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RECOVERY OF THE COEFFICIENTS OF
MULTIPLE HAAR AND WALSH SERIES

Abstract

A family of multidimensional generalized Perron type integrals is
constructed. It is shown that these integrals solve the problem of recov-
ering, by generalized Fourier formulae, the coefficients of multiple Haar
and Walsh series of some class. This class includes in particular series
convergent ρ-regularly everywhere except some countable set E ⊂ Gd.
It is shown that some properties of rectangularly convergent multiple
Haar and Walsh series do not hold for the ρ-regular convergence.

1 Introduction.

The problem of recovering the coefficients of orthogonal series from their sums
is the generalization of the uniqueness problem for these series. It is known
(see [21]) that the series

∑∞
k=2 sin kx/ ln k converges everywhere but its sum is

not Lebesgue integrable and this series fails to be the Fourier-Lebesgue series.
Analogous situation takes place for many other orthogonal systems. Therefore
the coefficients problem requires integration processes more general than the
Lebesgue one.

In our work the problem of recovering the coefficients of multiple Haar and
Walsh series is considered. Generalized integrals which solve this problem are
defined in terms of the dyadic base of differentiation. The first integral solv-
ing the coefficients problem for one-dimensional Haar series was constructed
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in [12]. This integral solves analogous problem also for one-dimensional Walsh
series. In [13] a Perron-type integral recovering the coefficients of Haar series
with convergent subsequences of partial sums was introduced. A multidimen-
sional generalized integral solving the coefficients problem for rectangular con-
vergent multiple Haar and Walsh series was considered in [14]. In our paper
more general ρ-regular rectangular convergence of multiple series is consid-
ered. In this case integrals permitting to recover, by Fourier formulae, the
coefficients of multiple Haar (but not Walsh) series were introduced in [8, 10].
But the constructions of this integrals are rather complicated. In the present
paper we consider a simpler setting where the Walsh and Haar functions are
defined on the dyadic group G. We show that in this case the coefficients
problem for both multiple Haar and Walsh series can be solved by more sim-
ple integrals which are defined here.

2 Preliminaries.

Recall (see [1, 5, 11, 17]) that the dyadic group G is a set of sequences t =
{ti}∞i=0 where ti = 0 or 1. Addition in G is defined as the coordinatewise
addition (mod 2). The mapping φ(t) =

∑∞
i=0 ti2

−i−1 establishes the one-
one correspondence between G and the so-called modified segment J∗. The
modified segment J∗ = [0, 1]∗ can be interpreted as the closed segment [0, 1]
in which the dyadic rational points are counted twice: the ’left’ point p/2k−0
corresponds to the infinite dyadic expansion and the ’right’ point p/2k + 0
corresponds to the finite expansion. The topology in G is defined by the system
of neighborhoods Vk = {t = {ti} : ti = ai, i ≤ k − 1}. The corresponding
neighborhoods in J∗ are the segments [p/2k + 0, (p+ 1)/2k − 0]. Since G and
J∗ are isomorphic, we shall identify them.

The Walsh-Paley functions on G (see [4, 5, 7, 11]) are defined by

ωn(t) =
∞∏
i=0

(−1)tiε
(n)
i

where

t = {ti} ∈ G, n =
∞∑
i=0

2iε(n)
i (ε(n)

i ∈ {0, 1}).

Now we define the Haar functions on J∗ (see [2, 18]). Put χ0(t) ≡ 1. If
n = 2k + i (k = 0, 1, . . ., i = 0, . . . , 2k − 1), we put

χn(x) =


2k/2, if x ∈

[
2i

2k+1 + 0, 2i+1
2k+1 − 0

]
,

−2k/2, if x ∈
[

2i+1
2k+1 + 0, 2i+2

2k+1 − 0
]
,

0, if x ∈ [0, 1]∗ \
[

2i
2k+1 + 0, 2i+2

2k+1 − 0
]
.
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Fix natural d ≥ 1. Consider intervals[
p1

2k1
+ 0,

p1 + 1
2k1

− 0
]
× . . .×

[
pd
2kd

+ 0,
pd + 1

2kd
− 0
]
⊂ (J∗)d (1)

where ks = 0, 1, . . ., ps = 0, . . . , 2ks−1. We call those intervals dyadic intervals
of rank k = (k1, . . . , kd). The dyadic cube of rank k is the dyadic interval of
the form (1) with k1 = . . . = kd = k. If ∆ is a dyadic interval of rank k, then
|∆| denotes its measure; i.e., 2−(k1+...+kd). The parameter of regularity of a
dyadic interval of the form (1) is defined as mini,j{2ki/2kj}. Analogously the
parameter of regularity of a vector a = (a1, . . . , ad) is defined as mini,j{ai/aj}.
We write reg(∆) (resp. reg(a)) for the parameter of regularity of dyadic
interval ∆ (resp. of vector a). Below, the sum of vectors and multiplication
of a vector by a number are understood in the usual sense. Further we denote
by 1 the d-dimensional vector (1, . . . , 1).

Consider a point t ∈ J∗. We say that the sequence {∆k} of one-dimensional
dyadic intervals is the basic sequence convergent to t if t ∈ ∆k for all k
and rank of ∆k equals k. Then the d-multiple sequence {∆k = ∆k1,...,kd

}
of d-dimensional dyadic intervals is the basic sequence convergent to t =
(t1, . . . , td) ∈ (J∗)d if

∆k = ∆k1 × . . .×∆kd
(2)

where {∆ki
: ki = 0, 1, . . .} is the one-dimensional basic sequence convergent

to ti (i = 1, . . . , d).
The d-dimensional Walsh (resp. Haar) series is defined by

∞∑
n=0

bnωn(t) =
∞∑

n1=0

. . .

∞∑
nd=0

bn1,...,nd

d∏
i=1

ωni
(ti) (3)

(resp.
∞∑

n=0

anχn(t) =
∞∑

n1=0

. . .

∞∑
nd=0

an1,...,nd

d∏
i=1

χni
(ti) ) (4)

where an and bn are real numbers. Let N = (N1, . . . , Nd), then the Nth
rectangular partial sum SN of series (3) (resp. (4)) at a point t is

SN(t) =
N1−1∑
n1=0

. . .

Nd−1∑
nd=0

bnωn(t) (resp. SN(t) =
N1−1∑
n1=0

. . .

Nd−1∑
nd=0

anχn(t) ).

The series (3) (or (4)) rectangularly converges to sum S(t) at point t if

SN(t)→ S(t) as min
i
{Ni} → ∞.
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Let ρ ∈ (0, 1]; then the series (3) (or (4)) ρ-regularly converges to sum S(t) at
a point t if

SN(t)→ S(t) as min
i
{Ni} → ∞ and reg(N) ≥ ρ.

It is obvious that if the series (3) (or (4)) rectangularly converges to sum S(t)
at a point t, then for every ρ ∈ (0, 1] this series ρ-regularly converges to S(t)
at t.

3 Continuity of Set Functions.

Let B denote the family of all dyadic intervals (1). In this section we con-
sider some properties of B-interval functions τ : B → R. Recall some defi-
nitions (see [6]). A B-interval function τ is called B-superadditive (resp. B-
subadditive) if for every finite collection {∆i}pi=1 of pairwise disjoint dyadic
intervals such that

⋃p
i=1 ∆i ∈ B we have

p∑
i=1

τ(∆i) ≤ τ
( p⋃
i=1

∆i

)
(resp.

p∑
i=1

τ(∆i) ≥ τ
( p⋃
i=1

∆i

)
)

ByAB (resp. AB) we denote the set of all B-superadditive (resp. B-subadditive)
functions. A B-interval function τ is called B-additive if τ ∈ AB ∩AB. By AB
we denote the set of all B-additive functions.

Consider different types of continuity of B-interval functions. A B-interval
function τ is called continuous in the sense of Saks if

lim τ(∆)→ 0 as |∆| → 0. (5)

A B-interval function τ is strongly continuous at a point t ∈ Gd if

lim τ(∆)→ 0 as |∆| → 0, t ∈ ∆. (6)

Let ρ ∈ (0, 1]; then we say that a function τ is ρ-continuous at a point t ∈ Gd
if

lim τ(∆)→ 0 as |∆| → 0, reg(∆) ≥ ρ, t ∈ ∆. (7)

Put

Σd = {σ = (σ1, . . . , σd) : σi = 0 or 1 for all i = 1, . . . , d}; |σ| =
d∑
i=1

σi.
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Let {∆k} be the basic sequence of the form (2) convergent to a point t ∈ Gd
(see Section 2). Put

∆0
ki

= ∆ki+1, ∆1
ki

= ∆ki
\∆ki+1; if σ ∈ Σd and k = (k1, . . . , kd),

then ∆σ
k = ∆σ1

k1
× . . .×∆σd

kd
.

We say that a B-interval function τ is Σd-continuous at t if

lim
k→∞

∑
σ∈Σd

(
−1

2

)|σ|
τ(∆k·1−σ) = 0. (8)

We say that a function τ is Σ∗d-continuous at t if

lim
k→∞

∑
σ∈Σd

(−1)|σ|τ(∆σ
k·1) = 0.

It is obvious that for all ρ ∈ (0, 1] and t ∈ Gd (5) ⇒ (6) ⇒ (7). It can be
proved that if ρ ≤ 1/2, then (7) ⇒ (8) at every point t ∈ Gd. The next fact
follows from [10, Section 2].

Proposition 1. Let a B-interval function τ ∈ AB; then τ is Σd-continuous
at a point t if and only if this function is Σ∗d-continuous at t.

We need also the following statement (see [10, Section 3, Lemma 1]).

Proposition 2. Let τ ∈ AB and let ∆ be a dyadic cube such that τ(∆) < 0.
Suppose that the function τ is Σ∗d-continuous at every point t ∈ Gd. Then
there are disjoint dyadic cubes ∆1, ∆2 ⊂ ∆ such that τ(∆i) < 0 (i = 1, 2).

Repeatedly using the previous proposition we get

Proposition 3. Suppose a B-interval function τ and a dyadic cube ∆ satisfy
the conditions of Proposition 2. Then there is a double sequence {∆i

k : k =
0, 1, . . ., i = 1, . . . , 2k} of dyadic cubes with the following properties:

• ∆i
k

⋂
∆j
k = ∅ for all k and i 6= j;

• ∆2i−1
k+1 ⊂ ∆i

k and ∆2i
k+1 ⊂ ∆i

k for every k and i;

• τ(∆i
k) < 0 for all k and i.
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4 Perron-Type Integral.

In this section we construct a Perron-type integral, using the results of the pre-
vious section. In the next section we use this integral to solve the coefficients
problem.

Recall some definitions (see [6]). Let τ be a B-interval function and ρ ∈
(0, 1]. Upper (resp. lower) dyadic ρ-regular derivative of function τ at a point
t ∈ Gd is defined by

D
ρ

dτ(t)
def
= lim

τ(∆)
|∆|

(resp. Dρ
dτ(t)

def
= lim

τ(∆)
|∆|

)

as |∆| → 0, reg(∆) ≥ ρ, t ∈ ∆.

If D
ρ

dτ(t) = Dρ
dτ(t) = d 6= ±∞, we say that Dρ

dτ(t)
def
= d is the dyadic

ρ-regular derivative of function τ at the point t ∈ Gd.
The following statement is the ’monotonicity theorem’ for B-interval func-

tions.

Theorem 1. Let τ be a B-interval function, τ ∈ AB. Suppose that the func-
tion τ satisfies

D
1

dτ(t) ≥ 0 (9)

at every point t ∈ Gd except possibly a countable set L. Let the function τ be
Σ∗d-continuous at every point t ∈ Gd. Then τ(∆) ≥ 0 for every dyadic interval
∆.

Proof. Assume that τ(∆0) < 0 for some dyadic interval ∆0. Since τ ∈ AB,
then τ(∆1) < 0 for some dyadic cube ∆1 ⊂ ∆0 of rank k1. Choose ε > 0 such
that τ1(∆1) < 0 where

τ1(∆)
def
= τ(∆) + ε|∆|

It is obvious that τ1 ∈ AB and τ1 is Σ∗d-continuous at every point t ∈ Gd. Let
Sk denote the union of all dyadic cubes ∆ ⊂ ∆1 of rank k such that τ1(∆) < 0.
Consider the set S =

⋂∞
k=k1

Sk. By the Proposition 3 the set S contains a
perfect subset S1. Note that for every t ∈ S1 there is a sequence {∆k(t)}∞k=k1
of dyadic cubes such that for all k ≥ k1 rank ∆k(t) equals k, t ∈ ∆k, and
τ1(∆k(t)) < 0. Then for t ∈ S1,

D
1

dτ(t) = lim
k→∞

τ1(∆k(t))− ε|∆k(t)|
|∆k(t)|

= lim
k→∞

τ1(∆k(t))
|∆k(t)|

− lim
k→∞

ε|∆k(t)|
|∆k(t)|

≤ 0− ε = −ε
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and this leads to a contradiction with the formula (9) and completes the proof.

Theorem 1 opens a way for constructing a family of Perron-type integrals.
Further we use the next designation. Let for every point t ∈ Gd except possibly
a countable set L an increasing sequence of natural numbers {kj = kj(t)} be
chosen. Then a denotes the family

{kj = kj(t) : t ∈ Gd \ L, j = 1, 2, . . .}.

Definition 1. Let L ⊂ Gd be a countable set. Suppose that a family a be
chosen. Then we say that a finite function f defined on Gd \ L is PHW (a)-
integrable if for every ε > 0 there exist B-interval functions F1 ∈ AB and
F2 ∈ AB with the following properties:
(A) F1 and F2 are Σ∗d-continuous at every point t ∈ Gd;
(B) if t is any point of Gd \L and {∆n} is the basic sequence of dyadic cubes
convergent to t, then limj→∞F1(∆kj

)/|∆kj
| ≥ f(t) ≥ limj→∞F2(∆kj

)/|∆kj
|;

(C) F1(Gd)− F2(Gd) < ε.
For every dyadic interval ∆ we define PHW (a)-integral (Perron-Haar-

Walsh integral) of function f on ∆ as (PHW (a))
∫

∆
f(t) dt = infF1 F1(∆) =

supF2
F2(∆).

Let functions F1 and F2 satisfy the conditions (A), (B) and (C) from the
foregoing definition; then we have for every t ∈ Gd \ L:

D
1

d(F1 − F2)(t) ≥ lim
j→∞

F1(∆kj )− F2(∆kj )
|∆kj
|

≥ lim
j→∞

F1(∆kj
)− F2(∆kj

)
|∆kj
|

≥ lim
j→∞

F1(∆kj
)

|∆kj |
− lim
j→∞

F2(∆kj
)

|∆kj |
≥ f(t)− f(t) = 0.

(10)

By (10) and by Theorem 1 the concept of PHW (a)-integral is well defined. It
can be proved that PHW (a)-integral has some standard properties. In par-

ticular the B-interval function F (∆)
def
= (PHW (a))

∫
∆
f(t) dt is a B-additive

function.

5 Recovering the Coefficients of Multiple Series.

We prove in this section the principal theorems of the paper. We use ’formal
integration’ of series as a tool of studying the properties of Haar and Walsh
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series. If k = (k1, . . . , kd), then we denote by 2k the vector (2k1 , . . . , 2kd). For
series (3) or (4) we define a B-interval function ψ(∆) via

ψ(∆) = S2k(t)|∆| (11)

where ∆ denotes the dyadic interval of rank k such that t ∈ ∆. Note that
ψ(∆) does not depend on t ∈ ∆. It is known that ψ is a B-additive function.
The function ψ is often called quasi-measure (see [11, 19, 20]). The continuity
of function ψ is closely related to the convergence of the associated series. The
next statement follows from [15, 16].

Proposition 4. Suppose the series (3) (resp. (4)) rectangularly converges
everywhere to a finite sum. Then the function ψ defined for this series by (11)
is continuous in the sense of Saks (resp. is strongly continuous at every point
t ∈ Gd).

We show in the next section that the last result does not hold for ρ-regular
convergence. We need the following multidimensional analogue of the well-
known Arutunyan-Talalyan condition (see [3]) for the series (4):

anχn(t) = ¯̄ot(n1 · . . . · nd) as min
i
{ni} → ∞, reg(n) ≥ 1/2. (12)

We need also the following condition for the series (3):

bn = ¯̄o(1) as min
i
{ni} → ∞, reg(n) ≥ 1/2. (13)

Proposition 5. (See [10, Section 3]). Suppose the series of the form (4) sat-
isfies (12) at some point t ∈ Gd; then the function ψ defined for this series by
(11) is Σ∗d-continuous at the point t.

Proposition 6. Assume that the partial sums SN1,...,Nd
(t) of series (4) at

some point t ∈ Gd satisfy the next condition:

SN1,...,Nd
(t) = ¯̄ot(N1 · . . . ·Nd) as min

i
{Ni} → ∞, reg(N) ≥ 1/2. (14)

Then the function ψ defined for this series by (11) is Σ∗d-continuous at the
point t.

Proof. Let {∆k} be the basic sequence convergent to t. Suppose that the
partial sums of series (4) at a point t ∈ Gd satisfy the condition (14). Then
for every σ ∈ Σd the expression S2k·1−σ (t) is ¯̄o(2kd) as k →∞. Therefore,∑

σ∈Σd

(−1)|σ|S2k·1−σ (t) = ¯̄o(2kd) as k →∞. (15)
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On the other hand we have∑
σ∈Σd

(−1)|σ|S2k·1−σ (t)
by (11)

=
∑

σ∈Σd

(−1)|σ|
ψ(∆k·1−σ)
|∆k·1−σ|

=
∑

σ∈Σd

(
− 1

2

)|σ|
ψ(∆k·1−σ)
|∆k·1|

= 2kd
∑

σ∈Σd

(
− 1

2

)|σ|
ψ(∆k·1−σ).

(16)

Using (15) and (16), we obtain

∑
σ∈Σd

(
− 1

2

)|σ|
ψ(∆k·1−σ) = ¯̄o(1) as k →∞. (17)

Therefore the function ψ is Σd-continuous at the point t. Using Proposition
1, we get that the function ψ is Σ∗d-continuous at the point t. This concludes
the proof.

Corollary 1. Assume that the series (4) 1/2-regularly converges to a finite
sum at some point t ∈ Gd. Then the function ψ defined for this series by (11)
is Σ∗d-continuous at the point t.

Proposition 7. (See [9, Lemma 2]). Assume that the series (3) satisfies (13);
then the function ψ defined for this series by (11) is Σ∗d-continuous at every
point t ∈ Gd.

Proposition 8. (See [9, Remark 1]). Assume that the series (3) 1/2-regularly
converges to a finite sum at some point t0 ∈ Gd. Then the function ψ defined
for this series by (11) is Σ∗d-continuous at every point t ∈ Gd.

To solve the coefficients problem we recall some observation (see [14, Propo-
sition 4]).

Proposition 9. Let some integration process I be given which produces an
integral additive on B. Let the B-interval function ψ be defined by (11) for a
given series (4) or (3). Then this series is the Fourier series of an I-integrable
function f if and only if ψ(∆) = (I)

∫
∆
f for any dyadic interval ∆.

We present now the main results.

Theorem 2. Let at every point t ∈ Gd, except possibly a countable set L, an
increasing sequence of natural numbers a = {kj = kj(t)} be chosen. Assume
that for the series (4) the following conditions hold:
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(a) at every point t ∈ Gd \L the subsequence S
2kj(t)·1(t) of the cubic partial

sums of this series is convergent to a finite sum f(t);

(b) at every point t ∈ Gd this series satisfies the condition (12).

Then the function f(t) is (PHW (a))-integrable and the series is its Fourier-
Haar series in terms of (PHW (a))-integral.

Proof. Let ψ be a B-interval function defined for this series by (11). Put
F1(∆) = F2(∆) ≡ ψ(∆). Since ψ ∈ AB, then F1 ∈ AB and F2 ∈ AB.
Combining (a) and (11), we obtain that the functions F1 and F2 satisfy the
condition (B) of Definition 1. Using (b) and Proposition 5, we get the condition
(A) of Definition 1. Finally, the condition (C) from that definition is obvious.
Hence the function f(t) is (PHW (a))-integrable. We have for every dyadic
interval ∆

(PHW (a))
∫
∆

f = sup
F2

F2(∆) ≥ ψ(∆) ≥ inf
F1
F1(∆) = (PHW (a))

∫
∆

f.

Therefore ψ(∆) = (PHW (a))
∫

∆
f(t) dt. Combining the last formula and

Proposition 9, we obtain that our series is (PHW (a))-Fourier-Haar series.
This completes the proof.

In a similar way, using Corollary 1 and Proposition 7, the next theorems
for multiple Haar and Walsh series can be proved.

Theorem 3. Suppose that a multiple Haar series 1/2-regularly converges to
a finite sum f(t) everywhere on Gd. Then for every choice of a family a =
{kj = kj(t)}, the function f(t) is (PHW (a))-integrable and the series is
(PHW (a))-Fourier-Haar series of the function f(t).

Theorem 4. Let at every point t ∈ Gd, except possibly a countable set L, an
increasing sequence of natural numbers {kj = kj(t)} be chosen. Assume that
for the series (3) the following conditions hold:

(a) at every point t ∈ Gd \L the subsequence S
2kj(t)·1(t) of the cubic partial

sums of this series is convergent to a finite sum f(t);

(b) this series satisfies the condition (13).

Then the function f(t) is (PHW (a))-integrable and the series is (PHW (a))-
Fourier-Walsh series of the function f(t).
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Theorems similar to Theorems 2 and 4 were proved in [15] but in that
paper stronger conditions were imposed on the coefficients of the series. Those
conditions hold for the rectangular convergence of the series (4) and (3). In
the last section we shall show that those conditions do not hold in the case of
ρ-regular convergence.

The next statement follows from Theorem 2.

Corollary 2. Let a number ρ ∈ (0, 1] be fixed. Suppose that a multiple Haar
series ρ-regularly converges to a finite sum f(t) at every point t ∈ Gd except
possibly a countable set L. Assume that this series satisfies the condition (12)
at each point t ∈ Gd. Then for every choice a family a = {kj = kj(t)}, the
function f(t) is (PHW (a))-integrable and the series is (PHW (a))-Fourier-
Haar series of the function f(t).

Using Theorem 4 and Proposition 8, we get the next two propositions.

Corollary 3. Suppose that a d-multiple Walsh series cubically (i.e., 1-regularly)
converges to a finite sum f(t) at every point t ∈ Gd except possibly a count-
able set L. Assume that this series converges also 1/2-regularly to a finite
sum at least at one point t0 ∈ Gd. Then for every choice of a family
a = {kj = kj(t)} the function f(t) is (PHW (a))-integrable and the given
series is (PHW (a))-Fourier-Walsh series of the function f(t).

Corollary 4. Suppose that the d-multiple Walsh series 1/2-regularly converges
to a finite sum f(t) at every point t ∈ Gd except possibly a countable set
L. Then for every choice of a family a = {kj = kj(t)} the function f(t) is
(PHW (a))-integrable and the given series is (PHW (a))-Fourier-Walsh series
of the function f(t).

Corollary 4 implies the following fact concerning sets of uniqueness. Recall
that a set L is called the set of uniqueness (or in short: a U -set) for a system
{ϕn} if from the convergence of a series

∑
n
cnϕn to zero outside the set L it

follows that cn = 0 for all n. From the definition of (PHW (a))-integrals it
follows that for any choice of a family a = {kj = kj(t)}

(PHW (a))
∫
Gd

0 dt = 0. (18)

Using formula (18) and Corollary 4, we obtain the following statement for
d-multiple Walsh series.

Theorem 5. (See [9]). Let a number ρ ∈ (0, 1/2] be chosen. Then any finite
or countable set L ⊂ Gd is a U -set for the multiple Walsh system with ρ-regular
convergence.
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6 Some Examples of Double Haar and Walsh Series.

For the sake of simplicity we restrict ourselves here to considering the two-
dimensional case. We shall show that some properties of rectangularly con-
vergent double Haar and Walsh series do not hold for the ρ-regular conver-
gence. We impose on the series of the form (4), with d = 2, a strong analogue
of the Arutunyan-Talalyan condition:

an1,n2χn1,n2(t1, t2) = ¯̄o(t1,t2)(n1n2) as n1 + n2 →∞. (19)

For the double Walsh series we consider the next condition:

bn1,n2 = ¯̄o(1) as n1 + n2 →∞. (20)

The condition (19) (resp. (20)) in the two-dimensional case is stronger than
the condition (12) (resp. (13)). The next two statements were proved in
[15, 16].

Proposition 10. Suppose that the series (4) rectangularly converges to a
finite sum everywhere on Gd. Then this series satisfies the condition (19) at
every point t ∈ Gd.

Proposition 11. Suppose that the series (3) rectangularly converges to a
finite sum at every point of a ’cross’ ({a} × [0, 1])

⋃
([0, 1] × {b}). Then this

series satisfies the condition (20).

In the case of ρ-regular convergence the conditions (19) and (20) can fail
to hold even if the appropriate series converges everywhere.

Theorem 6. For every ρ ∈ (0, 1] there exists a double Walsh series which is
ρ-regularly convergent to a finite sum everywhere on Gd, but which does not
satisfy the condition (20).

Proof. Choose natural M so that 2−M < ρ ≤ 2−M+1. Take any sequence
{Cn} of real numbers such that limn→∞|Cn| > 0. Consider n = M,M +1, . . .;
then the double sequence

bn1,n2 =


Cn, if 0 ≤ n1 ≤ 2n−M − 1, n2 = 2n;
−Cn, if 2n−M ≤ n1 ≤ 2n−M+1 − 1, n2 = 2n;
0 in all other cases.

(21)
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does not satisfy the condition (20). To show that the series

∞∑
n1=0

∞∑
n2=0

bn1,n2ωn1,n2(t1, t2) (22)

ρ-regularly converges to a finite sum everywhere on Gd, we consider partial
sums SN1,N2(t1, t2) of the series (22) with mini,j{Ni/Nj} ≥ ρ. By defini-
tion, bn1,n2 = 0 if n1 > n2. Hence it is sufficient to consider partial sums
SN1,N2(t1, t2) with N1 ≤ N2. Put for j = 1, 2

Nj = 2Kj + ij , Kj = 1, . . . , 1 ≤ ij ≤ 2Kj .

Since N1 ≤ N2 and min{N1/N2, N2/N1} ≥ ρ > 2−M we get

K2 −M ≤ K1 ≤ K2. (23)

Then we have, for sufficiently large N1 and N2,

SN1,N2(t1, t2) =
K2∑
s=M

2s−M+1−1∑
u=0

bu,2sωu,2s(t1, t2)

by (21) and (23)
=

K2∑
s=M

Csω2s(t2)
( 2s−M−1∑

u=0

ωu(t1)−
2s−M+1−1∑
u=2s−M

ωu(t1)
)
. (24)

Consider the difference in braces in formula (24). If t1 = 0 this expression is
obviously equal zero. In this case for all t2 ∈ G we have SN1,N2(t1, t2) = 0 for
sufficiently large N1 and N2 satisfying the condition (23). Let t1 6= 0; then
t1 ∈ [1/2T+1 + 0, 1/2T − 0] for some T ∈ {0, 1, . . .}. We have

2s−M−1∑
u=0

ωu(t1)−
2s−M+1−1∑
u=2s−M

ωu(t1) = D2s−M (t1)− (D2s−M+1(t1)−D2s−M (t1))

= 2D2s−M (t1)−D2s−M+1(t1) (25)

where Dn is the nth Dirichlet kernel for Walsh system. It follows from the
properties of the Dirichlet kernels for Walsh system (see, for example, [5,
Chapter 1]) that

D2k(t1) = 0 if t1 ∈ [1/2T+1 + 0, 1/2T − 0], k ≥ T + 1. (26)



304 Mikhail G. Plotnikov

Using (25) and (26), we get

2s−M−1∑
u=0

ωu(t1)−
2s−M+1−1∑
u=2s−M

ωu(t1) = 0

if t1 ∈ [1/2T+1 + 0, 1/2T − 0], and s ≥M + T + 1.

(27)

From the formulae (24) and (27) we have for sufficiently large N1 and N2,
satisfying the condition (23), and for all t2 ∈ G

SN1,N2(t1, t2) =
M+T∑
s=M

Csω2s(t2)
( 2s−M−1∑

u=0

ωu(t1)−
2s−M+1−1∑
u=2s−M

ωu(t1)
)
. (28)

The expression in the right part of (28) is independent of N1 and N2. Conse-
quently, if 2−M < ρ ≤ 2−M+1 and t1 ∈ [1/2T+1 + 0, 1/2T − 0], then the series
(22) converges ρ-regularly to a finite sum. This completes the proof.

Theorem 7. Suppose that the sequence {Cn} in the proof of Theorem 6 sat-
isfies the condition

lim
n→∞

|Cn|/2n > 0. (29)

Let ψ be the B-interval function defined for the series (22) by formula (11).
Then this function is ρ-continuous at every point (t1, t2) ∈ G2, but not ρ/4-
continuous at point (0, 0).

Proof. It follows immediately from (11) and from Theorem 6 that the func-
tion ψ is ρ-continuous at every point (t1, t2) ∈ G2. To prove the second
statement of the theorem we consider the partial sum S2K ,2K+M+1(0, 0) of the
series (22) (see the proof of the last theorem). Using formulae (21), (23), and
(24), we get

S2K ,2K+M+1(0, 0) =
K+M−1∑
s=M

Csω2s(0)
( 2s−M−1∑

u=0

ωu(0)−
2s−M+1−1∑
u=2s−M

ωu(0)
)

+CK+M

2K−1∑
u=0

ωu(0) = 0 + CK+M2K = CK+M2K . (30)

Let ∆K,K+M+1 denote the dyadic interval of the rank (K,K+M+1) contain-
ing the point (0, 0). Note that reg(∆K,K+M+1) = 2−M−1 ≥ ρ/4. Combining
(11), (29), and (30), we get:

|ψ(∆K,K+M+1)| = |S2K ,2K+M+1(0, 0)||∆K,K+M+1|
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= |CK+M |2K2−(2K+M+1) = |CK+M |2−(K+M+1) 9 0 as K →∞.

This completes the proof.

Corollary 5. For every ρ ∈ (0, 1] there is a double Walsh series ρ-regularly
convergent to a finite sum everywhere on Gd, but the B-interval function ψ
defined for this series by (11) is not continuous in the sense of Saks.

Theorem 6, Propositions 4 and 11, and the above Corollary show a differ-
ence between rectangularly convergent multiple Walsh series and ρ-regularly
convergent ones.

Let 2k−1 ≤ n ≤ 2k − 1; then we say that the number k is the rank of a
Walsh function ωn(t). Let

ωn(t) = ωn1(t1) · . . . · ωnd
(td)

be a d-dimensional Walsh function, then we say that the vector k = (k1, . . . , kd)
is the rank of a Walsh function ωn(t) if for each i = 1, . . . d the number ki is
the rank of ωni

(ti). Analogously a rank of a Haar function (one-dimensional
or d-dimensional) is defined. Now we recall that any (one-dimensional) Walsh
function is a linear combination of a finite number of Haar functions of the
same rank (see [2, Chapter 1]). Conversely, any Haar function is a linear
combination of finite numbers of Walsh functions of the same rank. Thus to
every series of the form (3), there corresponds some series of the form (4),
and all the partial sums S2k(t) of these series are identically equal. Hence the
B-interval functions defined for these series by (11) are identically equal too.
Moreover the following three objects are isomorphic (in the obvious sense):
the set of all series of the form (4), the set of all series of the form (3), and
the set of all additive B-interval functions. These observations allow to obtain
the following statements.

Lemma 1. Let the number ρ = 2−M (M = 0, 1, . . .) be chosen. Assume that
the series of the form (3) ρ-regularly converges at some point t ∈ Gd. Then the
corresponding d-multiple Haar series also converges ρ-regularly at the point t.

Proof of lemma. Let the number ρ satisfies the condition of the theorem.
For ρ-regular convergence of the d-multiple Haar series it is sufficient that the
partial sums S2k(t) are ρ-regularly convergent. But the partial sums S2k of
d-multiple Haar series are identically equal to the partial sums S2k of the cor-
responding d-multiple Walsh series. The last sums are ρ-regularly convergent
at the point t because the Walsh series ρ-regularly converges at this point.
Lemma is proved.
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Theorem 8. For any ρ ∈ (0, 1] there exists a double Haar series such that it
is ρ-regularly convergent to a finite sum everywhere on Gd, while B-interval
function ψ defined for this series by (11) is not continuous in the sense of
Saks.

Proof. The statement of the theorem follows from Lemma 1 and Corollary
5.

Theorem 9. For any ρ ∈ (0, 1] there exists a double Haar series ρ-regularly
convergent to a finite sum everywhere on Gd, but not satisfying the condition
(19) at the point (0, 0).

Proof. Fix ρ ∈ (0, 1]. Assume that a sequence {Cn} of real numbers satisfies
the condition (29). Construct a double Walsh series by (21) and by (22). Let
the corresponding double Haar series be

∞∑
n1=0

∞∑
n2=0

an1,n2χn1,n2(t1, t2). (31)

Consider the coinciding partial sums S2k1 ,2k2 (t1, t2) of these series. We have
for K ≥M + 1 (see Theorem 6)

a2K−M ,2Kχ2K−M ,2K (0, 0) = S2K−M+1,2K+1(0, 0)− S2K−M ,2K+1(0, 0)

−S2K−M+1,2K (0, 0) + S2K−M ,2K (0, 0) =
2K−M+1−1∑
n1=2K−M

2K+1−1∑
n2=2K

bn1,n2ωn1,n2(0, 0)

=
2K−M+1−1∑
n1=2K−M

2K+1−1∑
n2=2K

bn1,n2

by (21)
= −CK2K−M

by (29)

6= ¯̄o(22K) as K →∞.

This concludes the proof.

Remark 1. In our work we do not use the order of d-multiple Walsh func-
tions within the dyadic ’packages’. Hence, if we consider the rearrangements
ωn(t) ↔ ωn∗(t) of d-multiple Walsh system saving the rank of all func-
tions, the results of this paper concerning the series of the form (3) are true
for the series

∞∑
n=0

bnωn∗(t). (32)

In particular the theorems 4, 3, 4, 5, 6, and 7 are true for the series of the
form (32).
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In conclusion we ask two questions which seem to be of interest.

Question 1. Is any countable set L ⊂ Gd a set of uniqueness of d-multiple
Walsh series for the cubical (i.e., 1-regular) convergence?

Question 2. Suppose that a d-multiple Walsh series cubically converges to a
finite sum at every point t ∈ Gd except possibly a countable set L. Does this
imply that the condition (13) is satisfied?

The author is grateful to Professor V.A. Skvortsov for his helpful attention
to this work.
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