬁf}
re

The lower dimension was introduced by Larman, see [20]. For the recent
works on the Lower dimension, we refer to [11] and references therein. For our
random Cantor sets, if { Ny} is bounded then we have the dual result for the
lower dimension.

Proposition 7.10. If {Ny} is bound, then for any E € Q we have

log P k
dimy E — liminf inf (08P +F)
k—oo neN —logr(n,n + k)

PRrROOF SKETCH. If {M,} is bound, then we obtain the result by the similar
argument as in the proof for Assouad dimension.

For the case {M,} is unbound. Observe that any set E €  has lower
dimension zero. Thus it is sufficient to show that the formula also give the
zero value. This follows from the fact that for any k € N,

log P(n,n + k)

SRR .
neN —logr(n,n + k)

Thus we complete the proof. O

We do not know the general result for the lower dimension of these random
Cantor sets when {N} is unbound. We show two examples in the following
with special sequence My, Ny.

Example 7.11. If there exists a subsequence {n;} C N such that M,,
oo and liminf,, llggl\]\/;”k = 0, then any element of Q(M,,N,,) has lower
"k

dimension zero.

PrOOF. Let E € Q. For any € > 0, there exists N such that n; > N implies
log Ny, /log M,,, < €. Note that there exists C' > 0 which depends on d only
such that for any x € F,

N(E N B(x,rnkfl)ar’ﬂk)

SCMWSCM;:C<MFO

Tny
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By the condition that M,, " oo, we obtain that dimz £ < e, and hence
dimy, F = 0 by the arbitrary choice of ¢. O

This example responds an interesting fact of lower dimension that is if a
set E has isolate point then F has lower dimension zero.

Example 7.12. Let M,, = 2" and N,, = 2" — 1. Then any element of
Q(M,, N,,) has lower dimension d.

PROOF SKETCH. Let E € Q. Note that there exist positive constants C, Cy
such that for any z € F,0 < R < V/d,

C1RY < L(EN B(z,R)) < CLR%.

Hence there exists C such that for any z € E,0 < r < R < V/d,

R\ ¢
N(ENB(z,R),r) > Cs (r) :
Thus the claim follows by the fact that any set of R% has lower dimension less

or equal than d. O
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