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Abstract

Results are deduced from the following dichotomy which reduces descrip-
tive properties concerning the Ellentuck topology to two well-known ex-
amples. Theorem: Every nonempty perfect set in the Ellentuck topol-
ogy contains a closed copy of the Sorgenfrey line or a closed copy of the
rational numbers. This leads to a Marczewski-Burstin representation
for Marczewski sets in the Ellentuck topology.

1 Introduction

The aim of this paper is to prove the following dichotomy for the Ellentuck
topology: every perfect set contains a closed copy of the Sorgenfrey line or a
closed copy of the rationals. The Ellentuck topology is a special case (where
X = ω) of the exponential space associated with a topological space X. Intro-
duced by Vietoris in 1922 [17], it has been studied by numerous authors (see
for example [12], [16], [13], and [8]). The dichotomy leads to a Marczewski-
Burstin representation for the class of Ellentuck Marczewski measurable sets
in terms of closed copies of the Sorgenfrey line, each of which is a classical Gδ,
completely Ramsey null, and of Lebesgue measure zero. Consequently, the
classical Marczewski measurable sets form a proper subclass of the Ellentuck
Marczewski measurable sets. It is well known that the corresponding result
for the Baire property is false.

Relationships among the σ-algebras of Borel sets, C-sets, sets with the
Baire property in both the wide and restricted senses, and sets with the
Marczewski property are investigated under both the classical and Ellentuck
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topologies. J. B. Brown showed that under the continuum hypothesis there is
a classical always first category set which is not Ramsey [3], and Darji in [5]
improved this by constructing such a set using Martin’s Axiom. In this note
a weaker example is shown to exist in ZFC alone, namely a classical always
first category set which is not an Ellentuck C-set. Some of the separations
proved are known, and in these cases counterexamples with a simple descrip-
tive structure relative to the Ellentuck topology are constructed. One of these
answers a question due to Darji concerning the class of uniformly completely
Ramsey sets [5].

Notation. The notation X ⊂ Y means that X is a proper subset of Y . For
x, y ∈ [ω]≤ω, let [x, y] = {z ∈ [ω]ω : x ⊆ z ⊆ y}. The classical topology E on
[ω]ω is generated by the sets [x∩n, x] where x is cofinite. The Ellentuck topology
EL on [ω]ω is generated by sets of the form [x ∩ n, x] where x ∈ [ω]ω. The
Sorgenfrey topology S on (0, 1] is generated by intervals of the form (a, b]. A
set M ⊆ [ω]ω is completely Ramsey (CR) if for every x ∈ [ω]ω and n < ω, there
exists z ∈ [x∩n, x] and m ≥ n such that [z∩m, z] ⊆ M or [z∩m, z] ⊆ M c, and
completely Ramsey null (CR0) if the latter condition holds in every case. A set
M has the Baire property (in the wide sense) if it is the symmetric difference
of an open set and a first category set, the Baire property in the restricted
sense if it has the Baire property relative to every perfect subspace, and is
always first category if it is first category relative to every perfect subspace.

We distinguish the following classes in a topological space 〈X, T 〉: the Borel
sets B(T ), the C-sets C(T ) (the smallest σ-algebra containing B(T ) and closed
under the Souslin operation A), sets with the Baire property Bw(T ), sets with
the Baire property in the restricted sense Br(T ), and the ideal AFC(T ) of
always first category sets. If K is a subset of X, then ClT (K) denotes the
closure of K relative to T and T |K the relative subspace topology of K. If φ is
a property such as “closed”, “dense”, etc. that has meaning in any topological
space, then T −φ denotes the subsets of X which satisfy φ relative to T . Most
of the topological terms in this paper refer to the Ellentuck topology, so the
prefix T is often dropped whenever T = EL.

Galvin and Prikry showed that classical Borel sets are completely Ramsey
[7]. This was extended by Silver [15] and Mathias [10] to classical analytic
sets. Elementary topological proofs of the Silver/Mathias result were given by
Louveau in [9] and Ellentuck in [6], whose proof relied on the following.

Proposition 1.1. For every M ⊆ [ω]ω, M is completely Ramsey if and only if
M ∈ Bw(EL); M is completely Ramsey null if and only if M is first category
if and only if M is nowhere dense.
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2 Closed Sorgenfrey Subspaces

If x 6⊆ y and y 6⊆ x, then x is incomparable to y, denoted by x ⊥ y. Otherwise
x is comparable to y, denoted by x ∼ y. A subset of [ω]ω is an incomparable
set if any two of its members are incomparable. A chain of sets is a sequence
〈Ui : i ∈ I ⊆ ω〉, finite or infinite, such that if i < j, x ∈ Ui and y ∈ Uj , then
x ⊆ y. The term linear means linear with respect to inclusion.

Let S denote the Sorgenfrey line 〈(0, 1], S〉. Van Douwen in [16] and Popov
in [13] showed [ω]ω contains a closed linear copy of S. A set M ⊆ [ω]ω

has Lebesgue measure zero if its image under the characteristic function has
measure zero with respect to the completion of the product measure on 2ω.

Lemma 2.1. Suppose P ⊆ [ω]ω is a closed linear copy of S. Then ClE(P ) is a
classical nowhere dense perfect set, and P differs from ClE(P ) by a countable
set, is completely Ramsey null, and has Lebesgue measure zero.

Proof. Assume P ⊆ [ω]ω is a closed linear copy of S. P has no isolated
points so it has no E−isolated points either. Hence ClE(P ) is E−perfect.
Suppose x ∈ ClE(P ) \ P . Set xL =

⋃
{z ∈ P : z ⊂ x}. P is closed under

arbitrary unions so xL ∈ P . Hence xL ⊂ x. Assume y ∈ P and y 6⊆ x. Let p
denote the least element of y \ x and q > p an arbitrary element of x. Choose
u ∈ [x ∩ (q + 1), (ω \ (q + 1)) ∪ x] ∩ P . As y ∈ P and p 6∈ u, we have u ⊆ y.
This implies q ∈ y and thus x ⊆ y. Therefore for each x ∈ ClE(P ) \ P ,

P = {z ∈ P : z ⊆ xL} ∪ {z′ ∈ P : x ⊂ z′}.

It follows that ClE(P ) is linear. Neither open nor E−open sets are linear;
so ClE(P ) is nowhere dense. Thus CR0 by Proposition 1.1, and is classically
nowhere dense as well. Associate each x ∈ ClE(P )\P with an element of x\xL.
It follows that ClE(P )\P is countable. 〈P,EL|P 〉 is separable and uncountably
dense so there is a countable sequence of coinfinite sets 〈xi ∈ P : i < ω〉 whose
union is

⋃
P . Therefore P ⊆

⋃
i<ω[∅, xi]. For each i < ω, [∅, xi] has Lebesgue

measure zero and the same is true of P .

We remark that the analysis above indicates that P resembles a Cantor-like
subset of S, as the intervals {z : xL ⊂ z ⊆ x} contain no points of P .

Lemma 2.2. Suppose X has no isolated points. If there exists y ∈ X which
is not a limit point of any incomparable set in X, then there is a point z ∈ X
and a set U ⊆ [z, y] such that U is open relative to X and y is a limit point
of U .
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Proof. Assume X has no isolated points and y ∈ X is not the limit point of
any incomparable set in X. Suppose for all k < ω and every finite {zi : i <
k} ⊆ X ∩ [∅, y] \ {y},

([y ∩ k, y] ∩X) 6⊆
⋃
i<k

([∅, zi] ∪ [zi, y]) .

For each k, choose zk ∈ [y ∩ k, y] ∩ X \
(⋃

i<k[∅, zi] ∪ [zi, y]
)
. But then {zi :

i < ω} is an incomparable subset of X with y as a limit point. This is a
contradiction. Therefore there exist k < ω and {zi : i < k} ⊆ X ∩ [∅, y] \ {y}
such that ([y∩k, y]∩X) ⊆

⋃
i<k([∅, zi]∪[zi, y]). Choose N ≥ k such that zi∩N

is a proper subset of y ∩ N for all i < k. It follows that ([y ∩ N, y] ∩ X) ⊆⋃
i<k[zi, y]. This partitions [y∩N, y]∩X into finitely-many pieces, one of which

must contain a set open relative to X with y as a limit point.

Lemma 2.3. Suppose X has no isolated points. If there exists y ∈ X which is
not a limit point of any incomparable set in X, then there are points z0, z1, . . .
in X and natural numbers n0, n1, . . . such that 〈([zi ∩ ni, zi] ∩X) : i < ω〉 is
a chain of nonempty sets with y as a limit point.

Proof. Suppose X has no isolated points and there exists y ∈ X which is not
a limit point of an incomparable set in X. Apply Lemma 2.2 to obtain z0 ∈ X
and a nonempty set U0 ⊆ [z0, y] which is open relative to X and such that y is a
limit point of U0. Choose n0 = 0 and observe that [z0∩n0, z0]∩X ⊆ [∅, y]∩X.
For the next step, Lemma 2.2 applied to U0 yields z1 ∈ U0 and a set U1 ⊆ [z1, y]
which is open relative to U0 and hence to X, and such that y is a limit
point of U1. Choose n1 < ω such that [z1 ∩ n1, z1] ∩ X ⊆ U0. Observe that
〈[z0 ∩ n0, z0] ∩X, [z1 ∩ n1, z1] ∩X〉 is a chain of nonempty sets.

In general, suppose k < ω is arbitrary and sequences 〈zi ∈ X : i < k〉
and 〈ni < ω : i < k〉 and a set Uk−1 ⊆ [zk−1, y] have been defined such that
〈[zi ∩ ni, zi] ∩X : i < k〉 is a chain of sets and Uk−1 is open relative to X and
has y as a limit point. Apply Lemma 2.2 to Uk−1 to get zk ∈ Uk−1 and a set
Uk ⊆ [zk, y] which is open relative to Uk−1 and hence to X, and such that y is
a limit point of Uk. Finally, choose nk < ω such that [zk ∩nk, zk]∩X ⊆ Uk−1.
It can be easily verified that 〈[zi ∩ ni, zi] ∩X : i < k + 1〉 is a chain of sets
and the induction is complete. It follows that 〈[zi ∩ ni, zi] ∩X : i < ω〉 is a
chain of nonempty sets with y as a limit point.

Lemma 2.4. Let QI denote the rationals in (0, 1]. The following are equiva-
lent for all closed M ⊆ [ω]ω.

1. M contains a closed linear copy of S.
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2. M contains an uncountable linear set.

3. M contains a nonempty set X without isolated points and no point of X
is a limit point of an incomparable subset of X.

4. There is an increasing φ : 〈QI ,≤〉 → 〈M,⊆〉.

Proof. Suppose M is closed. (1) ⇒ (2) is trivial. To see (2) ⇒ (3), suppose
X ⊆ M is a linear uncountable set. Then X \ {x ∈ X : (∃n < ω)([x ∩ n, x] ∩
X is countable)} is nonempty, linear, and has no isolated points.

(3) ⇒ (4): Suppose X ⊆ M is nonempty, has no isolated points, and no
point of X is a limit point of an incomparable set in X. We will construct a
dense set in X which is linear and indexed by s ∈ ω<ω. Choose z∅ ∈ X to
begin the construction. Apply Lemma 2.3 to Y = [∅, z∅] ∩ X to get points
z0, z1, . . . in Y and natural numbers n0, n1, . . . such that z∅ is a limit point of
{zi : i < ω} and 〈[zi ∩ ni, zi] ∩ Y : i < ω〉 is a chain of sets. In general, assume
t ∈ ω<ω is arbitrary and that zt_i and nt_i have been defined for all i < ω such
that zt is a limit point of {zt_i : i < ω} and 〈[zt_i ∩ nt_i, zt_i] ∩X : i < ω〉
is a chain of subsets of [zt ∩ nt, zt]. Let k < ω be arbitrary and set s = t_k.
Apply Lemma 2.3 to Y = [zs ∩ ns, zs] ∩ X to get points zs_0, zs_1, . . . in Y
and natural numbers ns_0, ns_1, . . . such that zs is a limit point of {zs_i :
i < ω} and 〈[zs_i ∩ ns_i, zs_i] ∩ Y : i < ω〉 is a chain of sets. This completes
the induction. Set D = {zs : s ∈ 2<ω} and observe that 〈D,⊆〉 \ {z∅} is
countable, linear, dense and unbounded. Let φ : 〈QI ,≤〉 → 〈D,⊆〉 be an order
isomorphism.

(4) ⇒ (1): Assume φ : 〈QI ,≤〉 → 〈M,⊆〉 is increasing. Then φ generates
an order isomorphism Ψ: 〈(0, 1],≤〉 → 〈M,⊆〉 given by Ψ(x) =

⋃
y∈QI

{φ(y) :
y < x}. Set X = range(Ψ) and observe that X is linear. Clearly the Sorgenfrey
topology on (0, 1] and the order topology on X generated by intervals of the
form (x, y] are homeomorphic. It only remains to show that the order topology
on X is indeed the subspace topology of X.

Suppose x ∈ [ω]ω, n < ω, and y ∈ [x ∩ n, x] ∩ X are arbitrary. Choose
z ∈ [y ∩ n, y] ∩ X \ {y}. Then (z, y] ∩ X ⊆ [x ∩ n, x] ∩ X, whence the order
topology on X refines the subspace topology. For the other direction, suppose
a, b ∈ X, a ⊂ b, and y ∈ (a, b]∩X are arbitrary. [y∩ (k+1), y]∩X ⊆ (a, b]∩X
for any k ∈ y − a. Thus the subspace topology refines the order topology.

3 Marczewski Sets

A set M in a topological space 〈X, T 〉 has the Marczewski property if every
T −perfect set has a T −perfect subset Q such that Q ⊆ M or Q ⊆ M c,
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and has the Marczewski null property if the latter condition holds in every
case. Define (s)(T ) and (s)0(T ) to be, respectively, the sets in X with the
Marczewski property and the Marczewski null property.

It is not hard to see that B(E) ⊆ B(EL) and C(E) ⊆ C(EL). The
analogous result for the pair Bw(E) and Bw(EL) is false, and it is consistent
with ZFC that it is not true for the pair Br(E) and Br(EL) either (see [3] or
[5]). In this section it is shown that, unlike Bw and Br, (s)(E) is a proper
subset of (s)(EL).

Lemma 3.1. Suppose P ⊆ [ω]ω is perfect and for every disjoint family {[xi ∩
n, xi] ∩ P : i < k}, there is an incomparable set {z0, . . . , zk−1} with zi ∈
[xi ∩ n, xi] ∩ P \ {xi} for all i < k. Then P contains a closed copy of the
rationals.

Proof. Suppose P satisfies the hypotheses. Choose x0, x1 ∈ P such that
x0 ∈ [∅, x1] ∩ P \ {x1}, and n1 > 0 such that x0 ∩ n1 is a proper subset
of x1 ∩ n1. Apply the hypothesis to get x00 ∈ [x0 ∩ n1, x0] ∩ P \ {x0} and
x10 ∈ [x1 ∩ n1, x1] ∩ P \ {x1} such that x00 ⊥ x10. Set x01 = x0 and x11 = x1

and choose n2 > n1 such that xs0 ∩ n2 is a proper subset of xs1 ∩ n2 for
s ∈ {0, 1}.

In general, suppose nk < ω has been defined. Further suppose {xs : s ∈
2≤k} ⊆ P is such that for all t ∈ 2<k, xt1 = xt and xt0 ∩nk is a proper subset
of xt1∩nk. Apply the hypothesis to obtain an incomparable set {xs0 : s ∈ 2k}
such that xs0 ∈ [xs ∩ nk, xs] ∩ P \ {xs} for all s ∈ 2k, and define xs1 = xs.
Finally, choose nk+1 > nk so that xs0 ∩ nk+1 is a proper subset of xs1 ∩ nk+1.
This completes the construction. Set D = {xs : s ∈ 2<ω}.

Clearly D is countable and has no isolated points; it only remains to show
it is closed. Set B =

⋂
n<ω

⋃
s∈2n [xs ∩ n|s|, xs]. B is closed and contains D.

Let y ∈ B \D. There is a sequence c0 ⊂ c1 ⊂ . . . of binary strings such that
y ∈

⋂
k<ω[xck

∩n|ck|, xck
]. As y 6∈ D assume that each ck ends in “0”. Suppose

xs is an arbitrary element of D. Choose distinct strings ch and s′ ⊇ s such
that |ch| = |s′| ≥ |s|+2 and s′ ends in “0”. If xs ⊆ y, then xs′ ⊂ xs ⊆ y ⊂ xch

.
But xs′ ⊥ xch

by construction of D, a contradiction. Thus xs 6∈ [∅, y] and it
follows that D is closed.

Lemma 3.2. If P ⊆ [ω]ω is perfect and does not contain a closed copy of the
rationals, then there exist disjoint relative open subsets X and Y of P such
that a ∈ X and b ∈ Y implies a ⊆ b.

Proof. Suppose P is perfect and does not contain a closed copy of the ra-
tionals. By Lemma 3.1 there is a disjoint family {[xi ∩ n, xi] ∩ P : i < k}
of relative open subsets of P such that if wi ∈ [xi ∩ n, xi] ∩ P \ {xi} for all
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i < k, then there exist indices i 6= j < k such that wi ∼ wj . Without loss of
generality, assume that x0 < . . . < xk−1 and that n < ω is large enough so
(xq ∩ n) 6⊆ (xp ∩ n) for all p < q < k. If the conclusion to the theorem is false,
then

for any two indices p 6= q < k, and
for any relative open sets X ⊆ [xp ∩ n, xp] ∩ P and Y ⊆ [xq ∩ n, xq] ∩ P , (*)

there exist points a ∈ X and b ∈ Y such that a ⊥ b.

We use this to construct an incomparable set {w0, . . . wk}. The construction is
by induction on 1 ≤ α < k. If α = 1, use (∗) to get z0 ∈ [x0 ∩n, x0]∩P \ {x0}
and z1 ∈ [x1 ∩ n, x1] ∩ P \ {x1} so that z0 ⊥ z1. Choose n1 ≥ n such
that (z0 ∩ n1) ⊥ (z1 ∩ n1). In general, assume that α < k is arbitrary, and
nα ≥ n and (z0, . . . , zα) ∈

∏
β≤α[xβ ∩ nα, xβ ] ∩ P \ {xβ} have been defined

such that (zβ ∩ nα) ⊥ (zγ ∩ nα) for all β 6= γ ≤ α. Use (∗) repeatedly as
follows to complete this stage of the induction. Choose incomparable elements
v0 ∈ [z0 ∩ nα, z0] ∩ P and v0

α+1 ∈ [xα+1 ∩ nα, xα+1] ∩ P \ {xα+1}; also choose
m0 ≥ nα such that (v0 ∩ m0) ⊥ (v0

α+1 ∩ m0). For the next step, again
use (∗) to choose incomparable elements v1 ∈ [z1 ∩ m0, z1] ∩ P and v1

α+1 ∈
[v0

α+1∩m0, v
0
α+1]∩P ; and choose m1 ≥ m0 such that (v1∩m1) ⊥ (v1

α+1∩m1).
Continue inductively for all β ≤ α. Finally, set nα+1 = mα and vα+1 = vα

α+1.
This yields an incomparable set {vi : i ≤ α + 1} and completes the inductive
step. As α < k is arbitrary there is an incomparable set {wi : i < k} such
that wi ∈ [xi ∩ n, xi] ∩ P \ {xi} for all i < k. But this contradicts our
assumption that any such set must contain two comparable elements and the
lemma follows.

Theorem 3.3 (Dichotomy). Every perfect set contains a closed copy of the
rationals or a closed linear copy of the Sorgenfrey line.

Proof. Assume P is perfect and does not contain a closed copy of the ratio-
nals. Construct a Cantor scheme as follows. Define X∅ = P and inductively,
for n < ω and t ∈ 2n, use Lemma 3.2 to obtain basic relative open sets
Xt0, Xt1 ⊆ Xt such that a ∈ Xt0 and b ∈ Xt1 implies a ⊆ b. Basic open
subsets of perfect sets are again perfect, hence Xt0 and Xt1 are perfect and
the induction can continue. This completes the construction.

Let s ∈ 2<ω denote a string that doesn’t end in “1”. For each n < ω, write
Xs1n0 = [as

n ∩ms
n, as

n]∩P , and assume without loss of generality that as
n ∈ P .

By construction, as
0 ⊆ as

1 ⊆ . . ., and it follows that (
⋃

n<ω as
n) is a limit point

of {as
n : n < ω}. For each K < ω, the tail {as

n : K < n} ⊆ Xs1K , whence
(
⋃

n<ω as
n) ∈

⋂
n<ω Xs1n . Set cs = (

⋃
n<ω as

n). Suppose s 6= t ∈ 2<ω are
strings that don’t end in “1”, let ` = max(|s|, |t|), and set p = s1`−|s| ∩ t1`−|t|.
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Assume without loss of generality that p0 ⊆ s1`−|s| and p1 ⊆ t1`−|t|. Then
cs ∈ Xp0, ct ∈ Xp1, and thus cs ⊆ ct by construction. As s and t were
arbitrary, {cs : s ∈ 2<ω} is linear and clearly has no isolated points. Therefore
P contains a closed linear copy of S by Lemma 2.4.

A class of sets C is said to have a Marczewski-Burstin representation in
terms of a class Γ if membership in C can be characterized as follows: M
belongs to C if and only if for every P ∈ Γ, there is some Q ∈ Γ such that
Q ⊆ P and either Q ⊆ M or Q ⊆ M c. (See [4] for more on Marczewski-
Burstin representations.) The hereditary class associated with C, denoted by
H(C), is the collection of all M ∈ C such that every subset of M is also in
C. Let G denote the collection of closed linear copies of S in [ω]ω and Π0

1 the
collection of classical Gδ sets. G is a proper subclass of Π0

1 ∩ L0 ∩ CR0 by
Lemma 2.1 and in addition satisfies the important closure property that any
perfect subset of a member of G is also in G.

Theorem 3.4 (MB representation). For all M ∈ [ω]ω,

1. M ∈ (s)(EL) if and only if for every P ∈ G, there exists Q ∈ G, such
that Q ⊆ P and either Q ⊆ M or Q ⊆ M c.

2. M ∈ H((s)(EL)) if and only if for every P ∈ G, there exists Q ∈ G such
that Q ⊆ P and Q ⊆ M c.

Proof. The “only if” part of (1) follows easily since G is closed under perfect
subsets. For the other direction, let M ⊆ [ω]ω and assume that for P ∈ G,
there exists Q ∈ G such that Q ⊆ P and either Q ⊆ M or Q ⊆ M c. Let R
be a perfect set. By the Dichotomy Theorem, it contains a closed copy of the
rationals or a closed linear copy of S. Suppose P ⊆ R is a closed copy of the
rationals. Every dense subset of P contains a closed copy of the rationals (see
[14]). At least one of M ∩ P or P \M is dense in a relative clopen subset of
P , hence contains a closed copy of the rationals. On the other hand, suppose
P ⊆ R is a closed linear copy of S. By assumption there is a closed linear
copy of S, call it Q, so that Q ⊆ P and either Q ⊆ M or Q ⊆ M c. Therefore
M ∈ (s)(EL).

For the characterization of H((s)(EL)), note that for Q ∈ G, a standard
Bernstein construction relative to the perfect subsets of Q yields a subset of
Q which is not in (s)(EL). The rest now follows by (1).

A collection R ⊆ [ω]ω is said to be an almost disjoint family if |x ∩ y| < ω
for any two x, y ∈ R.

Theorem 3.5. (s)(E) ⊂ (s)(EL) and H((s)(EL)) 6⊆ (s)(E).
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Proof. Suppose M ⊆ [ω]ω is in (s)(E) and P ∈ G. By Lemma 2.1, P
contains an E−perfect subset Q. Let R ⊆ Q be E−perfect such that R ⊆ M
or R ⊆ M c. Then R is closed and inherits linearity from P . As every collection
of disjoint open subsets of the Sorgenfrey line is countable, R\{x ∈ R : (∃n <
ω)([x∩n, x]∩R is countable)} is a perfect subset of P , hence belongs to G. It
follows by Theorem 3.4 that M ∈ (s)(EL).

Let R ⊆ [ω]ω be an almost disjoint family which is E−perfect. Then
|R∩P | ≤ 1 for every P ∈ G. Partition R into sets B and R \B, both of which
meet every E−perfect subset of R. Then B ∈ H((s)(EL)) by Theorem 3.4,
but B /∈ (s)(E).

Corollary 3.6. H((s)(EL)) 6⊆ CR.

Proof. Brendle in [2] gave a ZFC example of a set in (s)0(E) \ CR.

Because of Corollary 3.6 the next result is somewhat surprising, although
it should be noted that (s)0(EL) is not a σ-ideal.

Proposition 3.7. (s)0(EL) ⊆ CR0.

Proof. Assume M is not CR0. Proposition 1.1 implies M is dense in some
basic open set. Any set which satisfies the latter condition contains a closed
copy of the rationals [14]. It follows that M is not (s)0(EL).

Example 3.8. There is a subset of [ω]ω which is CR0, L0, and E−nowhere
dense but not (s)(EL).

Proof. Suppose P is a closed linear copy of S. Via a standard Bernstein
construction relative to P , obtain sets B and Bc that intersect every perfect
subset of P . It follows that B is not in (s)(EL). By Lemma 2.1, P is CR0,
L0 and E−nowhere dense, therefore so is B.

A set F ⊆ [ω]ω is a filter if it is nonempty and closed under supersets and
finite intersections. Every filter is closed and CR0. A filter F is an ultrafilter if
for every x ⊆ ω, exactly one of x or ω\x belongs to F , and principal if there is
some g ∈ [ω]ω such that F = {x ∈ [ω]ω : g ⊆ x}. It is well-known that a filter
is nonprincipal if and only if every descending chain is infinite, and the latter
condition implies that nonprincipal filters have no isolated points. Sierpiński
showed that nonprincipal ultrafilters are neither L nor Bw(E). Thus there is
a set in ((s)(EL) ∩ CR0) \ (L ∪Bw(E)) which is perfect.

In [1] Aniszczyk, Frankiewicz and Plewik showed there is a set which is
completely Ramsey null but not (s)(E). Their example is an arbitrary non-
(s)(E) subset of a carefully chosen completely Ramsey null, E−perfect set.
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The general character of this example makes it impossible to say whether it
could possibly have a simple descriptive structure relative to EL.

Example 3.9. There is a set in ((s)(EL) ∩ CR0) \ (s)(E) which is perfect.

Proof. Construct a binary tree T by setting n <T 2n + 1 and n <T 2n + 2
for all n < ω, and let T̂ denote the collection of branches of T . T̂ is E−perfect
and an almost disjoint family. Choose M ⊆ T̂ which is E−Bernstein relative
to T̂ , and write M = {mα : α < 2ω}. For each α, let Cα denote the subsets
of mα whose difference with mα is finite, and observe that Cα is a closed copy
of the rationals. Define PM =

⋃
α<2ω Cα. Then PM ∩ T̂ = M and hence PM

is not in (s)(E). In addition, it is not hard to see that PM is CR0 by noticing
that any collection formed by taking one point from each Cα is almost disjoint,
and that almost disjoint sets are CR0. Since PM has no isolated points, it only
remains to show it is closed.

Assume x is a limit point of PM . Further assume there exist j < k ∈ x
which are incomparable in the tree order <T . Then no point of T̂ and thus
no point of PM is contained in [x ∩ (k + 1), x]. But this is impossible as x is
a limit point. Hence x is a subset of some branch of T , and since it is a limit
point of PM , must be a subset of mα for some α. It follows that x is a limit
point of Cα, which is closed. Therefore x ∈ PM .

A set M ⊆ [ω]ω is uniformly completely Ramsey (UCR) if and only if for
every continuous f : 2ω → 2ω, f−1(M) is Ramsey, where [ω]ω is conflated
with 2ω via the characteristic function. Darji [5] showed that UCR ⊂ (s)(E)
and asked whether the UCR sets could be characterized as either Br(EL) or
(s)(EL). Example 3.9 shows that even some perfect sets fail to be UCR.

Marczewski showed in [11] that Br(T ) ⊆ (s)(T ) whenever T is a complete
separable metric topology. Although EL is far from satisfying this hypothesis,
the conclusion holds anyway.

Theorem 3.10. Br(EL) ⊂ (s)(EL) and H((s)(EL)) 6⊆ Br(EL).

Proof. Assume M ∈ Br(EL) and P ∈ G. Then M ∩ P is in Bw(EL|P ).
Every S−open set can be written as the union of a classical open set and a
countable set. Therefore Bw(EL|P ) = Bw(E|P ) and by Lemma 2.1, M ∩ P ∈
Bw(E|ClE(P )). One of M ∩P or ClE(P ) \ (M ∩P ) must contain an E−perfect
subset, and since ClE(P ) \ (M ∩ P ) differs from (M c ∩ P ) by a countable set,
one of M ∩P or M c∩P contains an E−perfect set, say Q. Clearly Q is linear
so Q \ {x ∈ Q : (∃n < ω)([x ∩ n, x] ∩ Q is countable)} is perfect and thus
belongs to G. Theorem 3.4 implies M ∈ (s)(EL), and the second part of the
proposition follows from Corollary 3.6.
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Example 3.11. There is a subset of [ω]ω which is AFC(EL) but not (s)(E).

Proof. Let M be constructed as in Example 3.9. Assume P is perfect, x ∈
P , and n < ω. Suppose there is a point z ∈ [x ∩ n, x] ∩ P ∩ M . Then
[∅, z] ∩M = {z}, and it follows that M is nowhere dense relative to P , hence
M ∈ AFC(EL) \ (s)(E).

Note that the technique used in the preceding proof shows that every al-
most disjoint family is AFC(EL).

In arbitrary topological spaces 〈X, T 〉 it is well-known that B(T ) ⊆ C(T ) ⊆
Br(T ) ⊆ Bw(T ). Starting with the Borel sets B(T ), form a hierarchy by clos-
ing alternately under the Souslin operation A and complementation. C(T ) is
the first σ-algebra in this hierarchy closed under the Souslin operation.

A nonprincipal ultrafilter over ω shows C(E) ⊂ C(EL). If M is a closed
linear copy of S, then C(EL|M ) ⊂ Br(EL|M ) ⊂ Bw(EL|M ). This derela-
tivizes to the whole space so C(E) ⊂ C(EL) ⊂ Br(EL) ⊂ CR. It is optimal
in the following sense. Let D(E) denote a class in the hierarchy strictly lower
than C(E) and M a closed linear copy of S. C(E|M ) 6⊆ D(E|M ) = D(EL|M ).
This also derelativizes to the whole space and thus C(E) 6⊆ D(EL). Com-
pare this with Ellentuck’s result [6] that C(E) ⊆ CR. A minor variation of
this argument produces a set in AFC(E) \ C(EL). This yields the following
diagram.

Bw(EL) = CR

Bw(E)

(s)(E)

(s)(EL)Br(EL)

Br(E)

C(EL)

C(E)

B(EL)

B(E)

6 6 6

-

-

-

-

�
��3

-

-
Q

Q
Qs

With the exception of Br(E) 6⊆ Br(EL), all possible inclusions are indicated
above and can be proved in ZFC. AFC(E) 6⊆ Br(EL) is consistent with ZFC
(see [3] or [5]), but whether Br(E) 6⊆ Br(EL) can be proved in ZFC alone is
left as an open question. Note however that if B∗

r (EL) denotes the collection
of sets which have the Baire property relative to every subspace 〈P,EL|P 〉,
where P is a closed linear copy of S or a perfect set which is first category
relative to itself, then Br(E) ⊆ B∗

r (EL).
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