
THE ADJOINT SEMI-GROUP

R. S. PHILLIPS

Introduction. The purpose of this paper is to develop a general theory for

the adjoint semi-group of operators which fits into the framework of the present

theory of semi-groups. To each semi-group of linear bounded operators [ Γ ( s ) ]

defined on a Banach space X to itself and possessing suitable continuity

properties, we shall assign an adjoint semi-group with like continuity proper-

ties, defined on an "adjoint" Banach space X which is in general a proper

subspace of the adjoint space X . The usefulness of the adjoint semi-group

has already been demonstrated by W. Feller [3] in his treatise on the parabolic

differential equation. *

In our theory of the adjoint semi-group, the choice of the subspace X C X

is decisive. We have been led to X by two independent considerations. In the

first place X is the largest domain over which the ordinary adjoint T ( s ) has

suitable continuity properties. It should be noted, however, that a rather ex-

tensive theory of semi-groups has been developed by W. Feller [4] which has

no such continuity requirements. The more compelling reason for our choice of

X has to do with the infinitesimal generator. In most applications of the theory

of semi-groups one starts with an infinitesimal generator A and it is desired to

establish the existence of a semi-group of operators generated by A. It is natural

to expect the behavior oί the semi-group operators T(s) to be uniquely deter-

mined on the domain of A (in symbols 5)(/4)); and since T(s) is required to

be bounded, there will exist a unique extension to the smallest closed subspace

containing 5){A), namely 2)(A). Further extensions are not uniquely determined

by A and should not be associated with the operator A. A reasonable approach

to the adjoint semi-group would be to require that its infinitesimal generator be

the adjoint A* of the infinitesimal generator A of the original semi-group. In ac-

cordance with the above remarks, the proper domain for the adjoint semi-group

It is remarkable that Feller actually obtained the entire adjoint semi-group without
employing a precise notion for the adjoint to an unbounded operator such as the in-
finitesimal generator. For without this, the general formulation loses much of its signi-
ficance.
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would then be S)(/4 ). Now X+ is precisely 2)(4*); however the infinitesimal

generator A of the adjoint semi-group turns out to be the maximal restriction

of A with domain and range in ^)(A ) = X+.

As in the ordinary theory of adjoint spaces, it is possible to develop an

entire hierarchy of "adjoint" spaces for a given semi-group of operators,2 How-

ever it can happen that the second "adjoint" is equal to the original space

(under the natural mapping); in this case nothing new is achieved by going

beyond the first "adjoint," This situation occurs not only when X is reflexive

in the usual sense but, more generally, when the resolvent of A is weakly com-

pact (as in the case of most nonsingular problems of mathematical physics),

1. The adjoint transformation. We take X and f) to be Banach spaces over

the real (or complex) sealer field. The transformation y = T(x) is taken to be

linear with domain 2) C X and range 3ΐ C ̂ ), and it is assumed that S) is a linear

subspace of X.

DEFINITION 1. Let γ = T{x) be defined on a domain 2) dense in X to £),

and let X and $) be the adjoint spaces to X and $) respectively. The adjoint

transformation T of T is defined as follows: Its domain 5) ( T ) consists of the

set of all y* G D* for which there exists an x* G X* such that y*[T(x)] = x*(x)

for all x G 2); for such a y* we define Γ*(y*) = # * .

It is clear that the density of 2) in X is required in order that T be single-

valued. Further it is easy to show that T is a closed linear transformation on

5)(Γ*) to X*. On the other hand the second adjoint is not always well defined

since 2) ( Γ* ) is in general not dense in %) . In this connection we have:

THEOREM 1.1. // T is a closed linear transformation with domain 2> dense

in X, then 2)( T*) is weakly* dense in |Π* In particular, if $) is reflexive then

2> ( T ) is strongly dense in $) .

Proof. If 2)(Γ*) were not weakly* dense in £)*> then the weak* closure of

S)( T*) would be regularly closed [ 1 ] so that there would exist a yQ G £), yQ £ 0,

such that y * ( y 0 ) = 0 for all y* G2){Γ*). NOW (0,y Q ) does not belong to the

graph ® of Γ, and ® is a closed linear subspace of X © S Hence by a theorem

2 F o r e x a m p l e if X = C Q ( — < χ * , ° o ) , t h e s p a c e of c o n t i n u o u s f u n c t i o n s f(ξ ) o n ( — 0 0 , 0 0 )

s u c h t h a t l i m l £ | _ o f U ) = 0 a n d | | / | | = s u p \f(ξ ) | , a n d if A ( / ) = /', D ( A ) = [ / ; /
i l i f f i b l / d /' £ C ] h X* L ^ ) ( X + ) + f l l

£ | _ o fU | | / | | p \fξ |, / / / /
c o n t i n u o u s l y d i f f e r e n t i a b l e , / a n d / ' £ C o ] , t h e n X* = L ^ - o O j O o ) , ( X + ) + = s p a c e o f a l l

f u n c t i o n s f(ξ ) u n i f o r m l y c o n t i n u o u s a n d b o u n d e d o n ( — 0 0 , 0 0 ) w i t h | | / | | = s u p | ( ) |

a n d s o o n .
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due to H. Hahn [5, Theorem 2.9.4], there exists an

such that

* * ( * ) + y * [ Π * ) ] = 0 for all x G 2) and x* (0) + y*(y o ) £ 0 .

It follows that

y o *e5)(Γ*), Γ * ( y * ) = - * * , and yet y * ( y o ) ^ O ,

which is impossible. In case %) is reflexive we conclude that 2)(Γ*) is weakly

dense and hence strongly dense in %) (the latter conclusion follows from the

above-mentioned Hahn theorem).

We turn now to the relation between a transformation, its adjoint, and their

inverses.

THEOREM 1.2. Let T be a linear transformation with 2) = X. Then ( Γ * ) " 1

exists if and only if K = $). More generally, 3t consists of the set of all points

y such that T (y*) = 0 implies y*(y) = 0 .

Proof. If Γ*(y*)=0, then

for all x G 5), and hence y*(5R) = 0 . In particular, SI = D implies that y0 = 0 ,

and hence that Γ* has an inverse. On the other hand if yQ fc ϊt, then by the Hahn

theorem there exists a functional y* £. %) such that yQ (y 0 ) = 1 and γQ ($t) = 0.

Thus y * [ Γ ( * ) ] = 0 for all * G $; it follows that_y * G ® ( Γ*) and Γ*(y*) = 0 ;

whereas y*(y 0 ) ^ 0. In particular we see that if ϊl ^ f), then Γ* cannot have an

inverse.

THEOREM 1.3. Let T be a linear transformation with 2) = X. If 3U Γ*) is

weakly* dense in X , ίAen Γ Aαs ατι inverse.

Proof. Suppose that T has no inverse; then there is an x0 ^ 0 such that

T(xQ) = 0 . Consequently

for all y* G S( Γ*(), and this shows that the weak* closure of K( Γ*) is a proper
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subspace of X , contrary to assumption.

THEOREM 1.4. Let T be a linear transformation with an inverse and such

that I) = X and ft = g. Then ( Γ*)" 1 = ( T'ι )*; further Γι is bounded if and

only if (T )m is bounded on X .

Proof. In the first place ( Γ " 1 ) ex i s t s because ft = ® ( Γ " 1 ) is dense in |0,

and ( Γ * ) " 1 exis ts by Theorem 1.2. If γ £ ft and y* E S) ( Γ * ) , then

This implies that ft ( Γ* ) C S) [ ( Γι )* ] and

for all y* E S ( Γ * ) . Thus ( Γ " 1 ) * is an extension of ( Γ * ) " 1 . On the other hand

if x E §), then

for all x* E 2) [ ( Γι )* ]. It follows that ft ( Γ*) 3 5) [ ( T"ι )* ]. Therefore

and hence ( Γ " 1 ) * = ( Γ * ) " 1 . If, in addition, Γ"1 is bounded, then it is clear that

( T" ) is also bounded. Conversely if ( T )" is bounded on X , then for all

x £ ft and %* G X we have

\ χ * [ r i ( χ ) ] \ = \ l ( τ - 1 ) * ( x * m x ) \ < \ \ ( τ * γ ι \ \ | |**| | | | * | | .

It follows that Γ ' 1 is bounded.

If T i s a linear operator with both domain and range in X, 5) = X, then the

adjoint transformation Γ* has i ts domain and range in X . I t is easy to show for

an arbitrary bounded operator B on X to itself, that

(δ + r)* = β* + r* and $[(a + n * ] - s ( r * ) .

We are especially interested in the combination XI - Γ, where / is the identity

operator and λ is a real (or complex) number. If XI — T has a bounded inverse

with domain dense in X, then λ is said to belong to p(T), the resolvent set of

T9 and



THE ADJOINT SEMI-GROUP 273

(λl-TY1 =R(λ;T)

is called the resolvent of T.

THEOREM 1.5. // T is a linear operator with S = X and K C Ϊ , then

p(T) = p(T*) and [R(λ;T)T =R(λ;T*).

Proof. If λe ρ(T), then, according to Theorem 1.4, λ E p(T*) and

lR(λ;T)]*=R(λ;T*).

On the other hand Ίί λE p(T ), then Theorem 1.3 shows that T has an inverse,

Theorem 1.2 shows that K = X, and Theorem 1.4 then implies that λ G p ( Γ ) ,

2. The adjoint semi-group. We now apply the previous resul ts to semi-groups

of linear bounded operators (cf. [ 5 ] ) . Let S ( X ) be the Banach algebra of

endomorphism of X, and let [ Γ ( s ) ] be a one-parameter family of operators in

® ( X ) defined for s E [0, oo) and satisfying:

( i ) T(Sί + s 2 ) = T(Si)T(s2) for a l l S l , s 2 > 0, T(0) = / ;

( i i ) for each x 6 X, T ( s ) x is continuous for s > 0

( i i i ) / o

ι \\T(σ)x\\dσ < oo for each % 6 X .

If T sat is f ies the additional condition

( i v ) l i m ^ ^ λ /0°° exp ( ~ λ α ) T ( σ)xdσ - x for each x G X ,

then T(s) is said to be of class ( 0 , A). If, instead of ( i v ) , T(s) sat is f ies

the stronger condition

(v ) l i m , ^ 0 r " ι / o

τ T ( σ ) x d σ = Λ; for each A; € X ,

then Γ ( s ) is said to be of class (0 , C ) . Final ly if T{s) sat isf ies ( i ) , ( i i ) ,

( i i i ) , and the st i l l stronger continuity condition

( v i ) l im s __, 0 T(s)x = x ίor each χ E ϊ ,

then T(s ) is said to be of class C.

The domain 5)(/4) of the infinitesimal generator A is the set of elements x

for which
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lim τ-ι[T(τ)-I]χ
o

exists, and this limit is defined to be Ax. It follows from ( i v ) (and hence ( v )

or ( v i ) ) that 3 ) ( 4 ) is dense in X (cf. [5 , Theorem 9.3.1]) . We have previously

shown [ 6 ] that 4 is closed if and only if T(s) is of c lass (0 , C ) . However,

even when T(s) is of c lass ( 0 , 4 ) , the infinitesimal generator has a smallest

closed extension, called the complete infinitesimal generator (c . i . g . ) and de-

noted by A. For each x0 G5)(/4) there is a sequence \xn] C^)(A) such that

xn —» x0 and Axn —> Ax0. It follows that R ( λ; A ) is an extension of R ( λ; A ),

that p(A) = p ( Z ) , that A* = ( 4 ) * , and that

It can be shown that

(2.1) ω o = inf log | | 7 1 ( s ) | | / s = lim log | | T(s ) | | /s .
S > 0 S -»oo

EacK λ > ω 0 belongs to the resolvent set for A, and the resolvent is given by

(2.2) R(λ;A)x= ί°° exp(-λσ)T(σ)xdσ;
Jo

see [ 6 ] ,

DEFINITION 2.1. The semi-group T(s) is said to be of class ( 0 , 4 ) ,

(0, C)*, or C* if it is of class ( 0 , 4 ) , (0, C), or C, respectively, and if in

addition 11 Γ* (s )x* | | , 0 £ s <̂  1, is majorized by integrable function for each

DEFINITION 2.2. Let T(s) be a semi-group of class ( 0 , 4 ) with infini-

tesimal generator 4. We define the adjoint semi-group to be the restriction of

T*(s) to X+ = 5)(4*) and denote it by Γ + ( s ) . We denote the infinitesimal

generator of T (s ) by 4 .

For λ E p ( / 4 ) , the resolvent R(λ A) has a unique bounded linear extension R(λ;
A \ on X . If U J C S ( 4 ) , * Λ _ > % 0 € S _ ( T ) , and Axn—>AxOt t h e n R i λ A ) ( λ / -

λ λ { } K ( λ )
\ U J , Λ 0 _ , n
)%7l=Λ;re implies that /? ( λ ; 4 ) t ( λ / - A )xQ = %0. Likewise for { y n } CK (λ/ - 4 )

and y n — > y 0 > the relation (λl — A)R (λ;A)yn = y n implies that (λ/ -A)R ( λ ; 4 > i y 0

 a y o
It follows that / ? ( λ ; ϊ ) ex is ts and is identical with R(λ;A)ι. This shows that p(A ) C
p ( 4 ). A similar argument can be used to prove A* = 4 * , and the last relation is obvious.

4 T h i s condition is automatically satisfied if J^1 | | Γ ( σ ) | | dσ < <χ> or if T(s) if
of c lass C.



THE ADJOINT SEMI-GROUP 275

THEOREM 2.1. If T(s) is a semi-group of class (0, ,4)*, (0, C)*, or C*9

then the adjoint semi-group is of class (0, A), (0, C) or C9 respectively. The

c.i.g. A is the largest restriction of A with domain and range in X .

Proof. According to Theorem 1.5,

R{λ;A*)=R{λ;X*)=R*(λ;A)

a n d h e n c e 2 ) ( ^ 4 * ) i s s i m p l y t h e r a n g e of R*(λ;A). F o r λ > ω 0 , R {λ A) c a n

b e e x p r e s s e d b y m e a n s of a D u n f o r d i n t e g r a l [ 2 ] a s

(2.3) ;4)** = ί°° exp(-λσ)T*(σ)x*dσ.
Jo

It is clear from this that

T*(s)R*(λ;A)=R*{λ;A)T*(s)9

so that T*(s) takes 5)(/I*) into 2 ) U * ) . Since T*(s) is bounded, it follows

that Γ * ( s ) ( X + ) c X + ; that is, T + (s ) G ® (X + ). It is obvious that T*(s) and

hence T (s) satisfies ( i ) .

In order to establish continuity we first note that

(2.4) [ Γ * ( τ ) - / * ] S * ( λ ; 4 ) * * = [ e x p ( λ τ ) - l ] ί°° exp (-λσ) Γ* ( σ ) * * dσ
Jo

-exp(λτ) I exp (~λσ) Γ* (σ)x* dσ.
Jo

The first term in the right member is simply [ e x p ( λ τ ) - l ] R (λ;A)x*9 and

it clearly converges to zero with τ ; further the assumption that \\T (σ)x*\\

is majorized by a function in Lχ(O, 1) implies that the second term also goes

to zero with r . Thus

lim T (s )y* = y*
o

for all y* G ® ( / 4 * ) . It follows from this (cf. [ 5 , Theorem 9.4.1]) that Γ * ( s ) y *

is strongly continuous for s >^ 0, y* G S)(/4 ). Further s ince | | Γ ( s ) | | =

| | T (s ) II is uniformly bounded in each interval of the form ( δ, 1/δ), we see that

T (s )x* is strongly continuous for s > 0 and all x* G X . Thus T (s) sat i s f ies

( i ) , ( i i ) , and ( i i i ) . Again, for each x* G ® ( A * ),
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T (s)x*—> x* as s — > 0

and a fortiori

r " ι I Γ* (σ ) x* dσ —» x* as r —> 0
Jo

and

λ / ? * ( λ ; i ) x * — > * * as λ — > c o .

Now if Γ ( s ) is of class C, then | | Γ * ( s ) | | = 0 ( 1 ) ; if T(s) is of class (0, C)

then

and if T(s) i s of c lass ( 0 , 4 ) then | | λ R * ( λ ; A) \\ = O ( 1 ) . It now follows from

the Banach-Steinhaus theorem that T (s) will satisfy ( v i ) , ( v ) , or ( i v ) with !Γ(s).

Final ly, the c.i.g. A+ of Γ + ( s ) i s determined by i ts resolvent (cf. [ 6 ] ) ,

which for λ > ω 0 can be expressed by the Bochner integral

exr>{-λσ)T+(σ)x*dσ {x* GX + ) .

According to formula (2 .3) this is simply the restriction of R(λ;A*) to X+;

thus A* is a restriction of A*. Now if x* G S ( 4 * ) and 4 * ( % * ) G X + , then

(λ/ —A ) % * G Z and hence

Conversely if %* € 3 ( 1 * ) , then x* G S ( / 1 * ) and 4 * ^ * = 4 + % * G X+. In other

words, /I + is the maximal restriction of 4 * which maps X into X . This con-

cludes the proof.

COROLLARY. / / λ G p ( I ) , then λ G p ( 4 + ) and R{λ;A+) equals the res-

triction ofR(λ;A ) to X .

Proof. If λ ep(A ), then /?(λ;/4*) ex is t s . Let R(λ;A*)0 be the restriction

of R ( λ ; 4 * ) to X+. F o r * * G S X i P 7 ) , we have
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and hence R(λ; /4*)0 is a left inverse for λ/+ - A+. On the other hand if

x* G X , then

Since β ( λ ; 4 * ) 0 * * G 3 ) U * ) C X + we also jiave 4*/? ( λ; 4 * ) 0 ** G X + and

hence by the above theorem R( λ ^ 4 * ) 0 x* G S U ^ I t follows that R ( λ; A* ) 0 is

also the right inverse for λ/ - A* so that λ G p(/4+).

A converse to the_above corollary is obtained in Theorem 3.2 where it is

shown that p(A) = p ( / 4 + ) .

COROLLARY. //X is reflexive, then X = X .

Proof. If X is reflexive, then, according to Theorem 1.1, ®(^4*) is dense

in X . Hence X = S(/4 ) = X .

We conclude this section with two other characterizations of X .

T H E O R E M 2 . 2 . For a semi-group T ( s ) of class ( 0 , 4 ) * , let

Γ = [ * * ; Γ*(s)%*—•> * * as s — > 0 ] .

X = Γ.

Proof. It is clear that S)(/4 ) C Γ; and since 5) ( 4 ) is dense in X , we

have X C Γ. On the other hand if x* € Γ, then a direct calculation shows that

λR(λ;A )#* = λ I e x p ( - λ σ ) Γ (σ)%*ί/σ—> x* as λ—»oo.
Jo

Consequently x* G ®(/4*) = X+.

T H E O R E M 2 . 3 . For a semi-group T (s) of class ( 0 , / I ) let

β].

Then X = Γ o .

Proof. An easy calculation shows that Γ o C Γ. On the other hand if x* G Γ

then

Jo
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and belongs to Γo thus Γo D Γ and therefore Γ o = Γ = X .

3. The adjoint space. We shall call X* the adjoint space to X relative to

the semi-group [T(s)\ or simply, the adjoint space; and we shall denote the

generic element of X by x*. To avoid confusion we shall hereafter refer to

X as the full adjoint space. This section is devoted to a study of the hierarchy

of adjoint spaces which arise from a given semi-group of operators of class

(0,A)*.

It will be observed that whereas

| | * * | | = s u p [ | * + ( * ) I ; 11*11 < l , * e X ] ,

it is not in general true that \\x\\ can be obtained in like manner as

( 3 . 1 ) | | * | | ' = s u p [ | * + ( * ) | ; \\x + \\ < l , * + e X + ] .

All that can be asserted here is that \\x | | ' <_ | | * | | . If X + is equal to the full

adjoint space, then it is clear that | | x \\ '= \ \x | | . This occurs when X is re-

flexive or when A is bounded. In any case we see that the function \\x 11 sat i s-

fies the postulates of a pseudo-norm. However, more is true:

THEOREM 3.1. The norm | 1 * H ' defines an equivalent topology for X; in

fact, there exists an m > 0 such that

11*11 > , l l * I Γ > m l l * l l

for all x 6 X. In particular if

liminf | | λ R ( λ ; l ) | | = l ,

then | | * | | ε | | * | | '

Proof. For a fixed x el there exists an x* el*, | | * * | | = 1 , such that

x*(x) = | | * | | . It follows from (iv) that

[XR*{λ;J)x*]{x)=x*[λR(λ;A)x]—•»**(*) as λ—χχ>,

and from ( i v ) together with the uniform boundedness theorem that

lim | | λ Λ ( λ ; 7 ) | | = A f < oo.



THE ADJOINT SEMI-GROUP 2 7 9

Consequently, given 6 > 0, there is a λe with

| | λ € / ? * ( λ 6 ; Z ) | | <M + e and | [ λ 6 R * ( λ 6 ; 7 ) * * ] (*) - | | * II I < e.

Now

y* E λ ^ * ( λ e ; ^ ) ^ G X + and ||y* | | < if + €.

Hence

X * c) I | | s | | - e

l l r*H ~ M + t

and since e is arbitrary this gives the desired result with m = l/M. In particular

THEOREM 3.2. If[T(s)] is a semi-group of operators of class (0, A) , then

Proof, We have already shown in the first corollary to Theorem 2.1 that

pU)Cp(A + ) . If λGp(/} + ) , then

Since, by Theorem 1,1, 5){A ) C X is weakly* dense in X , the same is true of

ϊ M λ / * - / 4 * ) . It now follows from Theorem 1.3 that λ / - 4 has an inverse.

Further, if

then x*Q e 3 ) ( I * ) and ΐ * * * G ® U * ) C X+, so that a* € © ( ! + ) . Since J ^ i s a

restriction of A*9 this implies that (λ/ - A ) % * = 0 and hence that %* = 0.

Theorem 1.2 now asserts that 3Ϊ( λl-A ) is dense in X, Finally for % E 3ΐ ( λl -A )

we have

λi-AYιx ιx\y

= m-1sup [|*

and this shows that (λ/ — A )"1 is bounded. It follows that λ € p(/4 ).
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We see from the above theorem that A has the same resolvent set as A*

(and A ) in spite of the fact that it is a restriction of A .

Renorming X by | | # | | ' has no effect on our determination of X in fact,

even the norm of the elements of X remains the same. For

imply that

II*ΊI

Nevertheless, when we deal with the second adjoint space relative to a given

semi-group [Γ(s)], a slight advantage is obtained by renorming X in this way

THEOREM 3.3. Suppose that both [T(s)] and [T ( s ) ] are of class ( 0 , 4 ) ,

and let the norm of X be given by \\x\\'. Then X can be embedded in X by

means of the natural mapping.

Proof. E a c h χ Q G X d e f i n e s a u n i q u e b o u n d e d l i n e a r f u n c t i o n a l FQ E ( X ) ,

n a m e l y Fo (% + ) =X + (XQ ) . F u r t h e r ,

| | F o l l = s u P [ | F o ( ^ + ) | = | ^ + ( ^ o ) | ; | | * + | | < l , * + e X + ] = | |* 0 I I ' .

Hence XQ —» Fo is a linear isometric mapping of X onto a subspace of (X ) .

It remains to show that X C(X ) in the above sense. This in turn requires

that X C S [ ( ! + ) * ]. However, if χ0 —4 F o then

Hence

R(λ;A)x0—»/? (λ /4

Now

lim λR (λ ; A)xQ = :

implies that

lim λR*(λ;A4)F0 =F 0
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and since

it follows t h a t * 0

The space X depends only on T + (s) and X+. Further, the norm in X+ is

not effected by renorming X with the norm \\x\\ ' in fact

\χ

Since X with the norm \\x \\ ' is a subset of X , it follows that

II* + I Γ - SUnΓ l x + + ( r + ) l I l r++| | < 1 r+ + £ X + + l - llr+ll

Thus it is only in the case of X and X that a nonsymmetric condition between

norms may arise; for all other pairs of successive adjoint spaces the norms are

symmetric. Even if X is not renormed, X will be isomorphic with its image in

X under the natural mapping.

DEFINITION 3.1. We define the (Γ)-weak topology in X in the usual way

be means of the generic neighborhood

N(xo;x*, • * * * ; e) = [χ; \χ%(χ -χ0) \ < e , k = 1 , , / ι ] ,

where the (x*9 tX*) can be any finite subset of Γ and e is an arbitrary

positive number.

It is of interest to determine when, under the natural mapping, X = X that

is, under what conditions X is reflexive relative to a given semi-group of opera-

tors [7Xs)]. Here we assume that X has been renormed with norm | | % | | ' If X is

a reflexive in the usual sense, then the second corollary to Theorem 2.1 asserts

that X = X , and likewise that

More generally, we have:

T H E O R E M 3.4. Suppose that both [T{s)] and [T ( s ) ] are of class ( 0 , ^ 4 ) ,

and let the norm of X be given by \\x | | ' A necessary and sufficient condition

for X = X is that R(λ; A) be (X )~weakly compact.

Proof. Suppose f irst t h a t R(λ A) i s ( X + )-weakly compact ; t h a t i s , the
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image of each bounded set is contained in an (X + )-weakly compact subset of

X. Let F o be an arbitrary element of (X )*. Then by Helly's theorem, given a

finite subset π C X , there exists an

Xπe%, \\Xπ\\ < 2 | | F 0 | | ,

such that F0(x+) = χ + (x7r) for all x+£ π. Ordering.the πs by inclusion, we

easily see that they form a directed set. Consequently,

[R*( λ; A*)F0] (*+) = Fo [R( A ; ! 7 ) * * ] = lim [R ( λ; A+)x*](xπ)

; A)xΉ].

Since the R{λ;A) image of any bounded set is contained in an (X+)-weakly

compact subset of X, it is easily shown that there exists an χ0 G X such that

l im x + [ R ( λ ; A)xπ] =x + ix0)
π

for all x+ G X+. Thus /?*(_λ^4+)F 0 is the image of x0 under the natural mapping;

in other words, X 3 5) [(/4 + )* ]. This together with Theorem 3.3 shows that

x = x + + .
Conversely, suppose that X = X Then R*(λ;A ) [(X ) ] is contained

in the images of X. Now /?*(λ;/l + ) is continuous in the usual weak* topology

of ( X )*; hence the unit sphere, which is weakly* compact, maps onto a weakly*

compact subset. Now this image lies in X and the weak* topology in X C ( X )

is the same as the (X + )-weak topology for X. Hence R(λ A), which is es-

sentially a restriction of /?*(λ;/l+), takes bounded sets into (X + )-weakly

compact subsets of X. This concludes the proof.

COROLLARY // R(λ A) is weakly compact relative to the usual weak

topology of X, then X = X .

Proof. It is clear that a weakly compact subset of X is also weakly compact

relative to any weaker topology such as the (X )-weak topology of X.
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