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DILATATIONS OF GRAPHS AND
TAYLOR’S FORMULA: SOME RESULTS

ABOUT CONVERGENCE

Abstract

The graph of a function f is subjected to non-homogeneous dilata-
tions around the point (x0; f(x0)), related to the Taylor’s expansion of f
at x0. Some questions about convergence are considered. In particular
the dilated images of the graph are proved to behave nicely with respect
to a certain varifold-like convergence. Further and stronger results are
shown to hold in such a context, by suitably reinforcing the assumptions.

1 Introduction

Throughout this paper h, k, n are positive integer numbers, with h ≥ 2, and f
is a map in Ch−1(Rn,Rk). The graph of f is denoted by Gf . The d-th degree
Taylor’s polynomial of f at a point x0 is indicated with P x0

d f , while fx0
d,0 is the

d-th degree monomial in P x0
d f . For d = 1, . . . , h we can consider the following

families of transformations parametrized by r > 0.

T x0
d,r : Rn × Rk → Rn × Rk, (x; y) 7→ T x0

d,r(x; y) :=
(
x− x0

r
;
y − P x0

d−1f(x)
rd

)
.

As an easy computation shows, the surface T x0
d,r(Gf ) coincides with the graph

of

fx0
d,r(u) :=

f(x0 + ru)− P x0
d−1f(x0 + ru)

rd
, u ∈ Rn.
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Note that T x0
1,r is the homothetic of similitude ratio 1/r, centered at (x0; f(x0)),

while fx0
1,r just coincides with the incremental ratio

fx0
1,r(u) =

f(x0 + ru)− f(x0)
r

, u ∈ Rn.

It follows that blowing up Gf through T x0
1,r produces the tangent space to Gf

at (x0; f(x0)), which coincides with the graph of fx0
1,0. More precisely, one has

that the maps fx0
1,r converge to fx0

1,0, uniformly in the compact sets, as r ↓ 0.
Hence the Hausdorff measures associated with the graphs of the fx0

1,r, i.e. with
T x0

1,r(Gf ), converge (in the weak∗ sense of measures) to the Hausdorff measure
associated with the graph of fx0

1,0; that is,

Hn Gf
x0
1,r

= Hn T x0
1,r(Gf ) → Hn Gf

x0
1,0

as r ↓ 0.
Under our assumptions, by the notation introduced above, such well known

facts can easily be generalized to the following statements holding for all d =
1, . . . , h− 1 ([2, §3]).

(Ad) The maps fx0
d,r converge to fx0

d,0, uniformly in the compact sets, as r ↓ 0.

(Bd) The Hausdorff measures associated with the graphs of the fx0
d,r, i.e. with

T x0
d,r(Gf ), converge (in the weak∗ sense of measures) to the Hausdorff

measure associated with the graph of fx0
d,0, namely

Hn Gf
x0
d,r

= Hn T x0
d,r(Gf ) → Hn Gf

x0
d,0

as r ↓ 0.

As for statements (Ah) and (Bh), let us observe that they do not make sense
in that fx0

h.0 does not exist. However a suitable generalization of them has been
proposed and studied in [2] from where we do now recap some notation and
facts.

Let a family of fields

g1, . . . , gk ∈ Ch−1(Rn; Rn)

be given and set
fi := f · en+i (i = 1, . . . , k)

where {en+i} is the standard orthonormal basis of Rk. Then consider the
closed set

K :=
{
x ∈ Rn

∣∣∇fi(x) = gi(x), for all i = 1, . . . , k
}
.
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Also define the map

Γx0
h : Rn → Rk, Γx0

h (u) :=
1
h!

k∑
i=1

(
u · 〈Dh−1gi(x0)|uh−1〉

)
en+i

=
1
h!

k∑
i=1

(
u ·

∑
λ∈{1,...,n}h−1

uλDλgi(x0)
)
en+i

and observe that:

• Γx0
h generalizes fx0

h,0, in the sense that if f is regular enough, then one
has Γx0

h ≡ fx0
h,0 (Remark 3.1);

• If x0 is internal to K, then f has to be of class Ch in a neighborhood of
x0. In such a case, obviously, the statements (Ah) and (Bh) make sense
and are true.

As a consequence, it becomes natural to pose the following question.

(Q) Let K have density one at x0. Then, do fx0
h,r (resp. T x0

h,r(Gf |K)) converge
in some sense to Γx0

h (resp. GΓ
x0
h

), as r ↓ 0 ?

In [2, Proposition 4.1] we proved that the answer to (Q) in general is negative.
A simple example in which Γx0

h ≡ 0 while fx0
h,r goes to infinity (as r ↓ 0) is

provided in [2, §5]. Related to this point, a mistake occurring in [4] is discussed
in [2, §6].

This paper is devoted to present some new developments about the subject
surrounding question (Q) and our main achievements are summarized in the
remainder of this introduction.

In Theorem 3.1 and Corollary 3.1 we prove that, despite the example we
just mentioned, the surfaces T x0

h,r(Gf |K) behave nicely with respect to a certain
varifold-like convergence in which the test functions do not depend on the
variable of Rk, where f and fx0

h,r take values. In particular the measures of
T x0

h,r(Gf |K) inside any cylinder E×Rn, with E bounded subset of Rn, have to
converge.

The results in §4 provide some affirmative answers to question (Q), under
the assumption that K has “density one of order high enough at x0”. More
precisely, we show that if

lim
r↓0

Ln(Br(x0) \K)
rh+n−1

= 0. (1)

then (as r ↓ 0):
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• for n = 1, fx0
h,r converges to Γx0

h with respect to pointwise convergence
(Theorem 4.1). For n ≥ 2, in general, such a convergence does not occur
(Example following Theorem 4.1).

• fx0
h,r converges to Γx0

h in L1
loc (Theorem 4.2).

• The graph measure Hn T x0
h,r(Gf |K) converges to Hn GΓ

x0
h

in the
weak* sense of measures, on condition that a certain Schwarz-like equa-
tion about mixed partials is satisfied (Corollary 4.2).

Originally, we stated the results of §4 under the assumption

lim
r↓0

∫
Br(x0)

H1
(
[x0;x] \K

)
dx

rh+n
= 0

rather than (1). We are grateful to Pertti Mattila who, on occasion of his
recent visit to the Department of Mathematics in Trento, pointed out to us
the equivalence between these assumptions. His proof is given in the Appendix
§5 (Theorem 5.1).

2 Notation

This section is devoted to introduce the notation used throughout the present
paper, included that which has already been introduced in §1 (for the reader’s
convenience).

Rn, Rk and Rn×Rk are the euclidean spaces mainly considered throughout
this paper. {e1, . . . , en} and {en+1, . . . , en+k} denote the standard orthonor-
mal bases of Rn and Rk, respectively. The projection mapping Rn × Rk onto
Rn is indicated with π.

Recall that a j-vector (j = 1, . . . , n) in Rn can be represented by the
multi-index notation in the form

∑
α∈I(n,j) aαeα where

I(n, j) :=
{
α = (α1, . . . , αj) ∈ Zj

∣∣ 1 ≤ α1 < · · · < αj ≤ n
}

and
aα ∈ R, eα := eα1 ∧ · · · ∧ eαj

.

The linear space of the j-vectors in Rn is equipped with the inner product and
hence, the norm, naturally induced from Rn. The same notation is obviously
adopted for multivectors in Rk or in Rn × Rk.
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Except for the standard euclidean length, which is denoted by | · |, every
other norm is indicated by ‖ · ‖. For example∥∥∥∥ ∑

α∈I(n,j)

aαeα

∥∥∥∥ =
( ∑

α∈I(n,j)

a2
α

)1/2

.

Set
Br(x0) :=

{
x ∈ Rn

∣∣ |x− x0| ≤ r
}

(x0 ∈ Rn, r > 0)

and
Sn−1 :=

{
x ∈ Rn

∣∣ |x| = 1
}

= ∂B1(0).

If h : Rn → Rk is a map of class Cl (with l ≥ 1) in a neighborhood of a
given point x0, then define

〈Dlh(x0) |ul〉 :=
∑

λ∈{1,...,n}l

uλDλh(x0), u ∈ Rn

where

uλ := uλ1 · · ·uλl
, Dλ :=

∂l

∂xλ1 · · · ∂xλl

.

We will deal with functions

f ∈ Ch−1(Rn; Rk), g1, . . . , gk ∈ Ch−1(Rn; Rn)

where h ≥ 2 is an integer number. Define

fi := f · en+i, gij := gi · ej , g∗j :=
k∑

i=1

gijen+i.

The graph of f is denoted by Gf , i.e. Gf := {(x; f(x)) |x ∈ Rn}. Throughout
the present paper we will deal with the closed set

K :=
{
x ∈ Rn

∣∣∇fi(x) = gi(x), for all i = 1, . . . , k
}
.

The operator associating an argument map with its d-th degree Taylor’s poly-
nomial at x0 is indicated with P x0

d , e.g. P x0
h−1(f) is the (h − 1)-th degree

Taylor’s polynomial at x0 ∈ Rn of f .
In the following formulas we assume x0 ∈ Rn, i = 1, . . . , k and j = 1, . . . , n.
Let

ρx0
ij := gij − P x0

h−2(gij), ϕx0
ij :=

∂fi

∂xj
− P x0

h−2

(
∂fi

∂xj

)
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and

ρx0
i∗ :=

n∑
j=1

ρx0
ij ej = gi − P x0

h−2(gi), ρx0
∗j :=

k∑
i=1

ρx0
ij en+i = g∗j − P x0

h−2(g∗j)

ϕx0
i∗ :=

n∑
j=1

ϕx0
ij ej = ∇fi−P x0

h−2(∇fi), ϕx0
∗j :=

k∑
i=1

ϕx0
ij en+i =

∂f

∂xj
−P x0

h−2

(
∂f

∂xj

)
.

By the Taylor’s Theorem (e.g. [6, V, §6]), one has

ρx0
∗j = Gx0

j + σx0
j (2)

where Gx0
j denotes the maximal degree monomial in P x0

h−1(g∗j), i.e.

Gx0
j : Rn → Rk, Gx0

j (x) :=
1

(h− 1)!
〈Dh−1g∗j(x0) | (x− x0)h−1〉

=
1

(h− 1)!

∑
λ∈{1,...,n}h−1

(x− x0)λDλg∗j(x0)

and
σ

x0
j (x)

|x−x0|h−1 → 0 as x→ x0. Observe that

ε1(r) := max
j

max
x∈Br(x0)

|σx0
j (x)|

|x− x0|h−1
→ 0 (3)

as r ↓ 0. Analogously, one has

ε2(r) := max
j

max
x∈Br(x0)

|ϕx0
∗j (x)|

|x− x0|h−2
→ 0 (4)

as r ↓ 0.
Another map involved in our statements below is

Γx0
h : Rn → Rk, Γx0

h (u) :=
1
h!

k∑
i=1

(
u · 〈Dh−1gi(x0)|uh−1〉

)
en+i

=
1
h!

k∑
i=1

(
u ·

∑
λ∈{1,...,n}h−1

uλDλgi(x0)
)
en+i.

Define the following family of transformations, parametrized by r > 0.

T x0
h,r : Rn ×Rk → Rn ×Rk, (x; y) 7→ T x0

h,r(x; y) :=
(
x− x0

r
;
y − P x0

h−1f(x)
rh

)
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and
tx0
r : Rn → Rn, x 7→ tx0

r (x) :=
x− x0

r
.

As an easy computation shows, the surface T x0
h,r(Gf ) coincides with the graph

of

fx0
h,r(u) :=

f(x0 + ru)− P x0
h−1f(x0 + ru)

rh
, u ∈ Rn.

Consider the map Φ := (π|Gf )−1 namely

Φ : Rn → Rn × Rk, x 7→ Φ(x) := (x ; f(x))

and set ξ := ΛndΦ(e1 ∧ · · · ∧ en). Let M := Φ(K) and denote by τr the unit
simple n-vector field tangent to T x0

h,r(Gf ) obtained by pushing forward the field
ξ through T x0

h,r, i.e.

τr :=
ΛndT x0

h,r(ξ)
‖ΛndT x0

h,r(ξ)‖
◦ π ◦ (T x0

h,r)
−1 =

ΛndT x0
h,r(ξ)

‖ΛndT x0
h,r(ξ)‖

◦ (tx0
r )−1 ◦ π

=
Λnd(I × fx0

h,r)(e1 ∧ · · · ∧ en)
‖Λnd(I × fx0

h,r)(e1 ∧ · · · ∧ en)‖
◦ π.

Moreover, let τ0 be the unit simple n-vector field tangent to the graph of Γx0
h

having π-projection oriented as e1 ∧ · · · ∧ en, that is

τ0 :=
Λnd(I × Γx0

h )(e1 ∧ · · · ∧ en)
‖Λnd(I × Γx0

h )(e1 ∧ · · · ∧ en)‖
◦ π.

The segment joining a couple of point P,Q in Rn is indicated by [P ;Q], i.e.

[P ;Q] := {tQ+ (1− t)P | 0 ≤ t ≤ 1}.

Ld and Hd are the d-dimensional Lebesgue measure and the d-dimensional
Hausdorff measure in Rn, respectively. Finally, if E is a Lebesgue measurable
set in Rn, let

D(E) := {x ∈ Rn |x is a point of density (w.r.t. Ln) of E}.

3 Varifold-Like Convergence of the Dilated Graphs

Before stating the main result of this section, i.e. Theorem 3.1 below, we’ll
prove some useful lemmas.
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Lemma 3.1. The equality (Dl∇fi)|D(K) = (Dlgi)|D(K) holds for all i =
1, . . . , k and l = 0, 1, . . . , h− 2.

Given x0 ∈ D(K), it follows at once that:

(i) One has P x0
h−2

(
∂fi

∂xj

)
≡ P x0

h−2(gij) for all i = 1, . . . , k and j = 1, . . . , n,

hence ρx0
∗j |K ≡ ϕx0

∗j |K for all j = 1, . . . , n;

(ii) If h ≥ 3, then
∂g∗j

∂xm
(x0) =

∂g∗m

∂xj
(x0) (5)

for all j,m = 1, . . . , n.

Proof. We can assume h ≥ 3 (for h = 2 the statement is obvious, in that
D(K) ⊂ K). Then the result is an immediate consequence of the following
fact.

Let C be a closed subset of Rn and ψ ∈ C1(Rn) be such that
ψ|C ≡ 0. Then ∇ψ|D(C) ≡ 0.

In order to prove such a statement, note that D(C) ⊂ C and Ln
(
C\D(C)

)
= 0

by the Lebesgue-Besicovitch Differentiation Theorem (e.g. [3, §1.7.1]). Then
a standard argument will show that

∇ψ(x0) = 0 (6)

when x0 ∈ D(C). Suppose to the contrary that there is an x0 ∈ D(C) such
that ∇ψ(x0) 6= 0. Then ū ∈ Sn−1 and ε > 0 have to exist such that the
function (u, x) 7→ ∇ψ(x) · u is positive, provided |x− x0| ≤ ε and |u− ū| ≤ ε.
For the wedge shaped set

W :=
{
x ∈ Bε(x0) \ {x0}

∣∣∣∣ux :=
x− x0

|x− x0|
∈ Bε(ū)

}
one has

ψ(x) =ψ(x)− ψ(x0) = ψ(x0 + |x− x0|ux)− ψ(x0)

=
∫ |x−x0|

0

d

dt
ψ(x0 + tux) dt =

∫ |x−x0|

0

∇ψ(x0 + tux) · ux dt > 0

for all x ∈W . In fact the integrand ∇ψ(x0 + tux) · ux is positive, in that

|x0 + tux − x0| = t|ux| ≤ |x− x0| ≤ ε and |ux − ū| ≤ ε

for all x ∈W . This conclusion contradicts the assumption x0 ∈ D(C). Hence
we must admit that (6) holds.
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Remark 3.1. Let x0 be a point of density of K and assume that Dhf(x0)
exists. Then Γx0

h (u) coincides with the value of the h-th degree monomial fx0
h,0

in the Taylor’s polynomial P x0
h f at x0 + u. Indeed, for i = 1, . . . , k, one has

〈Dhfi(x0) |uh〉 =
∑

µ∈{1,...,n}h

uµDµfi(x0) =
n∑

q=1

∑
λ∈{1,...,n}h−1

uλuqDλDqfi(x0)

=u ·
∑

λ∈{1,...,n}h−1

uλDλ∇fi(x0) = u ·
∑

λ∈{1,...,n}h−1

uλDλgi(x0)

by Lemma 3.1. In particular, if f is of class Ch, then it follows that fx0
h,r

converges, uniformly in the compact sets (as r ↓ 0), to Γx0
h [2, Proposition

3.1].

Remark 3.2. Formula (5), which says that the gi are irrotational fields, is an
immediate consequence of the well known Schwarz theorem about equality of
mixed partial derivatives. This is the reason why, in the sequel, such a formula
will be referred as the “Schwarz-like equality”. As for the case h = 2, observe
that (5) is in general false. Indeed, any g ∈ C1(Rn,Rn) such that curl g 6= 0
everywhere has to coincide with the gradient of a certain f ∈ C1(Rn,R) in a
set of positive measure (e.g. by [1, Theorem 1]).

Lemma 3.2. Given x0 ∈ Rn, one has

ΛndT x0
h,r(ξ) =

1
rn

(
e1;

ϕx0
∗1

rh−1

)
∧ · · · ∧

(
en;

ϕx0
∗n

rh−1

)
=

1
rn

(
e1 ∧ · · · ∧ en +

m∑
j=1

1
rj(h−1)

∑
α∈I(n,j)

σ(α, α)ϕx0
∗α ∧ eα

)

where m := min{n, k}. Hence

∥∥∥ΛndT x0
h,r(ξ)

∥∥∥ =
1
rn

(
1 +

m∑
j=1

1
r2j(h−1)

∑
α∈I(n,j)

‖ϕx0
∗α‖2

) 1
2

=
1
rn

(
1 +

m∑
j=1

1
r2j(h−1)

∑
α∈I(n,j)
β∈I(k,j)

[
detϕx0

βα

]2
) 1

2

.

Proof. Indeed one has

ΛndT x0
h,r(ξ) = dT x0

h,r

(
dΦ(e1)

)
∧ · · · ∧ dT x0

h,r

(
dΦ(en)

)
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where

dT x0
h,r

(
dΦ(ej)

)
(x) =

d

dt

∣∣∣∣
t=0

T x0
h,r

(
Φ(x+ tej)

)
=
d

dt

∣∣∣∣
t=0

(
x+ tej − x0

r
;
f(x+ tej)− P x0

h−1f(x+ tej)
rh

)
=

(
ej

r
;
Df(x)ej −D(P x0

h−1f)(x)ej

rh

)
=

(
ej

r
;

1
rh

(
∂f

∂xj
− P x0

h−2

(
∂f

∂xj

))
(x)

)
=

(
ej

r
;
ϕx0
∗j (x)
rh

)
for all x ∈ Rn and j = 1, . . . , n.

Now we can prove the following useful estimate.

Lemma 3.3. Let L > 0, x0 ∈ Rn, m := min{n, k} and consider the field of
simple n-vectors defined by

η(u) :=
(
e1;Gx0

1 (x0 + u)
)
∧ · · · ∧

(
en;Gx0

n (x0 + u)
)

=e1 ∧ · · · ∧ en +
m∑

j=1

∑
α∈I(n,j)

σ(α, α)Gx0
α (x0 + u) ∧ eα

for all u ∈ Rn. Then the following estimates hold

(i) ‖rnΛndT x0
h,r(ξ(x0 + ru))− η(u)‖ ≤ c ε1(rL), for all u ∈ BL(0) such that

x0 + ru ∈ K;

(ii) ‖rnΛndT x0
h,r(ξ(x0 + ru))‖ ≤ 1 + cε2(rL)r−m, for all u ∈ BL(0);

provided r ≤ 1, where c is a suitable positive constant which does not depend
on r and u.

Proof. Consider u ∈ BL(0) such that x0 + ru ∈ K. For l = 1, . . . , n let us
define

Al :=
(
e1;

ρx0
∗1(x0 + ru)
rh−1

)
∧

(
e2;

ρx0
∗2(x0 + ru)
rh−1

)
∧ · · · ∧

(
el;

ρx0
∗l (x0 + ru)
rh−1

)

Bl :=
(
en−l+1;Gx0

n−l+1(x0+u)
)
∧· · ·∧

(
en−1;Gx0

n−1(x0+u)
)
∧

(
en;Gx0

n (x0+u)
)
.
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Moreover set A0 := 1 and B0 := 1. Then Lemma 3.1 and Lemma 3.2 yield

‖rn ΛndT x0
h,r(ξ(x0 + ru)) − η(u)‖ =‖An −Bn‖

≤
n−1∑
l=0

‖An−l ∧Bl −An−l−1 ∧Bl+1‖
(7)

where

‖An−l∧Bl−An−l−1∧Bl+1‖ =
∥∥∥∥An−l−1∧

[(
en−l

ρx0
∗n−l(x0 + ru)

rh−1

)
−

(
en−l;Gx0

n−l(x0 + u)
)]
∧Bl

∥∥∥∥
≤‖An−l−1‖ ‖Bl‖

∣∣∣∣ρx0
∗n−l(x0 + ru)

rh−1
−Gx0

n−l(x0 + u)
∣∣∣∣

(8)

for l = 0, . . . , n− 1.
By recalling (2) and (3), now we obtain that the following estimates

|(ej ;Gx0
j (x0 + u))| ≤1 + |Gx0

j (x0 + u)| ≤ 1 +
‖Dh−1g(x0)‖Lh−1

(h− 1)!
(9)∣∣∣∣(ej ;

ρx0
∗j (x0 + ru)
rh−1

)∣∣∣∣ ≤1 +
|Gx0

j (x0 + ru)|
rh−1

+
|σx0

j (x0 + ru)|
rh−1

(10)

≤1 + |Gx0
j (x0 + u)|+ Lh−1ε1(rL)

≤1 +
‖Dh−1g(x0)‖Lh−1

(h− 1)!
+ Lh−1ε1(rL)

and∣∣∣∣ρx0
∗n−l(x0 + ru)

rh−1
−Gx0

n−l(x0 + u)
∣∣∣∣ =

|σx0
n−l(x0 + ru)|

rh−1
≤ Lh−1ε1(rL) (11)

hold for all j = 1, . . . , n.
From the estimates (9) and (10) it follows that there exists a positive

constant c1, not depending on u and r (provided r ≤ 1), such that

‖An−l−1‖ ‖Bl‖ ≤ c1

for all l = 0, . . . , n− 1. Hence we get (i), by recalling (7), (8) and (11).
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In order to prove (ii), consider u ∈ BL(0) and recall again Lemma 3.2. We
obtain

‖rnΛndT x0
h,r(ξ(x0 + ru))‖ ≤1 +

m∑
j=1

1
rj(h−1)

∑
α∈I(n,j)

‖ϕx0
∗α(x0 + ru)‖

≤1 +
m∑

j=1

(
n

j

)
1

rj(h−1)

(
ε2(rL)rh−2Lh−2

)j

≤1 + c2

m∑
j=1

ε2(rL)j

rj

=1 +
c2ε2(rL)
rm

m∑
j=1

ε2(rL)j−1rm−j

where m = min{n, k} and c2 is independent from u and r (provided r ≤ 1).
Now the conclusion follows trivially.

As an easy consequence, we can estimate the measure of T x0
h,r(Gf |Rn\K) in

the cylinders. Indeed the following result holds.

Lemma 3.4. Let L > 0, x0 ∈ Rn and m := min{n, k}. Then one has

Hn
(
T x0

h,r(Gf |Rn\K) ∩ π−1(BL(0))
)
≤ (rm + cε2(rL))

Ln(BrL(x0) \K)
rn+m

for all r > 0, where c is as il Lemma 3.3. In particular

lim
r↓0

Hn
(
T x0

h,r(Gf |Rn\K) ∩ π−1(BL(0))
)

= 0

provided

lim
r↓0

Ln(Br(x0) \K)
rn+m

= 0. (12)

Proof. In fact

Hn
(
T x0

h,r(Gf |Rn\K) ∩ π−1(BL(0))
)

=Hn
(
T x0

h,r

(
Gf |Rn\K ∩ π−1(BrL(x0)

))
=Hn

(
T x0

h,r

(
Gf |BrL(x0)\K

))
=

∫
BrL(x0)\K

‖ΛndT x0
h,r(ξ(x))‖ dx.

Hence the conclusion follows by Lemma 3.3(ii).
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The next result proves that, under stronger regularity conditions, the field
η defined in Lemma 3.3 is tangent to the graph of Γx0

h .

Lemma 3.5. Let the Schwarz-like equality (5) be satisfied at a point x0 ∈ Rn

(not necessarily in D(K)) and for all j,m = 1, . . . , n. Then one has

d (Γx0
h )

u
em = Gx0

m (x0 + u) (13)

for all m = 1, . . . , n and for all u ∈ Rn. As a consequence

η = Λnd(I × Γx0
h ) (e1 ∧ · · · ∧ en) (14)

where I : Rn → Rn denotes the identity map.
In particular, (13) and (14) hold provided h ≥ 3 and x0 be a point of

density of K.

Proof. Once fixed m and u, by assumption (5), we find

n∑
j=1

∑
λ∈{1,...,n}h−1

∂(ujuλ)
∂um

Dλgij(x0) =
∑

λ∈{1,...,n}h−1

uλDλgim(x0)

+
n∑

j=1

uj

∑
λ∈{1,...,n}h−1

∂uλ

∂um
Dλgij(x0)

=〈Dh−1gim(x0)|uh−1〉

+ (h− 1)
n∑

j=1

uj

∑
µ∈{1,...,n}h−2

uµDµ

(
∂gij

∂xm

)
(x0)

=〈Dh−1gim(x0)|uh−1〉

+ (h− 1)
n∑

j=1

∑
µ∈{1,...,n}h−2

uµujDµ

(
∂gim

∂xj

)
(x0)

=〈Dh−1gim(x0)|uh−1〉

+ (h− 1)
∑

λ∈{1,...,n}h−1

uλDλgim(x0)

=h〈Dh−1gim(x0)|uh−1〉
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for all i = 1, . . . , k. Hence

d (Γx0
h )

u
em =

∂Γx0
h

∂um
(u) =

1
h!

k∑
i=1

( n∑
j=1

∑
λ∈{1,...,n}h−1

∂(ujuλ)
∂um

Dλgij(x0)
)
en+i

=
1

(h− 1)!

k∑
i=1

〈Dh−1gim(x0)|uh−1〉 en+i = Gx0
m (x0 + u).

Finally, the last assertion follows from Lemma 3.1.

Theorem 3.1. Let x0 ∈ D(K) and η be the field defined in Lemma 3.3.
Consider a bounded measurable set E ⊂ Rn and a continuous function

F : Rn × Σ1 → R.

Then one has

lim
r↓0

∫
T

x0
h,r(Gf|K)∩π−1(E)

F (u; τr(u, v)) dHn(u, v) =
∫

E

F

(
u;

η(u)
‖η(u)‖

)
‖η(u)‖ du.

In particular (F ≡ 1) the following equality holds

lim
r↓0

Hn
(
T x0

h,r(Gf |K)∩π−1(E)
)

=
∫

E

‖η(u)‖ du

=
∫

E

(
1 +

m∑
j=1

∑
α∈I(n,j)

‖Gx0
α (x0 + u)‖2

) 1
2

du

=
∫

E

(
1 +

m∑
j=1

∑
α∈I(n,j)
β∈I(k,j)

[
detGx0

βα(x0 + u)
]2

) 1
2

du

where m := min{n, k}.

Proof. First of all, consider a positive real number L such that E ⊂ BL(0).
Then one has

Ln(E \ tx0
r (K)) ≤Ln(BL(0) \ tx0

r (K)) = Ln(tx0
r (BrL(x0) \K))

=
Ln(BrL(x0) \K)

(rL)n
Ln → 0

(15)

as r ↓ 0. We get∫
E

F

(
u;

η(u)
‖η(u)‖

)
‖η(u)‖ du = lim

r↓0

∫
E∩t

x0
r (K)

F

(
u;

η(u)
‖η(u)‖

)
‖η(u)‖ du.
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Hence it follows that it will be enough to prove that

∆(r) :=
∫

T
x0
h,r(Gf|K)∩π−1(E)

F (u; τr(u, v)) dHn(u, v)

−
∫

E∩t
x0
r (K)

F

(
u;

η(u)
‖η(u)‖

)
‖η(u)‖ du→ 0

(16)

as r ↓ 0.
For r > 0, let us define

∆1(r) :=
∫

E∩t
x0
r (K)

δ1(r, u) rn‖ΛndT x0
h,r(ξ(x0 + ru))‖ du

∆2(r) :=
∫

E∩t
x0
r (K)

δ2(r, u)F
(
u;

η(u)
‖η(u)‖

)
du

where

δ1(r, u) :=F
(
u;

ΛndT x0
h,r(ξ(x0 + ru))

‖ΛndT x0
h,r(ξ(x0 + ru))‖

)
− F

(
u;

η(u)
‖η(u)‖

)
δ2(r, u) :=rn‖ΛndT x0

h,r(ξ(x0 + ru))‖ − ‖η(u)‖.

Now observe that

• ∆1(r) → 0, as r ↓ 0. Indeed one has ∆1(r) =
∫

E
ψr(u) du where

ψr(u) :=

{
δ1(r, u) rn‖ΛndT x0

h,r(ξ(x0 + ru))‖ if u ∈ tx0
r (K)

0 if u 6∈ tx0
r (K).

Hence one concludes by recalling Lemma 3.3 and the dominated conver-
gence theorem;

• ∆2(r) → 0, as r ↓ 0. Indeed F is continuous and Lemma 3.3 holds.

Finally (16) follows at once from the identity ∆ ≡ ∆1+∆2 which can be easily
proved by recalling the definitions of ξ and τr, given in §2.

By recalling Lemma 3.5, we obtain at once the following result.

Corollary 3.1. Let x0 ∈ D(K) and the Schwarz-like equality (5) be satisfied
at x0, e.g. assume h ≥ 3 (recall Lemma 3.1). Consider a bounded measurable
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set E ⊂ Rn and a continuous function F : Rn × Σ1 → R. Then one has

lim
r↓0

∫
T

x0
h,r(Gf|K)∩π−1(E)

F (u; τr(u, v)) dHn(u, v)

=
∫

GΓ
x0
h
∩π−1(E)

F (u; τ0(u, v)) dHn(u, v).

In particular (F ≡ 1) the following equality holds.

lim
r↓0

Hn
(
T x0

h,r(Gf |K) ∩ π−1(E)
)

= Hn
(
GΓ

x0
h
∩ π−1(E)

)
.

Remark 3.3. The nice behavior of the surfaces T x0
h,r(Gf |K), with respect

to convergence, stated in Theorem 3.1 and in Corollary 3.1, is due to the
strong relation existing in K between g and ∇f . In fact they coincide! Since
outside K the fields g and ∇f are (in general) unrelated, we cannot expect
the mentioned results to hold with f in place of f |K, unless some further
assumption is considered. For example, one can prescribe condition (12) and
then apply Lemma 3.4.

4 Some Further Convergence Results under Reinforced
Assumptions

Let us consider the following generic question.

How to strengthen the assumption that K has density one at
x0, in order to get the convergence of fx0

h,r (resp. T x0
h,r(Gf |K)) to

Γx0
h (resp. GΓ

x0
h

), as r ↓ 0?

In this section we will provide some answers with respect to pointwise, mean
and graph measures convergence. In short, it turns out that all of them (except
for the pointwise convergence in the case n ≥ 2) occur as soon as K is assumed
to have “density one of order h+ n− 1 at x0”; namely

lim
r↓0

Ln(Br(x0) \K)
rh+n−1

= 0.

4.1 Pointwise Convergence

First of all, we will consider the case n = 1. In such a particular setting, the
pointwise convergence actually occurs by assuming that K has density one of
order h at x0. Indeed, one has the following result.
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Theorem 4.1 (n=1). If

lim
r↓0

L1((x0 − r, x0 + r) \K)
rh

= 0 (17)

then limr↓0 f
x0
h,r(u) = Γx0

h (u) = uh

h! D
h−1g(x0) for all u ∈ R.

Proof. We have to verify that ∆(r) := fx0
h,r(u)−

uh

h! D
h−1g(x0) → 0 as r ↓ 0,

for all u ∈ R.
Let us define the functions

∆1(r) :=
1
rh

∫
(x0,x0+ru)\K

(f ′(x)− g(x)) dx

∆2(r) :=
1
rh

∫ x0+ru

x0

(
g(x)−

h−1∑
j=0

(x− x0)j

j!
Djg(x0)

)
dx

and observe that, by Lemma 3.1, we get

f(x0 + ru)−P x0
h−1f(x0 + ru)
rh

− uh

h!
Dh−1g(x0)

=
1
rh

(
f(x0 + ru)−f(x0)−

h∑
j=1

(ru)j

j!
Dj−1g(x0)

)

=
1
rh

( ∫ x0+ru

x0

f ′(x) dx−
h−1∑
j=0

(ru)j+1

(j + 1)!
Djg(x0)

)

=
1
rh

( ∫ x0+ru

x0

g(x) dx+
∫

(x0,x0+ru)\K

(f ′(x)− g(x)) dx+

−
h−1∑
j=0

Djg(x0)
(j + 1)!

∫ x0+ru

x0

D(x− x0)j+1dx

)
;

namely ∆(r) = ∆1(r) + ∆2(r). The conclusion immediately follows, in that:

• ∆1(r) → 0, as r ↓ 0, by assumption (17);

• a standard estimate of the remainder in the Taylor’s formula (e.g. see
[6, V, §6]) yields

|∆2(r)| ≤
1

rh(h− 1)!

∣∣∣∣ ∫ x0+ru

x0

(x− x0)h−1dx

∣∣∣∣ sup
(x0,x0+ru)

‖Dh−1g −Dh−1g(x0)‖

=
|u|h

h!
sup

(x0,x0+ru)

‖Dh−1g −Dh−1g(x0)‖ → 0
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as r ↓ 0.

As for the case n ≥ 2, here there is an example showing that pointwise
convergence does not occur, in general, irrespective of the order of density one
(of K at x0) which one is assuming.

Example (n ≥ 2). We will assume n = 2, k = 1 and h = 2, but our argument
is completely general and can be easily arranged in order to produce similar
examples in any different situation (provided n ≥ 2). Let

C := R \ ∪∞j=1Ij , Ij :=
(

1
2j
,

1
2j

+
1
j2j

)
and

K1 :=
{
(x, y) ∈ R2

∣∣ |y| ≥ e−1/x2}
.

Then consider the function studied in [2, Second example], which will be de-
noted by ϕ. For the convenience of the reader, recall from [2] that ϕ′ is piece-
wise linear, ϕ′|C ≡ 0 and ϕ′|Ij is a tent-like function attaining its maximum
value at the middle point mj of Ij , with ϕ′(mj) = 2−j/2. An easy computation
[2, Proposition 5.3] shows that limr↓0 ϕ

0
2,r(t) = +∞ for all t > 0.

Now we have to define f ∈ C1(R2) and g1 ∈ C1(R2,R2). Set g1 := (0, 0)
while f can be any function such that f |K1 ≡ 0 and f(t, 0) = ϕ(t) for all
t ∈ R. Then

K =
{
(x, y) ∈ R2

∣∣∇f(x, y) = g1(x, y) = 0
}

includes the set K1. Hence

L2(Br(0, 0) \K)
rl

≤ L2(Br(0, 0) \K1)
rl

→ 0

as r ↓ 0, for every fixed integer number l.
Despite such a very strong condition on the density of K at (0, 0), the

function f
(0,0)
2,r does not converge everywhere to Γ(0,0)

2 ≡ 0, as r ↓ 0. Indeed,

for instance, one has limr↓0 f
(0,0)
2,r (t, 0) = limr↓0 ϕ

0
2,r(t) = +∞ as r ↓ 0, for all

t > 0.

4.2 Convergence L1
loc

One has the following result.

Theorem 4.2. The equalities

lim
r↓0

∫
Br(x0)

H1
(
[x0;x] \K

)
dx

rh+n
= 0 (18)
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and

lim
r↓0

Ln(Br(x0) \K)
rh+n−1

= 0. (19)

are equivalent. If they are satisfied, then fx0
h,r converges to Γx0

h in L1
loc, as

r ↓ 0.

Proof. The part of the statement concerning the equivalence of the two
equalities follows immediately from Theorem 5.1.

Then let us assume the two equalities are true (Our argument below is
based on the first one.) and observe that, as a consequence, K has density
one at x0. Let R be any fixed positive real number and, for r > 0, let

∆i(r) :=
∫

BR(0)

|fx0
h,r(u) · en+i − Γx0

h (u) · en+i| du (i = 1, . . . , k).

Since the inequality∫
BR(0)

|fx0
h,r(u)− Γx0

h (u)| du ≤
k∑

i=1

∆i(r)

holds for all r > 0, it will be enough to prove that

lim
r↓0

∆i(r) = 0 (20)

for all i = 1, . . . , k.
First of all, by the change of variables formula for integrals (with x =

x0 + ru) and Lemma 3.1, it follows that

∆i(r) =
∫

BR(0)

∣∣∣∣fi(x0 + ru)− P x0
h−1fi(x0 + ru)

rh
− 〈Dh−1gi(x0)|uh−1〉 · u

h!

∣∣∣∣ du
=

1
rn+h

∫
BrR(x0)

∣∣∣∣fi(x)− P x0
h−1fi(x)

− 1
h!
〈Dh−1gi(x0)|(x− x0)h−1〉 · (x− x0)

∣∣∣∣ dx
=

1
rn+h

∫
BrR(x0)

∣∣∣∣ ∫ 1

0

∇fi(x0 + t(x− x0)) · (x− x0) dt

−
h−2∑
j=0

〈Djgi(x0)|(x− x0)j〉 · (x− x0)
(j + 1)!

− 〈Dh−1gi(x0)|(x− x0)h−1〉 · (x− x0)
h!

∣∣∣∣ dx.
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Hence, by setting Kx := {t ∈ R |x0 + t(x− x0) ∈ K} and

∆(1)
i (r) :=

1
rn+h

∫
BrR(x0)

( ∫
[0,1]\Kx

|∇fi(x0 + t(x− x0))

− gi(x0 + t(x− x0))| dt
)
|x− x0| dx

∆(2)
i (r) :=

1
rn+h

∫
BrR(x0)

∣∣∣∣ ∫ 1

0

gi(x0 + t(x− x0)) dt

−
h−1∑
j=0

〈Djgi(x0)|(x− x0)j〉
(j + 1)!

∣∣∣∣ |x− x0| dx

we obtain

∆i(r) =
1

rn+h

∫
BrR(x0)

∣∣∣∣ ∫ 1

0

gi(x0 + t(x− x0))·(x− x0) dt

−
∫

[0,1]\Kx

gi(x0 + t(x− x0))·(x− x0) dt

+
∫

[0,1]\Kx

∇fi(x0 + t(x− x0))·(x− x0) dt

−
h−1∑
j=0

〈Djgi(x0)|(x− x0)j〉·(x− x0)
(j + 1)!

∣∣∣∣ dx ≤ ∆(1)
i (r) + ∆(2)

i (r).

Then (20) follows, in that

• ∆(1)
i (r) → 0, as r ↓ 0. Indeed, if assume rR ≤ 1 and set ci :=

supB1(x0) |∇fi − gi|, then one has

∆(1)
i (r) ≤ ci

rn+h

∫
BrR(x0)

( ∫
[0,1]\Kx

dt

)
|x− x0| dx

=
ci

rn+h

∫
BrR(x0)

H1([x0;x] \K) dx→ 0

as r ↓ 0, by the hypothesis (18).

• ∆(2)
i (r) → 0, as r ↓ 0. Indeed, by the estimate of the remainder for the

Taylor’s formula already invoked in the proof of Theorem 4.1, we obtain

∆(2)
i (r) =

1
rn+h

∫
BrR(x0)

∣∣∣∣ ∫ 1

0

gi(x0 + t(x− x0)) dt
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−
h−1∑
j=0

〈Djgi(x0)|(x− x0)j〉
(j + 1)!

∫ 1

0

(tj+1)′ dt
∣∣∣∣ |x− x0| dx

≤ 1
rn+h

∫
BrR(x0)

( ∫ 1

0

∣∣∣∣gi(x0 + t(x− x0))

−
h−1∑
j=0

〈Djgi(x0)|[t(x− x0)]j〉
j!

∣∣∣∣ dt)|x− x0| dx

≤ 1
rn+h(h−1)!

∫
BrR(x0)

|x− x0|
(

sup
[x0;x]

‖Dh−1gi −Dh−1gi(x0)‖
)

(∫ 1

0

|x− x0|h−1th−1dt

)
dx

≤ (rR)hLn(BrR(x0))
rn+hh!

sup
BrR(x0)

‖Dh−1gi −Dh−1gi(x0)‖

=
Rn+hLn(B1(0))

h!
sup

BrR(x0)

‖Dh−1gi −Dh−1gi(x0)‖ → 0

as r ↓ 0.

4.3 Convergence of the Graph Measures

Let us prove that the local convergence in measure implies the convergence of
the corresponding graph measures.

Theorem 4.3. If the Schwarz-like equality (5) is satisfied at a point x0 of
density of K, the following statements hold:

(i) Let E be a bounded open subset of Rn such that

lim
r↓0

Ln(Eδ
r ) = 0, Eδ

r := {u ∈ E ∩ tx0
r (K) | |fx0

h,r(u)− Γx0
h (u)| ≥ δ}

for all δ > 0. Then

lim
r↓0

∫
T

x0
h,r(Gf|K)

ϕdHn =
∫

GΓ
x0
h

ϕdHn (21)

for every function ϕ : Rn+k → R which is supported, bounded and uni-
formly continuous in E × Rk.
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(ii) If fx0
h,r → Γx0

h , locally in measure as r ↓ 0, then

Hn T x0
h,r(Gf |K) → Hn GΓ

x0
h

as r ↓ 0, in the weak∗ sense of measures.

In particular, the statements (i) and (ii) are true provided h ≥ 3 and x0 be a
point of density of K.

Proof. Observe that (ii) is an immediate consequence of (i), while the ending
assertion trivially follows from Lemma 3.1.

In order to prove (i), consider a function ϕ satisfying the hypotheses listed
in the statement. Recalling the change of variables formula for integrals (with
x = x0 + ru), we obtain∫

T
x0
h,r(Gf|K)

ϕdHn =
∫

K

ϕ(T x0
h,r(x; f(x))) ‖ΛndT x0

h,r(ξ(x))‖ dx

=
∫

K

ϕ

(
x− x0

r
;
f(x)− P x0

h−1f(x)
rh

)
‖ΛndT x0

h,r(ξ(x))‖ dx

=
∫

t
x0
r (K)

ϕ(u; fx0
h,r(u)) ‖r

nΛndT x0
h,r(ξ(x0 + ru))‖ du.

Then, by Lemma 3.5, it follows that∫
T

x0
h,r(Gf|K)

ϕdHn−
∫

GΓ
x0
h

ϕdHn

=
∫

t
x0
r (K)

ϕ(u; fx0
h,r(u)) ‖r

nΛndT x0
h,r(ξ(x0 + ru))‖ du

−
∫

Rn

ϕ(u; Γx0
h (u))‖η(u)‖ du

=
∫

t
x0
r (K)

ϕ(u; fx0
h,r(u))

(
‖rnΛndT x0

h,r(ξ(x0 + ru))‖−‖η(u)‖
)
du

+
∫

t
x0
r (K)

(
ϕ(u; fx0

h,r(u))− ϕ(u; Γx0
h (u))

)
‖η(u)‖ du

−
∫

Rn\t
x0
r (K)

ϕ(u; Γx0
h (u))‖η(u)‖ du.

Hence we find∣∣∣∣ ∫
T

x0
h,r(Gf|K)

ϕdHn −
∫

GΓ
x0
h

ϕdHn

∣∣∣∣ ≤ c1∆1(r) + c2∆2(r) + c1c2Ln(E \ tx0
r (K))
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where c1 := supE×Rk |ϕ| < +∞, c2 := supE ‖η‖ < +∞ and

∆1(r) :=
∫

E∩t
x0
r (K)

‖rnΛndT x0
h,r(ξ(x0 + ru))− η(u)‖ du

∆2(r) :=
∫

E∩t
x0
r (K)

∣∣∣ϕ(u; fx0
h,r(u))− ϕ(u; Γx0

h (u))
∣∣∣ du.

Now the equality (21) follows, observing that

• ∆1(r) → 0, as r ↓ 0, by Lemma 3.3;

• ∆2(r) → 0, as r ↓ 0. Indeed, for all ε > 0 there exists δε > 0 such that

|ϕ(P )− ϕ(Q)| ≤ ε

provided P,Q ∈ E × Rk satisfy |P − Q| ≤ δε. In particular, fixed
ε > 0 arbitrarily. One has

∣∣∣ϕ(u; fx0
h,r(u))− ϕ(u; Γx0

h (u))
∣∣∣ ≤ ε for all u ∈

(E ∩ tx0
r (K)) \ Eδε

r and for all r > 0. Thus

∆2(r) =
∫

(E∩t
x0
r (K))\Eδε

r

∣∣∣ϕ(u; fx0
h,r(u))− ϕ(u; Γx0

h (u))
∣∣∣ du

+
∫
Eδε

r

∣∣∣ϕ(u; fx0
h,r(u))− ϕ(u; Γx0

h (u))
∣∣∣ du

≤εLn(E) + 2c1Ln(Eδε
r ) → εLn(E)

as r ↓ 0. The conclusion follows from the arbitrariness of ε.

• Ln(E \ tx0
r (K)) → 0, as r ↓ 0, in that K has density one at x0 (compare

(15)).

Corollary 4.1. Let x0 ∈ D(K) and the Schwarz-like equality (5) be satisfied
at x0, e.g. assume h ≥ 3 (recall Lemma 3.1). Then one has

Hn T x0
h,r(Gf |K) → Hn GΓ

x0
h

as r ↓ 0, in the weak∗ sense of measures, provided fx0
h,r converges in L1

loc to
Γx0

h , as r ↓ 0.

Proof. It’s enough to recall the well known result according to which the
convergence in L1

loc of a sequence of functions implies the convergence locally
in measure of the same sequence to the same limit function, e.g. [5, §25,
Theorem A].
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Corollary 4.2. Let one of the two equivalent equalities (18) and (19) be sat-
isfied. Moreover assume the Schwarz-like equality (5), e.g. let h ≥ 3 (re-
call Lemma 3.1). Then one has Hn T x0

h,r(Gf |K) → Hn GΓ
x0
h

as r ↓ 0,
in the weak∗ sense of measures. Under the additional condition h − 1 ≥
min{n, k}, even the weak∗ convergence of the whole graph measures occurs,
i.e. Hn T x0

h,r(Gf ) → Hn GΓ
x0
h

as r ↓ 0.

Proof. The first statement is a consequence of Theorem 4.2 and Corollary
4.1. The second one follows from Lemma 3.4 by observing that (19) implies
(12).

5 Appendix

This appendix is devoted to stating Theorem 5.1 which provides a useful char-
acterization of condition (18).

Theorem 5.1 (P. Mattila). Given a Lebesgue measurable subset E of Rn and
x0 ∈ Rn, the following hold:

(i) If there exists a couple of constants a > 0 and m > n− 1 such that

Ln(E ∩Br(x0)) ≤ arm

for all r small enough, then one has∫
Br(x0)

H1(E ∩ [x0;x])dx ≤ abrm+1

for all r small enough, where b is positive and depending only on n,m.

(ii) If a and m are positive constants such that∫
Br(x0)

H1(E ∩ [x0;x])dx ≤ arm+1

for all r small enough, then there exists b, positive and depending only
on n, such that

Ln(E ∩Br(x0)) ≤ abrm

for all r small enough.

As a consequence, for m > n− 1, it follows that

lim
r↓0

∫
Br(x0)

H1(E ∩ [x0;x]) dx

rm+1
= 0

if and only if limr↓0
Ln(E∩Br(x0))

rm = 0.
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Proof. Without affecting the generality of our argument, we can assume
x0 = 0. Moreover we will denote Br(x0) simply by Br.

By using a Fubini type argument, one can easily verify that a constant
c = c(n) has to exist such that

1
c
Ln(F ∩B1 \B1/2) ≤

∫
Sn−1

H1
(
F ∩ [0; y] ∩B1 \B1/2

)
dHn−1(y)

≤ cLn(F ∩B1 \B1/2)

for every Lebesgue measurable subset F of Rn. Since∫
Sn−1

H1 (E ∩ [0; ry] ∩B21−jr \B2−jr) dHn−1(y)

=21−jr

∫
Sn−1

H1

(
2j−1

r
(E ∩ [0; ry]) ∩B1 \B1/2

)
dHn−1(y)

=21−jr

∫
Sn−1

H1

(
2j−1

r
E ∩ [0; y] ∩B1 \B1/2

)
dHn−1(y)

the next inequalities readily follow.

2(j−1)(n−1)

crn−1
Ln(E ∩B21−jr \B2−jr)

≤
∫
Sn−1

H1(E ∩ [0; ry] ∩B21−jr \B2−jr)dHn−1(y)

≤c2
(j−1)(n−1)

rn−1
Ln(E ∩B21−jr \B2−jr).

(22)

Also observe that∫
Br

H1(E ∩ [0;x])dx =
∞∑

j=1

∫
Br

H1 (E ∩ [0;x] ∩B21−jr \B2−jr) dx

=
∞∑

j=1

∫
Sn−1

(∫ r

2−jr

H1(E ∩ [0; ty] ∩B21−jr \B2−jr)tn−1dt

)
dHn−1(y).

(23)

Now, let us prove the first statement. By (23) and the last inequality in
(22), we get∫

Br

H1(E ∩ [0;x]) dx

≤
∞∑

j=1

∫
Sn−1

(∫ r

2−jr

H1(E ∩ [0; ry] ∩B21−jr \B2−jr)tn−1dt

)
dHn−1(y)
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<rn
∞∑

j=1

∫
Sn−1

H1(E ∩ [0; ry] ∩B21−jr \B2−jr)dHn−1(y)

≤cr
∞∑

j=1

2(n−1)(j−1)Ln(E ∩B21−jr \B2−jr) ≤ acr
∞∑

j=1

2(n−1)(j−1)
(
21−jr

)m

=acrm+1
∞∑

j=1

2(n−1−m)(j−1) =
ac

1− 2n−1−m
rm+1

which concludes the proof of (i).
It remains to prove the second statement. Recalling (23) and the first

inequality in (22), we find∫
Br

H1(E ∩ [0;x]) dx

≥
∞∑

j=1

∫
Sn−1

(∫ r

21−jr

H1 (E ∩ [0; ty] ∩B21−jr \B2−jr) tn−1dt

)
dHn−1(y)

=
∞∑

j=1

∫
Sn−1

(∫ r

21−jr

H1 (E ∩ [0; ry] ∩B21−jr \B2−jr) tn−1dt

)
dHn−1(y)

=
rn

n

∞∑
j=1

(
1− 2(1−j)n

) ∫
Sn−1

H1 (E ∩ [0; ry] ∩B21−jr \B2−jr) dHn−1(y)

≥ r

nc

∞∑
j=1

(
1− 2(1−j)n

)
2(j−1)(n−1)Ln (E ∩B21−jr \B2−jr)

=
r

nc

∞∑
j=2

(
2(j−1)(n−1) − 21−j

)
Ln (E ∩B21−jr \B2−jr)

≥ r

nc

∞∑
j=2

Ln (E ∩B21−jr \B2−jr) =
r

nc
Ln(E ∩Br/2).

Hence the conclusion immediately follows.
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