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Abstract

In this paper we consider the properties of ideals of some rings of al-
most continuous functions, being extensions of rings of continuous func-
tions.

1 Introduction

Although the properties of rings of real continuous functions have been studied
for a long time (cf. the results of [7]), many interesting articles concerning
these problems are still appearing, among others, in reference to the theory of
ideals of these rings (e.g. [1],[8]). Investigations of rings wider than rings of
continuous functions are also carried out (e.g.[18]).

In 1959 J. Stallings introduced (in order to generalize the Brouwer fixed
point theorem) the notion of almost continuity.

A function f : X → Y (whereX,Y are topological spaces) is almost
continuous if, for each open set U ⊂ X×Y containing the graph of
f , U contains the graph of some continuous function g : X → Y .

Almost continuity has become a property studied intensively by many
mathematicians ([2], [9], [10]. Many results in the field of almost continu-
ous functions are cited in the paper [12].) because almost continuous func-
tions possess interesting topological properties, and many important classes of
functions are connected with this property. (For example: every derivative or
approximately continuous function is an almost continuous function.)

In the present paper we shall consider the properties of ideals of some
rings of almost continuous functions, being extensions of rings of continuous
functions.
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2 Preliminaries

Throughout the paper, we shall consider functions h : I→ R where I is a fixed
closed interval or I = R, and R is the set of all real numbers with the natural
topology.

The family of all almost continuous functions (continuous functions) will
be denoted by A, (C).1

We shall use the standard notions and notation ([6],[7]). The open ball
with center at x and radius r > 0 will be denoted by B(x, r). The symbols
A, Fr(A) and Int(A) stand for the closure, the boundary and the interior of
A, respectively. The distance between a point x and a set A on the real line
will be denoted by dist(x,A).

By Cξ (Dξ) we shall denote the set of all continuity (discontinuity) points
of ξ. The symbol Γ(ξ) stands for the graph of ξ. Z(ξ) = {x : ξ(x) = 0}.

Let constα denote the constant function assuming the value α. For a
function ξ : I→ R, let ξβα denote a function defined in the following way:

ξβα(x) = (ξ ∧ constβ) ∨ constα =

 β if ξ(x) ≥ β,
ξ(x) if ξ(x) ∈ [α, β],
α if ξ(x) ≤ α.

Let F be a fixed family of functions. Let us denote ([7]) Z[F ] = {Z(ξ) :
ξ ∈ F} and by Fb the set {ξβα : ξ ∈ F ∧ α < 0 < β} (as well as the metric
space (Fb, %) endowed with the metric of uniform convergence %).

The notions and symbols we use, connected with porosity, come from pa-
pers [20] and [21]. Let X be a metric space. Let M ⊂ X, x ∈ X and
R > 0. Then we denote by γ(x,R,M) the supremum of the set of all
r > 0 for which there exists z ∈ X such that B(z, r) ⊂ B(x,R) \ M . If
p(M,x) = 2 · lim supR→0+

γ(x,R,M)
R > 0, then we say that M is porous at x.

If there exists µ > 0 such that p(M, z) ≥ µ for z ∈ X, then we say that M is
uniformly porous.

Let D denote the set of all closed subsets of I 6= R. Then by %I
H we shall

denote the Hausdorff metric

%I
H(A,B) = max

(
sup
a∈A

(dist(a,B)), sup
b∈B

(dist(b, A))
)
.

Let R be a fixed ring. Then by =(R) we shall denote the set of all ideals
of R. An ideal J1 ∈ =(R) will be called an extension (restriction) of a ideal
J2 ∈ =(R) if J1 ⊃ J2 (J1 ⊂ J2).

1The domain and the range of functions from A, (C) will always be obvious from the
context.
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A nonzero ideal Jo ∈ =(R) is called essential ([1]) if it intersects every
nonzero ideal nontrivially. The intersection of all essential ideals is called a
socle. An ideal J is prime if ab ∈ J implies a ∈ J or b ∈ J . An ideal J ∈
=(R) is called a z-ideal if ξ ∈ R and Z(ξ) ∈ Z[J ] implies ξ ∈ J . Nontrivially,
a z-ideal J ∈ =(R) will be called a z′-ideal if

⋂
Z[J ] is a nonempty closed set

belonging to Z[J ]. If ξ ∈ R, then the symbol (ξ)R will stand for the ideal
generated by ξ.

Let R be a fixed ring of functions. Then by Ann(A) we shall denote the
set {ξ ∈ R : ξ ·A = {const0}} (Ann(A) is the set of all annihilators of A).

A set {Ji}i∈I of nonzero ideals in the rings of functions R is said to be
independent if Ji ∩ (Σj 6=iJj) = (const0)R, i.e. Σi∈I =

⊕
i∈I Ji. Then we say

that R has a finite Goldie dimension if every independent set of nonzero ideals
is finite, and if R has no finite Goldie dimension, then the Goldie dimension
of R, denoted by dim(R), is the smallest cardinal number m for which any
independent set of nonzero ideals in R has cardinality less than or equal to m.

Let f ∈ A be a function such that Df = Df ⊂ Z(f)2. By the symbol
CA(f) we shall denote the set of all A- extensions rings of C containing f , i.e.

a ring R belongs to CA(f) if and only if C ∪ {f} ⊂ R ⊂ A
and Dg ⊂ Df (g ∈ R).

In the further considerations, if we write CA(f), then we always assume
that f is a fixed function belonging to A, such that ∅ 6= Df = Df ⊂ Z(f).

Our considerations start with the observation that the results included in
papers [2], [12], [13], [14], [15], [17] show that, for a function f satisfying the
above assumptions, CA(f) 6= ∅ and, moreover, CA(f) contains more than one
ring.

3 Connections between Ideals of C and Ideals of R ∈
CA(f)

The first question that arises when one considers the set of rings CA(f) is
connected with the possibility of the existence of rings R1,R2 ∈ CA(f) for
which the ideals (f)R1 , (f)R2 would be equal or distinct. The theorem below
will show that there exist almost continuous functions as well as a continuum

2According to the results contained in paper [5], in this case, Df is a nowhere dense
set and the family of all almost continuous functions fulfilling this condition is equal to the
family of all Darboux functions fulfilling this condition.
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of rings Rη ∈ CA(f) and a continuum of rings Kη ∈ CA(f), such that (f)Rη1 =
(f)Rη2 and (f)Kη1 6= (f)Kη2 , for η1 6= η2.

Before we formulate the main theorem, we note that, according to the well-
known results included in [2], [3], [12], [19], the following Lemma is obvious.

Lemma 1. Let f : I → R be a function such that Df is a countable set, for
which the following Young’s condition is fulfilled.
∀x∈I ∃{αn},{βn}⊂I αn ↗ x↙ βn ∧ limn→∞f(αn) = f(x) = limn→∞f(βn).
(Of course, if x is an endpoint of I, then there exists only one sequence.)
Then f is an almost continuous function.

Theorem 1. For each countable and closed set P ⊂ I, there exists a function
f : I→ R such that f ∈ A and Df = P , for which there exist two families of
rings {Rη : η < c}, {Kη : η < c} ⊂ CA(f) such that Rη1 6= Rη2 , Kη1 6= Kη2
(η1 6= η2) and
(i) (f)Rη1 = (f)Rη2 (η1, η2 < c);
(ii) (f)Kη1 6= (f)Kη2 (η1, η2 < c and η1 6= η2).

Proof. If I is a bounded interval, then assume for simplicity that the end-
points of I belong to P . (In the opposite case, the proof is similar, but the
notation would be more complicated.) Let {(an, bn)}n be the sequence of all
components of the complement of P . Fix n0. Let {βn0

k } ({γn0
k }) be a sequence

of numbers belonging to (an0 , bn0) monotonically decreasing (increasing) to
an0 (bn0). (Additionally we can assume that βn0

1 < γn0
1 .) Now, we choose

αn0
k ∈ (βn0

k+1, β
n0
k ), ξn0

k ∈ (γn0
k , γn0

k+1). Finally, let cn0
k (dn0

k ) be a mid point of
the interval (βn0

k+1, α
n0
k ) ( (ξn0

k , γn0
k+1)) for k = 1, 2, . . ..

Now, we define a function f : I→ R by f(cnk ) = 1 = f(dnk ) (for any n and
k); f(x) = 0 for x ∈ P, x ∈ [αnk , β

n
k ] ∪ [γnk , ξ

n
k ] and x ∈ [βn1 , γ

n
1 ] (for any n and

k) and, moreover, let f be linear in any interval [βnk+1, c
n
k ], [cnk , α

n
k ], [ξnk , d

n
k ],

[dnk , γ
n
k+1] (for any n and k). It is easy to see that P = Df ⊂ Z(f), and f

fulfills Young’s condition, which means (Lemma 1) that f ∈ A.
Now, we shall construct the families of rings {Rη : η < c} and

{Kη : η < c}. Let {pn,kη }η<c ({qn,kη }η<c) be the transfinite sequence of
all points of the interval (αnk , β

n
k ) ((γnk , ξ

n
k )) for any n, k. Moreover, let for

any n, k, δnk > 0 be a real number such that (αnk − δnk , α
n
k ) ⊂ (cnk , α

n
k ),

(γnk − δnk , γnk ) ⊂ (dnk−1, γ
n
k ) (we put (d0, γ

n
1 ) = {γn1 }) and f([αnk − δnk , αnk ]) ⊂

(− 1
k ,

1
k ) ⊃ f([γnk − δnk , γnk ]). Let {un,kη }η<c ({vn,kη }η<c) be the transfinite se-

quence of all points of (αnk − δnk , αnk ) ((γnk − δnk , γnk )).
For a fixed η, we denote by Rη the ring of all functions ϕ : I → R such

that:
(a) Dϕ ⊂ P ,
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(b) ϕ|Aη is a continuous function, where Aη = P ∪
⋃
n,k{pn,kη , qn,kη }.

Moreover, by Kη we shall denote the ring of all functions ψ : I→ R such that:
(A) Dψ ⊂ P ,
(B) ψ|Bη is a continuous function, where Bη = P ∪

⋃
n,k{un,kη , vn,kη }.

Of course, f ∈ Rη (η < c) and, moreover, according to our assumptions
and Lemma 1, ϕ ∈ A for any ϕ ∈ Rη (η < c). Consequently, it is easy to see
that Rη ∈ CA(f) (η < c). Clearly, if η1 6= η2 (η1, η2 < c), then Rη1 6= Rη2 .

In a similar way as in the case of Rη, we can observe that Kη ∈ CA(f)
(η < c), and if η1 6= η2 (η1, η2 < c), then Kη1 6= Kη2 .

Now, we shall show that

(f)Rη1 = (f)Rη2 for η1 6= η2 (η1, η2 < c). (1)

More precisely, we shall prove only the inclusion (f)Rη1 ⊂ (f)Rη2 because the
proof of the inclusion (f)Rη1 ⊃ (f)Rη2 is similar. Let t = f1 · f ∈ (f)Rη1
(f1 ∈ Rη1), and for any n, k, let (rn,k1 , rn,k2 ) ((wn,k1 , wn,k2 )) be an interval
contained in (αnk , β

n
k ) ((γnk , ξ

n
k )), such that pn,kη1 /∈ (rn,k1 , rn,k2 ) 3 pn,kη2 (qn,kη1 /∈

(wn,k1 , wn,k2 ) 3 qn,kη2 ). Now, we define a function f2 : I → R in the following
way:

f2(x) =


f1(x) for x /∈

⋃
n,k((rn,k1 , rn,k2 ) ∪ (wn,k1 , wn,k2 )) and x ∈ Aη2

0 for x ∈
⋃
n,k{pn,kη2 , q

n,k
η2 }

linear in each segment [rn,k1 , pn,kη2 ], [pn,kη2 , r
n,k
2 ], [wn,k1 , qn,kη2 ],

and [qn,kη2 , w
n,k
2 ].

It is easy to see that f ∈ Rη2 and t = f2 · f ∈ (f)Rη2 , which ends the proof of
(1).

The proof is completed by showing that

(f)Kη1 6= (f)Kη2 for η1 6= η2 (η1, η2 < c). (2)

For any n, k, let (zn,k1 , zn,k2 ) ((yn,k1 , yn,k2 )) be an interval such that its closure
is contained in (αnk − δnk , αnk ) ((γnk − δnk , γnk )) and un,kη1 /∈ (zn,k1 , zn,k2 ) 3 un,kη2 ,
(vn,kη1 /∈ (yn,k1 , yn,k2 ) 3 vn,kη2 ). Now, we define a function d : I→ R by

d(x) =


0 for x /∈

⋃
n,k

(
(zn,k1 , zn,k2 ) ∪ (yn,k1 , yn,k2 )

)
k

f(x) for x = un,kη2 or x = vn,kη2 (for any n, k)

linear in any segment [zn,k1 , un,kη2 ], [un,kη2 , z
n,k
2 ], [yn,k1 , vn,kη2 ],

and [vn,kη2 , y
n,k
2 ] (for any n, k).
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It is easy to see that d ∈ Kη1 . Put d0 = d ·f ∈ (f)Kη1 . Observe that d0 /∈ Kη2 ,
which ends the proof of (2).

In many papers and monographs (e.g. [1], [7], [8]) the authors investigated
the ideals of rings of continuous functions (often defined on more abstract
spaces than R). So, to begin with, let us note the relations between ideals of
the rings of continuous functions and ideals of rings belonging to CA(f). We
make some preliminary observations.

Remark. For an arbitrary ring R ∈ CA(f), there exists an ideal J0 of the
ring C (of all continuous functions) which is not an ideal of R.

In fact. Let [a, b] be a nondegenerate interval such that [a, b]∩Df = ∅ and
let x0 ∈ (a, b). Put J0 = {h ∈ C : h(x0) = 0}. Thus J0 ∈ =(C). Now, we
consider a function k : I→ R defined by

k(x) =


0 for x = x0

1 for x /∈ [a, b],
linear in the segments [a, x0] and [x0, b].

Note that k ∈ J0, but f · k /∈ J0.

Of course, it is easy to see that there exists an ideal J ∈ =(C) such that
J ∈ =(R) whereR is some ring belonging to CA(f). So, the following question
seems to be interesting. Let R ∈ CA(f). Under what additional assumptions
connected with an ideal J ∈ =(C) does there exists an extension J ∗ (restric-
tion J∗) of J such that J ∗ ∈ =(C)\=(R) (J∗ ∈ =(C)∩=(R))? The answer is
included in the theorem below. Before giving this theorem we can formulate
the following Lemma.

Lemma 2. Let J0 be an ideal of C which is an ideal of R ∈ CA(f). Then
Df ⊂

⋂
Z[J0].

Proof. Suppose the Lemma were false. Then there is x0 ∈ Df \
⋂
Z[J0]. Let

h ∈ J0 be a function such that h(x0) = α 6= 0. There is no loss of generality
in assuming that α > 0. Since x0 ∈ Df = Df ⊂ Z(f), and f is an almost
continuous function, there exists a sequence {xn}∞n=1 such that xn → x0 and
f(xn) → β 6= 0. Put γ = min(α, | β |). Without loss of generality we may
assume that | f(xn) |> γ

2 (n = 1, 2, . . .) and h(xn) > γ
2 . Let k = f · h. It is

easy to verify that k(xn) does not converge to k(x0) = 0, which means that
J0 /∈ =(R). The contradiction obtained ends the proof of the Lemma.

Theorem 2. Let R ∈ CA(f). For an arbitrary z′-ideal J ∈ =(C) for which
A =

⋂
Z[J ] is not a singleton, there exist:



Rings of Continuous Functions 627

(A) an extension J ∗ of J which is a z′-ideal of C, such that J ∗ /∈ =(R),
(B) a restriction J∗ of J which is a z′-ideal of C, such that J∗ ∈ =(R).

Proof. If J is not an ideal in R, then we put J ∗ = J . Otherwise, let
x0 ∈ Df . Since A is not a singleton, there exists δ > 0 such that A′ =
A \ (x0 − δ0, x0 + δ0) 6= ∅. Let us assume J ∗ = {g ∈ C : g(A′) = {0}}.
Of course, J ∗ is a z′-ideal of C and J ⊂ J ∗. Since Df is not included in⋂
Z[J ∗] = A′, according to Lemma 2, J ∗ is not an ideal of R.
Now, we are going to prove (B). If J is an ideal of R, then we put J∗ = J .

In the opposite case, there exists a point p /∈ Df ∪ A. (A is a closed set
different from the real line and Df is a nowhere dense set.) Let ε > 0 be a
real number such that (p− ε, p+ ε) ∩ (Df ∪A) = ∅. Let us denote by J∗ the
family {g ∈ J : R \ (p − ε, p + ε) ⊂ Z(g)}. It is easy to check that J∗ is a
z′-ideal of C.

Now, we shall show that J∗ is an ideal ofR. Of course, the sum of arbitrary
functions from J∗ belongs to J∗. So, let k ∈ R and g ∈ J∗. Let us define

k0(x) =

 k(x) for x ∈ (p− ε, p+ ε),
k(p− ε) for x ≤ p− ε,
k(p+ ε) for x ≥ p+ ε.

Note that k · g = k0 · g ∈ J and Z(k · g) ⊃ (−∞, p − ε] ∪ [p + ε,+∞), which
means that k · g ∈ J∗.

Now, we shall consider the following question. We have a fixed ideal J of
R ∈ CA(f). Does there exist a restriction J∗ of J such that J∗ is an ideal of
C and R? The following theorem gives the answer to this question.

Theorem 3. Let f be a function for which Df is a countable set. For each
ideal J of R ∈ CA(f), there exists a restriction J∗ ∈ =(C)∩=(R). Moreover,
if J is an essential ideal of R, then we may assume that J∗ is also an essential
ideal of R.

Proof. Let {qn}n be a sequence of all points of the set Df and let ε0 > 0 be
a real number such that

⋃
n(qn−ε0, qn+ε0) 6= R. For an arbitrary ε ∈ (0, ε0),

let
Aε(f) =

⋃
n

(qn − ε, qn + ε).

Let us put J ′ = {h ∈ C : ∃ε∈(0,ε0) Aε(f) ⊂ Z(h)}. It follows immediately that

J ′ ∈ =(C) ∩ =(R).

This means that J∗ = J ′ ∩ J ∈ =(C) ∩ =(R).
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Now, we additionally assume that J is an essential ideal of R. Let J0

be an arbitrary ideal of R. Of course, J intersects J0 nontrivially. So, let
k ∈ J ∩J0 be a function for which some x0 is an element such that k(x0) 6= 0.
We assume, for instance, that k(x0) > 0. Since k is a Darboux function, x0 is a
Darboux point of k ([4], [11]). Thus there exists a point y0 such that k(y0) > 0,
y0 /∈ Df . Let δ0 > 0 be a real number such that [y0 − δ0, y0 + δ0] ∩Df = ∅.
Define a function h0 : I→ R by

h0(x) =


0 for x ≤ y0 − δ0 or x ≥ y0 + δ0,

1 for x = y0,

linear in the intervals [y0 − δ0, y0] and [y0, y0 + δ0].

Then Aε′(f) ⊂ Z(h0), for some ε′ ∈ (0, ε0), and so, h0 ∈ J ′. Let h∗ = h0 ·k 6=
const0. It is not hard to verify that h∗ ∈ J∗ ∩ J0.

4 The Properties of Ideals of R ∈ CA(f)

In the next theorem we discuss the following problem. For a fixed ideal J ∈
R ∈ CA(f) does there exist a “small” (in the topological sense) set A ⊂ R
such that J ⊕A is an essential ideal of R?

Theorem 4. Let J be a nontrivial ideal of rings R ∈ CA(f). Then the set
A = Ann(J ) possesses the following property: Ab is uniformly porous (in Rb)
and J ⊕A is an essential ideal of R.

Proof. Of course, J ⊕A is an essential ideal of R. Now, we shall prove that
Ab is a uniformly porous set in Rb. Let h ∈ Rb and let ε > 0. Fix a nonzero
function g ∈ J and let z0 be a point such that g(z0) 6= 0. For the proof, we
analyze the possible cases:

1o 0 ≤ h(z0) < ε
2 . Let ξ = h+ const ε

2
∈ Rb and consider the open ball (in

the space Rb) B(ξ, ε4 ). Note that B(ξ, ε4 ) ∩ Ab = ∅. In fact, suppose to the
contrary that there exists ϕ ∈ B(ξ, ε4 ) ∩ Ab. Thus ϕ(z0) 6= 0. Let ψ ∈ A be
a function such that ϕ = ψβα for some α, β (α < 0 < β). Clearly, ψ(z0) 6= 0.
According to the inequality ψ · g(z0) 6= 0 we have ψ /∈ A. It is not hard to
verify that B(ξ, ε4 ) ⊂ B(h, ε).

2o | h(z0) |≥ ε
2 . Put ξ = h. Similarly as above we can prove that B(ξ, ε4 )∩

Ab = ∅ and B(ξ, ε4 ) ⊂ B(h, ε).
3o − ε2 < h(z0) < 0. In this case, we assume ξ = h − const ε

2
∈ Rb. In a

similar way as in case 1o we can prove that B(ξ, ε4 ) ∩ Ab = ∅ and B(ξ, ε4 ) ⊂
B(h, ε).
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The above considerations prove that p(Ab, h) ≥ 1
4 , which, according to the

arbitrariness of h, ends the proof.

Before we formulate the next properties we introduce a bit more notation.
Let R0 be a fixed ring of functions mapping the interval [0, 1] into R, such
that R0 ∈ CA(f). By =z′(R0) we shall denote the set of all z′-ideals of R0.

Proposition 1. Let J1,J2 ∈ =z′(R0). Then J1 = J2 if and only if
⋂
Z[J1] =⋂

Z[J2].

Proof. We only need to prove the sufficiency. Let A =
⋂
Z[J1] =

⋂
Z[J2].

First, we shall show that J1 ⊂ J2. Let f1 ∈ J1. Then A ⊂ Z(f1). Moreover,
there exists f2 ∈ J2 such that A = Z(f2). Thus

J2 3 f1 · f2 and Z(f1 · f2) = Z(f1) ∪A = Z(f1),

which means that Z(f1) ∈ Z[J2] and, consequently, f1 ∈ J2. In a similar way
we prove that J2 ⊂ J1.

On the basis of the above Proposition, we can the set =z′(R0) endowed
with the metric %0(J1,J2) = %

[0,1]
H (

⋂
Z[J1],

⋂
Z[J2]).

Proposition 2. If J ∈ =z′(R0), then J is an intersection of prime ideals.

The proof is similar to that of Theorem 2.8 from [7] for rings of continuous
functions.

It is not hard to give an example of a z′-ideal which is not simple. So, the
question arises whether this phenomenon is rare or frequent. The successive
theorem will show that a “typical”3 (in the topological sense) z′-ideal is not a
prime ideal.

Theorem 5. Let P be the set of all prime ideals of a ring R0. Then P ∩
=z′(R0) is uniformly porous set in the space (=z′(R0), %0).

Proof. Let J ∈ =z′(R0).Throughout the proof, A denotes the intersection⋂
Z[J ]. Of course, A 6= ∅.
We shall consider two cases:

I) There exist real numbers a and b such that a < b and [a, b] ⊂ Int(A).
Let δ > 0 be a real number such that [a− δ, b+ δ] ⊂ A and b− a > 2δ. Let

us first prove
∀ε0∈(0,δ) ∃J0∈=z′ (R0) B

(
J0,

ε0
5

)
∩ P = ∅. (3)

3The notion “typical” was considered in a lot of papers and monographs (see, for example,
[4]).
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We choose points p, q ∈ (a, b) such that

ε0
2
< q − p < ε0 (4)

and put A0 = A \ (p, q). Then let

J0 = {g ∈ R0 : A0 ⊂ Z(g)}.

It is easy to observe that J0 ∈ =z′(R0) and %0(J0,J ) < ε0
2 . In the space

(=z′(R0), %0) let us consider an open ball B(J0,
ε0
5 ). Note that B(J0,

ε0
5 ) ⊂

B(J , ε).
Finally, let us prove that B(J0,

ε0
5 ) ∩ P = ∅. So, let J1 ∈ B(J0,

ε0
5 ). From

%0(J0,J1) < ε0
5 we conclude that Z[J1] ∩ (p + ε0

5 , q −
ε0
5 ) = ∅. According to

(4), we infer that (p+ ε0
5 , q −

ε0
5 ) is a nondegenerate interval. Put

α = sup{y ∈
⋂
Z[J1] : y < p+

ε0
5
}; β = inf{y ∈

⋂
Z[J1] : y > q − ε0

5
}.

Of course, α < β. Now, consider nonnegative continuous functions ϕ and
ψ such that Z(ϕ) = (−∞, α] and Z(ψ) = [β,+∞). Moreover, let ξ ∈ J1 ∈
=z′(R0) be a function such that Z(ξ) =

⋂
Z[J1], ϕ0 = ξ2+ϕ and ψ0 = ξ2+ψ.

Note that

Z(ϕ0) =
⋂
Z[J1] ∩ (−∞, α]; Z(ψ0) =

⋂
Z[J1] ∩ [β,+∞).

The last observation leads to the equality Z(ϕ0 ·ψ0) =
⋂
Z[J1], which means

that ϕ0 · ψ0 ∈ J1. Of course, ϕ0, ψ0 /∈ J1. The proof of (3) is finished. From
(3) we deduce that p(P ∩ =z′(R0),J ) ≥ 2

5 .
II) Int(A) = ∅. In this case, A is a closed and nowhere dense set. Let (a, b)

be a fixed component of the complement of A. Assume that a > −∞, then
a ∈ A. Let δ > 0 be a real number such that (a, a+ 2δ)∩A = ∅. Consider the
relation

∀ε0∈(0,δ)∃J0∈=z′ (R0) B(J0,
ε0
5

) ∩ P = ∅. (5)

To prove this fact, we put q = a + ε0
2 and J0 = {g ∈ R0 : A ∪ {q} ⊂ Z(g)}.

Then the proof of (5) is analogous to that of (3) from part I and, consequently,
also in this case, p(P ∩ =z′(R0),J ) ≥ 2

5 .

Finally, we shall consider a Goldie dimension of an arbitrary ring R ∈
CA(f).

Theorem 6. For an arbitrary R ∈ CA(f), dim(R) = ℵ0.
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Proof. Our proof starts with the observation that

dim(R) ≤ ℵ0. (6)

In fact, let
⊕

s∈S Js be a direct sum of ideals in R. To prove (6), it is
sufficient to show that card(S) ≤ ℵ0. Choose from each Js (s ∈ S) a function
fs 6= const0 and denote D+

s = Int (I \ Z(fs)) 6= ∅ (s ∈ S). Note that

D+
s1 ∩D

+
s2 = ∅ for s1 6= s2. (7)

Indeed, fix s1, s2 ∈ S. Since Js1∩Js2 = (const0)R, therefore fs1 ·fs2 = const0,
which proves (7).

From (7) and the definition of D+
s we infer that card(S) ≤ ℵ0, which ends

the proof of (6).
Now, we shall show that

dim(R) ≥ ℵ0. (8)

Let {(an, bn)}∞n=1 be a sequence of pairwise disjoint intervals such that Df ∩
(an, bn) = ∅ (n = 1, 2, . . .). Denote by qn a middle point of the interval
(an, bn) (n = 1, 2 . . .) and for any n let δn > 0 be a real number such that
[qn − δn, qn + δn] ⊂ (an, bn).

Now, we shall define functions gn (n = 1, 2, ...) by

gn(x) =


0 for x /∈ (qn − δn, qn + δn),
1 for x = qn (n = 1, 2, . . .),
linear in each of the intervals [qn − δn, qn] and [qn, qn + δn].

It is easy to see that gn ∈ C ⊂ R.
Now, we shall consider the family {(gn)R : n = 1, 2, . . .} and show that

it is a family of independent ideals. Suppose that, for some n0, there exists
h ∈ R such that

h ∈ (gn0)R ∩ Σn6=n0(gn)R.

Then there exists a sequence of functions {ϕn}∞n=1 ⊂ R such that h = ϕn0 ·gn0

and h = Σn 6=n0ϕn ·gn. It is easy to see that h ·ϕn0 ·gn0 = const0, which means
that h = const0.
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[20] L. Zaj́ıček, Sets of σ-porosity and sets of σ-porosity(q), Časopis Pěst.
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[21] L. Zaj́ıček, Porosity and σ-porosity, Real Analysis Exch., 13 (1987–88),
314–350.


