SOME DETERMINANTS INVOLVING BERNOULLI AND EULER NUMBERS OF HIGHER ORDER

FRANK R. OLSON

1. Introduction. In this paper we evaluate certain determinants whose elements are the Bernoulli, Euler, and related numbers of higher order. In the notation of Nörlund [1, Chapter 6] these numbers may be defined as follows: the Bernoulli numbers of order n by

$$\left(\frac{t}{e^t - 1}\right)^n = \sum_{v=0}^{\infty} \frac{t^v}{v!} B_v^{(n)},$$

the related "D" numbers by

(1.2)
$$\left(\frac{t}{\sin t}\right)^n \sum_{v=0}^{\infty} (-1)^v \frac{t^{2v}}{(2v)!} D_{2v}^{(n)} \qquad (D_{2v+1}^{(n)} = 0),$$

the Euler numbers of order n by

(1.3)
$$(\sec t)^n = \sum_{v=0}^{\infty} (-1)^v \frac{t^{2v}}{(2v)!} E_{2v}^{(n)} \qquad (E_{2v+1}^{(n)} = 0),$$

and the "C" numbers by

(1.4)
$$\left(\frac{2}{e^t + 1}\right)^n = \sum_{v=0}^{\infty} \frac{t^v}{v!} \frac{C_v^{(n)}}{2^v}.$$

(By n we denote an arbitrary complex number. When n=1, we omit the upper index in writing the numbers; for example, $B_v^{(1)} = B_v$.)

We evaluate determinants such as

$$|B_{i}^{(x_{j})}|$$
 $(i, j = 0, 1, \dots, m)$

for the Bernoulli numbers, and similar determinants for the other numbers. The Received July 29, 1953.

Pacific J. Math. 5 (1955), 259-268

proofs of these results follow from the evaluation of a determinant of a more general nature; see (3.4), below. Finally, a number of applications are given.

2. Preliminaries and notation. The numbers $B_v^{(n)}$, $D_{2v}^{(n)}$, $E_{2v}^{(n)}$, and $C_v^{(n)}$ may be expressed as polynomials in n of degree v [1, Chapter 6]; in particular,

$$B_0^{(n)} = D_0^{(n)} = E_0^{(n)} = C_0^{(n)} = 1$$
.

Although little is known about these polynomials, it will suffice for our purposes to give explicitly the values of the coefficients of n^{ν} in each of the four cases.

Considering first the Bernoulli numbers, we use the recursion formula [1, p. 146]

(2.1)
$$B_v^{(n)} = -\frac{n}{v} \sum_{s=1}^v (-1)^s \binom{v}{s} B_s B_{v-s}^{(n)}.$$

Let

$$B_v^{(n)} = b_v n^v + b_{v-1} n^{v-1} + \cdots + b_0$$
,

$$B_{v-1}^{(n)} = b_{v-1}^{\prime} n^{v-1} + b_{v-2}^{\prime} n^{v-2} + \cdots + b_0^{\prime}$$

and compare coefficients of n^{ν} on both sides of (2.1). We find that

$$b_v = -\frac{1}{v} (-1) {v \choose 1} B_1 b'_{v-1}.$$

But $B_1 = -1/2$ and therefore $b_v = -b_{v-1}/2$. Since $B_0^{(n)} = 1$, the preceding leads us recursively to

(2.2)
$$B_{v}^{(n)} = \left(-\frac{1}{2}\right)^{v} n^{v} + b_{v-1} n^{v-1} + \dots + b_{0}.$$

In a similar fashion the formula [1, p. 146]

(2.3)
$$C_{v+1}^{(n)} = -n \sum_{s=0}^{v} (-1)^s {v \choose s} C_s C_{v-s}^{(n)},$$

coupled with $C_0^{(n)} = 1$, permits us to write

(2.4)
$$C_{v}^{(n)} = (-1)^{v} n^{v} + c_{v-1} n^{v-1} + \dots + c_{0}.$$

As for the Euler numbers, we consider the symbolic formula [1, p. 124]

$$(2.5) (E^{(n)} + 1)^{2v} + (E^{(n)} - 1)^{2v} = 2E_{2v}^{(n-1)}$$

in which, after expansion, exponents on the left side are degraded to subscripts. Hence we have

(2.6)
$$E_{2v}^{(n)} + \frac{(2v)(2v-1)}{1\cdot 2} E_{2v-2}^{(n)} + \cdots = E_{2v}^{(n-1)}.$$

Writing

$$E_{2v}^{(n)} = e_v n^v + e_{v-1} n^{v-1} + \cdots + e_0$$
,

and

$$E_{2v-2}^{(n)} = e_{v-1}^{\prime} n^{v-1} + e_{v-2n}^{\prime} n^{v-2} + \cdots + e_0^{\prime}$$
,

we see first that

$$E_{2v}^{(n)} - E_{2v}^{(n-1)} = ve_v n^{v-1} + \text{terms of lower degree}.$$

Hence comparing coefficients of $n^{\nu-1}$ in (2.6) we have

$$e_v = -\frac{(2v)(2v-1)}{2v}e'_{v-1}.$$

Since $E_0^{(n)} = 1$, we obtain recursively

(2.7)
$$E_{2v}^{(n)} = \frac{(2v)!}{(-2)^v v!} n^v + e_{v-1} n^{v-1} + \dots + e_0.$$

Next, from [1, p. 129]

$$(2.8) (D^{(n)} + 1)^{2v+1} - (D^{(n)} - 1)^{2v+1} = 2(2v+1)D_{2v}^{(n-1)},$$

we find that

(2.9)
$$D_{2v}^{(n)} = \left(-\frac{1}{6}\right)^{v} \frac{(2v)!}{v!} n^{v} + d_{n-1}n^{v-1} + \dots + d_{0}.$$

We shall employ the difference operator Δ_d = Δ for which

$$\Delta f(x) = f(x+d) - f(x)$$
 and $\Delta^v = \Delta \cdot \Delta^{v-1}$.

We recall that if

$$f(x) = a_v x^v + a_{v-1} x^{v-1} + \cdots + a_0$$

then

$$\Delta^{v} f(x) = a_{v} d^{v} v!$$

3. Main results. Let

(3.1)
$$f_n(x) = a_{n,n}x^n + a_{n,n-1}x^{n-1} + \dots + a_{n,0} \quad (a_{n,n} \neq 0),$$

and consider the determinant

(3.2)
$$|f_i(x_j)|$$
 (i, $j = 0, 1, \dots, m$).

This may be written as the product of the two determinants

(3.3)
$$\begin{vmatrix} a_{0,0} & 0 & \cdots & 0 \\ a_{1,0} & a_{1,1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,0} & a_{m,1} & \cdots & a_{m,m} \end{vmatrix} \cdot \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_m \\ \vdots & \vdots & \ddots & \vdots \\ x_0^m & x_1^m & \cdots & x_m^m \end{vmatrix}.$$

The first determinant in (3.3) reduces simply to the product of the elements on the main diagonal, and the second is the familiar Vandermond determinant. Hence

(3.4)
$$|f_i(x_j)| = \prod_{k=0}^m a_{k,k} \prod_{r>s} (x_r - x_s)$$
 $(r, s = 0, 1, \dots, m).$

If we let

$$f_i(x_j) = B_i^{(x_j)},$$

then it follows from (3.4) and (2.2) that

$$(3.5) |B_i^{(x_j)}| = \prod_{k=0}^m \left(-\frac{1}{2}\right)^k \prod_{r>s} (x_r - x_s) (i, j, r, s = 0, 1, \dots, m).$$

Application of (3.4) to (2.4), (2.7), and (2.9) yields results of a similar nature for the C, D, and E numbers. Consequently we have:

THEOREM 1. For $i, j = 0, 1, \dots, m$,

(i)
$$|B_i^{(x_j)}| = \prod_{k=0}^m \left(-\frac{1}{2}\right)^k \prod_{r>s} (x_r - x_s),$$

(ii)
$$|C_i^{(x_j)}| = \prod_{k=0}^m (-1)^k \prod_{r>s} (x_r - x_s),$$

(iii)
$$|D_{2i}^{(x_j)}| = \prod_{k=0}^m \left(-\frac{1}{6}\right)^k \frac{(2k)!}{k!} \prod_{r>s} (x_r - x_s),$$

(iv)
$$|E_{2i}^{(x_j)}| = \prod_{k=0}^m \left(-\frac{1}{2}\right)^k \frac{(2k)!}{k!} \prod_{r \ge s} (x_r - x_s).$$

If we take $x_j = a + jd$ then we obtain:

COROLLARY 1. For $i, j = 0, 1, \dots, m$, a and d constants,

(i)
$$|B_i^{(a+jd)}| = \prod_{k=0}^m \left(-\frac{d}{2}\right)^k k!,$$

(ii)
$$|C_i^{(a+jd)}| = \prod_{k=0}^m (-d)^k k!,$$

(iii)
$$|D_{2i}^{(a+jd)}| = \prod_{k=0}^{m} \left(-\frac{d}{6}\right)^{k} (2k)!,$$

(iv)
$$|E_{2i}^{(a+jd)}| = \prod_{k=0}^{m} \left(-\frac{d}{2}\right)^k (2k)!$$

If we let

$$f_i(a + xd_i) = g_i(x),$$

 $f_i(x)$ defined as in (3.1), then we can readily show by the above method that

(3.6)
$$|f_i(a+jd_i)| = \prod_{k=0}^m a_{k,k} d_k^k k!$$
 (i, $j=0,1,\dots,m$).

Hence (3.6) implies

$$|B_{i}^{(a+jd_{i})}| = \prod_{k=0}^{m} \left(-\frac{d_{k}}{2}\right)^{k} k!,$$

with like results for the other numbers.

We remark that the determinants of Corollary 1 may also be evaluated by a succession of column subtractions.

4. Applications. We consider first the determinant

(4.1)
$$|B_i^{(a+jd)}(x)|$$
 (i, $j = 0, 1, \dots, m; a, d \text{ constants}),$

where $B_i^{(n)}(x)$ is the Bernoulli polynomial of order n defined by [1, p. 145]

$$\left(\frac{t}{e^{t}-1}\right)^{n} e^{xt} = \sum_{r=0}^{\infty} \frac{t^{v}}{v!} B_{v}^{(n)}(x).$$

(For x = 0, $B_v^{(n)}(0) = B_v^{(n)}$, the Bernoulli number of order n.) Also, by [1, p. 143],

$$B_v^{(n)}(x) = \sum_{s=0}^v {v \choose s} x^{v-s} B_s^{(n)}.$$

Consequently

(4.2)
$$|B_i^{(a+jd)}(x)| = \left| \sum_{s=0}^i {i \choose s} x^{i-s} B_s^{(a+jd)} \right|.$$

If we define

$$\binom{0}{0} = 1$$
 and $\binom{i}{j} = 0$ for $j > i$,

then the right member of (4.2) may be written as the product of the two determinants;

$$\left|\binom{i}{i}x^{i-j}\right|\cdot |B_i^{(a+jd)}|.$$

The first determinant has value 1 and hence, by Corollary 1(i),

(4.3)
$$|B_i^{(a+jd)}(x)| = \prod_{k=0}^m \left(-\frac{d}{2}\right)^k k!.$$

The Bernoulli polynomials may also be expressed in terms of the D numbers by [1, p. 130]

(4.4)
$$B_v^{(n)}(x) = \sum_{s=0}^{\lfloor v/2 \rfloor} {v \choose 2s} \left(x - \frac{n}{2} \right)^{v-2s} D_{2s}^{(n)} / 2^{2s}.$$

If in (4.3) we let x = hn, $h \neq 1/2$, then

(4.5)
$$B_{v}^{(n)}(hn) = \sum_{r=0}^{\lfloor v/2 \rfloor} {v \choose 2s} \left(h - \frac{1}{2}\right)^{v-2s} n^{v-2s} D_{2n}^{(n)} / 2^{2s}.$$

Since $D_{2n}^{(n)}$ may be written as a polynomial in n of degree s, and $D_0^{(n)} = 1$, it follows readily from (4.4) that, expressed as a polynomial in n,

(4.6)
$$B_v^{(n)}(hn) = \left(h - \frac{1}{2}\right)^v n^v + \text{terms of lower degree.}$$

Consequently, using the same procedure that gave (3.4), we can show for a, d fixed constants, $i, j = 0, 1, \dots, m$, that

(4.7)
$$|B_i^{(a+jd)}(h(a+jd))| = \prod_{k=0}^m \left(h - \frac{1}{2}\right)^k d^k k!.$$

For h=0, (4.7) reduces to the case of Corollary 1(i). If h=1/2 and v is odd, then it follows from (4.4) that

$$B_v^{(n)}(n/2) = 0$$
.

Therefore for $m \ge 1$, the value of the determinant in (4.6) is zero. However, if v is even, then

$$B_v^{(n)}(n/2) = D_v^{(n)}/2^{2v}$$
,

and

(4.7)'
$$\left| B_{2i}^{(a+jd)} \left(\frac{a+jd}{2} \right) \right| = \left| D_{2i}^{(a+jd)} / 2^{2i} \right| = \prod_{k=0}^{m} \left(-\frac{d}{24} \right)^{k} (2k)!,$$

where in evaluating the second determinant we have applied Corollary 1(iii). Finally, it is of interest to point out that [1, p. 4]

$$\Delta^{\nu} f(x) = \sum_{j=0}^{\nu} (-1)^{\nu-j} {v \choose j} f(x+jd)$$

together with (2.2), (2.4), (2.7), (2.9), and (2.10) yield the recursion formulas

(4.8)
$$\sum_{j=0}^{v} (-1)^{v-j} {v \choose j} B_v^{(a+jd)} = \left(-\frac{d}{2}\right)^v v!,$$

(4.9)
$$\sum_{j=0}^{v} (-1)^{v-j} \binom{v}{j} C_v^{(a+jd)} = (-d)^v v!,$$

(4.10)
$$\sum_{j=0}^{v} (-1)^{v-j} {v \choose j} E_{2v}^{(a+jd)} = \left(-\frac{d}{2}\right)^{v} (2v)!$$

and

(4.11)
$$\sum_{j=0}^{v} (-1)^{v-j} {v \choose j} D_{2v}^{(a+jd)} = \left(-\frac{d}{6}\right)^{v} (2v)!.$$

5. Some additional results. The above methods may also be applied to the evaluation of determinants involving the classic orthogonal polynomials. We consider first the Laguerre polynomials defined by [2, p. 97]

(5.1)
$$L_n^{(\alpha)} = \prod_{v=0}^n \binom{n+\alpha}{n-v} \frac{(-x)^v}{v!} .$$

Setting $\alpha = a + jd$ and writing (5.1) as a polynomial in j we have

$$L_n^{(a+jd)}(x) = j^n \frac{d^n}{n!} + \text{terms of lower degree.}$$

Consequently, as in § 3, we obtain

$$(5.2) |L_i^{(a+jd)}(x)| = \prod_{k=0}^{m-1} d^k = d^{\frac{1}{2}m(m-1)} (i, j = 0, 1, \dots, m-1).$$

For the Jacobi polynomials defined by [2, p. 67]

$$(5.3) P_n^{(\alpha,\beta)}(x) = \sum_{v=0}^n \binom{n+\alpha}{n-v} \binom{n+\beta}{v} \left(\frac{x-1}{2}\right)^v \left(\frac{x+1}{2}\right)^{n-v}$$

we set $\alpha = a + jd$ and hold β fixed. Then, as a polynomial in j

$$P_n^{(a+jd,\beta)}(x) = j^n \frac{d^n}{2^n} \frac{(x+1)^n}{n!} + \text{terms of lower degree.}$$

Hence, we find

$$(5.4) |P_i^{(a+jd,\beta)}(x)| = \left\{\frac{(x+1)d}{2}\right\}^{\frac{1}{2}m(m-1)} (i, j=0,1,\dots,m-1).$$

Similarly

$$(5.5) |P_i^{(a,b+je)}(x)| = \left\{\frac{(x-1)e}{2}\right\}^{\frac{1}{2}m(m-1)} (i,j=0,1,\cdots,m-1).$$

We consider next, as a polynomial in j,

$$P_n^{(a+jd,b+je)}(x)$$

$$= j^n \sum_{n=0}^{\infty} \frac{\alpha^{n-\nu}}{(n-\nu)!} \frac{e^{\nu}}{\nu!} \left(\frac{x-1}{2}\right)^{\nu} \left(\frac{x+1}{2}\right)^{n-\nu} + \text{terms of lower degree}$$

$$= \frac{j^n}{n!} \left[\frac{(d+e)x + d - e}{2} \right]^n + \text{terms of lower degree,}$$

which yields

$$(5.6) |P_i^{(a+jd,b+je)}(x)| = \left[\frac{(d+e)x+d-e}{2}\right]^{\frac{1}{2}m(m-1)}$$

$$(i, i=0, 1, \dots, m-1),$$

Finally, for $\alpha = \beta$, the Jacobi polynomials reduce to the ultraspherical polynomials $P^{(\alpha)}(x)$. It follows from (5.6) that

$$(5.7) |P_i^{(a+jd)}(x)| = (dx)^{\frac{1}{2}m(m-1)} \qquad (i, j=0, 1, \dots, m-1).$$

REFERENCES

- 1. N. E. Nörlund, Differenzenrechnung, Berlin, 1924.
- 2. Gabor Szegő, Orthogonal polynomials, New York, 1939.

DUKE UNIVERSITY