ON THE LP THEORY OF HANKEL TRANSFORMS

G. M. WING

1. Introduction. Under suitable restrictions on f(x) and ν , the Hankel transform g(t) of f(x) is defined by the relation

(1)
$$g(t) = \int_0^\infty (x t)^{1/2} J_{\nu}(x t) f(x) dx.$$

The inverse is then given formally by

(2)
$$f(x) = \int_0^\infty (xt)^{1/2} J_\nu(xt) g(t) dt.$$

These integrals represent generalizations of the Fourier sine and cosine transforms to which they reduce when $\nu=\pm 1/2$. The L^p theory for the Fourier case has been studied in considerable detail. In this note we present some results concerning the inversion formula (2) in the L^p case.

It is clear that if $f(x) \in L$ and $\Re(\nu) \geq -1/2$ then the integral in (1) exists. It has been shown [3,6] that if $f(x) \in L^p$, 1 , then

(3)
$$g_a(t) = \int_0^a (xt)^{1/2} J_{\nu}(xt) f(x) dx$$

converges strongly to a function g(t) in $L^{p'}$. For this case Kober has obtained the inversion formula,

$$f(x) = x^{-1/2-\nu} \frac{d}{dx} \left\{ x^{\nu+1/2} \int_0^\infty \frac{(x\,t)^{1/2} J_{\nu+1}(x\,t)}{t} g(t) dt \right\},$$

which holds for almost all x. In her investigation of Watson transforms, Busbridge [1] has given analogous results for more general kernels. Except when p=2 the question of the strong convergence of the inversion integral has apparently been considered only in the Fourier case [2]. We now investigate this problem

Received January 10, 1951.

Pacific J. Math. 1 (1951), 313-319.

314 G. M. WING

for the Hankel transforms. We assume throughout that $\Re(\nu) \geq -1/2$.

2. Theorem. We shall establish the following result.

THEOREM 1. Let $f(x) \in L^p$, 1 , and let <math>g(t) be the limit in mean of $g_a(t)$, g(t) = 1.i.m. $g_a(t)$, where $g_a(t)$ is defined by (3). If

$$f_a(x) = \int_0^a (xt)^{1/2} J_{\nu}(xt)g(t) dt$$

then

$$f_a(x) \in L^p$$
 and $f(x) = 1.i.m.$ $f_a(x)$.

Proof. Write

$$f_a(x,b) = \int_0^a (xt)^{1/2} J_{\nu}(xt) g_b(t) dt$$

$$= \int_0^b (xu)^{1/2} f(u) du \int_0^a J_{\nu}(ut) J_{\nu}(xt) t dt.$$

Since $g_b(t)$ converges in the mean to g(t) it follows that $\lim_{b\to\infty} f_a(x,b) = f_a(x)$. Hence

(4)
$$f_a(x) = \int_0^\infty (xu)^{1/2} K(x, u, a) f(u) du,$$

where [9]

(5)
$$K(x,u,a) = \int_0^a J_{\nu}(ut)J_{\nu}(xt)t dt$$
$$= a\{uJ_{\nu+1}(ua)J_{\nu}(xa) - xJ_{\nu+1}(xa)J_{\nu}(ua)\}/(u^2 - x^2).$$

An integral very similar to (4) has been studied in a previous paper [10]. The same methods may be used here to show that $\|f_a(x)\|_p < M_p \|f_{(x)}\|_p$. Our theorem will now follow in the usual way if we can prove it for step functions which vanish outside a finite interval. Let $\phi(x)$ be a step function, $\phi(x) = 0$ for x > A, and let $\phi_a(x)$ correspond to it as in (4). Choose $\xi > 2A$, a > A, to get

$$\int_{\xi}^{\infty} |\phi_a(x) - \phi(x)|^p dx = \cdot \int_{\xi}^{\infty} dx \left| \int_{0}^{A} \phi(u)(xu)^{1/2} K(x,u,a) du \right|^p.$$

From the relations

(6)
$$x^{1/2} J_{\nu}(x) = (2/\pi)^{1/2} \{\cos(x + \delta_{\nu}) + x^{-1} A_{\nu} \sin(x + \delta_{\nu})\} + O(x^{-2})$$

 $(x \longrightarrow \infty),$

where

$$A_{\nu} = (1 - 4 \nu^2)/8$$
, $\delta_{\nu} = -(2 \nu + 1) \pi/4$,

and

$$J_{\nu}(x) = O(x^{\nu_1}) \qquad (x \longrightarrow 0),$$

where $\nu_1 = \Re(\nu)$, it is easy to see that

$$(xu)^{1/2} |K(x, u, a)| < M/|u - x|,$$

so that we have

$$\int_{\xi}^{\infty} |\phi_a(x) - \phi(x)|^p dx < M \int_{\xi}^{\infty} \frac{dx}{|x - A|^p} \int_{0}^{A} |\phi(u)|^p du < \epsilon$$

for ξ sufficiently large. Now

$$\begin{split} \|\phi_a(x) - \phi(x)\|_p^p &= \int_0^{\xi} + \int_{\xi}^{\infty} |\phi_a(x) - \phi(x)|^p dx \\ &\leq M \left\{ \int_0^{\xi} |\phi_a(x) - \phi(x)|^2 dx \right\}^{p/2} + \epsilon \,. \end{split}$$

As $a \longrightarrow \infty$ the integral goes to zero by the L^2 theory for Hankel transforms (see [7, Chapter 8]). This completes the proof.

3. The case p=1. Theorem 1 fails to hold in the case p=1. The proof, similar to that given by Hille and Tamarkin in the Fourier case [2], will only be sketched.

THEOREM 2. There exists a function h(t), the Hankel transform of a function $\psi(x) \in L$, such that if

(8)
$$\psi_a(x) = \int_0^a (xt)^{1/2} J_{\nu}(xt)h(t) dt$$

then l.i.m. $\psi_a(x)$ fails to exist.

316 G. M. WING

Proof. Let $h(t) = t^{1/2} J_{\nu}(t)/\log(t+2)$. Two integrations of (8) by parts and use of formulas (5), (6), and (7) yield

(9)
$$\psi_a(x) = \frac{ax^{3/2}J_{\nu}(a)J_{\nu+1}(ax)}{(x^2-1)\log(a+2)} + O(x^{-2})$$

for large x.

Now define $\psi(x) = \lim_{a \to \infty} \psi_a(x)$. It is evident from (8) that $\psi(x)$ is continuous except perhaps at x = 1, while (9) shows that $\psi(x) = O(x^{-2})$. To show that $\psi(x) \in L$ it suffices to consider the neighborhood of x = 1. Formula (6) yields, after some calculation,

$$\psi(x) = \int_0^\infty \frac{\cos(1-x)t}{\log(t+2)}dt + \alpha(x),$$

where $\alpha(x)$ is continuous near x = 1. Thus

$$\int_{1+\epsilon}^{2} \{\psi(x) - \alpha(x)\} dx = - \int_{0}^{\infty} \frac{\sin t}{t \log (2+t/\epsilon)} dt + \int_{0}^{\infty} \frac{\sin t}{t \log (2+t)} dt.$$

The first integral on the right tends to zero as $\epsilon \to 0^+$. Since $\psi(x) - \alpha(x)$ is positive (see [2]) it follows that $\psi(x) - \alpha(x)$ is integrable over (1,2) [8, p.342]. The interval (0,1) may be handled similarly. Hence $\psi(x) \in L$.

That h(t) is indeed the Hankel transform of $\psi(x)$ is a consequence of a result of P. M. Owen [5, p. 310]. But it may be seen from (9) that $\psi_a(x)$ is not in L, so that l.i.m. $\psi_a(x)$ surely fails to exist.

4. A summability method. It is natural to try to include the case p=1 into the theory by introducing a suitable summability method. Our interest will be confined to the Cesaro method. If $f(x) \in L$ and g(t) is its Hankel transform then we shall define

(10)
$$f_a(x) = \int_0^a (1 - t/a)^k (xt)^{1/2} J_\nu(xt)g(t) dt$$
$$= \int_0^\infty f(y)C_k(x, y, a) dy,$$

where

(11)
$$C_k(x, y, a) = \int_0^a (xy)^{1/2} u J_{\nu}(xu) J_{\nu}(yu) (1 - u/a)^k du.$$

Offord [4] has studied the local convergence properties of $f_a(x)$ for k = 1. We are able to extend his results to the case k > 0, but the estimates required are too long and tedious for presentation here. Instead we investigate the strong convergence.

THEOREM 3. Let $f(x) \in L$, k > 0. If $f_a(x)$ is defined by (10), then $f_a(x)$ converges strongly to f(x).

Proof. We shall first prove that $C_k(x, y, a) \in L$ and $\|C_k(x, y, a)\| < M$, where the norm is taken with respect to x and the bound M is independent of y and a. An integration by parts and a change of variable in (11) give

(12)
$$C_k(x,y,a) = -\frac{ka}{2} \int_0^1 (1-s)^{k-1} s(xy)^{1/2} Q ds$$

where

$$Q = \frac{J_{\nu+1}(ays)J_{\nu}(axs) - J_{\nu}(ays)J_{\nu+1}(axs)}{y - x} + \frac{J_{\nu+1}(ays)J_{\nu}(axs) + J_{\nu}(ays)J_{\nu+1}(axs)}{y + x}.$$

Consider

$$I = \int_{|y-x|>1/a} \frac{dx}{|y-x|} \left| \int_0^1 (1-s)^{k-1} (ays)^{1/2} J_{\nu+1} (ays) (axs)^{1/2} J_{\nu} (axs) ds \right|$$

$$= \int_{|ay-z|>1} \frac{dz}{|ay-z|} \left| \int_0^\infty G(a,y,s) (zs)^{1/2} J_{\nu} (zs) ds \right|,$$

where

$$G(a,y,s) = \begin{cases} (1-s)^{k-1}(ays)^{1/2} J_{\nu+1}(ays) & (0 \le s < 1), \\ 0 & (s \ge 1). \end{cases}$$

Now, as a function of s, $G(a, y, s) \in L^p$ for some p > 1 so that

$$F(a, y, z) = \int_0^\infty G(a, y, s)(sz)^{1/2} J_{\nu}(sz) ds$$

is in $L^{p'}$ as a function of z[3]. Also

$$\left\{ \int_0^\infty |F(a,y,z)|^{p'} dz \right\}^{1/p'} \le A_p \left\{ \int_0^\infty |G(a,y,s)|^p ds \right\}^{1/p} < M,$$

where M is a constant independent of a and γ . Thus

$$I \leq \left\{ \int_{|ay^{-}z|>1} \frac{dz}{|ay-z|^{p}} \right\}^{1/p} \left\{ \int_{0}^{\infty} |F(a,y,z)|^{p'} dz \right\}^{1/p'} < M.$$

The other parts of (12) may be cared for similarly, so that we have

$$\int_{|y-x|>1/a} |C_k(x,y,a)| dx \leq M.$$

The range $|y-x| \le 1/a$ is easily handled since, by (11), for this range we have $|C_k(x,y,a)| < Ma$. Hence $||C_k(x,y,a)|| < M$. We see at once from (10) that

$$\int_0^\infty |f_a(x)| dx = \int_0^\infty dx \left| \int_0^\infty f(y) C_k(x, y, a) dy \right|$$

$$\leq \int_0^\infty |f(y)| dy \int_0^\infty |C_k(x, y, a)| dx,$$

so $||f_a(x)|| \le M ||f(x)||$. The proof may now be completed by the methods of Theorem 1.

REFERENCES

- 1. I. W. Busbridge, A theory of general transforms for functions of the class $L^p(0,\infty)$ (1 , Quart. J. Math., Oxford Ser. 9 (1938), 148-160.
- 2. E. Hille and J. D. Tamarkin, On the theory of Fourier transforms, Bull. Amer. Math. Soc. 39 (1933), 768-774.
- 3. H. Kober, Hankelsche Transformationen, Quart. J. Math., Oxford Ser. 8 (1937), 186-199.
 - 4. A. C. Offord, On Hankel transforms, Proc. London Math. Soc. (2) 39 (1935), 49-67.

- 5. P. M. Owen, The Riemannian theory of Hankel transforms, Proc. London Math. Soc. (2) 39 (1935), 295-320.
- 6. E. C. Titchmarsh, A note on Hankel transforms, J. London Math. Soc. 1 (1926), 195-196.
- 7. _____, Introduction to the theory of Fourier integrals, University Press, Oxford, 1937.
 - 8. ____, The theory of functions, University Press, Oxford, 1932.
- 9. G. N. Watson, Theory of Bessel functions, University Press, Cambridge, England, 1922.
- 10. G. M. Wing, The mean convergence of orthogonal series, Amer. J. Math. 72 (1950), 792-807.

University of California, Los Angeles