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LIPSCHITZ CONDITION VIA A
SYMMETRIC LIPSCHITZ CONDITION

Abstract

If a subset A of the real line is a countable union of closed, strongly
symmetrically porous sets, then there exists a Lipschitz everywhere sym-
metrically differentiable function f such that A is the set of all non-
differentiability points of f. Since there are closed strongly symmetri-
cally porous sets of Hausdorff dimension 1, our construction answers a
problem posed by J. Foran in 1977. We also obtain results concerning
smallness of the set of points at which a continuous function fulfills the
symmetric Lipschitz condition but does not fulfill the ordinary Lipschitz
condition.

1 Introduction and Notation

In this article we will consider real functions defined on the real line R. By
the symmetric derivative of a function f at a point z € R we mean
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we consider here only finite symmetric derivatives.
Let us recall that f satisfies the Lipschitz condition at x € R if
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Following [9], we say that a function f : R — R fulfills the symmetric
Lipschitz condition at a point x if

lim sup fleth) = flz=h) < 00.
h—0+ 2h

We shall use the following notation.

C(f) ={x: f is continuous at x},
D(f) ={z: f'(z) € R exists},
SD(f) = {x: fi(x) € R exists},
L(f) = {z : f fulfils the Lipschitz condition at x}

and

SL(f) = {x: f fulfils the symmetric Lipschitz condition at z}.

Let E C R,z € R and r > 0. Then we define s(E, z,r) as the supremum
of all numbers A > 0 for which there exists a p > 0 such that p + h <
r, (@+p,x+p+h)NE=0and (x —p—h,x —p) N E = 0. The symmetric
porosity of F at x is defined as

E
p°(E,x) := limsup w
r—0+ r

We say that E is symmetrically porous at  (d-symmetrically porous at x)
if p°(E,2) > 0 (p°(E,z) > d). If E is l-symmetrically porous at x, we say
that F is strongly symmetrically porous at x.

A set E C R is symmetrically porous (strongly symmetrically porous, d-
symmetrically porous) if it is symmetrically porous (strongly symmetrically
porous, d-symmetrically porous) at each of its points.

A set E is called o-symmetrically porous (o-strongly symmetrically porous,
o-d-symmetrically porous) if it is a countable union of symmetrically porous
(strongly symmetrically porous, d-symmetrically porous) sets.

Khintchine [5] proved that the set SD(f)\ D(f) is of Lebesgue measure
zero for each measurable function f. Foran [4] (and independently also Pono-
marev [7]) constructed a continuous function on R which has a finite symmetric
derivative everywhere and is differentiable at no point of a nonempty perfect
set. Thus the set SD(f) \ D(f) can be uncountable also for a continuous
function f. Foran in his article asked two questions.
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The first question asks whether there exists a continuous function f which
has a finite symmetric derivative everywhere and the set of all non-differentiabi-
lity points of f has a positive Hausdorff dimension. Note that Foran observed
that this set has Hausdorff dimension zero in his example. Thomson ([9], p.
266) conjectured that this question has positive answer; we will see that his
intuition was right on target.

Foran’s second question, which asks whether each perfect set of measure
zero is the set of all non-differentiability points for a continuous function which
has a finite symmetric derivative everywhere, was answered negatively by
Belna, Evans and Humke [1]. They proved that, for a continuous function
f, the set SD(f)\ D(f) is o-porous and used the fact ([10]) that there exists
a perfect set of measure zero which is not o-porous.

Evans in [2] factually proved the following result which improves the result
of [1] and generalizes the previous result of (the preprint of) [12].

Theorem E. Let f: R — R be given. Then the set

(SD(H\D(f))HNC(f) is o — (1 —g) -symmetrically porous for each 0 < & < 1.

This result was formulated in [2] in the case SD(f) C C(f) only, but it is
obvious that the same arguments give also the above result.

In [12] this result was proved for continuous f only. The fact that Theorem
E is a true improvement of the result of [1] was proved in [3].

The natural problem of a complete characterization (or at least a complete
characterization of smallness) of sets SD(f) \ D(f) for continuous f (or for
symmetrically differentiable continuous f is Problem 42 of [9]) and seems to
be open.

The main result (Theorem 3.2) of the present article says that if A C R
is a countable union of closed strongly symmetrically porous sets, then A =
SD(f)\ D(f) for a Lipschitz everywhere symmetrically differentiable function
f. The corresponding construction is similar to that of [7] but it contains also
some small new ideas.

Theorem E and Theorem 3.2 suggest that, if a simple characterization
discussed above exists, it must probably deal with a type of symmetric poros-
ity. We obtain a simple characterization in the class of perfect symmetric sets
only. However, this result is strong enough to easily imply a positive answer to
Foran’s first question mentioned above. The set R\ D(f) can have Hausdorff
dimension 1 for a Lipschitz everywhere symmetrically differentiable function

!

In Section 4 we consider the size of SL(f)\ L(f). First we show (Theorem
4.1) that the notes [12] and [2] easily give that (SL(f) \ L(f)) N C(f) is o-
strongly symmetrically porous for each f : R — R. Thus SL(f) \ L(f) is
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o-strongly symmetrically porous if C'(f) = R, in particular for each Baire one
function f.

The basic constructions used in the proof of Theorem 3.2 easily give that,
if FF C R is a countable union of closed strongly symmetrically porous sets,
then there exists a continuous function f such that F' C SL(f) \ L(f) (even
F c SD(f)\L(f)). Note that we cannot demand here SL(f) = R, see Remark
4.9.

The same constructions give a complete characterization of those symmet-
ric, perfect sets that are of the form SL(f)\ L(f) (or SD(f) \ L(f)) for a
continuous function f. In particular, we obtain that SD(f) \ L(f) can be of
Hausdorff dimension 1 for a continuous function f.

It should be mentioned that Theorem 4.1 was originally contained in an un-
published note written (and originally also submitted for publication) in 1996.
The results of Section 3 were presented on the Workshop in Real Analysis,
Budapest 21.6.-24.6.1997.

We adopt the following notation.

The four Dini derivates of f at x are denoted by D f(x), Dy f(z), D™ f(x)
and D_ f(x).

Lebesgue measure on R is denoted by .

If I C R is an interval, we frequently write |I| instead of AI.

The symbols A and int A denote the closure and the interior of a set A,
respectively. The distance of two sets A, B is denoted by dist(A, B).

We say that a function f is K-Lipschitz if f is Lipschitz with the constant
K.

The support of f is supp(f) := {x € R: f(x) # 0}.

2 Lemmas and Basic Constructions

We start with the following useful technical definitions.

Definition 2.1.

(a) By an I-system Z we mean a finite (possibly empty) disjoint system of
nonempty bounded closed intervals. We put

v(Z) =sup{|I|: I € T}.

(b) Let Z, K be I-systems and let ¢ > 0. We say that Z is c-embedded in K if

(bl) for each I €Z there exists K € K such that I C K and
dist(I, R\ UK) = dist(I,R\ K) > ¢|I], and
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(b2) dist(I,J) > c|I| whenever I,JeZ, I#J.

The fact that a closed set is strongly symmetrically porous can be expressed
in different ways. One of them uses the notion of c-embedding of I-systems;
in the following lemma we formulate and prove the only implication we need.

Lemma 2.2. Let F C R be a nonempty bounded closed strongly symmetrically
porous set and let ()52, be a sequence such that ¢, > 1 and ¢, — co. Then
there exist I-systems (I,,)22, such that, for everyn € N,

(1) Z, is cp-embedded in T,,_1,
(i) v(Z,) < 1/¢p and
(i) F =N, UT:.

Proor. Find a,b € R such that F' C (a,b) and put Zy = {[a, b]}. Further
suppose that k € N and that Zy, ..., Zy_1 were constructed so that, for every
0 <n <k —1, the following conditions hold:

(a) conditions (i) and (ii) hold whenever n > 0,
(b) F Ccint(UZ,) and
(c) FNI#0 whenever I €Z,.

We want to construct Zj such that (i), (i), (b) and (c¢) hold for n = k.
Since F' C int(|JZx_1), we have p := dist(F,R\ [JZx_1) > 0. Since F is
strongly symmetrically porous, we can assign numbers p, > 0, h, > 0 to every
x € F so that

(I+pmaz+px+hz)mF:®7 (zfpz*h:mx*pm)ﬂF:@a (1)

h, > 8cip, and (2)
6p.cr < min(1, p). (3)
By the Borel covering lemma, we can find points z1,...,z,, € F such that,

putting p; := ps,, by := hy,, the intervals (x; —p; —h;, z;+pi+h;), i =1,...,m,
cover the set F. By (1) we also have that the system of intervals ® := {J; :=

[€; —pi,xi +pi] :i=1,...,m} covers F. Moreover, we may and will suppose
that

no proper subsystem of ® covers F. (4)
Now put

T = {[wi — 2pi,wi + 2pi] :i=1,...,m}.
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Let 1 <i,j <mandy; € [z; —2p;,x; +2pi], y; € [x; —2p;,z;+2p;]. We may
and will suppose p; < p;. First we shall show that y; # y;. In fact, otherwise
clearly

[x; — pj,x; + p;] C (x5 — 5pi, xi + 5p;)

and therefore (2) implies
[xj — pj. 2 +pj] C (@i —pi — hi, @i + pi + ).

Consequently (1) gives [z; —p;, z;+p;]NF C [x;—Dp;, ;+p;] which contradicts
(4).

Thus we know that 7, is an I-system. Further (1) implies |z; —x;| > p;+h;.
Consequently, using (2), we have

[yi — yj| > pi + hi —4p; > 8cppi — 3pi > degps > cpA[xi — 2pi, i + 2p;]
> cpAx; — 2pj, xj + 2p;l.

If, moreover, z € R\ [JZx_1 is given, then (3) gives |z — z;| > p > 6p;ck.
Therefore

|z — yi| > 6pici — 2p; > 4Apicy > e\ — 2pi, ©; + 2p;).

Thus we have shown that (i) holds for n = k. By (3) we obtain A[z; — 2p;, z; +
2p;] = 4p; < 4/6¢x, < 1/cj, which implies that (ii) holds for n = k as well.
The validity of (b) and (c) for n = k is obvious. Thus the sequence (Z,,)%,
is well defined. It clearly satisfies (i) and (ii); (iii) follows by (b),(c),(ii) and
the assumption ¢, — oc. O

In the following construction, we build more complicated functions from
basic building blocks; functions g; which are assigned to each closed bounded
interval I. We need only the following properties of g;.

(a) gr is 4-Lipschitz and of the class C* on R.
(b) supp(gr) C I and gr(z) > 0 for each z € R.

(c) gr attains its maximum which equals |I] at the center ¢ of I and g;(c+h) =
gr(c—h) for all h € R.

It is easy to see that such functions exist.
The following construction depends on a parameter 0 < a < 1; we shall
apply it in the following with & = 0 and v = 1/2.

Construction Let 0 < a < 1 and d > 1 be given. Further let I-systems Z and
K such that T is 4d?>-embedded in K be given We shall construct a function
» = p(a,d,T) (which does not depend on K) in the following way.
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To every interval I = [a,b] € Z, we assign the “right” interval I" :=
[b+ d|I|,b+ 2d|I|] and the “left” interval I' := [a — 2d|I|,a — d|I|]. Put

p=p(a,d,I):=> d* (g +gp)-
IeT

We shall need the properties of ¢ which are proved in the following lemma.

Lemma 2.3. The function ¢ = ¢(a,d,T) constructed above has the following
properties:

(P1) ¢ is a non-negative C* function on R with a compact support.

(P2) |p(z)| < d*“Fu(Z) for each x € R.

(P3) dist(supp(v),UZ) > 0 and suppp C UK.

(P4) ¢ is 4-Lipschitz in the case a = 0.

(P5) Ifx € UZ and h > 0, then |p(x + h) — ¢(z — h)|/2h < 4d*1L.

(P6) Fo/r every x € |JZT there exists 0 < h < 3v(Z)d such that (z+ h)/h >
d>/3.

PROOF. To each I € T assign an “enlarged” interval I* := [a — 2d?|I|,b +
2d?|1|]. Observe that

I"ul'cre and {I*:1€7} isa disjoint system. (5)

The first claim of (5) is obvious. To prove the second one, suppose on the
contrary that I* N J* # () for different I, J from Z. We may and will suppose
|I| > |J|. Then the distance between I and J is clearly at most 2d?|I| +
2d?|J| < 4d?|I| which contradicts the assumption that Z is 4d*-embedded in
K.

Using (5) and the definitions of ¢ and g; we immediately obtain the prop-
erties (P1)-(P4).

To prove (P5), suppose that € I = [a,b] € Z and h > 0 are given. Denote
c:=(a+0b)/2. If 0 < h < d|I|, then clearly ¢(x + h) = ¢(x —h) = 0. If
d|I| < h < 2d?|I|, then the points ¢+ h,c — h,z + h,z — h belong to I* and
(5) implies that ¢ = grr + gpp on I*. Thus ¢(c+ h) — p(c — h) =0 and

lp(z + h) —p(z = h)| <|p(c+h) —p(c—h)| + [p(c+h) — p(z + h)]|
+ (e —h) —p(z — h)|
<0+ 4d”|c — x| + 4d*|c — x| < 8d*|I| < 8d* ' h.
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If h > 2d?|I|, then (5) gives that either p(z + h) = gn(x + h) or p(z + h) =
g (x + h) for an interval J € Z,J # I. In both cases |p(x + h)| < d'T<|J|.
If p(x + h) # 0, then clearly h + 2d|I| > dist(I,J) > 4d?|J|. Consequently
h > 2d?|J| and thus we have

oz +h) < det| g det
on | = adJ] T 4

Similarly we obtain |p(x — h)/2h| < d®~!/4. The inequalities proved above
immediately give (P5).

To prove (P6), suppose that an = € I € 7 is given. Put h:= b+ %d|]| — .
Then clearly 0 < h < 3d|I| < 3v(Z)d and

pla+h) _d 1| detn)  d

h h diIf 37

O

Lemma 2.4. Suppose that 0 < a < 1,(2)5%, and (d,)5, are given so that
all T, are I-systems, d, > 1. In addition assume

(i) Z,, is 4d%-embedded in I,,—1 for every n € N,

(i) (d,)* v (Z,) — 0, (d,)*Tv(Z,) <1 for every n € N and

(i) 327 ()2 < oo,

Denote F :=(\,—qUZ,. Then there exists a function f = fo such that

(iv) f is continuous, |f(x)| < 1 for every x € R and [ is 4-Lipschitz in the
case o =0,

(v) fis a CY function on R\ F,

(vi) fl(z) =0 for everyx € F and

(vil) ifz € F, then
(a) D~ f(x) <0,
(b) DT f(x)>1/3 in the case o =0 and
(¢) DTf(z)= o0 in the case a > 0.

PROOF. Let ¢, = ¢(a,d,,Z,) be the functions from the Construction. Put
f=Ffa=23 01 ¢n By (i) and (P3) of Lemma 2.3 we have that the supports
of the functions ¢,, are pairwise disjoint. This fact, (P1), (P2), (P4) and (ii)



ORDINARY DERIVATIVES VIA SYMMETRIC DERIVATIVES 661

easily imply (iv) and (v). To prove (vi) suppose that z € F' and € > 0 are
given. Observe that (P3) implies that ¢} (z) = 0 for each k. Using also (P5)
and (iii) we obtain

lim sup fleth) = flz=h) ‘ §1imsupz

or(x +h) —pp(z—h) ‘

h—0 2h h—0 7 2h
+limsup Y ok +h) — op(x — h) ‘
h—0 k=n+1 2h
oo
<0+ Y 4d* ' <e,
k=n-+1

if n is chosen sufficiently large. Thus f](z) = 0.
If € F, then f(x) =0, and since f is non-negative, we obtain (vii),(a).
For each index n by (P6) we can find an h,, such that 0 < h,, < 3v(Z,,)d,
and o(x + hyp)/hy > (d,)*/3. Since d,, > 1, we obtain by (ii) that h, — 0.

Since
f(x+hn) — f(2) > on(x + hp) > (dn)®
hy, - hy, 3

and d,, — oo by (iii), we obtain (vii),(b) and (vii),(c). O

3 Symmetric Derivatives

Proposition 3.1. Let F' C R be a bounded closed strongly symmetrically
porous set. Then there ezists a non-negative 1-Lipschitz function g such that
lg(z)] <1 for every x € R, g is a C -function on R\ F and, for every x € F,
we have

g(z) =0, gi(z) =0, D g(x) <0 and Dtg(x)>1/12.

PROOF. Put d, := 2n? and apply Lemma 2.2 to F and ¢, := 4(d,)?. The
resulting I-systems (Z,,)22, clearly satisfy assumptions (i)-(iii) of Lemma 2.4
for « = 0. Now it is clearly sufficient to find the corresponding f = fo and
put g := f/4. O

Theorem 3.2. Let A C R can be written in the form A = \Jo—, F,,, where
each F,, is closed and strongly symmetrically porous. Then there exists a Lip-
schitz symmetrically differentiable function f on R such that A is the set of
all non-differentiability points of f.



662 L. ZAJICEK

Proor. We may suppose that all F,, are bounded. For each n, we apply
Proposition 3.1 to F' = F,, and obtain a corresponding function g = g,,. Now
put f:=> 7 (26)""g,. Obviously, f is a Lipschitz function.

Let € R be given and put D := >~ (26) " (gn),(x). For each € > 0
find k € N such that 77, 1 (26)™" < &/3 and hg > 0 such that

<

Wl ™

k k
> (o6 N 90T ZR) 5 o)1 g, )

for every 0 < h < hg. Since each g, is 1-Lipschitz, we conclude that

fl@+h)— flx—h)
2h Bl D‘

_ 2(26)—71 gn(x + h)Q_hgn(x - h) o 2(26)—71(9”);(33)

n=1 n=1

k k

<[>0 20y N 002 ) S g, )

+ Z(26)—n9n($ + h)Q_hgn(x —h) + 2(26)_"(%);(56)

k+1 k+1

if 0 < h < hg. Therefore f!(z) = D and thus f is symmetrically differentiable.
Quite similar argument gives that f/(z) = >~ (26) " (g») (z) for each
zeR\ A
Let now a point « € A be fixed. Find k£ € N such that « € Fj, and « ¢ F,
for every n < k. Then the function ) _,(26)""g, is differentiable at 2 and

D ((26) " gx) () — D™((26) Fgx)(x) > 26"“1—12.

Since the function Y777, ., (26)""g, is Lipschitz with the Lipschitz constant

Do es1(26)7™ = (26) 7% /25, we conclude that

(26)7F — 3(26)—’“ > 0. O

_ 1
D*f(@) - D™ (@) > 15 -

12

As an almost immediate consequence of this theorem and results of [3], we
obtain the following result on symmetric perfect sets. We use here the notation
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from [6]. Namely, if a sequence A = (),,)52; with 0 < A, < 3 is given, then we
consider the symmetric perfect set (the “generalized Cantor set ” in [6]) C'(\) C
[0, 1] which is constructed like the classical Cantor ternary set is so that, after
the n-th step of construction, we obtain 2" closed “remaining” intervals with
the same length A;...\,. Symmetric perfect sets are sometimes called also
“symmetric Cantor sets” and/or determined by a sequence (o), 0 < a, <
1 (see [3]). Note that for a,, =1 — 2\, the set C(a,) from [3] coincides with
the set C'(\) from [6].

Proposition 3.3. Let C = C(\) C [0,1] be a symmetric perfect set. Then
the following statements are equivalent.

(1) liminf X, = 0.

(ii) There exists a Lipschitz function f on R which has a finite symmetric
derivative at all points, is of the class C' outside C but f'(x) eists at
no point x € C.

(iii) There exists a function f on R such that C C (SD(f)\ D(f))NC(f).

PROOF. Theorem 3 and Theorem 5 of [3] give that (i) holds iff C' is strongly
symmetrically porous. Thus Proposition 3.1 immediately gives the implication
(i) = (i4). The implication (i¢) = (i4i) is trivial. To prove the implication
(#3i) = (i) suppose that (i) fails. Then we know by Theorem 3 of [3] that
there exists € > 0 such that

C'is (1 — €) — symmetrically porous at no point of C. (6)

By Theorem E (see Introduction) C = J;7; A,, where every A, is
(1 — &)-symmetrically porous. By the Baire theorem we obtain that some A,
is dense in a portion of C, which clearly contradicts (6). O
The condition (i) implies that the Lebesgue measure of C' is zero but it is
well-known that it implies no stronger smallness in the (Hausdorff) measure
sense. In particular, there exists a symmetric perfect set C' of Hausdorff di-
mension 1 for which (i) holds. Thus Foran’s first question (see Introduction)
has a negative answer.
We shall now formulate and prove a more precise statement which deals
with Hausdorff measures A;, determined by non-decreasing functions
h:]0,00) = [0,00), h(0) = 0 (see [6] or [8]).

Proposition 3.4. Let h : R — R be an increasing function such that h(0) = 0
and h'(0) = oco. Then there exists a symmetric perfect set C and a Lipschitz
function f on R with the following properties.
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(1) An(C) = oo, where Ay, is the Hausdorff measure determined by h.

(ii) The function f is of the class Ct outside C, has a finite symmetric deriva-
tive at all points and f'(x) exists at no point x € C.

PROOF. We will need the following fact (see [6], 4.11).

Fact Let C = C()\) be a symmetric perfect set. Put s = Ay--- A\, If
g :]0,00) — [0,00) is a continuous increasing function such that g(s;) = 27*,
then 1/4 < A,(C(\) < 1.

For each natural number k& choose 65 > 0 such that

h(x
hiz) > (k+2)! whenever 0 < a < 0.

x
Further choose an increasing sequence of natural numbers (ny)%2; such that
ny > 2 and 27" < ;. Let (p,)22, be any fixed sequence such that

oo
0<p,<1 and p::Hpn>0.
1

Now put A\, = 1/k if n = ng and A\, = p,/2 if no such k exists. Clearly
there exists a continuous increasing function h* : [0,00) — [0, 00) such that
h*(0) =0 and h*(A;---A,) = 27", By the above mentioned fact we have

1/4 < Ap-(C(N) < 1.

To prove Ap(C(X)) = oo, by Theorem 40 of [8] it is suffices to establish that

lim, 0+ h(—(;)) = 0. To this end, consider 0 < z < A;... Ay, 41 and the corre-

sponding index n = n(x) for which A --- X117 < < Ay -+ Ay, Since clearly
n > ny, there exists the unique index k = k(z) such that
N <N < Ngyp. Since Ay -+ A1 < 27" < Iy, we obtain

h*(x) < 2 < 2—n
h(z) = W Anet) = (kDA Anga
27" (k+ 1) 2

T (k+2) - p2-(th)  p(k+2)
Since clearly k(z) — oo when & — 0+, we are done. O

4 A Symmetric Lipschitz Condition

In the first part of this section we show how the notes [12] and [2] give the
following theorem.
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Theorem 4.1. For each function f : R — R, the set (SL(f) \ L(f)) N C(f)
is o-strongly symmetrically porous.

This theorem immediately implies, for example, the following result.

Proposition 4.2. Let f : R — R be a function of Baire class one. Then the
set of all points at which f fulfills the symmetric Lipschitz condition but does
not fulfill the Lipschitz condition is o-strongly symmetrically porous.

Note that the above theorem is analogous to [11, Theorem 2] which asserts
that, for each function f : R — R, the set of all points at which f fulfills
an one-sided Lipschitz condition but does not fulfill the Lipschitz condition is
o-strongly porous.

M. J. Evans in [2, Proposition 1] proved the following result.

Proposition 4.3. For each function f : R — R, the set (SL(f)NC(f))\C(f)
is o-strongly symmetrically porous.

Thus to prove our Theorem 4.1 it is sufficient to prove that
(SL(fYNL(f))NC(f) is o-strongly symmetrically porous. (7)

We will show that (7) easily follows from the following Lemma 4.4 which
is essentially the main part of [12, Lemma 1].

Lemma 4.4. Let f : R — R be a function, B > 0 and 1 >¢e¢ >0 . Fora
natural number m denote by Sy, the set of all points x € R at which
Dt f(x) > B and

fl@+h)— flz—h)
2h
Then S, NC(f) is (1 — €)—symmetrically porous.

B 1
<22 whenever 0<h< —. (8)
8 m

It is necessary to note that in the proof of [12, Lemma 1] it is only proved
that Sy, is (1 —e€)-symmetrically porous for a continuous function f. However,
as was pointed out and used in [2], the assumption of global continuity of f is
not used in the proof and thus the conclusion of the above lemma holds.

To prove (7), suppose that a point z € M = (SL(f) \ L(f)) N C(f) is
given. Then we can clearly find a natural number m such that

_ — 1
flath)— flz—h) <m whenever 0<h < —. (9)
2h m

Thus, denoting by M,, the set of all z € M for which (9) holds, we see that
M = J;_, M,, and that it is sufficient to prove that each M,, is o-strongly
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symmetrically porous. Since x € L(f) clearly iff all four Dini derivates of f at
x are finite, we have

My =(My (1 (= D¥ f(2) = 00}) U (Mo 11 {2 Dy f () = —o0})
UMy, N{z: D™ f(x) =o00}) UMy N{z: D_f(z) = —o0}).

Considering the functions f(—z), —f(z) and —f(—x) we easily see that it
is sufficient to prove that the set

Zpy =My, 0 {z: DT f(z) = o}

is strongly symmetrically porous. To this end choose an arbitrary 1 > ¢ > 0
and find B > 0 such that eB/8 > m. Then (9) and consequently also (8) is
satisfied for each z € Z,,. Since also D f(x) = co > B for each z € Z,,,,
our Lemma 4.4 implies that Z,, is (1 — €)-symmetrically porous. Thus Z,, is
1-symmetrically porous, i.e. it is strongly symmetrically porous.

The second part of this section, which concerns the sets SL(f) \ L(f) is
analogical to Section 3 which deals with the sets SD(f) \ D(f).

Proposition 4.5. Let F' C R be a bounded, closed, strongly symmetrically
porous set. Then there exists a non-negative continuous function f such that
|f(x)] < 1 for every x € R, f is a C' function on R\ F and, for every
x € F, we have f(x) = 0, fl(x) =0 and D' f(z) = oo. In particular,
SD(f)=SL(f) =R and F =R\ L(f).

ProOF. Put d, := 2n® and apply Lemma 2.2 to F and ¢, = 4(d,)?%.
The resulting I-systems (Z,,)22, obviously satisfy the assumptions (i)-(iii) of
Lemma 2.4 for o« = 1/2. Then the function f from the assertion of Lemma
2.4 has clearly all required properties. O

Now we can simply prove an analogy of Proposition 3.3 on symmetric
perfect sets.

Proposition 4.6. Let C = C(\) be a symmetric perfect set. Then the follow-
ing statements are equivalent.

(i) liminf X, = 0.

(il) There exists a continuous symmetrically differentiable function f which
is Ct on R\ C and D* f(x) = oo for each z € C.

(iii) There exists a function f on R such that C C (SL(f)\ L(f)) N C(f).
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ProOOF.  If (i) holds then C is strongly symmetrically porous by Theorem
5 of [3] and thus Proposition 4.5 implies (ii). The implication (i) = (ii%) is
trivial. The implication (#i4) = (i) can be easily proved, using Theorem 4.1
and Theorem 3 of [3] and imitating the proof of the implication (i) = (i) of
Proposition 3.3. O

Quite similarly as in Proposition 3.4, we easily see that Proposition 4.6
implies that (for a continuous f) the Lebesgue null set SD(f)\ L(f) (and thus
also SL(f) \ L(f)) need not be small in any reasonable stronger (Hausdorff)
measure sense.

Proposition 4.7. Let h : [0,00) — [0,00) be an increasing continuous func-
tion with h(0) = 0 and I/, (0) = oo. Then there exist a symmetric per-
fect set C' and a continuous symmetrically differentiable function f such that
Ap(C) =00, fisCl on R\ C and C =R\ L(f).

Theorem 4.8. Let A C R be written in the form A = J;—, F,,, where each F,
is closed and strongly symmetrically porous. Then there exists a continuous
function g on R such that, for every x € A, ¢g.(x) € R exists but g is not
Lipschitz at z; in particular A C SL(g) \ L(g).

PrOOF. We may suppose that each set F;, is bounded. For each n, let f = f,,
be a function which corresponds to F' = F,, by Proposition 4.5. It is easy to
see that, for each n € N, there exists a closed (even discrete) set D,, C R such
that D, N A = () and the distance function

dp(z) :=dist(z, L U--- U F,, UD,)

is bounded by 1. Now put

o0
g1:=f1, gn:=n"2fu(dp_1)?* for n>1 and g:= Zgn.

n=1

The function g is clearly continuous on R.

Now let € A be given and let k be a natural number with = € Fj and
x ¢ F, for each n < k. Observe that each d,, has clearly finite both one-
sided derivatives, and therefore a finite symmetric derivative, at any point
y ¢ FLU---UF,UD,. The same property is satisfied also for functions
(d,)?, which are clearly also bounded by 1 and Lipschitz on R. By the above
observation, the function ) _, g, is Lipschitz on R and has a finite symmetric
derivative at x.

Now denote s := Y7, gn. For every n > k + 1, clearly gn(z) =
dp_1(z) = 0 and |gn(x + k)| < n72(dp_1(x + h))? < n=2h? for every h € R.
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Consequently, for every h # 0,

< |n7t i n"?h? = |h| i n=2.

n=k+1 n=k+1

s(z+h) —s(z)
h

Thus s'(z) = 0. Since both f; and (dx_1)? have a finite symmetric derivative
at x, we conclude that g, and g have finite symmetric derivatives at x.

On the other hand, gi is not Lipschitz at x. In fact, suppose that g
is Lipschitz at x. Then, since we have observed that the function (dj_1)? is
Lipschitz at 2 and di_1 (x) # 0, we easily conclude that also fi, = k?(dr_1) " 2gx
is Lipschitz at x, a contradiction. Since both ) _, g, and s are Lipschitz at
x, we obtain that g is not Lipschitz at x. O

Remark 4.9. If A in Theorem 4.8 is not nowhere dense, no corresponding
function g is symmetrically Lipschitz at all points. In fact, suppose that f is
a continuous function on R and SL(f) = R. Put

[f(x+h) = flz = h)|

Spi={zeR: 57

1
<n whenever 0 <h < —}.
n

Then clearly R =(J;2, S, and the continuity of f easily implies that all S,
are closed. Thus the Baire category theorem easily gives that each interval I
contains a subinterval J which is contained in an S,,; it easily implies that f
is Lipschitz on J. Therefore R\ L(f) is nowhere dense.
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