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EXTENDING SOME FUNCTIONS TO
STRONGLY APPROXIMATELY

QUASICONTINUOUS FUNCTIONS

Abstract

A function f : R → R is strongly approximately quasicontinuous at
a point x if for each real r > 0 and for each set U 3 x belonging to the
density topology there is an open interval I such that I ∩ U 6= ∅ and
f(U ∩ I) ⊂ (f(x)− r, f(x) + r). In this article we investigate the sets A
such that each almost everywhere continuous bounded function may be
extended from A to a bounded strongly approximately quasicontinuous
function on R.

Let R be the set of all reals. Denote by µ the Lebesgue measure in R and
by µe the outer Lebesgue measure in R. For a set A ⊂ R and a point x we
define the upper (lower) outer density Du(A, x) (Dl(A, x)) of the set A at the
point x as

lim sup
h→0+

µe(A ∩ [x− h, x + h])
2h

(lim inf
h→0+

µe(A ∩ [x− h, x + h])
2h

respectively).

A point x is said to be an outer density point (a density point) of a set
A if Dl(A, x) = 1 (if there is a Lebesgue measurable set B ⊂ A such that
Dl(B, x) = 1).

The family Td of all sets A for which the implication x ∈ A =⇒ x is a
density point of A is true, is a topology called the density topology ([1, 6]).

The sets A ∈ Td are Lebesgue measurable [1, 6].
In [5] O’Malley investigates the topology

Tae = {A ∈ Td;µ(A \ int(A)) = 0},
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where int(A) denotes the interior of the set A.
Let Te be the Euclidean topology in R. The continuity of functions f from

(R, Td) to (R, Te) is called approximate continuity ([1, 6]).
For an arbitrary function f : R → R denote by C(f) the set of all continuity

points of f and by D(f) the set R \ C(f).
In [5] it is proved that a function f : R → R is Tae-continuous (i.e., continu-

ous as a function from (R, Tae) to (R, Te)) if and only if it is Td-continuous (i.e.,
approximately continuous) everywhere and µ(D(f)) = 0. In [2] the following
property is investigated. A function f : R → R is strongly approximately
quasicontinuous at a point x (f ∈ s0(x)) if for each positive real r and for
each set U ∈ Td containing x there is an open interval I such that ∅ 6= I ∩ U
and |f(t)− f(x)| < r for all points t ∈ I ∩ U .

A function f has the property (s0), if f ∈ s0(x) for every point x ∈ R.
For each function f having property (s0) the set D(f) = R \ C(f) is of

Lebesgue measure 0 ([2]), but it may be dense in R.
Each approximately continuous function f : R → R is of the first Baire

class ([1]).
In [4] the authors investigate the family Φap of all nonempty sets A such

that for every Baire 1 function f : R → R there is an approximately continuous
function g : R → R such that f � A = g � A. They prove there that A ∈ Φap

if and only if µ(A) = 0.
In [3] I investigate the family Φae of all nonempty sets A such that for

every Baire 1 function f : R → R there is a Tae-continuous function g : R → R
with f/A = g/A. I show in this article that a nonempty set A ∈ Φae if and
only if µ(cl(A)) = 0, where cl(A) denotes the closure of the set A.

In this paper I investigated the family Φs0 of all nonempty sets A such that
for every almost everywhere continuous bounded function f : R → R there is a
bounded function g : R → R having the property (s0) such that f � A = g � A.

Theorem 1. If the set A ∈ Φs0 then

for each point x ∈ A we have Dl(cl(A), x) < 1. (1)

Proof. Assume that there is a point x ∈ A such that the lower density
Dl(cl(A), x) = 1. Then the bounded function f(t) = 0 for t 6= x, and f(x) = 1
is almost everywhere continuous, but for each extension g : R → R of the
restricted function f � A we obtain that g is not in s0(x). Of course, if
g : R → R is such that f � A = g � A and r = 1

3 then the set

U = {t ∈ cl(A);Dl(cl(A), t) = 1} ∈ Td and U 3 x
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and for every open interval I with I ∩ U 6= ∅ there is a point t ∈ I ∩ U ∩ A
such that t 6= x. So,

|g(t)− g(x)| = |f(t)− f(x)| = |0− 1| = 1 >
1
3

= r,

and consequently g is not in s0(x) and A is not in Φs0 .

Theorem 2. If a nonempty set A ⊂ R satisfies the condition

for each point x ∈ A we have Dl(R \ cl(A), x) > 0,

then A ∈ Φs0 .

Proof. Evidently the set A is nowhere dense. At first we suppose that A is
a bounded set. Let f : R → R be an almost everywhere continuous bounded
function. Then the function

h(x) =


f(x) for x ∈ cl(A)
linear on the components of [inf A, supA] \ cl(A)
f(supA) for x ≥ supA

f(inf A) for x ≤ inf A

is also bounded and almost everywhere continuous, C(h) ⊃ R \ cl(A) and
f � A = h � A. Since the function h is almost everywhere continuous, the set

B = {y;µ(cl(h−1(y))) > 0}

is at most countable. Let c = inf h(R) and d = sup h(R). There are nonempty
finite sets

Bn = {yn,1, yn,2, . . . , yn,j(n)} ⊂ R \B, n ≥ 1,

such that c = yn,0 < yn,1 < · · · < yn,j(n) < d for n ≥ 1, Bn ⊂ Bn+1 for n ≥ 1,
|yn,i+1 − yn,i| < 1

2n for n ≥ 1 and i ≤ j(n), where yn,j(n)+1 = d + 1
8n . Let

φ1(x) = y1,i if y1,i ≤ h(x) < y1,i+1 for i = 0, 1, . . . , j(1).

Since h is almost everywhere continuous and y1,i ∈ R \ B for i ≤ j(1), the
function φ1 is almost everywhere continuous and the set C(φ1) of all continuity
points of the function φ1 is open and of full measure ( i.e., µ(R \C(φ1)) = 0).
Let A1 = R \ C(φ1). From the above it follows that µ(A1) = 0 and A1 is
closed.
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Now we will construct some special family of pairwise disjoint closed in-
tervals L1,i,j ⊂ (R \ cl(A)) \ A1. For this let I1,1,1, I1,1,2, . . . , I1,1,i(1,1) be the
open components of the set

U1,1 =
⋃

x∈A1∩cl(A)

(x− 1, x + 1).

There are pairwise disjoint nondegenerate closed intervals

L1,1,1, . . . , L1,1,k(1,1) ⊂ (U1,1 \ cl(A)) \A1

such that for every positive integer j ≤ i(1, 1)

µ(I1,1,j ∩
⋃

i≤k(1,1)

L1,1,i) >
1
2
µ(I1,1,j \ cl(A)).

In the second step put

r1,2 =
inf{|x− y|;x ∈ A1 ∩ cl(A), y ∈

⋃
i≤k(1,1) L1,1,i}

2
,

and denote by I1,2,1, I1,2,2, . . . , I1,2,i(1,2) the components of the set

U1,2 =
⋃

x∈A1∩cl(A)

(x− r1,2, x + r1,2).

Next we find pairwise disjoint nondegenerate closed intervals

L1,2,1, . . . , L1,2,k(1,2) ⊂ (U1,2 \ cl(A)) \A1

such that for every positive integer j ≤ i(1, 2)

µ(I1,2,j ∩
⋃

i≤k(1,2)

L1,2,i) > (1− 1
22

)µ(I1,2,j \ cl(A)).

In general in the nth step (n > 2) we define the positive real

r1,n =
inf{|x− y|;x ∈ A1 ∩ cl(A), y ∈

⋃
i≤k(1,n−1) L1,n−1,i}

2
,

and denote by I1,n,1, I1,n,2, . . . , I1,n,i(1,n) the components of the set

U1,n =
⋃

x∈A1∩cl(A)

(x− r1,n, x + r1,n).
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Next we find pairwise disjoint nondegenerate closed intervals

L1,n,1, . . . , L1,n,k(1,n) ⊂ (U1,n \ cl(A)) \A1

such that for each positive integer j ≤ i(1, n)

µ(I1,n,j ∩
⋃

i≤k(1,n)

L1,n,i) > (1− 1
2n

)µ(I1,n,j \ cl(A)) (2)

Let {N(s, i)}∞s,i=1 be a family of pairwise disjoint infinite subsets of positive
integers. Observe that by (2) for each point x ∈ A∩A1 and for each pair (s, i)
of positive integers we have

Du

( ⋃
n∈N(s,i)

⋃
m≤k(1,n)

L1,n,m, x) ≥ Dl(R \ cl(A), x
)

> 0. (3)

Let f1(x) = y1,s for x ∈ L1,n,m, where n ∈ N(s, i), s ≤ j(1), m ≤
k(1, n), i = 1, 2, . . . . For x ∈ A1 \ cl(A) such that Du({(φ1)−1(φ1(x)), x) = 0
and φ1(x) = y1,k we put f1(x) = y1,k−1 and let f1(x) = φ1(x) otherwise on R.
If x ∈ A1 ∩A and f1(x) = y1,m1 , then by (3) we have

Du(int((f1)−1(f1(x))), x) ≥ Du

( ∞⋃
i=1

⋃
n∈Nm1,i

⋃
m≤k(1,n)

L1,n,m, x
)

> 0,

and consequently f1 ∈ s0(x). If x ∈ A1\cl(A), then by construction f1 ∈ s0(x).
If x ∈ (R \ (A1 ∩ cl(A))) \A1, then f1 is continuous or unilaterally continuous
and consequently f1 ∈ s0(x).

Now let x ∈ (A1 ∩ cl(A)) \ A. Observe that µ(R \ int(C(f1))) = 0 and
f1(R) = {y1,0, y1,1, . . . , y1,j(1)}. Since Dl(int(C(f1)), x) = 1, there is an integer
m2(x) ∈ [0, j(1)] such that Du

(
int((f1)−1(y1,m2(x))), x

)
> 0. So we fix such

an m2(x) and putting

g1(x) =

{
y1,m2(x) for x ∈ (cl(A) ∩A1) \A

f1(x) otherwise on R,

we obtain a function g1 having the property (s0) such that |h(x)− g1(x)| < 1
2

for x ∈ A.
Now we will construct a function g2 having property (s0) and such that

|g2 − g1| <
1
2

and |g2(x)− h(x)| < 1
22

for x ∈ A.
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Let
φ2(x) = y2,i if y2,i ≤ h(x) < y2,i+1 for i = 0, 1, . . . , j(2).

Since h is almost everywhere continuous and y2,i ∈ R \ B for i ≤ j(2), the
function φ2 is almost everywhere continuous and the set C(φ2) of all continuity
points of the function φ2 is open and of full measure. Let A2 = R \ C(φ2).
From the above it follows that µ(A2) = 0. Since B2 ⊃ B1, the inclusion
A1 ⊂ A2 holds.

Now we will construct some special family of pairwise disjoint closed inter-
vals

L2,i,j ⊂ (R \ cl(A ∪A2)) \
∞⋃

n=1

⋃
m≤k(1,n)

L1,n,m.

For this let I2,1,1, I2,1,2, . . . , I2,1,i(2,1) be the open components of the set

U2,1 =
⋃

x∈A2∩cl(A)

(x− 1, x + 1).

There are pairwise disjoint nondegenerate closed intervals

L2,1,1, . . . , L2,1,k(2,1) ⊂ ((U2,1 \ cl(A)) \A2) \
∞⋃

n=1

⋃
i≤k(1,n)

L1,n,i

such that for every positive integer j ≤ i(2, 1)

µ(I2,1,j ∩
⋃

i≤k(2,1)

L2,1,i) >
1
2
µ((I2,1,j \ cl(A)) \

∞⋃
n=1

⋃
m≤k(1,n)

L1,n,m).

In the second step put

r2,2 =
inf{|x− y|;x ∈ A2 ∩ cl(A), y ∈

⋃
i≤k(2,1) L2,1,i}

2
,

and denote by I2,2,1, I2,2,2, . . . , I2,2,i(2,2) the components of the set

U2,2 =
⋃

x∈A2∩cl(A)

(x− r2,2, x + r2,2).

Next we find pairwise disjoint nondegenerate closed intervals

L2,2,1, . . . , L2,2,k(2,2) ⊂ ((U2 \ cl(A)) \A2) \
∞⋃

n=1

⋃
m≤k(1,n)

L1,n,m
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such that for every positive integer j ≤ i(2, 2)

µ(I2,2,j ∩
⋃

i≤k(2,2)

L2,2,i) > (1− 1
22

)µ((I2,2,j \ cl(A)) \
∞⋃

n=1

⋃
m≤k(1,n)

L1,n,m).

In general in the nth step (n > 2) we define the positive real

r2,n =
inf{|x− y|;x ∈ A2 ∩ cl(A), y ∈

⋃
i≤k(2,n−1) L2,n−1,i}

2
,

and denote by I2,n,1, I2,n,2, . . . , I2,n,i(2,n) the components of the set

U2,n =
⋃

x∈A2∩cl(A)

(x− r2,n, x + r2,n).

Next we find pairwise disjoint nondegenerate closed intervals

L2,n,1, . . . , L2,n,k(2,n) ⊂ ((Un \ cl(A)) \A2) \
∞⋃

s=1

⋃
m≤k(1,s)

L1,s,m

such that for each positive integer j ≤ i(2, n)

µ(I2,n,j ∩
⋃

i≤k(2,n)

L2,n,i) > (1− 1
2n

)µ((I2,n,j \ cl(A)) \
∞⋃

s=1

⋃
m≤k(1,s)

L1,s,m) (4)

Observe that by (4) for each point x ∈ A ∩ (A2 \ A1) and for each pair (s, i)
of positive integers we have

Du(
⋃

n∈Ns,i

⋃
m≤k(2,n)

L2,n,m, x) ≥ Dl(R \ cl(A), x) > 0. (5)

Now we will define the function g2. For k = 0, 1, . . . , j(1) denote by

y1,k = y2,s(k) < y2,s(k)+1 < y2,s(k)+2 < · · · < y2,s(k)+t(k) < y2,s(k)+t(k)+1 = y1,k+1

all numbers of the set B2∩[y1,k, y1,k+1]. For k ≤ j(1) and i ≥ 1 let {N(k, i, j)}∞j=1

be a family of pairwise disjoint infinite subsets of integers such that N(k, i) =⋃∞
j=1 N(k, i, j). For x ∈ L1,p,m, where p ∈ N(k, i, j), s(k) ≤ i ≤ s(k) + t(k)

and j ≥ 1, we put g2(x) = y2,i. Observe that for such points x we have

|g2(x)− g1(x)| < y1,k+1 − y1,k <
1
2
.
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If
L2,n,m ⊂ (g1)−1(y1,k) and n ∈ N(k, s(k) + i),

where 0 ≤ i ≤ t(k) and m ≤ k(n), then we put g2(x) = y2,s(k)+i for x ∈ L2,n,m.
As above we observe that for such points x we obtain

|g2(x)− g1(x)| < y1,k+1 − y1,k <
1
2
.

In the other points of the set R \A2 we put g2(x) = g1(x). If x ∈ A2 ∩A, then
we put g2(x) = φ2(x).

Now let x ∈ A2 \A and let g1(x) = y1,k. Then

Du((int((g1)−1(y1,k)), x) > 0,

and consequently there is an integer i ≥ 0 (i ≤ t(k)) such that

Du(int((g2)−1(y2,s(k)+i)), x) > 0.

So we fix such an i and put g2(x) = y2,s(k)+i. As above for such points x

we obtain |g2(x) − g1(x)| < 1
2 . The function g2 is continuous or unilaterally

continuous at points x ∈ R \A2; so it has the property (s0) at these points. If
x ∈ A2 ∩A, then by (5) and the construction of g2 we have

Du(int((g2)−1(g2(x))), x) > 0,

and consequently the function g2 has the property (s0) at x. Analogously from
the construction of g2 it follows that the function g2 has the property (s0) at
points x ∈ A2 \A. So g2 has the property (s0) everywhere. Moreover

|g2 − g1| <
1
2

and |g2(x)− h(x)| = |φ2(x)− h(x)| < 1
22

for x ∈ A.

Analogously, in the nth step (n > 2) we define a function gn having the
property (s0) such that |gn−1− gn| < 1

2n−1 and |gn(x)−h(x)| < 1
2n for x ∈ A.

The sequence (gn)n uniformly converges to a bounded function g, which has
the property (s0) (as the uniform limit of a sequence of functions having this
property [2]). For x ∈ A we have g(x) = limn→∞ gn(x) = h(x).

Now we consider the general case, where the set A may be unbounded.
Then there are points

x0, x−1, x1, x−2, x2, . . . ∈ R \ cl(A)

such that
xk+1 > xk for k = 0,−1, 1,−2, 2, . . . ,
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lim
k→−∞

xk = −∞, lim
k→∞

xk = ∞.

If Ek = (xk−1, xk) ∩ A 6= ∅ then by the proved part of our theorem there
is a bounded function fk : R → [c, d] having the property (s0) such that
h(x) = fk(x) for x ∈ Ek. Let

g(x) =

{
fk(x) if Ek 6= ∅ and x ∈ (xk−1, xk)
h(x) otherwise on R.

Then the bounded function g has property (s0) and g � A = h � A = f � A.

Problem. Is the following implication true?

A satisfies condition (1) =⇒ A ∈ Φs0
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