THE ADJOINT SEMI-GROUP

R. S. PHILLIPS

Introduction. The purpose of this paper is to develop a general theory for
the adjoint semi-group of operators which fits into the framework of the present
theory of semi-groups. To each semi-group of linear bounded operators [T (s)]
defined on a Banach space X to itself and possessing suitable continuity
properties, we shall assign an adjoint semi-group with like continuity proper-
ties, defined on an ‘“‘adjoint’”’ Banach space X* which is in general a proper
subspace of the adjoint space X*. The usefulness of the adjoint semi-group
has already been demonstrated by W. Feller [3] in his treatise on the parabolic

differential equation.*

In our theory of the adjoint semi-group, the choice of the subspace X*cC X*
is decisive. We have been led to X* by two independent considerations. In the
first place X' is the largest domain over which the ordinary adjoint T*(s) has
suitable continuity properties. It should be noted, however, that a rather ex-
tensive theory of semi-groups has been developed by W. Feller [4] which has
no such continuity requirements, The more compelling reason for our choice of
X" has to do with the infinitesimal generator. In most applications of the theory
of semi-groups one starts with an infinitesimal generator 4 and it is desired to
establish the existence of a semi-group of operators generated by 4, It is natural
to expect the behavior of the semi-group operators T (s) to be uniquely deter-
mined on the domain of A (in symbols 9(A4)); and since T(s) is required to
be bounded, there will exist a unique extension to the smallest closed subspace
containing 9(4 ), namely 9(A). Further extensions are not uniquely determined
by A and should not be associated with the operator A. A reasonable approach
to the adjoint semi-group would be to require that its infinitesimal generator be
the adjoint 4™ of the infinitesimal generator 4 of the original semi-group. In ac-

cordance with the above remarks, the proper domain for the adjoint semi-group

11t is remarkable that Feller actually obtained the entire adjoint semi-group without
employing a precise notion for the adjoint to an unbounded operator such as the in-
finitesimal generator. For without this, the general formulation loses much of its signi-
ficance.
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would then be 9(4%). Now X' is precisely (4™ ); however the infinitesimal

+ . . . .
generator A" of the adjoint semi-group turns out to be the maximal restriction
of A™ with domain and range in 9(47) = X

As in the ordinary theory of adjoint spaces, it is possible to develop an
entire hierarchy of ‘““adjoint’’ spaces for a given semi-group of operators.? How-
ever it can happen that the second ‘‘adjoint’’ is equal to the original space
(under the natural mapping); in this case nothing new is achieved by going
beyond the first ‘‘adjoint.”’ This situation occurs not only when X is reflexive
in the usual sense but, more generally, when the resolvent of A is weakly com-

pact (as in the case of most nonsingular problems of mathematical physics).

1. The adjoint transformation. We take X and ¥) to be Banach spaces over
the real (or complex) scaler field. The transformation y = T(x) is taken to be
linear with domain ® C X and range R C ), and it is assumed that 9 is a linear
subspace of X.

DEFiNiTION 1. Let y = T(x) be defined on a domain ® dense in X to ),
and let X* and 9* be the adjoint spaces to X and ¥ respectively. The adjoint
trans formation T* of T is defined as follows: Its domain 9 (T*) consists of the
set of all y* € 9 for which there exists an x* € X* such that y*[T(x)] = x*(x)

for all x € 9; for such a y* we define T (y*) = x*.

It is clear that the density of O in X is required in order that T* be single-
valued. Further it is easy to show that T* is a closed linear transformation on
D(T*) to X*, On the other hand the second adjoint is not always well defined

. e . k . .
since D (T*) is in general not dense in ¥". In this connection we have:

TueoREM LY. If T is a closed linear transformation with domain 9 dense
in X, then D(T*) is weakly* dense in L. In particular, if ) is reflexive then

D(T*) is strongly dense in T*.

Proof. If 9(T*) were not weakly* dense in 9*, then the weak* closure of
D(T*) would be regularly closed [1] so that there would exist a y, € T, y, # 0,
such that y*(y ) =0 for all y* € D(T*). Now (0,y,) does not belong to the
graph @ of T, and @ is a closed linear subspace of X @ 2. Hence by a theorem

2For example if X = Co{—oo,0), the space of continuous functions f(£) on (—eo0,00)
such that 1im!‘¢|_,o f(€)=0and ||f|| =sup |f(£)]|, and if A(f)=f%, D(A)=[f; f
continuously differentiable, f and f*€ Cg ], then X*=L,(—e0,00), (X*)*=space of all
functions f(£ ) uniformly continuous and bounded on (—eo,00) with ||f|| =sup |f(£)],
and so on.
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due to H. Hahn [ 5, Theorem 2.9.4], there exists an

(20,7, )E(X @D =X* @D 2*

</

such that
x:(x)+y:[T(x)]=0 for all x €9 and x:(0)+y:(y0);éo.

It follows that
y:e (T™), T*(y:) =—x:, and yet y:(yo )£0,
which is impossible. In case ¥ is reflexive we conclude that 9 (T™) is weakly

dense and hence strongly dense in £ (the latter conclusion follows from the

above-mentioned Hahn theorem ).

We turn now to the relation between a transformation, its adjoint, and their

inverses.

THEOREM 1.2. Let T be a linear transformation with O = X. Then (T*)"!
exists if and only if % = 9. More generally, R consists of the set of all points
y such that T* (y*) =0 implies y*(y) =0.

Proof. If T*(y:) =0, then

(T*(y )1 (x) =y [T(x)]=0

<

and hence that T has an inverse. On the other hand if Y, £ R, then by the Hahn
theorem there exists a functional y: € 9 such that y:(yo )=1 and y:(ﬁ) =0,
Thus y:[T(x)] =0 for all x €9; it follows that y: €D(T*) and T*(y:) =0;
whereas y: (y,) #0. In particular we see that if R £9, then T* cannot have an

for all x €9, and hence y:(gﬁ) =0. In particular, R=9 implies that y: =0,

inverse.

THEOREM 1.3. Let T be a linear transformation with ® =X, If R(T*) is

weakly* dense in X* then T has an inverse.

Proof. Suppose that T has no inverse; then there is an xo #0 such that

T(xy) = 0. Consequently
[T*(y*) (%) =y*[T(x0)1=0

for all y* € D( T*\), and this shows that the weak* closure of R (7T%) is a proper
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* .
subspace of X”, contrary to assumption.

THEOREM 1.4, Let T be a linear transformation with an inverse and such
that D =% and R =Y. Then (T*) ' =(T"Y)* further T-' is bounded if and
only if (T*)"!is bounded on X*.

Proof. In the first place (T°')* exists because % = O(7T-!) is dense in ¥,
and (T*)"! exists by Theorem 1.2, If y € % and y* € 9(T*), then

y¥(y) =y*{TIT () = [T (y*) U T ()],

This implies that R (T*) C O[(7-*)*] and
(T [T*(y*) ] = y*

for all y* € D(T*), Thus (T-')* is an extension of (T*)"!, On the other hand
if x €9, then

w* (%) =*{ THT ()1} =TT )" (x*) 1T (x)],
for all x* € D[(T-")* 1. It follows that R (T*) > D[(T-')* ). Therefore

SUT-H*1=R(T*) =D[(T)],

and hence (7-1)* = (T*) ', If, in addition, T"! is bounded, then it is clear that
(T°Y)* is also bounded. Conversely if (T*)"! is bounded on X, then for all

x €% and x* € X* we have

| [T (o) T = (LT e TG | < [T (] ]

It follows that T-! is bounded.

If T is a linear operator with both domain and range in X, 9= X, then the
adjoint transformation T has its domain and range in X*. It is easy to show for

an arbitrary bounded operator B on X to itself, that
(B+T) =B*+T* and O[(B +T)*]1=3(T").

We are especially interested in the combination M — T, where I is the identity
operator and X is a real (or complex) number. If M — T has a bounded inverse

with domain dense in X, then A is said to belong to p(T), the resolvent set of

T, and
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(M=T)Y'=R(X\T)

is called the resolvent of T.

THEOREM 1.5, If T is a linear operator with ® = X and ® C ¥, then

p(T) =p(T*) and [R(MT)I*=R(X; T¥).

Proof. 1f A€ p(T), then, according to Theorem 1.4, A € p(T™) and
[R(A; T =R(A; 7).

On the other hand if A € p(T*), then Theorem 1.3 shows that T has an inverse,
Theorem 1.2 shows that & = X, and Theorem 1.4 then implies that A € p(T).

2. The adjoint semi-group. We now apply the previous results to semi-groups
of linear bounded operators (cf. [5]). Let €(X) be the Banach algebra of
endomorphism of X, and let [T(s)] be a one-parameter family of operators in
€ (%) defined for s € [0, ©) and satisfying:

(i) T(s;+s2)=T(s))T(s,) forall s;,s, >0, T(0)=1;
(ii) for each x € X, T(s)x is continuous for s > 0;
(iii) fol [|T(0)x||do < o for each x € X.
If T satisfies the additional condition
(iv) limy A [° exp(-A0) T(0)xdo = x for each x € X,

then T(s) is said to be of class (0,4). If, instead of (iv), T(s) satisfies
the stronger condition

(v) lim__ 4 7! [T T(0)xdo =x for each x € X,

then T'(s) is said to be of class (0,C). Finally if T(s) satisfies (i), (ii),
(iii), and the still stronger continuity condition

(vi) limg_, o T(s)x =x for each x € X,

then T'(s) is said to be of class C.

The domain 9(4) of the infinitesimal generator 4 is the set of elements x
for which
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lim 7' T(7P) <-1I]lx
T—0

exists, and this limit is defined to be Ax. It follows from (iv) (and hence (v)
or (vi)) that 9(4) is dense in % (cf. [5, Theorem 9.3.1]). We have previously
shown [6] that 4 is closed if and only if T(s) is of class (0, C). However,
even when T(s) is of class (0,4), the infinitesimal generator has a smallest
closed extension, called the complete infinitesimal generator (c.i.g.) and de-
noted by A. For each xo € D(4) there is a sequence {x, } C9(4) such that
%p — %o and Ax, —> Axo. It follows that R (A;4) is an extension of R (A;4),
that p(4) = p(4), that 4* = (4)*, and that

RO TF=[R(A; D 1*.P
It can be shown that

(2.1) wo = inf log ||T(s)]||/s = lim log ||T(s)||/s.

s>0 s o0

Eack A > g belongs to the resolvent set for 4, and the resolvent is given by
(2.2) R(/\;A_)x=/°° exp (=Ao) T (o) xdo;
0

see [6].

DEFINITION 2.1. The semi-group T(s) is said to be of class (0,4)%,
(0,C)*, or C* if it is of class (0,4), (0,C), or C, respectively, and if in
addition ||T*(s)x*||, 0 <s < 1, is majorized by integrable function for each

x* e X*,4

DEFINITION 2.2. Let T(s) be a semi-group of class (0,4) with infini-
tesimal generator A. We define the adjoint semi-group to be the restriction of
T*(s) to X"=9(4™) and denote it by T*(s). We denote the infinitesimal
generator of T*(s) by 4.

————————

3For AEp(4), the resolvent R (A;4) has a unique bounded linear extension R (A;
A) on X. If {x,3CD(A4), xy—3x0 €9 (A1), and Ax, — Axg, then R(A;4) (AI -
A)x, =x, implies that R(A;4); (Al ~4)xg =x9. Likewise for {y, }\GER (A -4)
and y,—> ¥o, the relation (Al ~ A)R(A;A)y, =y, implies that (Al ~ AR (A;4)y5 =yo-
It follows that R (A;4) exists and is identical with R (A;4);. This shows that p(4)C
p(A-). A similar argument can be used to prove A* = 4%, and the last relation is obvious.

*This condition is automatically satisfied if fol | T(o)|| do < oo or if T(s) if
of class C.
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THEOREM 2.1. If T(s) is a semi-group of class (0,4)%, (0,C)*, or C*,
then the adjoint semi-group is of class (0,4), (0,C) or C, respectively. The

c.i.g. A is the largest restriction of A* with domain and range in X'
Proof. According to Theorem 1.5,
R(A;4%) =R(X;4%) =R*(X;4)

and hence 9(4™) is simply the range of R*(A;4). For A > wy, R*(A;4) can

be expressed by means of a Dunford integral [2] as
(2.3) R*(N;A)x* =fwexp(—Ao)T*(o)x*d0.
0

It is clear from this that

T*(s)R*(X;4) =R*(M;4)T*(s),

so that T*(s) takes 9(4™) into D(4™). Since T*(s) is bounded, it follows
that T*(s)(X*) C X*; that is, T*(s) € G(%X*). It is obvious that T*(s) and

hence T*(s) satisfies (i).

In order to establish continuity we first note that

(2.4) [T*(7) =I"IR*(X;4)x* = [exp (A7) =11 /w exp (=Aa) T* (o) x*do
0

- exp(AT)fTexp (=X0) T* (o) x* do.
0

The first term in the right member is simply [exp (A7) —1] R*()\;A)x*, and
it clearly converges to zero with 7; further the assumption that || T*(o)x*||
is majorized by a function in L;(0,1) implies that the second term also goes

to zero with 7. Thus

lim T%(s)y* =y*

s— 0

for all y* € 9(4™). It follows from this (cf. [5, Theorem 9.4.1]) that T%(s)y*
is strongly continuous for s > 0, y* € 9(4¥). Further since ||T*(s)|| =
|| T(s)|| is uniformly bounded in each interval of the form (8,1/8), we see that

T*(s)x* is strongly continuous for s > 0 and all x* € X*, Thus T*(s) satisfies
(i), (ii), and (iii). Again, for each x* € 9(4%),
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T*(s)x*— x* as s — 0

and a fortiori
a [T oo
T T (6)x*do — x* as 7T— 0
0

and

AR* (M3 A)x* — x* as A — .

Now if T(s) is of class C, then ||T*(s) || =0(1); if T(s) is of class (0, C)
then

||[T-‘j;7 T(o)do || =0(1);

and if T(s) is of class (0,4) then [[AR*(A;4) || =0(1). It now follows from
the Banach-Steinhaus theorem that T*(s) will satisfy (vi), (v), or (iv) with T(s).

Finally, the c.i.g. A—+ of T*(s) is determined by its resolvent (cf. [6]),

which for A > wo can be expressed by the Bochner integral
R(K;F)x*:fm exp(=Ao) T (0)x*do (x* €X1).
0

According to formula (2.3) this is simply the restriction of R(XA%) to X%
thus A% is a restriction of A*. Now if x* € 9(4*) and 4*(x*) € X*, then
(A* = A4*)x* € X* and hence

R(XA®) (MF =A%) x* =x*€3(4Y).

Conversely if x* € @(ZT), then x* € D(4*) and 4™ x* —A*x* €%, In other
words, A% is the maximal restriction of A* which maps X*tinto Xt This con-

cludes the proof.

COROLLARY. If A€ p(4), then )\Ep(A_+) and R()\;A_:) equals the res-
triction of R(A;A*) to X7,

Proof. If A€ p(4), then R()—\_;_A*) exists. Let R (X;4%), be the restriction
of R(A;A4*) to X*. For x* € @(A+), we have

()\I+—:4~+—)x* = (AI* —A™)x*
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and hence R(A; 4*) is a left inverse for AlY — F On the other hand if
x* € X%, then

(AF = AR (X3 A% )g = = x*.

Since R(A;A*)o x* €D(A*)C X we also have A*R()\;A*)o x* € X% and
hence by the above theorem R()\_;_z_‘i*)o x* € @(Allt follows that R(A;4™), is
also the right inverse for MY~ 4% sothat A€ p(4A™).

A converse to the above corollary is obtained in Theorem 3.2 where it is

shown that p(4) =p(4*).
COROLLARY. If X is reflexive, then X = X",

Proof. 1f X is reflexive, then, according to Theorem 1.1, D(4™) is dense
in X*. Hence X" =9(4%) = ¥*,

We conclude this section with two other characterizations of X7,
THEOREM 2.2. For a semi-group T (s) of class (0,4)%, let
I=[x*; T*(s)x*— x* as s — 01.
Then ¥ * =T

Proof. Tt is clear that 9(4*) CT; and since D(4*) is dense in X%, we
have X* CT. On the other hand if x* €I, then a direct calculation shows that

)\R()\;A*)x*=)\./‘wexp(—)\a)T*(a)x*da——)x* as A -— .
0

Consequently x* € 9(4*) = X*,

THEOREM 2.3, For a semi-group T (s) of class (0,4)" let
* | B o % = v¥
Fo=[ya,8;yaﬁ= T*(o)x*do, x* € X¥,0 < « < B1.
a

Then %+=F—0 .

Proof. An easy calculation shows that Iy C I'. On the other hand if x* €T’
then

-1 T *
T T (0)x*do — x* as T— 0
0
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and belongs to I'y; thus Ty O T and therefore T,=r=%"%

3. The adjoint space. We shall call X* the adjoint space to X relative to
the semi-group [T (s)], or simply, the adjoint space; and we shall denote the
generic element of X* by x* To avoid confusion we shall hereafter refer to
X* as the full adjoint space. This section is devoted to a study of the hierarchy

of adjoint spaces which arise from a given semi-group of operators of class

(0,4)*.

It will be observed that whereas

% || =sup [|x*(x) |5 |lx |l <1, x€X],
it is not in general true that ||« || can be obtained in like manner as
(3.1) |2 ]| =sup [|x*(x) |5 [|x*]] <1, x* € X"

All that can be asserted here is that ||x||” < ||x||. If X¥ is equal to the full
adjoint space, then it is clear that ||x||"= ||x||. This occurs when X is re-
flexive or when A4 is bounded. In any case we see that the function ||x ||* satis-

fies the postulates of a pseudo-norm. However, more is true:

THEOREM 3.1. The norm ||x||” defines an equivalent topology for %; in

fact, there exists an m > O such that
Hxll 2 =117 2 m (1]l
for all x € X, In particular if

liminf || AR (A; D) || =1,

/\_;oa
then ||x | = ||x||".

Proof. For a fixed x € X there exists an x* €%, |lx*|| =1, such that
x*(x) = ||« ||. It follows from (iv) that

[AR*(A;Z)x*](x)=x*D\R()\;Z)x]—bx*(x) as A — 0,

and from (iv) together with the uniform boundedness theorem that

lim |[ARAA) || =¥ < 0.
Ao oo
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Consequently, given € > 0, there is a A¢ with
HAeR* (Ae; ) || <M+e and |[[AR*(Ae;A)x*1 (x) = ||x || < e.
Now
y2 =AeR* (A3 A)x* €XT and ||y} || <M +e.
Hence

2 x| —e
Z .
Hy2 |l M+e

and since € is arbitrary this gives the desired result with m = 1/M. In particular

if M =1, then ||x || = ||x ][

THEOREM 3.2, If [T(s)]is a semi-group of operators of class (0,4)*, then
p(A) = p(A+).

Proof. We have already shown in the first corollary to Theorem 2.1 that
p(A) Cp(A*). I A€ p(A?), then

O VA LA E YOV AR S

Since, by Theorem 1.1, (A*)cxtis weakly* dense in X*, the same is true of
R(AM* =A%), Tt now follows from Theorem 1.3 that A/ —4 has an inverse.
Further, if

(Al 4"k =0
then x: €9(4*) and Z*x(’)" €9(4*) c XY, so that X €D(A"). Since AT is a
restriction of Z*, this implies that (/\l+—z_‘1—+)x;‘ =0 and hence that x} =0.

Theorem 1.2 now asserts that % (A/~4) is dense in X. Finally for x € R (A/-4)

we have
WM =AY x|] < m ' |[|(M = A) x|’
=mtsup [[x*[OAM=A)tx]]; |[xt]] <1, " €X7]
<m U IROGAD ] 12115

and this shows that (Al —4)"! is bounded. It follows that A € p(4).
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We see from the above theorem that A* has the same resolvent set as 4™

(and 4) in spite of the fact that it is a restriction of A*,

Renorming X by ||x||” has no effect on our determination of X*; in fact,

even the norm of the elements of X* remains the same. For
Hxll”<|lx|| and [x*(x) | < [[x*]] [[x]]”
imply that

Hatll <sup Lat (o) 5 1w ]17< 1, x €XT < {lx* ]

Nevertheless, when we deal with the second adjoint space relative to a given

semi-group [T (s)], a slight advantage is obtained by renorming X in this way.

THEOREM 3.3, Suppose that both [T (s)]and [T*(s)] are of class (0,4)%,
and let the norm of X be given by ||x||%. Then X can be embedded in X** by

means of the natural mapping.

Proof. Each xy, € X defines a unique bounded linear functional F € (xH%,
namely Fo (x*) = x*(xo ). Further,

||Fo || =sup [|Fo(x*) | = |x*(xo) |5 2] <1, 2+ €X¥ ] = |[xo0 (|

Hence xo —> Fy, is a linear isometric mapping of ¥ onto a subspace of (X*)*.

It remains to show that X C (%*)* in the above sense. This in turn requires
that X C D[ (4*)* 1. However, if xo — F; then

[R*(M A7) Fol (x#) = Fo [R(A; A5 %% = [R(A; A M) 2% (x0) =+ [R(A; D) xo).
Hence

R(A;A) %o — R*(A; AN Fy .
Now

lim AR(X;4) %o =0
Ao oo

implies that

lim AR*(A;Ei)Fb =l%§
A—poo
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and since
R*(A\; AV Fy € D[(A4H)*],

it follows that xo € @[(AT)* 1.

The space X** depends only on T*(s) and X*. Further, the norm in ¥ is

not effected by renorming X with the norm ||x||’; in fact
lxt]] =sup[x*(x) |5 ||x]]” <1, x€%].
Since X with the norm ||x ||’ is a subset of X*7, it follows that
at|| =supL{x**(xM) |5 (||| <1, x** € X7 )= ||2*]].

Thus it is only in the case of X and X* that a nonsymmetric condition between
norms may arise; for all other pairs of successive adjoint spaces the norms are
symmetric. Even if X is not renormed, X will be isomorphic with its image in

X** under the natural mapping.

DerFINITION 3.1. We define the (I")-weak topology in X in the usual way

be means of the generic neighborhood

N(xo;x’:,---,x:; €)=lx lx;:(x—xo)\ <ek=1,e00,n],

where the (x’f,u-,x;';) can be any finite subset of I' and € is an arbitrary

positive number,

It is of interest to determine when, under the natural mapping, X = X*%; that
is, under what conditions X is reflexive relative to a given semi-group of opera-
tors [T(s)]. Here we assume that X has been renormed with norm ||x||% If X is
a reflexive in the usual sense, then the second corollary to Theorem 2.1 asserts
that ¥* = X*, and likewise that

:{++ =(}:+)* - x** - }:
More generally, we have:

THEOREM 3.4. Suppose that both [T(s)] and [T*(s)] are of class (0,4)%,
and let the norm of X be given by ||x || A necessary and sufficient condition
for ¥ =X is that R (X; A) be (X")-weakly compact.

Proof. Suppose first that R(A;4) is (X')-weakly compact; that is, the
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image of each bounded set is contained in an (X*)-weakly compact subset of
X. Let Fy be an arbitrary element of (X*)*, Then by Helly’s theorem, given a

finite subset 7 C X*, there exists an
xn €%, l|xnl| < 2| Fo |l,

such that Fy(x*) =x*(x5) for all x* € 7. Ordering.the #’s by inclusion, we

easily see that they form a directed set. Consequently,

[R*(A; A D) Fol(x*) = Fo[R(A34 %) x*] =lim [R(A; 4 1) x*1 (%)
=limx*[R(A;A) x5]1.

Since the R(A;4) image of any bounded set is contained in an (%X%)-weakly

compact subset of X, it is easily shown that there exists an xy, € X such that

lim x*[R(A;4)x7] =x*+(xg)

for all x* € X%, Thus R*(A_;_A *)F, is the image of xo under the natural mapping;
in other words, X D9 [(4*)*]. This together with Theorem 3.3 shows that
X=X

Conversely, suppose that X_——___XH. Then R*(A;4%)[(X%)*] is contained
in the images of X. Now R*(X;4%) is continuous in the usual weak* topology
of (X*)*; hence the unit sphere, which is weakly* compact, maps onto a weakly*
compact subset. Now this image lies in X and the weak* topology in X C (xH)*
is the same as the (X*)-weak topology for X. Hence R(X;A4), which is es-
sentially a restriction of R*(A;4%), takes bounded sets into (X%*)-weakly

compact subsets of X. This concludes the proof.

CoROLLARY If R(M;4) is weakly compact relative to the usual weak
topology of X, then % = X**,

Proof. It is clear that a weakly compact subset of X is also weakly compact

relative to any weaker topology such as the (X*)-weak topology of X.
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