
Real Analysis Exchange
Vol. 29(2), 2003/2004, pp. 953–956

John W. Hagood, Department of Mathematics and Statistics, Northern
Arizona University, PO Box 5717, Flagstaff, AZ 86011-5717, USA.
email: john.hagood@nau.edu

THE LEBESGUE DIFFERENTIATION
THEOREM VIA NONOVERLAPPING

INTERVAL COVERS

Abstract

A short proof is given for the Lebesgue Differentiation Theorem using
a variation of the Heine-Borel covering property, without reliance on
sophisticated approaches such as Vitali covers and the rising sun lemma.

In this paper we use a variation of the Heine-Borel covering property to
prove the theorem due to Lebesgue that every monotone function f : [a, b] → R
is differentiable almost everywhere. The approach is more accessible than typ-
ical treatments that use Vitali covers, the rising sun lemma or other methods
[1, 2, 3, 4, 5]. Throughout λ represents Lebesgue measure on the real line.

A family of nondegenerate compact intervals C is a right adapted inter-
val cover of a set E ⊆ R if for each x ∈ E there is an interval [L(x), R(x)] ∈ C
such that L(x) < x < R(x) and [s,R(x)] ∈ C for all s ∈ [L(x), x]. The term
left adapted interval cover is defined similarly, and we refer to either of
these as an adapted interval cover. We say that a family of compact inter-
vals is nonoverlapping if the interiors of the intervals are pairwise disjoint.

Covering Lemma. If C is an adapted interval cover of a compact set K ⊆ R,
then there is a finite collection of nonoverlapping intervals in C that covers K.

Proof. Without loss of generality, suppose that C is right adapted. Let
a = minK and b = maxK and let A be the set of all t ∈ [a, b] such that C has
a finite nonoverlapping subcover of [a, t] ∩K. Then a ∈ A, so A is nonempty.
Let β = supA. We first show that β ∈ K. Otherwise, β lies in a component
(c, d) of [a, b]\K and there is a finite collection D of nonoverlapping intervals
in C that covers [a, c] ∩ K. Then D can be modified by deleting extraneous
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intervals to the right of c and adding [d,R(d)]. This contradicts β < d, so
β ∈ K.

Now let t ∈ (L(β), β] ∩ A and choose any finite nonoverlapping collection
D of intervals in C that covers [a, t] ∩K. If [r, s] is the right-most interval of
D that contains t, then either s ≥ b in which case b ∈ A as desired or s ≤ β
and D can be modified to include [s,R(β)]. Then min{R(β), b} ∈ A, which is
impossible unless b = β ∈ A.

The key to the proof of the main theorem is a growth lemma for monotone
functions in terms of Dini derivates. As usual, the upper right-hand Dini
derivate is given by

D+f(x) = inf
α>0

sup
0<h<α

f(x + h)− f(x)
h

and the other derivates D+, D− and D− are defined similarly. It is well known
that the derivates of a monotone function are measurable.

Growth Lemma. Suppose that f is strictly increasing on [a, b]. Let C be the
set of points in (a, b) at which f is continuous and let E be a Borel subset of
C.

(a) For any Dini derivate D, if Df(x) > q on E, then λ(f(E)) ≥ qλ(E).

(b) For any Dini derivate D, if Df(x) < p on E, then λ(f(E)) ≤ pλ(E).

Proof. Part (a): The proofs for D+ and D− are similar and the other two
cases are then consequences, so we proceed with D+. Suppose that D+f > q
on a Borel set E ⊆ C. Since f is strictly increasing, f(E) is Borel measurable.
Let ε > 0, and choose a compact set K ⊆ E and an open set U ⊇ f(E) such
that λ(E\K) < ε and λ(U\f(E)) < ε.

Construct a right adapted interval cover C of K as follows. For each x ∈ K,
f is continuous at x so there is an open interval I ⊆ (a, b) about x such that
f(I) ⊆ U . Choose a number R(x) ∈ I satisfying x < R(x) and

f(R(x))− f(x) > q(R(x)− x).

Using continuity at x, choose L(x) ∈ I such that L(x) < x and

f(R(x))− f(s) > q(R(x)− s)

whenever L(x) ≤ s ≤ x. Let

C = {[s,R(x)] : x ∈ K, L(x) ≤ s ≤ x}.
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Then C is a right adapted interval cover of K, so there is a finite set of nonover-
lapping intervals {[ci, di]}n

i=1 that covers K and associated points xi ∈ K such
that L(xi) ≤ ci ≤ xi < di = R(xi). The intervals [f(ci), f(di)] are also
nonoverlapping and lie in U . Then

λ(f(E)) >λ(U)− ε ≥ λ(∪n
i=1[f(ci), f(di)])− ε =

n∑
i=1

(f(di)− f(ci))− ε

>
n∑

i=1

q(di − ci)− ε ≥ qλ(K)− ε > qλ(E)− ε(1 + q).

Thus, λ(f(E)) ≥ qλ(E).

Part(b): Let ε > 0 and choose a compact set K ⊆ f(E) and an open set
U ⊇ E such that λ(f(E)\K) < ε and λ(U\E) < ε. Now K must have the
form

K = [f(α0), f(β0)]\
⋃
i

(f(αi), f(βi))

for some finite or countable set of points αi, βi ∈ E, so

f−1(K) = [α0, β0]\
⋃
i≥1

(αi, βi)

which is a closed subset of E. This permits us to apply the above technique
to f−1(K) and U to show that λ(f(E)) ≤ pλ(E).

The proof of the main theorem now follows from two consequences of the
growth theorem. In the setting of the lemma, if

A = {x ∈ C : Df(x) = ∞}

for any Dini derivate D, then for any positive real number q,

f(b)− f(a) ≥ λ(f(A)) ≥ qλ(A).

Thus λ(A) = 0, so that the Dini derivates of f are finite a.e. Second, all sets
of the form

B = {x ∈ C : D+f(x) < p < q < D−f(x)}
satisfy qλ(B) ≤ λ(f(B)) ≤ pλ(B) so that λ(B) = 0. That is, D−f ≤ D+f
a.e. and similarly D+f ≤ D−f a.e. The case of a general monotone function
follows from the strictly increasing case in standard fashion. Thus we have the

Lebesgue Differentiation Theorem. If f : [a, b] → R is monotone, then f
is differentiable almost everywhere.
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