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TUBES ABOUT FUNCTIONS AND
MULTIFUNCTIONS

Abstract

We provide a characterization of lower semicontinuity for multifunc-
tions with values in a metric space (Y, d) which, in the special case of
single-valued functions, says that a function is continuous if and only if
for each € > 0, the e-tube about its graph is an open set. Applications
are given, one of which provides a novel understanding of the Open Map-
ping Theorem from functional analysis. We also give a related but more
complicated characterization of upper semicontinuity for multifunctions
with closed values in a metrizable space.

1 Introduction

Let (X, 7) be a topological space. If (f,) is a sequence of real-valued functions

on X and f: X — R, then the uniform convergence of (f,) to f is described

graphically as follows: given any e-tube about the graph of f with ¢ > 0
Tube (f,e) ={(z,y) 12 € X,y eRand |y — f(z)] <&},

then the graph of f,, must lie in the tube for large enough n. (see Figure 1).
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Figure 1: Uniform convergence and e-tubes.

If the target space R is replaced by a general metric space (Y, d), then
the same description of uniform convergence applies replacing R by Y and
|y — f(z)| by d(y, f(x)) in the definition of Tube ( f,e). It is tempting to call
this metric tube a tubular neighborhood, and indeed this is literally the case
if f: X — Y is continuous. In fact, f is continuous if and only each such
metric tube about its graph is an open subset of the product space.

By a multifunction T from X to Y, denoted by I' : X = Y, we mean
a single-valued function from X to the nonempty subsets of Y. One can
construct metric tubes about the graph of a multifunction I" from X to Y in
an analogous way, and we show here that each metric tube is open if and only
if the multifunction is lower semicontinuous in the usual sense. As a special
case, continuity of a single-valued function f : X — Y is characterized by
the condition that each e-tube {(x,y) € X x Y : d(y, f(z)) < £} is open in
X xY. We give several applications of our general characterization of lower
semicontinuity, one of which leads to an alternative understanding of the Open
Mapping Theorem from functional analysis.

We also prove a related characterization of upper semicontinuity for multi-
functions with closed values in a metrizable space Y, which yields as a special
case this unusual characterization of continuity for a single-valued function f:
for each metric d on Y compatible with its topology, and for each ¢ > 0, the
“anti-tube” {(z,y) € X xY :d(y, f(x)) > e} isopenin X x Y.
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2 Preliminaries

All topological spaces are assumed to contain at least two points. If (Y, d) is
a metric space and y € Y and € > 0, then the open e-ball about y will be
denoted by By(y,c). If A is a nonempty subset of Y, then as in [2], we call
UacaBa(a,e) ={y € Y : Ja € A with d(y,a) < €} the e-enlargement of A.

Suppose (X, 7) and (Y, o) are topological spaces. A function from X to Y
is continuous provided the inverse image of each open subset of Y is open in
X. For a multifunction I" from X to Y there are two natural ways to define
the inverse image of a subset V of Y under I': either the set of all x € X such
that I'(x) intersects V or the set of all z € X such that I'(x) is contained in V.
These lead to two distinct continuity concepts for multifunctions. For V C Y
put

I (V)={zeX:T(@)NV#0}and TT (V) :={r € X : T(z) CV}.

We call T lower semicontinuous (resp. upper semicontinuous) provided I'~ (V)
(resp. I't(V)) is open whenever V is open [1, 4, 7, 8]. If f : X — Y is
single-valued and T'(z) = {f(x)}, then these are the same, so continuity of
f is equivalent both to lower semicontinuity and to upper semicontinuity of
7= {f(o)}.

Recall that a single-valued function f : X — (—o00,00] is called lower
semicontinuous provided for each o € R,{z € X : f(z) > a} is open in X.
Dually, f : X — [—00,00) is called upper semicontinuous provided for each
a€R,{z € X : f(x) < a} is open in X. We confine our subsequent remarks
to the former class of functions, leaving it to the reader to construct/recall
analagous assertions for the latter class.

For analysts, f is lower semicontinuous on X if and only if at each xg € X,
whenever (x))xeca is a net convergent to xg, we have lim infyxep f(zx) > f(zo).
Lower semicontinuity is characterized by the following geometric condition:
the epigraph of f defined by epi (f) := {(z,a) : 2 € X,a € R and o > f(z)}
is a closed subset of X x R [2, p. 14].

For real-valued functions, lower semicontinuity can be described in terms
of the semicontinuity of two natural associated multifunctions. The proof of
the following folk-theorem is left to the interested reader (cf. [8, p. 174]).

Proposition 2.1. Let (X, 7) be a topological space and let f : X — R. The
following conditions are equivalent:

1. f is lower semicontinuous;

2. x = (—o0, f(x)] is lower semicontinuous;
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3. = [f(x),00) is upper semicontinuous.

IfI' : X = Y is a multifunction, its graph is defined by
Gr(T'):={(z,y):x e X,yeY and y € T'(x)}.

(Note that this is a subset of X x Y and is not the same as the graph of T’
as a function from X to the power set of Y.) Any subset of X x Y whose
projection on X is surjective is the graph of a multifunction from X to Y.

Suppose now that (Y, o) is metrizable with understood compatible metric
d. With a slight abuse of notation, we use the same d for the distance from
a point in Y to a subset of Y. If T': X = Y and € > 0, we define the
enlargement multifunction T : X = Y by the formula I'.(z) = By(T'(x),e) =
{y €Y :d(y,I'(z)) < €}. For the metric tube of radius € about the graph of
T', we will use the graph of T'..

Gr(Te) ={(z,y) € X xY :y € Tc(x)}
{(z,y) € X xY :d(y,['(z)) < e}

If f: X — Y is single valued and I'(x) = {f(x)}, then this is the same as
Tube ( f,e) from the introduction. As we shall see, while each enlargement
multifunction has open values, it need need not have an open graph.

3 Results

We immediately characterize those multifunctions I' for which each metric
tube about Gr (T") is open.

Theorem 3.1. Let (X,7) be a topological space and let (Y,d) be a metric
space. For a multifunction T’ from X to Y, the following conditions are equiv-
alent.

1. T is lower semicontinuous;

2. Ve > 0, the enlargement multifunction I'c has open graph;

3. Ye > 0, the enlargement multifunction T'. is lower semicontinuous;
4. (z,y) — d(y,T(x)) is an upper semicontinuous function on X xX Y.

PROOF. (1) = (2): Suppose T is lower semicontinuous and ¢ > 0. Fix
(20,90) € Gr(T'z). Then there is a y € I'(zg) such that § = d(y,y0) < €. Let
A = (e — §)/2. By lower semicontinuity of I', there is an open neighborhood
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U of xy such that v+ € U = T'(x) N By(y,\) # 0. We claim that the
neighborhood U x By(yo, A) of (zg, o) is contained in Gr (T ).

To see this, fix (z1,y1) in U X Bgy(yo, A). By the choice of U, there is a yo
in I'(z1) with d(y2,y) < A\. We compute

d(y1,y2) < d(y1,y0) +d(yo,y) + d(y,y2) < A+d+ A <e.

This shows that d(y;,I'(x1)) < € as required.

(2) = (3): This follows readily from the observation that if V- C Y,
then
I;(V)={z € X :T(z)NV #0} =, (Gr (L) ﬂﬂy_l(V))

g

where 7, and 7, are the projections of X XY onto X and Y respectively. If V/
is open, then 7, (V') is open since 7, is continuous. Since Gr (T. ) is open by
hypothesis and 7, is an open mapping, 7, (Gr (T)n 7ry_1(V)) is open. Thus
' (V) is open and I'; is lower semicontinuous as claimed.

(3) = (1): Fixzo € X,yo € I'(x) and € > 0. It suffices to show that
there is an open neighborhood U of z¢ such that I'(z) N Bgy(yo, €) # ) whenever
x € U. Since yo € I'; j2(x0), the lower semicontinuity of the (¢/2)-enlargement
multifunction gives an open neighborhood U of xg such that z € U —
I'./2(z) N Ba(yo,€/2) # 0. Thus, for each = in U there is a y in I'(z) such that
d(y, Ba(yo,€/2)) < €/2, and so d(y,yo) < €.

(2) <= (4): Finally, conditions (2) and (4) are equivalent since a func-
tion g : X x Y — [0,00) is upper semicontinuous if and only if {(z,y) :
g(x,y) < e} is open in X X Y for each positive e. Apply this with g(z,y) =
d(y,T(x)). O

As noted above this yields a pleasant continuity result for single-valued
functions.

Corollary 3.2. Suppose (X, T) is a topological space and (Y,d) is a metric
space. Then a single-valued function f : X — Y is continuous if and only if
Tube ( f,e) is open in X XY for every positive €.

Condition (4) of Theorem 3.1 can be considerably weakened and still yield
lower semicontinuity of I': Vy € Y,z — d(y,'(z)) is upper semicontinuous on
X (see, e.g. [6, p. 352 and p. 360]).

While an upper semicontinuous multifunction with closed values from a
topological space X to a regular topological space Y has closed graph (see [7,
p. 78] or [8, p. 175]), a lower semicontinuous multifunction with open values
need not have open graph, even if the target space is metrizable. Thus, the
implication (3) = (2) in Theorem 3.1 is not trivial.
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Example 3.3. Let X =Y =R, and defineI"': X =Y by

R if x =
() = Lol
R\ {0} otherwise

Evidently, T' is lower semicontinuous with open values, yet its graph,

R*\ ({z : 2 # 0} x {0}),

contains no neighborhood of (0,0).

As is easy to see, in complete generality, a multifunction z = I'(z) is lower
semicontinuous if and only if 2 = cl(T'(z)) is lower semicontinuous [7, p. 85].
One can wonder if conditions (1) and (3) of Theorem 3.1 remain equivalent
if we redefine I'.(z) to be {y € Y : d(y,I'(x)) < e¢}. This fails, even for
single-valued functions.

Ezample 3.4. Let X =[0,1] and Y = [0, 1]U[2, 00), with the Euclidean metric.
The identity function f(x) = x is continuous, but z = {y : d(y, f(z)) < 1}
fails to be lower semicontinuous because d(2, f(1)) < 1. Of course, the graph
of the auxiliary multifunction fails to be open as well.

Let (X, 7) and (Y, o) be topological spaces, and let f : X — Y be surjec-
tive. It is well-known that f is an open mapping if and only if the preimage
multifunction y = f~1({y}) is a lower semicontinuous multifunction [7, p.
82]. When X is metrizable, Theorem 3.1 allows us to express openness of f
in terms of preimages of singleton subsets of Y as follows.

Theorem 3.5. Let (X, p) be a metric space and (Y, o) be a topological space.
Suppose f: X =Y maps X ontoY. Then f is an open mapping if and only
if {(z,y) € X x Y : p(z, f~1({y})) < €} is an open subset of X x Y for each
positive €.

As important as any result regarding the openness of single-valued map-
pings is the Open Mapping Theorem from functional analysis [5, 10]: Let X
and Y be Banach spaces (real or complex) and let T : X — Y be a continuous
linear surjection. Then 7' is an open mapping. From Theorem 3.5, we get the
following interpretation of this classical result.

Corollary 3.6. Let X and Y be Banach spaces and suppose T : X —Y 1is a
continuous linear surjection. For each y € Y, select x, € X with T(z,) = y.
Then {(z,y) € X xY : d(z,z, +ker(T)) < €} is an open subset of X X Y for
each positive €.
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By the Bartle-Graves Theorem [1, Theorem 4], which itself is a corollary
of the comprehensive selection theorem of E. Michael (see, e.g., [2, 9, 7]), the
selection y — z, as described above can be chosen to be continuous.

When T is a nontrivial linear functional defined on a general normed linear
space, then T is automatically surjective and open [10, p. 38]. Assuming T is
in addition continuous, each level set of T is a closed hyperplane in X. By the
well-known formula of Ascoli [2, p. 5], for each z € X and each scalar «, we
have d(z,zq + ker(T)) = | T(x) —«| /|| T||. Thus, we can treat this special
case by:

Corollary 3.7. Let X be a normed linear space over a field of scalars F (either
R or C), and let T be a nontrivial continuous linear functional on X. Then
{(z,a) € X XF:|T(z) — | < e} is an open subset of X xF for each positive
E.

PROOF. Let a be a fixed scalar. Then | T(z) — «| < ¢ if and only if d(z, x4 +
ker(T)) <e/|| T . O

We next use Theorem 3.1 to prove a well-known optimization result often
attributed to C. Berge (see [4, p. 115] or [2, p. 202]).

Proposition 3.8. Let (X,7) be a topological space and (Y,d) be a metric
space. Suppose f : X xY — R is lower semicontinuous and ' : X =Y is
lower semicontinuous. Define M : X — (—o00,00| by M(x) = sup{f(z,y) :
y € I'(z)}. Then M is lower semicontinuous.

PROOF. Fix zp € X and let @ < M(x) be arbitrary. Choose yo € I'(xo)
with f(zo,yo) > . Then, by lower semicontinuity of f at (zg,yo), choose an
open neighborhood U of xy and € > 0 such that (z,y) € U x Bg(yo,e) =
f(z,y) > a. By condition (2) of Theorem 3.1, we can find a neighborhood
Uy CU of zy and €1 € (0,¢) such that

Uy X Ba(yo,e1) C {(z,y) : d(y,T'(2)) < e}.

If x € Uy, then (x,y9) € Ur x Bgq(yo,e1) so that there is a y in I'(z) with
d(y,yo) < e, ensuring that (z,y) € U X By(yo,e) as well. Then M(z) >
f(z,y) > « as required. O

As stated in Proposition 2.1, a real-valued function f is lower semicontin-
uous if and only if I'y : X =2 R defined by I'f(z) = (—oo, f(z)] is a lower
semicontinuous multifunction. For arbitrary f, the metric tube of radius &
about Gr(T'y) is easily seen to be {(z,a) € X xR : a < f(z) + ¢} which
is the complement of epi (f + &) in X x R. Thus, if we knew that just one
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metric tube about the graph of I'y were open, this would already ensure lower
semicontinuity of f.

The uninitiated might guess that upper semicontinuity of a multifunction
with values in a metric space (Y, d) is characterized by the lower semicontinuity
of (x,y) = d(y,T'(z)) on X x Y. However, continuity of (z,y) — d(y,T'(z)) is
not enough to ensure upper semicontinuity of I', even if I" has closed graph.

Example 3.9. Let X = R equipped with the usual topology and equip ¥ = R?
with the Euclidean metric d. Define T' : X = Y by I'(z) = {(z,8) : 8 €
R}. Then d((a, 8),T(x)) = |z — a] and so (z,(a,B)) — d((«a, 5),T'(x)) is
continuous. However I' fails to be upper semicontinuous because with V =
{(a, B) : @ < €}, we have I'T (V) = (—o0, 0].

Upper semicontinuity for multifunctions is a much stronger notion than
lower semicontinuity. What is required to obtain upper semicontinuity for a
multifunction with closed values is lower semicontinuity of (x,y) — d(y, I'(z))
on X x Y with respect to each compatible metric d for Y. Our next result is
anticipated by a characterization of the Vietoris topology by Beer, Lechicki,
Levi and Naimpally [3]; indeed our main construction is based on techniques
found in [3].

First, we introduce a well-studied weaker upper semicontinuity condition
that coincides with upper semicontinuity as we have defined it for multifunc-
tions with compact values (see, e.g., [2, 7]).

Definition 3.10. Let I' be a multifunction from a topological space (X, 7) to
a metric space (Y, d). We call T d-Hausdorff upper semicontinuous if for each
xo € X and each € > 0, there exists a neighborhood U of z such that for each
x € U we have I'(z) C By(T'(x0), €).

Theorem 3.11. Let (X, ) be a topological space and let (Y,c) be a metrizable
topological space. Suppose T : X =Y is a multifunction such that T'(x) is
a closed subset of Y for every x in X. Then the following conditions are
equivalent:

1. T is upper semicontinuous;

2. T' is d-Hausdorff upper semicontinuous for all metrics d which are com-
patible with o;

3. (z,y) — d(y,['(x)) is a lower semicontinuous function on X XY for
each metric d compatible with o;

4. for each metric d compatible with o and each € > 0, the set {(x,y) :
d(y,T(x)) > €} is open in X x Y.
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PROOF. (1) = (2): This is trivial because an enlargement of a set is an
open neighborhood of the set.

(2) = (3): Let d be a compatible metric and suppose a < d(yo, '(z0)).
If d(yo,T(x0)) = 0, then {(z,y) : d(y,I'(z)) > a} = X x Y. If not, then
d(yo,T'(xo)) > 0 and we may assume that o > 0 as well. Put e = (d(yo, ' (x0))—
«)/3. Since By(I'(xp),€) is an open neighborhood of I'(xg), by d-Hausdorff
upper semicontinuity of I" we can find an open neighborhood U of zy such
that x € U = T'(z) C Bq(I'(z0),€). A routine calculation now shows that
whenever x € U and y € B4(yo, ), we have d(y,T'(x)) > a.

(3) <= (4): As with upper semicontinuity, lower semicontinuity of the
map (z,y) — d(y,T'(z)) means that {(z,y) : d(y,T'(z)) > €} is open for each
positive e. Thus, statements (3) and (4) are equivalent.

(3) = (1): We want to show that I'~ (V) is open whenever V is open
in Y. This is trivial if V =Y or if I~ (V) = 0. Otherwise, let zg € I~ (V)
and yo € Y \ V be arbitrary. Let d be a compatible metric for the topology
of Y such that d(y1,y2) < 1 whenever {y;,y2} C Y, and let h be a Urysohn
function for I'(zg) and Y \ V, say h takes I'(xo) to one and h takes Y \ V to
Z€ro.

Define a second compatible metric p on Y by the formula

p(y1,y2) == d(y1,y2) + | h(y1) — h(y2) |,

and compute

p(Yo, T'(z0)) = yeirn(go) (d(y,yo) + | h(y) — h(yo) |) = d(yo, I'(z0)) +1 > 1.

By lower semicontinuity of (x,y) — p(y,I'(x)) at (zo,yo) - in fact, by the
lower semicontinuity of x — p(yo,T'(x)) at z¢ alone - we can find a neigh-
borhood U of xg such that © € U = p(yo,I'(x)) > 1. But then we have
p(y,y0) > 1 for each y in I'(z) and so y € V whenever y € I'(x). We have
shown that zo € U C T'~ (V) as required. O

Note that condition (4) of our last theorem can be recast as a statement
about “closed” metric tubes: for each metric d compatible with ¢ and each
g > 0, the tube {(x,y) : d(y,T'(z)) < e} is closed in X x Y.

We note that openness of {(z,y) : d(y,I'(z)) > e} for each positive e and
some compatible metric d implies {(x,y) : d(y,['(x)) > 0} is open, so that if
I" in addition has closed values, then I' has closed graph.

Condition (3) of Theorem 3.11 does not imply condition (1) without the
assumption that I has closed values. Further, condition (2) does not imply
condition (1) without this assumption. Consider again the multifunction I' :
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R = R given in Example 3.3, but now interchanging the defining formulas to
obtain = R\ {0} if # = 0, and = R otherwise. Let us denote this new
multifunction by A. For each metric d compatible with the usual topology of
the real line and for each (z,y) € R?, we have d(y, A(xz)) = 0. Further, for
each € > 0 and each « € R, we have By(A(z),e) = R so that A is d-Hausdorff
upper semicontinuous. But I't (R \ {0}) is not open.

Condition (4) of of Theorem 3.11, leads readily to alternative necessary
and sufficient conditions for continuity of a single-valued function assuming
values in a metrizable space. Instead of e-tubes, we reverse the inequality and
consider “anti-tubes”

{(z,y) : d(y, f(z)) > €}

Corollary 3.12. Let (X, 7) be a topological space and let (Y, o) be a metrizable
topological space. Then f is continuous if and only if for each compatible
metric d for o and each ¢ > 0, the set {(z,y) : d(y, f(x)) > €} is open in
X xY.

We close with an example showing that openness of each anti-tube for just
one compatible metric is not enough to guarantee continuity for a function f.

Ezample 3.13. Define f : R — R by f(0) = 0 and f(z) = 1/|z| otherwise.
Equipping the target space with the usual metric and fixing € > 0, we see that
{(z,y) : d(y, f(z)) > €} has three connected components (See Figure 2 which
shows the graph of the function and the anti-tube for e = 3/4).

L {(z,y):z<0andy > (1/|z]) +¢};
2. {(z,y):x>0and y > (1/|x|) + ¢};
3. {(0,y) : ly| >etU{(z,y) :x£A0and y < (1/|z|) — }.

Evidently the first two components are open. If we define g : R — (—o00, 00
by

g(x):{u/x)—e, if o #0

0, ifz=0"

then g is lower semicontinuous and so epi(g) is closed. Evidently, the third
component can be expressed as R? \ (epi(g) U {(0,y) : —e < y < &}) which is
open as well. This shows that {(z,y) : d(y, f(x)) > €} is open for each positive
€ while f fails to be continuous.
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Figure 2: A discontinuous function with closed graph and open anti-tube.
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