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EXTENDING SOME FUNCTIONS TO
STRONGLY APPROXIMATELY
QUASICONTINUOUS FUNCTIONS

Abstract

A function f: R — R is strongly approximately quasicontinuous at
a point z if for each real r > 0 and for each set U 3 z belonging to the
density topology there is an open interval I such that I NU # () and
Foni)c (f(z)—r, f(x)+r). In this article we investigate the sets A
such that each almost everywhere continuous bounded function may be
extended from A to a bounded strongly approximately quasicontinuous
function on R.

Let R be the set of all reals. Denote by p the Lebesgue measure in R and
by pe the outer Lebesgue measure in R. For a set A C R and a point  we
define the upper (lower) outer density D, (A,x) (D;(A4,x)) of the set A at the

point x as
pe(AN [ — h,x + h)

lims
T
e He(AN [z = hx + h) :
(I}LIE (1)r+1f 57 respectively).

A point x is said to be an outer density point (a density point) of a set
A if Di(A,x) = 1 (if there is a Lebesgue measurable set B C A such that
Dl(B, .Z') = 1).

The family Ty of all sets A for which the implication x € A = =z is a
density point of A is true, is a topology called the density topology ([1, 6]).

The sets A € Ty are Lebesgue measurable [1, 6].

In [5] O’Malley investigates the topology

Toe = {A € Ty; (A \ int(A)) = 0},
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where int(A) denotes the interior of the set A.

Let T, be the Euclidean topology in R. The continuity of functions f from
(R, Ty) to (R, T:) is called approximate continuity ([1, 6]).

For an arbitrary function f : R — R denote by C(f) the set of all continuity
points of f and by D(f) the set R\ C(f).

In [5] it is proved that a function f : R — R is T,.-continuous (i.e., continu-
ous as a function from (R, Ty ) to (R, T,)) if and only if it is T;;-continuous (i.e.,
approximately continuous) everywhere and p(D(f)) = 0. In [2] the following
property is investigated. A function f : R — R is strongly approximately
quasicontinuous at a point = (f € so(x)) if for each positive real r and for
each set U € Ty containing x there is an open interval I such that § # I NU
and |f(t) — f(z)| < r for all points t € INU.

A function f has the property (so), if f € so(x) for every point = € R.

For each function f having property (so) the set D(f) = R\ C(f) is of
Lebesgue measure 0 ([2]), but it may be dense in R.

Each approximately continuous function f : R — R is of the first Baire
class ([1]).

In [4] the authors investigate the family ®,, of all nonempty sets A such
that for every Baire 1 function f : R — R there is an approximately continuous
function g : R — R such that f [ A =g [ A. They prove there that A € ®,,
if and only if pu(A) = 0.

In [3] I investigate the family ®,. of all nonempty sets A such that for
every Baire 1 function f : R — R there is a T,.-continuous function g : R — R
with f/A = g/A. 1 show in this article that a nonempty set A € &, if and
only if pu(cl(A)) = 0, where cl(A) denotes the closure of the set A.

In this paper I investigated the family @, of all nonempty sets A such that
for every almost everywhere continuous bounded function f : R — R there is a
bounded function g : R — R having the property (so) such that f [ A =g [ A.

Theorem 1. If the set A € O, then

for each point x € A we have D;(cl(A),z) < 1. (1)

PRrROOF. Assume that there is a point x € A such that the lower density
D;(cl(A),z) = 1. Then the bounded function f(t) =0 for ¢ # z, and f(z) =1
is almost everywhere continuous, but for each extension g : R — R of the
restricted function f | A we obtain that g is not in so(z). Of course, if
g:R—Rissuchthat f[A=yg [Aandr:%thentheset

U={tecl(A);Dcl(A),t)=1} €eTyand U >z
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and for every open interval I with I N U # () there is a point t € INU N A
such that ¢ # z. So,

lg(t)—g(x)\=|f(t)—f($)\=|0—1|=1>é=7“,

and consequently ¢ is not in so(x) and A is not in @, . O

Theorem 2. If a nonempty set A C R satisfies the condition
for each point x € A we have D;(R\ cl(4),z) > 0,
then A € O, .

PRrROOF. Evidently the set A is nowhere dense. At first we suppose that A is
a bounded set. Let f: R — R be an almost everywhere continuous bounded
function. Then the function

f(z) for « € cl(A)
linear on the components of [inf A,sup A] \ cl(A)
f(supA) for x >sup A
f@nf A) forxz <inf A

h(z) =

is also bounded and almost everywhere continuous, C(h) D R\ cl(4) and
f T A=hT A. Since the function h is almost everywhere continuous, the set

B = {y; u(cl(h*(y))) > 0}

is at most countable. Let ¢ = inf h(R) and d = sup h(R). There are nonempty
finite sets

Bn = {yn,hyn,%‘ .. 7yn,j(n)} C R\Bv n Z ]-v

such that ¢ = yn0 < Yn,1 <+ < Yp jn) <dforn>1, B, C Byyy forn > 1,
[Yn.it1 — Yn.i| < QL for n > 1 and i < j(n), where y, jm)41 = d + 5% Let

$1(w) = y1,i if y1i < h(x) <yri40 fori=0,1,...,5(1).

Since h is almost everywhere continuous and y;; € R\ B for i < j(1), the
function ¢4 is almost everywhere continuous and the set C'(¢1) of all continuity
points of the function ¢; is open and of full measure ( i.e., u(R\ C(¢1)) =0).
Let Ay = R\ C(¢1). From the above it follows that p(A;) = 0 and A; is
closed.
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Now we will construct some special family of pairwise disjoint closed in-
tervals Llﬂ‘)j C (R \ CI(A)) \ A;. For this let i, 1ia,2,--- 711,1,1'(1,1) be the
open components of the set

Uig= U (x — 1,2z +1).
x€A1NCcl(A)

There are pairwise disjoint nondegenerate closed intervals
Liia,.. s Liakan C (U \cl(4))\ A
such that for every positive integer j < i(1,1)
pwha;n | Liae) > %u(fl,l,j \ cl(A)).
i<k(1,1)
In the second step put
inf{|z —yl;z € Aincl(A), y € U;cp11) L1}

1,2 = 5 )
and denote by I121,112.2,--,11,2,i(1,2) the components of the set
U1,2: U (:C—Tl’z,l'ﬁ-rl’g).
x€A1NCl(A)

Next we find pairwise disjoint nondegenerate closed intervals
Li21, -, Liaka,2) C (Ur2\cl(4))\ A1

such that for every positive integer j < i(1,2)

1
p(ho;n ) Lizd)>(1- 22 12,5 \ cl(4)).
i<k(1,2)

In general in the n** step (n > 2) we define the positive real

inf{|z —yliz € A1 Ncl(A), y € Uic1,n-1) Lrin—1,i}
Tn = — )
’ 2

and denote by I1 1,110,255 1,n,i(1,n) the components of the set

Ui = U (= T1m, @ +T10)
z€A1Ncl(A)
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Next we find pairwise disjoint nondegenerate closed intervals
Ling,- s Linkan C (Uin\cl(4))\ A
such that for each positive integer j < i(1,n)

1
;N Lini) > (1- g )1, \ cl(4)) (2)
i<k(1l,n)
Let {N(s,i)}55—; be a family of pairwise disjoint infinite subsets of positive
integers. Observe that by (2) for each point x € AN A; and for each pair (s, )
of positive integers we have

(U U Linm) = DR \d(A),z) >0, (3)

neN(s,i) m<k(1l,n)

Let fi(x) = y1,s for & € Ly pm, where n € N(s,i), s < j(1), m <
k(1,n), i =1,2,.... For z € A; \ cl(A) such that D, ({(¢1) " (¢1(x)),z) =0
and ¢1(z) = y1.5 we put f1(z) = y1,5-1 and let fi(x) = ¢1(x) otherwise on R.
If z € Ay N Aand f1(z) = Y1,m,, then by (3) we have

Du(int((A) ' h@N0 =D (U U U Linms) >0,

1=1n€Nm, i m<k(1l,n)

and consequently f1 € so(x). If x € A;\cl(A4), then by construction f; € so(x).
If z € (R\ (A1 Ncl(A)))\ A1, then f; is continuous or unilaterally continuous
and consequently f; € so(z).

Now let € (A1 Ncl(A)) \ A. Observe that p(R \ int(C(f1))) = 0 and
fiR) = {y1,0,91,1,-- %151y} Since Dy(int(C(f1)), ) = 1, there is an integer
ma(z) € [0,5(1)] such that Dy (int((f1) ™" (y1,ma(x))),2) > 0. So we fix such
an mao(z) and putting

(.13) _ Y1,ma(z) for x € (CI(A) N Al) \A
o fi(x) otherwise on R,

we obtain a function g; having the property (sq) such that |h(x) — g1 (x)| < &

2
for z € A.
Now we will construct a function go having property (s¢) and such that

1 1
lg2 — g1] < 3 and |ga(z) — h(z)| < » for x € A.
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Let
Ga(x) = yo,i if Yo < h(w) < yoiq1 for i=0,1,...,5(2).

Since h is almost everywhere continuous and y2; € R\ B for i < j(2), the
function ¢ is almost everywhere continuous and the set C'(¢2) of all continuity
points of the function ¢, is open and of full measure. Let Ay = R\ C(¢2).
From the above it follows that pu(As) = 0. Since By D Bj, the inclusion
A1 C As holds.

Now we will construct some special family of pairwise disjoint closed inter-
vals

Loy CR\A(AUALN\ ] U Liam

n=1m<k(1,n)

For this let I)1,1, 1212, -, 12,1,i2,1) be the open components of the set
Uy = U (x—1,z+1).
x€AaNcl(A)

There are pairwise disjoint nondegenerate closed intervals
Loaa,--os Lok C (U1 \ cl(A)) \ Az) \ U U Ly
n=1i<k(1,n)

such that for every positive integer j < i(2,1)

1 o
(121,50 | U Z214)> FAl(T2,1,5 \ cl(A)) \ U U ZLinm)
i<k(2,1) n=1m<k(1,n)

In the second step put

inf{|z —yl;z € A2 Ncl(A), y € Ujcp21) L21.4}
2 )

To 2 =

and denote by I221,122.2,---,122,i(2,2) the components of the set

Us o = U (x — 7122, +722).
z€AzNcl(A)

Next we find pairwise disjoint nondegenerate closed intervals

Lao1,.- s Loo k2 C ((U2\cl(4))\ A2) \ U U Linm

n=1m<k(1,n)
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such that for every positive integer j < i(2,2)

1 oo
;0 | Lops)>(1- 22 12,25\ cl(A4)) \ U U ZLinm):
i<k(2,2) n=1m<k(1,n)

In general in the n* step (n > 2) we define the positive real

inf{lz —yl;z € A2 Ncl(4), ¥y € Uicpo,n1) L2n-1,i}
2 )

T2,n =

and denote by I2 .1, 12,12 - - - s 2,n,i(2,n) the components of the set
U2,n = U (ZC —Ton, T+ TQ,n)-
z€AsNcl(A)

Next we find pairwise disjoint nondegenerate closed intervals

L2,n,17 e 7L2,n,k(2,n) - ((Un \ Cl(A)) \ A2) \ U U Ll,s,m

s=1m<k(1,s)
such that for each positive integer j < i(2,n)

1

wlongn U Loma) > (1 o (2,5 \ cl(A))\ U U Ziem) @
i<k(2,n) s=1m<k(1,s)

Observe that by (4) for each point x € AN (Az \ A1) and for each pair (s,7)
of positive integers we have

Dl U ZILznm ) =Di(R\c(A),z)>0. (5)

n€Ns ; m<k(2,n)

Now we will define the function go. For kK =0,1,...,5(1) denote by

Yk = Y2,5(k) < Y2,5(k)+1 < Y2,5(k)+2 < " < Y2,5(k)+t(k) < Y2,s(k)+t(k)+1 = Y1,k+1

all numbers of the set BaN[y1 x, y1,k+1]. For k < j(1) and i > 1let {N(k,4,5)}32,
be a family of pairwise disjoint infinite subsets of integers such that N(k, ) =
U;’;l N(k,i,j). For @ € L1 pm, where p € N(k,i,7), s(k) < i < s(k) + t(k)
and j > 1, we put g2(z) = y2,. Observe that for such points z we have

1
192(2) — g1(®)] < Y1 k41 — Y1k < 5
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If
Loym C (gl)_l(yl,k) and n € N(k,s(k) +1),

where 0 <4 < t(k) and m < k(n), then we put g2(2) = y2 (k)44 for £ € Loy m-
As above we observe that for such points = we obtain

1

192() — g1(®)| < Y1 k41 — Y1k < 3

In the other points of the set R\ As we put go(z) = g1(x). lf £ € A3 N A, then

we put ga(x) = ¢a(x).
Now let x € Az \ A and let g1(x) = y15. Then

Dy ((int((g1) " (y1.x)), ) > 0,

and consequently there is an integer ¢ > 0 (¢ < ¢(k)) such that

D (int((g2) ™" (y2,5()+1)), ) > 0.

So we fix such an i and put g2(x) = Y2 s(k)+i- As above for such points =
we obtain |g2(z) — g1(z)| < 3. The function go is continuous or unilaterally
continuous at points € R\ As; so it has the property (so) at these points. If
x € A3 N A, then by (5) and the construction of g5 we have

D, (int((g2) " (g2(2))), ) > 0,

and consequently the function g, has the property (sg) at . Analogously from
the construction of go it follows that the function go has the property (so) at
points x € A; \ A. So g2 has the property (sg) everywhere. Moreover

1 1
lg2 — g1| < 5 and [g2(x) — h(z)| = |p2(x) — h(z)]| < 5] for x € A.

Analogously, in the n'" step (n > 2) we define a function g, having the
property (so) such that |g,—1 — gn| < 577 and |gn(z) — h(z)| < 55 for z € A.
The sequence (g, ), uniformly converges to a bounded function g, which has
the property (so) (as the uniform limit of a sequence of functions having this
property [2]). For x € A we have g(z) = lim,, 00 gn(x) = h(z).

Now we consider the general case, where the set A may be unbounded.
Then there are points

To,L_1,%1,T_2,22,... € R \ CI(A)

such that
Tpy1 > Tk for k=0,-1,1,-2,2,...,
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lim xp = —o0, lim z; = oco.

k——o00 k—oo

If By, = (xg—1,25) N A # () then by the proved part of our theorem there
is a bounded function f; : R — [¢,d] having the property (sg) such that
h(z) = fr(x) for x € Ej. Let

h(x) otherwise on R.

o(z) = {fk(a:) if By, #0 and = € (z_1,Tk)

Then the bounded function g has property (sgp)andg | A=h [A=f 1A O

Problem. Is the following implication true?

A satisfies condition (1) = A € ®,,
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