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TUBES ABOUT FUNCTIONS AND
MULTIFUNCTIONS

Abstract

We provide a characterization of lower semicontinuity for multifunc-
tions with values in a metric space 〈Y, d〉 which, in the special case of
single-valued functions, says that a function is continuous if and only if
for each ε > 0, the ε-tube about its graph is an open set. Applications
are given, one of which provides a novel understanding of the Open Map-
ping Theorem from functional analysis. We also give a related but more
complicated characterization of upper semicontinuity for multifunctions
with closed values in a metrizable space.

1 Introduction

Let 〈X, τ〉 be a topological space. If 〈fn〉 is a sequence of real-valued functions
on X and f : X → R, then the uniform convergence of 〈fn〉 to f is described
graphically as follows: given any ε-tube about the graph of f with ε > 0

Tube ( f, ε ) = {(x, y) : x ∈ X, y ∈ R and | y − f(x) | < ε},

then the graph of fn must lie in the tube for large enough n. (see Figure 1).
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Figure 1: Uniform convergence and "-tubes.

If the target space R is replaced by a general metric space hY, di, then
the same description of uniform convergence applies replacing R by Y and
| y � f(x) | by d(y, f(x)) in the definition of Tube ( f, " ). It is tempting to call
this metric tube a tubular neighborhood, and indeed this is literally the case
if f : X ! Y is continuous. In fact, f is continuous if and only each such
metric tube about its graph is an open subset of the product space.

By a multifunction � from X to Y , denoted by � : X ◆ Y , we mean
a single-valued function from X to the nonempty subsets of Y . One can
construct metric tubes about the graph of a multifunction � from X to Y in
an analogous way, and we show here that each metric tube is open if and only
if the multifunction is lower semicontinuous in the usual sense. As a special
case, continuity of a single-valued function f : X ! Y is characterized by
the condition that each "-tube {(x, y) 2 X ⇥ Y : d(y, f(x)) < "} is open in
X ⇥ Y . We give several applications of our general characterization of lower
semicontinuity, one of which leads to an alternative understanding of the Open
Mapping Theorem from functional analysis.

We also prove a related characterization of upper semicontinuity for multi-
functions with closed values in a metrizable space Y , which yields as a special
case this unusual characterization of continuity for a single-valued function f :
for each metric d on Y compatible with its topology, and for each " > 0, the
“anti-tube” {(x, y) 2 X ⇥ Y : d(y, f(x)) > "} is open in X ⇥ Y .

Figure 1: Uniform convergence and ε-tubes.

If the target space R is replaced by a general metric space 〈Y, d〉, then
the same description of uniform convergence applies replacing R by Y and
| y − f(x) | by d(y, f(x)) in the definition of Tube ( f, ε ). It is tempting to call
this metric tube a tubular neighborhood, and indeed this is literally the case
if f : X → Y is continuous. In fact, f is continuous if and only each such
metric tube about its graph is an open subset of the product space.

By a multifunction Γ from X to Y , denoted by Γ : X ⇒ Y , we mean
a single-valued function from X to the nonempty subsets of Y . One can
construct metric tubes about the graph of a multifunction Γ from X to Y in
an analogous way, and we show here that each metric tube is open if and only
if the multifunction is lower semicontinuous in the usual sense. As a special
case, continuity of a single-valued function f : X → Y is characterized by
the condition that each ε-tube {(x, y) ∈ X × Y : d(y, f(x)) < ε} is open in
X × Y . We give several applications of our general characterization of lower
semicontinuity, one of which leads to an alternative understanding of the Open
Mapping Theorem from functional analysis.

We also prove a related characterization of upper semicontinuity for multi-
functions with closed values in a metrizable space Y , which yields as a special
case this unusual characterization of continuity for a single-valued function f :
for each metric d on Y compatible with its topology, and for each ε > 0, the
“anti-tube” {(x, y) ∈ X × Y : d(y, f(x)) > ε} is open in X × Y .
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2 Preliminaries

All topological spaces are assumed to contain at least two points. If 〈Y, d〉 is
a metric space and y ∈ Y and ε > 0, then the open ε-ball about y will be
denoted by Bd(y, ε). If A is a nonempty subset of Y , then as in [2], we call
∪a∈ABd(a, ε) = {y ∈ Y : ∃a ∈ A with d(y, a) < ε} the ε-enlargement of A.

Suppose 〈X, τ〉 and 〈Y, σ〉 are topological spaces. A function from X to Y
is continuous provided the inverse image of each open subset of Y is open in
X. For a multifunction Γ from X to Y there are two natural ways to define
the inverse image of a subset V of Y under Γ: either the set of all x ∈ X such
that Γ(x) intersects V or the set of all x ∈ X such that Γ(x) is contained in V .
These lead to two distinct continuity concepts for multifunctions. For V ⊆ Y
put

Γ−(V ) := {x ∈ X : Γ(x) ∩ V 6= ∅} and Γ+(V ) := {x ∈ X : Γ(x) ⊆ V }.

We call Γ lower semicontinuous (resp. upper semicontinuous) provided Γ−(V )
(resp. Γ+(V )) is open whenever V is open [1, 4, 7, 8]. If f : X → Y is
single-valued and Γ(x) = {f(x)}, then these are the same, so continuity of
f is equivalent both to lower semicontinuity and to upper semicontinuity of
x⇒ {f(x)}.

Recall that a single-valued function f : X → (−∞,∞] is called lower
semicontinuous provided for each α ∈ R, {x ∈ X : f(x) > α} is open in X.
Dually, f : X → [−∞,∞) is called upper semicontinuous provided for each
α ∈ R, {x ∈ X : f(x) < α} is open in X. We confine our subsequent remarks
to the former class of functions, leaving it to the reader to construct/recall
analagous assertions for the latter class.

For analysts, f is lower semicontinuous on X if and only if at each x0 ∈ X,
whenever 〈xλ〉λ∈Λ is a net convergent to x0, we have lim infλ∈Λf(xλ) ≥ f(x0).
Lower semicontinuity is characterized by the following geometric condition:
the epigraph of f defined by epi (f) := {(x, α) : x ∈ X,α ∈ R and α ≥ f(x)}
is a closed subset of X × R [2, p. 14].

For real-valued functions, lower semicontinuity can be described in terms
of the semicontinuity of two natural associated multifunctions. The proof of
the following folk-theorem is left to the interested reader (cf. [8, p. 174]).

Proposition 2.1. Let 〈X, τ〉 be a topological space and let f : X → R. The
following conditions are equivalent:

1. f is lower semicontinuous;

2. x⇒ (−∞, f(x)] is lower semicontinuous;
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3. x⇒ [f(x),∞) is upper semicontinuous.

If Γ : X ⇒ Y is a multifunction, its graph is defined by

Gr ( Γ ) := {(x, y) : x ∈ X, y ∈ Y and y ∈ Γ(x)}.

(Note that this is a subset of X × Y and is not the same as the graph of Γ
as a function from X to the power set of Y .) Any subset of X × Y whose
projection on X is surjective is the graph of a multifunction from X to Y .

Suppose now that 〈Y, σ〉 is metrizable with understood compatible metric
d. With a slight abuse of notation, we use the same d for the distance from
a point in Y to a subset of Y . If Γ : X ⇒ Y and ε > 0, we define the
enlargement multifunction Γε : X ⇒ Y by the formula Γε(x) = Bd(Γ(x), ε) =
{y ∈ Y : d(y,Γ(x)) < ε}. For the metric tube of radius ε about the graph of
Γ, we will use the graph of Γε.

Gr ( Γε ) = {(x, y) ∈ X × Y : y ∈ Γε(x)}
= {(x, y) ∈ X × Y : d(y,Γ(x)) < ε}

If f : X → Y is single valued and Γ(x) = {f(x)}, then this is the same as
Tube ( f, ε ) from the introduction. As we shall see, while each enlargement
multifunction has open values, it need need not have an open graph.

3 Results

We immediately characterize those multifunctions Γ for which each metric
tube about Gr ( Γ ) is open.

Theorem 3.1. Let 〈X, τ〉 be a topological space and let 〈Y, d〉 be a metric
space. For a multifunction Γ from X to Y , the following conditions are equiv-
alent.

1. Γ is lower semicontinuous;

2. ∀ε > 0, the enlargement multifunction Γε has open graph;

3. ∀ε > 0, the enlargement multifunction Γε is lower semicontinuous;

4. (x, y) 7→ d(y,Γ(x)) is an upper semicontinuous function on X × Y .

Proof. (1) =⇒ (2): Suppose Γ is lower semicontinuous and ε > 0. Fix
(x0, y0) ∈ Gr ( Γε ). Then there is a y ∈ Γ(x0) such that δ = d(y, y0) < ε. Let
λ = (ε − δ)/2. By lower semicontinuity of Γ, there is an open neighborhood
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U of x0 such that x ∈ U =⇒ Γ(x) ∩ Bd(y, λ) 6= ∅. We claim that the
neighborhood U ×Bd(y0, λ) of (x0, y0) is contained in Gr ( Γε ).

To see this, fix (x1, y1) in U ×Bd(y0, λ). By the choice of U , there is a y2

in Γ(x1) with d(y2, y) < λ. We compute

d(y1, y2) ≤ d(y1, y0) + d(y0, y) + d(y, y2) < λ+ δ + λ ≤ ε.

This shows that d(y1,Γ(x1)) < ε as required.
(2) =⇒ (3): This follows readily from the observation that if V ⊆ Y ,

then

Γ−ε (V ) = {x ∈ X : Γε(x) ∩ V 6= ∅} = πx
(
Gr ( Γε ) ∩ π−1

y (V )
)

where πx and πy are the projections of X×Y onto X and Y respectively. If V
is open, then π−1

y (V ) is open since πy is continuous. Since Gr ( Γε ) is open by

hypothesis and πx is an open mapping, πx
(
Gr ( Γε ) ∩ π−1

y (V )
)

is open. Thus
Γ−ε (V ) is open and Γε is lower semicontinuous as claimed.

(3) =⇒ (1): Fix x0 ∈ X, y0 ∈ Γ(x0) and ε > 0. It suffices to show that
there is an open neighborhood U of x0 such that Γ(x)∩Bd(y0, ε) 6= ∅ whenever
x ∈ U . Since y0 ∈ Γε/2(x0), the lower semicontinuity of the (ε/2)-enlargement
multifunction gives an open neighborhood U of x0 such that x ∈ U =⇒
Γε/2(x)∩Bd(y0, ε/2) 6= ∅. Thus, for each x in U there is a y in Γ(x) such that
d(y,Bd(y0, ε/2)) < ε/2, and so d(y, y0) < ε.

(2) ⇐⇒ (4): Finally, conditions (2) and (4) are equivalent since a func-
tion g : X × Y → [0,∞) is upper semicontinuous if and only if {(x, y) :
g(x, y) < ε} is open in X × Y for each positive ε. Apply this with g(x, y) =
d(y,Γ(x)).

As noted above this yields a pleasant continuity result for single-valued
functions.

Corollary 3.2. Suppose 〈X, τ〉 is a topological space and 〈Y, d〉 is a metric
space. Then a single-valued function f : X → Y is continuous if and only if
Tube ( f, ε ) is open in X × Y for every positive ε.

Condition (4) of Theorem 3.1 can be considerably weakened and still yield
lower semicontinuity of Γ: ∀y ∈ Y, x 7→ d(y,Γ(x)) is upper semicontinuous on
X (see, e.g. [6, p. 352 and p. 360]).

While an upper semicontinuous multifunction with closed values from a
topological space X to a regular topological space Y has closed graph (see [7,
p. 78] or [8, p. 175]), a lower semicontinuous multifunction with open values
need not have open graph, even if the target space is metrizable. Thus, the
implication (3)⇒ (2) in Theorem 3.1 is not trivial.
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Example 3.3. Let X = Y = R, and define Γ : X ⇒ Y by

Γ(x) =

{
R if x = 0

R \ {0} otherwise

Evidently, Γ is lower semicontinuous with open values, yet its graph,

R2 \ ({x : x 6= 0} × {0}),

contains no neighborhood of (0, 0).

As is easy to see, in complete generality, a multifunction x⇒ Γ(x) is lower
semicontinuous if and only if x ⇒ cl(Γ(x)) is lower semicontinuous [7, p. 85].
One can wonder if conditions (1) and (3) of Theorem 3.1 remain equivalent
if we redefine Γε(x) to be {y ∈ Y : d(y,Γ(x)) ≤ ε}. This fails, even for
single-valued functions.

Example 3.4. Let X = [0, 1] and Y = [0, 1]∪[2,∞), with the Euclidean metric.
The identity function f(x) = x is continuous, but x ⇒ {y : d(y, f(x)) ≤ 1}
fails to be lower semicontinuous because d(2, f(1)) ≤ 1. Of course, the graph
of the auxiliary multifunction fails to be open as well.

Let 〈X, τ〉 and 〈Y, σ〉 be topological spaces, and let f : X → Y be surjec-
tive. It is well-known that f is an open mapping if and only if the preimage
multifunction y ⇒ f−1({y}) is a lower semicontinuous multifunction [7, p.
82]. When X is metrizable, Theorem 3.1 allows us to express openness of f
in terms of preimages of singleton subsets of Y as follows.

Theorem 3.5. Let 〈X, ρ〉 be a metric space and 〈Y, σ〉 be a topological space.
Suppose f : X → Y maps X onto Y . Then f is an open mapping if and only
if {(x, y) ∈ X × Y : ρ(x, f−1({y})) < ε} is an open subset of X × Y for each
positive ε.

As important as any result regarding the openness of single-valued map-
pings is the Open Mapping Theorem from functional analysis [5, 10]: Let X
and Y be Banach spaces (real or complex) and let T : X → Y be a continuous
linear surjection. Then T is an open mapping. From Theorem 3.5, we get the
following interpretation of this classical result.

Corollary 3.6. Let X and Y be Banach spaces and suppose T : X → Y is a
continuous linear surjection. For each y ∈ Y , select xy ∈ X with T (xy) = y.
Then {(x, y) ∈ X × Y : d(x, xy + ker(T )) < ε} is an open subset of X × Y for
each positive ε.
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By the Bartle-Graves Theorem [1, Theorem 4], which itself is a corollary
of the comprehensive selection theorem of E. Michael (see, e.g., [2, 9, 7]), the
selection y 7→ xy as described above can be chosen to be continuous.

When T is a nontrivial linear functional defined on a general normed linear
space, then T is automatically surjective and open [10, p. 38]. Assuming T is
in addition continuous, each level set of T is a closed hyperplane in X. By the
well-known formula of Ascoli [2, p. 5], for each x ∈ X and each scalar α, we
have d(x, xα + ker(T )) = |T (x)− α | / ‖T ‖ . Thus, we can treat this special
case by:

Corollary 3.7. Let X be a normed linear space over a field of scalars F (either
R or C), and let T be a nontrivial continuous linear functional on X. Then
{(x, α) ∈ X×F : |T (x)− α | < ε} is an open subset of X×F for each positive
ε.

Proof. Let α be a fixed scalar. Then |T (x)− α | < ε if and only if d(x, xα +
ker(T )) < ε/ ‖T ‖.

We next use Theorem 3.1 to prove a well-known optimization result often
attributed to C. Berge (see [4, p. 115] or [2, p. 202]).

Proposition 3.8. Let 〈X, τ〉 be a topological space and 〈Y, d〉 be a metric
space. Suppose f : X × Y → R is lower semicontinuous and Γ : X ⇒ Y is
lower semicontinuous. Define M : X → (−∞,∞] by M(x) = sup{f(x, y) :
y ∈ Γ(x)}. Then M is lower semicontinuous.

Proof. Fix x0 ∈ X and let α < M(x0) be arbitrary. Choose y0 ∈ Γ(x0)
with f(x0, y0) > α. Then, by lower semicontinuity of f at (x0, y0), choose an
open neighborhood U of x0 and ε > 0 such that (x, y) ∈ U × Bd(y0, ε) =⇒
f(x, y) > α. By condition (2) of Theorem 3.1, we can find a neighborhood
U1 ⊆ U of x0 and ε1 ∈ (0, ε) such that

U1 ×Bd(y0, ε1) ⊆ {(x, y) : d(y,Γ(x)) < ε}.

If x ∈ U1, then (x, y0) ∈ U1 × Bd(y0, ε1) so that there is a y in Γ(x) with
d(y, y0) < ε, ensuring that (x, y) ∈ U × Bd(y0, ε) as well. Then M(x) ≥
f(x, y) > α as required.

As stated in Proposition 2.1, a real-valued function f is lower semicontin-
uous if and only if Γf : X ⇒ R defined by Γf (x) = (−∞, f(x)] is a lower
semicontinuous multifunction. For arbitrary f , the metric tube of radius ε
about Gr ( Γf ) is easily seen to be {(x, α) ∈ X × R : α < f(x) + ε} which
is the complement of epi (f + ε) in X × R. Thus, if we knew that just one



40 G. Beer and M. J. Hoffman

metric tube about the graph of Γf were open, this would already ensure lower
semicontinuity of f .

The uninitiated might guess that upper semicontinuity of a multifunction
with values in a metric space 〈Y, d〉 is characterized by the lower semicontinuity
of (x, y) 7→ d(y,Γ(x)) on X × Y . However, continuity of (x, y) 7→ d(y,Γ(x)) is
not enough to ensure upper semicontinuity of Γ, even if Γ has closed graph.

Example 3.9. Let X = R equipped with the usual topology and equip Y = R2

with the Euclidean metric d. Define Γ : X ⇒ Y by Γ(x) = {(x, β) : β ∈
R}. Then d((α, β),Γ(x)) = |x − α| and so (x, (α, β)) 7→ d((α, β),Γ(x)) is
continuous. However Γ fails to be upper semicontinuous because with V =
{(α, β) : α < eβ}, we have Γ+(V ) = (−∞, 0].

Upper semicontinuity for multifunctions is a much stronger notion than
lower semicontinuity. What is required to obtain upper semicontinuity for a
multifunction with closed values is lower semicontinuity of (x, y) 7→ d(y,Γ(x))
on X × Y with respect to each compatible metric d for Y . Our next result is
anticipated by a characterization of the Vietoris topology by Beer, Lechicki,
Levi and Naimpally [3]; indeed our main construction is based on techniques
found in [3].

First, we introduce a well-studied weaker upper semicontinuity condition
that coincides with upper semicontinuity as we have defined it for multifunc-
tions with compact values (see, e.g., [2, 7]).

Definition 3.10. Let Γ be a multifunction from a topological space 〈X, τ〉 to
a metric space 〈Y, d〉. We call Γ d-Hausdorff upper semicontinuous if for each
x0 ∈ X and each ε > 0, there exists a neighborhood U of x0 such that for each
x ∈ U we have Γ(x) ⊆ Bd(Γ(x0), ε).

Theorem 3.11. Let 〈X, τ〉 be a topological space and let 〈Y, σ〉 be a metrizable
topological space. Suppose Γ : X ⇒ Y is a multifunction such that Γ(x) is
a closed subset of Y for every x in X. Then the following conditions are
equivalent:

1. Γ is upper semicontinuous;

2. Γ is d-Hausdorff upper semicontinuous for all metrics d which are com-
patible with σ;

3. (x, y) 7→ d(y,Γ(x)) is a lower semicontinuous function on X × Y for
each metric d compatible with σ;

4. for each metric d compatible with σ and each ε > 0, the set {(x, y) :
d(y,Γ(x)) > ε} is open in X × Y .
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Proof. (1) =⇒ (2): This is trivial because an enlargement of a set is an
open neighborhood of the set.

(2) =⇒ (3): Let d be a compatible metric and suppose α < d(y0,Γ(x0)).
If d(y0,Γ(x0)) = 0, then {(x, y) : d(y,Γ(x)) > α} = X × Y . If not, then
d(y0,Γ(x0)) > 0 and we may assume that α > 0 as well. Put ε = (d(y0,Γ(x0))−
α)/3. Since Bd(Γ(x0), ε) is an open neighborhood of Γ(x0), by d-Hausdorff
upper semicontinuity of Γ we can find an open neighborhood U of x0 such
that x ∈ U =⇒ Γ(x) ⊆ Bd(Γ(x0), ε). A routine calculation now shows that
whenever x ∈ U and y ∈ Bd(y0, ε), we have d(y,Γ(x)) > α.

(3) ⇐⇒ (4): As with upper semicontinuity, lower semicontinuity of the
map (x, y) 7→ d(y,Γ(x)) means that {(x, y) : d(y,Γ(x)) > ε} is open for each
positive ε. Thus, statements (3) and (4) are equivalent.

(3) =⇒ (1): We want to show that Γ−(V ) is open whenever V is open

in Y . This is trivial if V = Y or if Γ−(V ) = ∅. Otherwise, let x0 ∈ Γ−(V )
and y0 ∈ Y \ V be arbitrary. Let d be a compatible metric for the topology
of Y such that d(y1, y2) ≤ 1 whenever {y1, y2} ⊆ Y , and let h be a Urysohn
function for Γ(x0) and Y \ V , say h takes Γ(x0) to one and h takes Y \ V to
zero.

Define a second compatible metric ρ on Y by the formula

ρ(y1, y2) := d(y1, y2) + |h(y1)− h(y2) | ,

and compute

ρ(y0,Γ(x0)) = inf
y∈Γ(x0)

(d(y, y0) + |h(y)− h(y0) |) = d(y0,Γ(x0)) + 1 > 1.

By lower semicontinuity of (x, y) 7→ ρ(y,Γ(x)) at (x0, y0) - in fact, by the
lower semicontinuity of x 7→ ρ(y0,Γ(x)) at x0 alone - we can find a neigh-
borhood U of x0 such that x ∈ U =⇒ ρ(y0,Γ(x)) > 1. But then we have
ρ(y, y0) > 1 for each y in Γ(x) and so y ∈ V whenever y ∈ Γ(x). We have
shown that x0 ∈ U ⊆ Γ−(V ) as required.

Note that condition (4) of our last theorem can be recast as a statement
about “closed” metric tubes: for each metric d compatible with σ and each
ε > 0, the tube {(x, y) : d(y,Γ(x)) ≤ ε} is closed in X × Y .

We note that openness of {(x, y) : d(y,Γ(x)) > ε} for each positive ε and
some compatible metric d implies {(x, y) : d(y,Γ(x)) > 0} is open, so that if
Γ in addition has closed values, then Γ has closed graph.

Condition (3) of Theorem 3.11 does not imply condition (1) without the
assumption that Γ has closed values. Further, condition (2) does not imply
condition (1) without this assumption. Consider again the multifunction Γ :
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R ⇒ R given in Example 3.3, but now interchanging the defining formulas to
obtain x ⇒ R \ {0} if x = 0, and x ⇒ R otherwise. Let us denote this new
multifunction by ∆. For each metric d compatible with the usual topology of
the real line and for each (x, y) ∈ R2, we have d(y,∆(x)) = 0. Further, for
each ε > 0 and each x ∈ R, we have Bd(∆(x), ε) = R so that ∆ is d-Hausdorff
upper semicontinuous. But Γ+(R \ {0}) is not open.

Condition (4) of of Theorem 3.11, leads readily to alternative necessary
and sufficient conditions for continuity of a single-valued function assuming
values in a metrizable space. Instead of ε-tubes, we reverse the inequality and
consider “anti-tubes”

{(x, y) : d(y, f(x)) > ε}.

Corollary 3.12. Let 〈X, τ〉 be a topological space and let 〈Y, σ〉 be a metrizable
topological space. Then f is continuous if and only if for each compatible
metric d for σ and each ε > 0, the set {(x, y) : d(y, f(x)) > ε} is open in
X × Y .

We close with an example showing that openness of each anti-tube for just
one compatible metric is not enough to guarantee continuity for a function f .

Example 3.13. Define f : R → R by f(0) = 0 and f(x) = 1/ |x | otherwise.
Equipping the target space with the usual metric and fixing ε > 0, we see that
{(x, y) : d(y, f(x)) > ε} has three connected components (See Figure 2 which
shows the graph of the function and the anti-tube for ε = 3/4).

1. {(x, y) : x < 0 and y > (1/ |x |) + ε};

2. {(x, y) : x > 0 and y > (1/ |x |) + ε};

3. {(0, y) : | y | > ε} ∪ {(x, y) : x 6= 0 and y < (1/ |x |)− ε}.

Evidently the first two components are open. If we define g : R → (−∞,∞]
by

g(x) =

{
(1/ |x |)− ε, if x 6= 0

∞, if x = 0
,

then g is lower semicontinuous and so epi(g) is closed. Evidently, the third
component can be expressed as R2 \ (epi(g) ∪ {(0, y) : −ε ≤ y ≤ ε}) which is
open as well. This shows that {(x, y) : d(y, f(x)) > ε} is open for each positive
ε while f fails to be continuous.
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Figure 2: A discontinuous function with closed graph and open anti-tube.
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