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MOORE-SMITH LIMITS AND THE
HENSTOCK INTEGRAL

Abstract

An integral is defined using the Moore-Smith limit and this new
integral is compared to the Henstock integral.

It is well-known though not easily found in the literature that the Riemann
integral can be defined by Moore-Smith limit using divisions. Then many
properties of the Riemann integral will have straightforward proofs. In this
paper, we shall investigate whether the Henstock integral can also be defined
by means of Moore-Smith limit involving δ-fine divisions. We assume that the
reader is familiar with the definition of the Henstock integral [3].

A division D of [a, b] is a finite set of interval-point pairs ([u, v], ξ) such that
the intervals [u, v] from D are non-overlapping and their union is [a, b] and also
ξ ∈ [u, v] for each ([u, v], ξ) ∈ D. Let D1 = {([u, v], ξ)} and D2 = {([s, t], η)}
be two divisions of [a, b]. Then D2 is said to be finer than D1 in the Riemann
sense, or in symbols, D2 w D1 if for each ([s, t], η) ∈ D2 we have [s, t] ⊂ [u, v]
for some ([u, v], ξ) ∈ D1 and when [s, t] = [u, v] we have η = ξ. Then (D,w) is
a directed set of divisions D of [a, b] . More precisely, the following conditions
are satisfied:

1. D w D for all D ∈ D;

2. if D1, D2, D3 ∈ D with D1 w D2 and D2 w D3, then D1 w D3;

3. if D1, D2 ∈ D with D1 w D2 and D2 w D1, then D1 = D2; and
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4. for every D1, D2 ∈ D, there exists D3 ∈ D such that D3 w D1 and
D3 w D2.

Hence the Riemann integral of f on [a, b] is the Moore-Smith limit [1] of
Riemann sums using (D,w). In symbols,∫ b

a

f = lim
D∈D

(D)
∑

f(ξ)(v − u).

We recall that a function f is Henstock integrable to A on [a, b] if for every
ε > 0 there exists δ(x) > 0 such that for any δ-fine division D of [a, b] we have∣∣∣(D)

∑
f(ξ)(v − u)−A

∣∣∣ < ε.

A division D of [a, b] is δ-fine if ξ ∈ [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)) for each
([u, v], ξ) ∈ D. Now let D be the family of δ-fine divisions of [a, b] for some
given δ(x) > 0. For D1, D2 ∈ D, we write D2 ≥ D1 and say that D2 is
finer than D1 in the Henstock sense using δ if for every ([s, t], η) ∈ D2 we
have [s, t] ⊂ [u, v] for some ([u, v], ξ) ∈ D1, and {ξ : ([u, v], ξ) ∈ D1} ⊂ {η :
([s, t], η) ∈ D2}. Then (D,≥) is a directed set. A function f is said to be
H1-integrable to A on [a, b] if A is the Moore-Smith limit of the Riemann sums
using the directed set (D,≥). More precisely, there exists δ(x) > 0 such that
for every ε > 0 there exists a δ-fine division D0 such that for every δ-fine
division D ≥ D0 we have

|(D)
∑

f(ξ)(v − u)−A| < ε.

We say that A is the H1-integral of f on [a, b] and that f is H1-integrable on
[a, b] using δ. Note the difference that here we choose δ(x) first then ε, whereas
in the definition of the Henstock integral δ(x) comes after ε.

Example 1. A Riemann integrable function on [a, b] is H1-integrable there
using an arbitrary δ(x) > 0, and the two integrals are equal.

Example 2. The Dirichlet function, given by f(x) = 1 when x is rational and
0 when x is irrational, is H1-integrable on [0, 1], using δ where δ(ri) = 2−i for
i = 1, 2, . . . and {r1, r2, . . .} are the rational numbers in [0, 1].

Example 3. Let f(x) = F ′(x) where F (0) = 0 and F (x) = x2 sinx−2 where
x 6= 0. Then f is H1-integrable on [0, 1], using δ where δ(x) = δn when
x ∈ (1/(n+ 1), 1/n] for some suitable δn and n = 1, 2, . . ., and arbitrary when
x = 0.
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It is easy to see that every H1-integrable function on [a, b] is also Hen-
stock integrable there. We will be using this fact frequently in the succeeding
discussion.

For convenience, we say that f is H1-integrable on a set X ⊂ [a, b] if fXX
is H1-integrable on [a, b] where XX denotes the characteristic function of X.
We may define the primitive F of f on [a, b] with f(x) = 0 for x ∈ [a, b]−X.
It is easy to see that if f is H1-integrable on X1 using δ1 and on X2 using δ2
then f is H1-integrable on the union X1∪X2 using δ = min{δ1, δ2}. However,
we have the following.

Lemma 4. Let f be H1-integrable on a closed set X1 ⊂ [a, b] using δ1, and on
another closed set X2 ⊂ [a, b], with f(x) = 0 for x 6∈ X1 ∪X2. If the primitive
F of f on [a, b] is absolutely continuous there, then f is H1-integrable on
X1 ∪X2 using δ, where δ(x) = δ1(x) when x ∈ X1.

Proof. We may assume X1 ⊂ X2. Suppose f is H1-integrable on X2 using δ2.
Then for every ε > 0 there exists a δi-fine division Di on [a, b], i = 1, 2, such
that for any δi-fine division D ≥ Di we have∣∣∣(D)

∑
ξ∈Xi

f(ξ)(v − u)−Ai
∣∣∣ < ε,

where Ai denotes the H1-integral of f on Xi. We may assume δ2(x) ≤ δ1(x)
for all x ∈ [a, b]. Put δ(x) = δ1(x) when x ∈ X1 and δ2(x) when x ∈ [a, b]−X1.
We may modify δ2(x), if necessary, so that (x − δ2(x), x + δ2(x)) ∩ X1 = ∅
when x /∈ X1.

Since F is absolutely continuous on [a, b], there exists η > 0 such that for
any partial division D of [a, b] we have∣∣∣(D)

∑
F (u, v)

∣∣∣ < ε whenever (D)
∑
|v − u| < η,

where F (u, v) = F (v)−F (u). Note that the Saks-Henstock Lemma [3, p. 11],
for the H1-integral holds. If, in addition, D is δ2-fine partial division of [a, b]
with ξ ∈ X2 such that∣∣∣(D)

∑
{f(ξ)(v − u)− F (u, v)}

∣∣∣ < ε,

then (D)
∑
|v − u| < η implies |(D)

∑
f(ξ)(v − u)| < 2ε.

Now, take a δ-fine division D0 of [a, b] such that D0 ≥ D1, D2 using δ1 and
a subset E of D0 covers X1 with |E−X1| < η. For any δ-fine division D ≥ D0,
take a δ2-fine division D3 of those intervals in D which are δ1-fine, namely,
those with ξ ∈ X1. Note that (D3)

∑
f(ξ)(v − u) and (D)

∑
ξ∈X1

f(ξ)(v − u)
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are sums over the same intervals, in which D3 may contain ([u, v], ξ) with
ξ ∈ X1 and ξ ∈ X2 −X1. Then we have∣∣∣(D)

∑
ξ∈X2

f(ξ)(v − u)−A2

∣∣∣ ≤ ∣∣∣(D)
∑
ξ∈X1

f(ξ)(v − u)−A1

∣∣∣
+
∣∣∣A1 − (D3)

∑
ξ∈X1

f(ξ)(v − u)
∣∣∣

+
∣∣∣(D3)

∑
ξ∈X2

f(ξ)(v − u) + (D)
∑

ξ∈X2−X1

f(ξ)(v − u)−A2

∣∣∣
+
∣∣∣(D3)

∑
ξ∈X2−X1

f(ξ)(v − u)
∣∣∣

< 5ε.

The proof is complete.

Theorem 5. Let f be H1-integrable on a closed set Xn with primitive Fn for
n = 1, 2, . . ., and X = ∪∞n=1Xn. If f is non-negative on [a, b] and Fn(b) −
Fn(a)→ A as n→∞, then f is H1-integrable on X.

Proof. We may assume that Xn ⊂ Xn+1 for each n = 1, 2, . . .. Since f is
H1-integrable on Xn, there exists δn(x) > 0 such that for any δn-fine division
D of [a, b] we have

(D)
∑
ξ∈Xn

|f(ξ)(v − u)− Fn(u, v)| < 1

2n
,

where Fn(u, v) = Fn(v)−Fn(u) and Fn is the primitive of fXXn
on [a, b]. Put

δ(x) = δn(x) when x ∈ Xn−Xn−1 with X0 = ∅, otherwise arbitrary. We may
modify δn(x), if necessary, as in Lemma 4. Since f is non-negative on [a, b],
fXXn

is absolutely H1-integrable on [a, b] and so fXXn
is absolutely Henstock

integrable on [a, b]. Thus, Fn is absolutely continuous on [a, b], and the result
of Lemma 4 applies.

Given ε > 0, there exists an integer N > 0 such that

|A− FN (a, b)| < ε and

∞∑
n=N+1

1

2n
< ε.

Further, there exists a δ-fine division DN of [a, b] such that for any δ-fine
D ≥ DN of [a, b] we have∣∣∣(D)

∑
ξ∈XN

{f(ξ)(v − u)− FN (u, v)}
∣∣∣ < ε.
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Here we have used Lemma 4 to obtain DN and the last inequality. Note that
Fn(u, v)→ F (u, v) as n→∞ and 0 ≤ F (u, v)−Fn(u, v) ≤ F (u, v)−FN (u, v)
for n ≥ N . Here F (a, b) = A. Then for any δ-fine division D ≥ DN of [a, b]
we obtain∣∣∣(D)

∑
ξ∈X

f(ξ)(v − u)−A
∣∣∣ ≤ ∣∣∣(D)

∑
ξ∈XN

{f(ξ)(v − u)− FN (u, v)}
∣∣∣

+

∞∑
n=N+1

∣∣∣(D)
∑

ξ∈Xn−Xn−1

f(ξ)(v − u)− Fn(u, v)
∣∣∣

+ |A− FN (a, b)|
≤ 3ε.

Hence f is H1-integrable on X.

With the idea presented in the proofs of Lemma 4 and Theorem 5, we can
now look at the H1-integrability of a Henstock integrable function. Note that
the Cauchy Criterion [3, p. 10], also holds for H1-integral. We give first the
following lemmas.

Lemma 6. Let X be a closed subset of [a, b]. If f is H1-integrable and bounded
on [a, b], then f is H1-integrable on X.

Proof. Let |f(x)| ≤ M for all x ∈ [a, b]. By the Cauchy Criterion, there
exists δ(x) > 0 such that for each ε > 0 there is a δ-fine division D0 of [a, b]
such that for any δ-fine divisions D,D′ ≥ D0 of [a, b] we have∣∣∣(D)

∑
f(ξ)(v − u)− (D′)

∑
f(ξ)(v − u)

∣∣∣ < ε.

Further, there exists a finite union E of closed intervals such that E ⊃ X
and |E − X| < ε

M . We can assume that a subset of D0 forms a division
of E. For every δ-fine divisions D1, D2 ≥ D0 of [a, b], let D∗1 and D∗2 be
the respective subsets of D1 and D2 which form divisions of E. Note that
(Di)

∑
ξ∈X f(ξ)(v−u) = (D∗i )

∑
ξ∈X f(ξ)(v−u) for i = 1, 2. We may assume

further that

(D1)
∑

ξ∈[a,b]−E

f(ξ)(v − u) = (D2)
∑

ξ∈[a,b]−E

f(ξ)(v − u).
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Then∣∣∣(D1)
∑
ξ∈X

f(ξ)(v − u)− (D2)
∑
ξ∈X

f(ξ)(v − u)
∣∣∣

≤
∣∣∣(D1)

∑
f(ξ)(v − u)− (D2)

∑
f(ξ)(v − u)

∣∣∣
+ (D∗1)

∑
ξ 6∈X

|f(ξ)|(v − u) + (D∗2)
∑
ξ 6∈X

|f(ξ)|(v − u)

< 3ε.

By the Cauchy Criterion again, the above inequalities imply that f is
H1-integrable on X.

Lemma 7. Let f be a measurable function on [a, b]. Then there exists a
sequence {Xi} of closed subsets of [a, b] such that f is H1-integrable on each
Xi and |[a, b]− ∪∞i=1Xi| = 0.

Proof. It is well-known [2, p. 192] that there exists a sequence {ϕn} of
continuous functions on [a, b] such that ϕn(x) → f(x) almost everywhere in
[a, b]. By Egoroff’s Theorem and Lemma 6, for each i = 1, 2, . . ., there is a
closed set Xi ⊂ [a, b] with |[a, b]−Xi| < 1

i such that f is H1-integrable on Xi.
Obviously,

|[a, b]− ∪∞i=1Xi| ≤ |[a, b]− ∪Ni=1Xi| ≤ |[a, b]−XN | <
1

N
→ 0

as N →∞, that completes the proof of the lemma.

Let a function F be defined on [a, b] and X ⊂ [a, b]. The function F is said
to be AC∗(X) if for every ε > 0 there exists η > 0 such that for any partial
division D = {([u, v], ξ)} of [a, b] with u or v in X

(D)
∑
|v − u| < η implies (D)

∑
|F (u, v)| < ε.

Further, F is said to be ACG∗ on [a, b] if [a, b] is the union of X1, X2, . . . such
that F is AC∗(Xi) for each i. This definition is equivalent to the definition in
[3, p. 29] with F being continuous on [a, b] and to the classical definition in the
book by Saks [4], that is, if F is ACG∗ on [a, b], then F is continuous there.
It was shown in [3, p. 34] that is f is a Henstock integrable function on [a, b],
then its primitive F is ACG∗ on [a, b] and we can assume that [a, b] = ∪Xi

such that F is AC∗(Xi) and Xi is closed for each i.

On the other hand, a sequence {Fn} of functions defined on [a, b] is said
to be UAC∗(X) where X ⊂ [a, b] if, in the definition of AC∗(X), η > 0 is
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independent of n. Further, {Fn} is UACG∗ on [a, b] if [a, b] = ∪Xi such
that {Fn} is UAC∗(Xi) for each i and we can assume that Xi is closed for
each i. Futhermore, the sequence {Fn} is said to be oscillation-convergent to
some function F defined on [a, b] if [a, b] = ∪Xi with Xi being closed and for
every i and ε > 0 there is an integer N > 0 such that for any partial division
D = {([u, v], ξ)} of [a, b] with ξ in Xi we have∑

|Fn(u, v)− F (u, v)| < ε

whenever n ≥ N . The following lemma was proved in [3, p. 56]

Lemma 8. Let {fn} be a sequence of Henstock integrable functions on [a, b]
and is control-convergent to some function f on [a, b]; that is, the following
conditions are satisfied:

1. fn(x)→ f(x) almost everywhere in [a, b] as n→∞;

2. the sequence {Fn} of primitives of {fn} is UACG∗ on [a, b]; and

3. {Fn} converges uniformly on [a, b].

Then {Fn} is oscillation-convergent to the primitive F of f on [a, b].

Lemma 9. Let f be Henstock integrable on [a, b] with primitive F . Then there
exists a sequence {Fn} of absolutely continuous functions that is oscillation-
convergent to F on [a, b].

Proof. Since f is Henstock integrable on [a, b], F is ACG∗ on [a, b]; that is,
there exists a sequence {Xn} of closed subsets of [a, b] such that F is AC∗(Xn)
for each n. We may assume that Xn ⊂ Xn+1 and a, b ∈ Xn for each n. Since
Xn is closed, we can write (a, b)−Xn = ∪∞k=1(ak, bk) and put

Fn(x) =

{
F (x) when x ∈ Xn;

F (ak) + F (bk)−F (ak)
bk−ak (x− ak) when x ∈ (ak, bk) for all k.

Since f is Henstock integrable on [a, b], its primitive F and thus Fn are con-
tinuous on [a, b]. Further, we can assume that Fn → F uniformly as n→∞.

Since Fn is AC∗(Xn) for each n, given an ε > 0 there exists ηn > 0 such
that for any partial division πn of [a, b] with u or v in Xn

(πn)
∑
|v − u| < ηn implies (πn)

∑
|Fn(u, v)| < ε.

Let N be fixed. For n ≥ N , Fn(x) = FN (x) for all x ∈ XN . Thus we can
choose η = min1≤i≤N{ηi} for all Fn so that {Fn} is UAC∗(XN ). Hence {Fn}
is UACG∗ on [a, b].
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Now define

fn(x) =

{
f(x) when x ∈ Xn;
F (bk)−F (ak)

bk−ak when x ∈ (ak, bk) for all k.

It is easy to see that fn is Henstock integrable on [a, b] and Fn is the primitive
of fn for each n. Since Xn ↑ [a, b], fn(x)→ f(x) almost everywhere in [a, b].

From the above discussion, {fn} is control-convergent to f on [a, b]. Thus,
by Lemma 8, {Fn} is oscillation-convergent to F on [a, b]. The proof is com-
plete.

We now give the main result of the paper.

Theorem 10. Let f be Henstock integrable on [a, b]. Then there is an
H1-integrable function g such that f(x) = g(x) almost everywhere in [a, b].

Proof. By Lemma 7, there exists a sequence {Xi} of closed subsets of [a, b]
such that f is H1-integrable on each Xi and |[a, b] − ∪∞i=1Xi| = 0. Let X =
∪∞i=1Xi and Xi ⊂ Xi+1 for each i. We prove that f is H1-integrable on X.

We may assume that the result of Lemma 9 holds; that is, for every i there
exists an integer n(i) ≥ i such that for any partial division D of [a, b] with u
or v in Xi, we have

(D)
∑
|Fn(i)(u, v)− F (u, v)| < 1

2i
,

where F is the primitive of f on [a, b] and Fn(i)(x) is as defined in the proof
of Lemma 9.

Since f is H1-integrable on Xn(i) for each i, fn(i) is also H1-integrable on
Xn(i), where fn(i) is as defined in Lemma 9. There exists δn(i)(x) > 0 such
that for any δn(i)-fine division D of [a, b] we have

(D)
∑
ξ∈Xi

|fn(i)(ξ)(v − u)− Fn(i)(u, v)| < 1

2i
.

For i = 1, 2, . . ., put δ(x) = δi(x) if x ∈ Xi − Xi−1 with X0 = ∅; otherwise,
put δ(x) > 0 arbitrary. We may modify δi(x), if necessary, as in Lemma 4.

Given ε > 0, there exists a positive integer N = n(i0) such that

∞∑
i=i0+1

1

2i
< ε.
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Further, there exists a δ-fine division DN of [a, b] such that for any δ-fine
division D ≥ DN of [a, b] we have∣∣∣(D)

∑
ξ∈Xi0

{f(ξ)(v − u)− FN (u, v)}
∣∣∣ < ε.

For any δ-fine division D = {([u, v], ξ)} of [a, b] with ξ ∈ Xn − Xn−1 and
D ≥ DN , we have∣∣∣(D)

∑
ξ∈X

{f(ξ)(v − u)− F (u, v)}
∣∣∣ ≤ ∣∣∣(D)

∑
ξ∈Xi0

{f(ξ)(v − u)− FN (u, v)}
∣∣∣

+

∞∑
i=i0+1

|(D)
∑

ξ∈Xi−Xi−1

{f(ξ)(v − u)− Fn(i)(u, v)}|

+
∣∣∣(D)

∑
ξ∈Xi0

{FN (u, v)− F (u, v)}
∣∣∣

+

∞∑
i=i0+1

∣∣∣(D)
∑

ξ∈Xi−Xi−1

{Fn(i)(u, v)− F (u, v)}
∣∣∣

< ε+

∞∑
i=i0+1

1

2i
+

1

2i0
+

∞∑
i=i0+1

1

2i

< 4ε.

Therefore, f is H1-integrable on X.

Corollary 11. A function f is Henstock integrable on [a, b] if and only if
f(x) = g(x) almost everywhere in [a, b] for some H1-integrable function g on
[a, b].

It is not known whether every Henstock integrable function on [a, b] is also
H1-integrable there. We conjecture that it is not.
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