Janina Ewert, Institute of Mathematics, Pedagogical University, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland. email: j-ewert@pap.edu.pl Jacek Jędrzejewski, Institute of Mathematics, Pedagogical University, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland and The College of Computer Science, ul. Rzgowska 17a, Łódź, Poland. email: jmj@wsinf.edu.pl

BETWEEN ARZELÁ AND WHITNEY CONVERGENCE

Abstract

A stronger form of the Arzelá convergence is defined and it is compared to other types of convergence.

Throughout the article, X will denote a topological space in which no separation axioms are assumed if none are explicitly stated. Thus, just as in [3] and [10], compactness, paracompactness (also countable compactness and countable paracompactness) are presumed without the T_2 axiom and pseudocompact spaces need not be $T_{3\frac{1}{2}}$. For any subset A of the space X its closure will be denoted by cl (A). In a metric space (Y, ρ) the open ball with center at y and radius r will be denoted by B(y, r). Furthermore, $\mathcal{F}(X, Y)$ and $\mathcal{C}(X, Y)$ will denote the classes of all functions and all continuous functions from X to Y, respectively, and \mathbb{R}^+ will denote the set of all positive real numbers. This set will be endowed with the natural topology.

Definition 1. [1], [2] A net $\{f_j : j \in J\}$ of functions $f_j : X \longrightarrow Y$ is said to be convergent to a function $f : X \longrightarrow Y$ in the sense of Arzelá (or simply A-convergent) if this net pointwise converges to f and for every positive ε , every j_0 in J there exists a finite subset J_1 of J such that $j \ge j_0$ for $j \in J_1$ and

$$\min\left\{\varrho\left(f_j(x), f(x)\right) : j \in J_1\right\} < \varepsilon$$

for each x in X.

Key Words: Arzelá convergence, Whitney convergence, paracompact space, pseudocompact space

Mathematical Reviews subject classification: 54A20

Received by the editors January 17, 2003

Communicated by: Udayan B. Darji

Definition 2. [4], [7], [8], [9] A net $\{f_j : j \in J\}$ of functions $f_j : X \longrightarrow Y$ is said to be convergent to a function $f : X \longrightarrow Y$ in the sense of Whitney if for each φ from $\mathcal{C}(X, \mathbb{R}^+)$ there exists $j_0 \in J$ such that $\varrho(f_j(x), f(x)) < \varphi(x)$ for each $x \in X$ and for each $j \in J$ such that $j \ge j_0$.

Definition 3. A net $\{f_j : j \in J\}$ of functions $f_j : X \longrightarrow Y$ is said to be convergent to a function $f : X \longrightarrow Y$ in the sense of Arzelá-Whitney (or simply AW-convergent) if this net pointwise converges to f and for every $\varphi \in \mathcal{C}(X, \mathbb{R}^+)$, every j_0 in J there exists a finite subset J_1 of J such that $j \geq j_0$ for $j \in J_1$ and

$$\min \left\{ \varrho \left(f_j(x), f(x) \right) : j \in J_1 \right\} < \varphi(x) \quad \text{if} \quad x \in X.$$

We have the following relations between the mentioned types of convergence.

None of the implications in this diagram is reversible. Moreover, AWconvergence and uniform convergence are independent.

Examples.

(1) Let the functions f_n for $n \in \mathbb{N}$ and a function f be given by $f_n(x) = \frac{1}{n}$ and f(x) = 0 for each $x \in \mathbb{R}^+$. The sequence $(f_n)_{n=1}^{\infty}$ is uniformly convergent to the function f, but it is not AW-convergent to this function. For instance, taking positive integers n, k, a continuous function φ given by $\varphi(x) = \frac{1}{x}$ and m greater than n + k we have

$$\min\{|f_{n+i}(m) - f(m)| : i \in \{0, 1, \dots, k\}\} = \frac{1}{n+k} > \varphi(m).$$

(2) Let the sequence $(g_n)_{n=1}^{\infty}$ and a function g be defined in \mathbb{R}^+ by g(x) = 0for $x \in \mathbb{R}^+$ and

$$g_n(x) = \begin{cases} 0 & \text{if } x \in (0, n) \cup (n+2, \infty), \\ x - n & \text{if } x \in [n, n+1], \\ -x + n + 2 & \text{if } x \in (n+1, n+2]. \end{cases}$$

It is easy to see that the sequence $(g_n)_{n=1}^{\infty}$ is AW-convergent to the function g, but it is not uniformly convergent.

(3) Let the sequence $(h_n)_{n=1}^{\infty}$ and a function h be defined in \mathbb{R}^+ by h(x) = 0 for $x \in \mathbb{R}^+$, and

$$h_n(x) = \begin{cases} 0 & \text{if } x \in (0, n) \cup (n, n+2), \\ n & \text{if } x = n, \\ \frac{1}{n} & \text{if } x \in [n+2, \infty). \end{cases}$$

The sequence $(h_n)_{n=1}^{\infty}$ is A-convergent to the function h, but it is neither uniformly convergent nor AW-convergent.

A topological space X is called almost compact ([3]) if each open cover \mathfrak{U} of X has a finite subfamily of sets U_1, \ldots, U_n for which $\operatorname{cl}(\bigcup_{k=1}^n U_k) = X$. One can easily see that for regular spaces compactness and almost compactness coincide.

Theorem 1. Let X be an almost compact space. If a net $\{f_j : j \in J\}$ of continuous functions $f_j : X \longrightarrow Y$ is pointwise convergent to a continuous function $f : X \longrightarrow Y$, then this net is AW-convergent to the function f.

PROOF. Fix $j_0 \in J$ and $\varphi \in \mathcal{C}(X, \mathbb{R}^+)$. For each point $p \in X$ we can choose a neighborhood U_p of p such that $\frac{3}{4}\varphi(p) < \varphi(x)$ for $x \in U_p$. We put $W_p = B\left(f(p), \frac{1}{8} \cdot \varphi(p)\right)$. Thus

$$\mathcal{A} = \left\{ U_p \cap f^{-1}\left(W_p\right) \cap f_j^{-1}\left(W_p\right) : p \in X \land j \ge j_0 \right\}$$

is an open cover of X. By assumptions, we can select a finite subfamily

$$\left\{ U_{p_k} \cap f^{-1}(W_{p_k}) \cap f_{j_k}^{-1}(W_{p_k}) : k \in \{1, \dots, n\} \right\}$$

such that

$$\operatorname{cl}\left(\bigcup_{k=1}^{n} \left(U_{p_{k}} \cap f^{-1}\left(W_{p_{k}}\right) \cap f^{-1}_{j_{k}}\left(W_{p_{k}}\right)\right)\right) = X.$$

Let x be in X. Then

$$x \in \operatorname{cl}\left(U_{p_{k}} \cap f^{-1}\left(W_{p_{k}}\right) \cap f^{-1}_{j_{k}}\left(W_{p_{k}}\right)\right)$$

for some k in $\{1, \ldots, n\}$. Hence

$$\varphi(x) \in \varphi(\operatorname{cl}(U_{p_k})) \subset \operatorname{cl}(\varphi(U_{p_k})) \subset \left[\frac{3}{4} \cdot \varphi(p_k), \infty\right).$$

Consequently $\frac{3}{4} \cdot \varphi(p_k) \leq \varphi(x)$. Furthermore,

$$f(x) \in \operatorname{cl}(W_{p_k}) = \operatorname{cl}\left(B\left(f\left(p_k\right), \frac{1}{8} \cdot \varphi\left(p_k\right)\right)\right) \subset B\left(f\left(p_k\right), \frac{1}{4} \cdot \varphi\left(p_k\right)\right)$$

and analogously, $f_{j_k}(x) \in B\left(f\left(p_k\right), \frac{1}{4} \cdot \varphi\left(p_k\right)\right)$. Thus we infer that

$$\varrho\left(f(x), f_{j_k}(x)\right) < \frac{1}{2} \cdot \varphi(p_k) < \varphi(x).$$

Finally, letting $J_1 = \{j_1, \ldots, j_n\}$ we conclude that the net $\{f_j : j \in J\}$ is AW-convergent.

Theorem 2. If X is a paracompact Hausdorff space, then the following conditions are equivalent:

- 1. X is a compact space,
- 2. for each metric space (Y, ρ) AW-convergence and pointwise convergence coincide in the class C(X, Y),
- 3. AW-convergence and pointwise convergence coincide in $\mathcal{C}(X, [0, 1])$.

PROOF. The implication $(1) \implies (2)$ is a consequence of Theorem 1. The implication $(2) \implies (3)$ is evident.

To prove the implication $(3) \implies (1)$, suppose that the space X is not compact. There exists an open cover $\mathfrak{U} = \{U_s : s \in S\}$, which has no finite subcover. Since X is a paracompact Hausdorff space, there exists a locally finite closed cover $\mathfrak{V} = \{M_s : s \in S\}$, for which $M_s \subset U_s$ if $s \in S$ (see [6] Lem. 5.1.6). Let \leq be a well order in the set S and α be the order type of (S, \leq) . Thus the cover \mathfrak{V} can be taken as a transfinite sequence

$$M_{s_0}, M_{s_1}, \dots, M_{s_{\varepsilon}}, \dots, \quad \xi < \alpha.$$

Now let

$$D_0 = M_{s_0}, \ D_{\xi} = \bigcup_{eta \leq \xi} M_{s_{eta}}, \ E_0 = X \setminus U_{s_0} \ \text{and} \ E_{\xi} = X \setminus \bigcup_{eta \leq \xi} U_{s_{eta}}$$

when $\xi < \alpha$. Then $\mathfrak{D} = \{D_{\xi} : \xi < \alpha\}$ is a cover of X and the sets D_{ξ} and E_{ξ} are closed and disjoint for each $\xi < \alpha$. Moreover, if $\beta < \xi$, then $D_{\beta} \subset D_{\xi}$ and $E_{\xi} \subset E_{\beta}$. The space X is normal. Thus for each ξ less than α there exists a continuous function $f_{\xi} : X \longrightarrow [0,1]$ such that $f_{\xi}(D_{\xi}) = \{1\}$ and $f_{\xi}(E_{\xi}) = \{0\}$. It is easy to see that the net $\{f_{\xi} : \xi < \alpha\}$ is pointwise convergent to the function f defined by f(x) = 1 if $x \in X$.

260

Take a finite sequence $\{f_{\xi_1}, f_{\xi_2}, \ldots, f_{\xi_n}\}$, where $\xi_1 \leq \xi_2 \leq \cdots \leq \xi_n < \alpha$ and a continuous function φ given by $\varphi(x) = \frac{1}{2}$, $x \in X$. Since $E_{\xi_n} \subset E_{\xi_k}$, if $k \in \{1, 2, \ldots, n\}$, then $f_{\xi_k}(x) = 0$ if $x \in E_{\xi_n}$ and $k \leq n$. From this we infer that

$$\min\left\{|f_{\xi_k} - f(x)| : k \le n\right\} > \varphi(x) \text{ if } x \in E_{\xi_n}.$$

In this way we have proved that the net $\{f_{\xi} : \xi < \alpha\}$ is not AW-convergent to the function f.

Theorem 3. If X is pseudocompact, then for every metric space (Y, ρ) the AW-convergence in the class $\mathcal{F}(X, Y)$ is equivalent to A-convergence.

PROOF. Let $\{f_j : j \in J\}$ be a net of functions from X into Y which is Aconvergent to a function $f : X \longrightarrow Y$ and let φ be a function from the class $\mathcal{C}(X, \mathbb{R}^+)$. From the pseudocompactness of the space X we infer that

$$\inf \left\{ \varphi(x) : x \in X \right\} = r > 0$$

It follows from A-convergence, that for any j_0 from J there exists a finite subset J_1 of J such that $j \ge j_0$ for any $j \in J_1$ and

$$\inf \{ \rho(f_j(x), f(x)) : j \in J_1 \} < \frac{1}{2} \cdot r < \varphi(x)$$

for each $x \in X$.

In the sequel we will apply the following result.

Lemma 1. [2; Th. 4] For a topological space X the following conditions are equivalent:

- 1. every sequence $(f_n)_{n=1}^{\infty}$, where $f_n \in \mathcal{C}(X, \mathbb{R})$ which is pointwise convergent to a function from the class $\mathcal{C}(X, \mathbb{R})$ is also A-convergent;
- 2. X is pseudocompact.

As an immediate consequence of Theorem 3 and Lemma 1 we get the following.

Corollary 1. For a topological space X the following conditions are equivalent:

- 1. X is pseudocompact;
- 2. every sequence $(f_n)_{n=1}^{\infty}$, where $f_n \in \mathcal{C}(X, \mathbb{R})$ which is pointwise convergent to a continuous function $f : X \longrightarrow \mathbb{R}$ is also AW-convergent to the function f.

Applying the above corollary and Theorem 1, we obtain this consequence.

Corollary 2. Every almost compact space is pseudocompact.

Theorem 4. If X is a countably paracompact T_4 space, then the following conditions are equivalent:

- 1. X is countably compact;
- 2. for any metric space (Y, ρ) , every sequence $(f_n)_{n=1}^{\infty}$ of functions from the class $\mathcal{C}(X, Y)$, which is pointwise convergent to a function f from the class $\mathcal{C}(X, Y)$, is also AW-convergent to the function f.
- 3. every sequence $(f_n)_{n=1}^{\infty}$ of continuous functions, where $f_n : X \longrightarrow [0, 1]$, which is pointwise convergent to a continuous function, is also AW-convergent.

PROOF. First we will prove the implication $(1) \Longrightarrow (2)$. Assume that X is countably compact. Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions from the class $\mathcal{C}(X,Y)$, which is pointwise convergent to a function f from the same class. For any positive integer n and any function φ from the class $\mathcal{C}(X, \mathbb{R}^+)$ we put

$$V_k = \left\{ x \in X : \rho\left(f_k(x), f(x)\right) < \varphi(x) \right\}.$$

The family $\{V_k : k \ge n\}$ forms an open cover of X. Thus sets

$$V_n, V_{n+1}, \ldots, V_{n+m}$$

can be chosen in such a way that $\bigcup_{i=0}^{m} V_{n+i} = X$, from whence AW-convergence followed.

The implication $(2) \Longrightarrow (3)$ is evident.

Finally, suppose that X is not countably compact. Then there is an open cover $\{U_n : n \in \mathbb{N}\}$ of X which has no finite subcover. Without loss of generality we can assume that $U_n \not\subset U_k$ if $n \neq k$. Since X is a paracompact T_4 space, there exists a locally finite open cover $\{V_n : n \in \mathbb{N}\}$ such that $\operatorname{cl}(V_n) \subset U_n$ if $n \in \mathbb{N}$. Now let $D_n = \operatorname{cl}(\bigcup_{i=1}^n V_i)$ and $M_n = X \setminus \bigcup_{i=1}^n U_i$ for each positive integer n. Then the sets D_n and M_n are closed and satisfy

$$D_n \cap M_n = \emptyset, \ D_n \subset D_{n+1} \text{ if } n \in \mathbb{N} \text{ and } \cup_{n=1}^{\infty} D_n = X.$$

The normality of the space X implies that for each positive integer n there exists a continuous function $f_n : X \longrightarrow [0,1]$ such that $f_n(D_n) = \{1\}$ and $f_n(M_n) = \{0\}$. Let f be defined by f(x) = 1 if $x \in X$. It is not difficult (applying arguments similar to those in the proof of the implication $(3) \Longrightarrow (1)$ in Theorem 2) to prove that the sequence $(f_n)_{n=1}^{\infty}$ is pointwise convergent to f, but it is not AW-convergent to f. \Box

262

Definition 4. [5] A sequence $(f_n)_{n=1}^{\infty}$ of functions from $\mathcal{F}(X, Y)$ is said to be locally A-convergent to a function $f : X \longrightarrow Y$ at a point $x_0 \in X$ if $f_n(x_0) \longrightarrow f(x_0)$ and for each positive ε and positive integer m there exist a neighborhood U of x_0 and a positive integer n such that

$$\min \{ \rho(f_{m+k}(x), f(x)) : k \in \{0, 1, \dots, n\} \} < \varepsilon$$

for each x in U.

A sequence $(f_n)_{n=1}^{\infty}$ of functions from $\mathcal{F}(X,Y)$ is said to be locally Aconvergent to a function $f: X \longrightarrow Y$ if it is A-convergent to f at each point x from the set X.

Evidently, every A-convergent sequence is also locally A-convergent, but the converse is false. For instance, let the functions $f_n: (0,1) \longrightarrow (0,1)$ and a function $f: (0,1) \longrightarrow (0,1)$ be given by $f_n(x) = x^n$ and f(x) = 0. Then the sequence $(f_n)_{n=1}^{\infty}$ is locally A-convergent to f but it is not A-convergent.

Using Corollary 1 we obtain the following.

Corollary 3. Let X be a pseudocompact space and $f \in \mathcal{C}(X, \mathbb{R})$, $f_n \in \mathcal{C}(X, \mathbb{R})$ for any positive integer n. Then the following conditions are equivalent:

- 1. the sequence $(f_n)_{n=1}^{\infty}$ is pointwise convergent to f;
- 2. the sequence $(f_n)_{n=1}^{\infty}$ is locally A-convergent to f;
- 3. the sequence $(f_n)_{n=1}^{\infty}$ is A-convergent to f;
- 4. the sequence $(f_n)_{n=1}^{\infty}$ is AW-convergent to f.

References

- C. Arzelá, Sulle serie di funzioni, Mem. della R. Accad. delle Sci. dell'Inst. di Bologna, ser. 5, 8 (1899–1900), 130–186, 701–744.
- [2] Z. Bukovská, L. Bukovský, J. Ewert, Quasi-uniform convergence and Lspaces, Real Anal. Exch., 18 (1992/93), 321-329.
- [3] Á. Császár, General Topology, Akadémiai Kiadó, Budapest 1978.
- [4] G. Di Maio, L. Holá, D. Holý, R. A. McCoy, Topologies on the space of continuous functions, Top. Appl., 86 (1998), 105–122.
- [5] Š. Drahovský, T. Šalat, V. Toma, Points of uniform convergence and oscillation of sequences of functions, Real Anal. Exch., 20 (1994/95), 753-767.

- [6] R. Engelking, General Topology, Warszawa, PWN, 1977.
- [7] L. Gillman, M. Jerison, *Rings of Continuous Functions*, Springer Verlag, New York, Heidelberg, Berlin, 1976.
- [8] N. Krikorian, A note concerning the fine topology on function spaces, Composito Math., **21** (4) (1969), 343–348.
- [9] R. A. McCoy, Fine topology on function spaces, Internat. J. Math. Math. Sci., 9 (1986), 417-424.
- [10] J. I. Nagata, *Modern General Topology*, North-Holland Publishing Company, Amsterdam, Wolters-Noordhoff Publishing-Groningen, 1968.