ON THE L? THEORY OF HANKEL TRANSFORMS

G. M. WinG

1. Introduction, Under suitable restrictions on f(x) and v, the Hankel trans-
form g(¢) of f(x) is defined by the relation

(1) gt) = j;m (xt)V2J, (xt)f(x) dx.

The inverse is then given formally by

(2) f(z) = J;m (xt)l/sz(xt)g(t) dt.

These integrals represent generalizations of the Fourier sine and cosine trans-
forms to which they reduce when v = +1/2. The LP theory for the Fourier case
has been studied in considerable detail. In this note we present some results con-
cerning the inversion formula (2) in the L2 case.

It is clear that if f(x) € L and R(v) > —1/2 then the integral in (1) exists.
It has been shown [3,6] that if f(x) € LP,1< p < 2, then

®3) ga(t) = [° (2t)2 I (xt)f(x) dx

converges strongly to a function g(¢) in LP' . For this case Kober has obtained the

inversion formula,

o d m(xt)l/zJ +1(xt)
f(x) = 571/2 v;_; LV¥1/2 J; t” g(t) dt},

which holds for almost all x. In her investigation of Watson transforms, Busbridge
[1] has given analogous results for more general kernels. Except when p = 2
the question of the strong convergence of the inversion integral has apparently
been considered only in the Fourier case [2] . We now investigate this problem
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for the Hankel transforms. We assume throughout that R) > —1/2.

2. Theorem. We shall establish the following result.
THEOREM 1. Let f(x) € LP, 1 <p < 2, and let g(¢) be the limit in
mean of gq(t), g(¢t) = li.m. go(t), where g4(t) is defined by (3). If

fale) = [ @)V (xt)g(t) dt,

then

fa(x) € LP and f(z) = Lim. fa(x).
Proof. Write

fa(x,b) fo“ ()2 I (xt)gs (t) dt

J;b (xu)*? £(u) du j(;a Jy(ut)J, (xt)tde.

Since gp(t) converges in the mean to g(¢) it follows that limp. e fo(x,b) = fa(x).
Hence

4) fa(x) = f;m (xu)'”? K(x, u, a)f (u) du,
where [9]
(5) K(x,u,a) = fo“ Jy(ut)Jdy, (xt)t dt

= afuty+1(ua)Jy(za) —xJyss(xa)dy (wa)}/(u® = 7).

An integral very similar to (4) has been studied in a previous paper [10] . The
same methods may be used here to show that || fa(x)“P < Mp [l f(x)”P. Our theorem
will now féllow in the usual way if we can prove it for step functions which vanish
outside a finite interval. Let ¢ (x) be a step function, ¢(x) = 0 for x > 4, and
let ¢4(x) correspond to it as in (4). Choose & > 24, a > 4, to get

£ 16a(e) —p(e)Pdx = [ dx |4 6() @u)”? Klz,u,a) du |,
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From the relations

6 22 J,(x) = (2/m)"? fcos (x + 8,) + x 4, sin (x + 8,)} +0(x72)

(x — @),
where
A, = (1 —4v3)/B, &, =—Q2v+1)n/4,
and
@) Ju(x) = 0(x¥1) (x — 0),

where v, = R{), it is easy to see that
(xu)? [K(x,u,0) | <M/[u = x|,
so that we have

x

N O T

AP j;A |¢(u) P du < e

for & sufficiently large. Now

Ita(z) =0 = L5+ L7 l$a(x) =) [P dx

< [ 18ae) =) 12 ax] " 4 ¢

As a —> o the integral goes to zero by the L? theory for Hankel transforms
(see [7, Chapter 8] ). This completes the proof.

3. The case p = 1. Theorem 1 fails to hold in the case p = 1. The proof,

similar to that given by Hille and Tamarkin in the Fourier case [2] , will only be

sketched.

THEOREM 2. There exists a function h(t), the Hankel transform of a function
Ylx) € L,such that if

® Yo lx) = [ ()2 Ju(xt)h(t) dt

then l.im. Yo(x) fails to exist.
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Proof. Let ‘z(t) = Y2 J(t)/log(t + 2). Two integrations of (8) by parts and
use of formulas (5), (6), and (7) yield

ax¥? Jy(a)Jy+q(ax)
(x2-1) log (a+2)

) Yo (x) = 0(x™%)

for large x .

Now define Y(x) = limgzuy Yulx). It is evident from (8) that y(x) is con-
tinuous except perhaps at x = 1, while (9) shows that Y(x) = O(x~2). To show
that Yy(x) € L it suffices to consider the neighborhood of x = 1. Formula (6)

yields, after some calculation,

o cos (1—x)t

= dt + « ,
v = el o
where o(x) is continuous near x = 1. Thus
2 © sint ® sin t
~ = - de + [°—SmE
'l;+e b (x) (x)} dx j; t log (2+t/€) j:’ t log (2+1t)

The first integral on the right tends to zero as ¢ — 01, Since Ylx) — alx) is
positive (see [2]) it follows that y(x) — a(x) is integrable over (1,2) [8,
p.342] . The interval (0,1) may be handled similarly. Hence y(x) € L.

That A(t) is indeed the Hankel transform of /(%) is a consequence of a result
of P. M. Owen [5,p.310] . But it may be seen from (9) that (%) is not in L, so
that l.i.m. ;,(x) surely fails to exist.

4, A summability method. It is natural to try to include the case p = 1 into
the theory by introducing a suttable summability method. Our interest will be con-
fined to the Cesdro method. If f(x) € L and g(t) is its Hankel transform then we
shall define

(10) folx) = f (1-—t/a) )E(xt)V2 J, (xt)g(t) dt

= f; (¥)Ck(z,y,a) dy,
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where

an  Clxya) = f7 @)l () (u) A = u/a)* du.

Offord [4] has studied the local convergence properties of f,(x) for £ = 1.We
are able to extend his results to the case & > 0, but the estimates required are
too long and tedious for presentation here. Instead we investigate the strong con-

vergence.

THEOREM 3. Let f(x) € L, k > 0. If fo(x) is defined by (10), then f,(x)

converges strongly to f(x).

Proof. We shall first prove that Ci(x,y,a) € L and |Cilx,y,a)| < M,
where the norm is taken with respect to x and the bound M is independent of y and

a. An integration by parts and a change of variable in (11) give

a2) Chleyia) == L (1= ) s(ey) Qs

where

_ Ju+1 (ays)Jy (axs) = Jy(ays 2Jv+ 1 (axs)

Q
Yy — x
+ Jw;(ays)J,,(axs) +Jv(ays)JV+l(axs)
ytzx )

Consider

= dx 1 — )k 1/2 1/2
I ‘Il.y-z|>1/a |y—x| ‘j; (1 s) (ays) Ju+1 (ays)(axs) Jy(axs)ds

dz ®
= EE—— 1/2
";ay-sz |ay _ZI I.I;) G(“:)’; S)(ZS) J,,(zs) ds|,

where

....sk-lasl/z w41 (ays s
G(a,y,s)={(()1 )57 (ays)'? Jy41(ays) (0<s<1),

(s >1).
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Now, as a function of s, Gla,y,s) € LP for some p > 1 so that

F(a,y, z) = fom G(a,y, s)(sz)Y2 J,(sz) ds

isin L?' as.a function of z [3] . Also

' 1/p’ 1/
[fo“’ IF(a,y,2) [P dz] T <4 [fO“’ lG(a,y,s)IPds] F<m,

where M is a constant independent of a and y. Thus

1< if oz ” [fm IF(a,y,z)l”'dz}l/pl<M.
- lay-z |>1 lay Z|P ()}

The other parts of (12) may be cared for similarly, so that we have

J;y-x|>1/a |Ce(x, v, 0) [ dx <M.

The range |y —x| < 1/a is easily handled since, by (11), for this range we have
|Ck(x,y,a)[ < Ma. Hence ||Cy(x,y,a)] < M. We see at once from (10) that

[ @ dx= [7dx | £ 1G5) Caleyia) dy

< [T Wdy [T |G(xy,0) | ax,

so [[fa(x)| < M|f(x)|. The proof may now be completed by the methods of

Theorem 1.
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