LOWER BOUNDS FOR HIGHER EIGENVALUES
BY FINITE DIFFERENCE METHODS

H. F. WEINBERGER

1. Introduction. This paper gives lower bounds for all the eigen-
values of an arbitrary second order self-adjoint elliptic differential
operator on a bounded domain R with zero boundary conditions in terms
of the eigenvalues of an associated finite difference problem. When R
is sufficiently smooth, the lower bounds converge to the eigenvalues
themselves as the mesh size approaches zero. A certain class of self-
abjoint systems of elliptic differential equations containing no mixed
derivatives is also treated.

Upper bounds for the eigenvalues of a differential operator can
always be found by the Rayleigh-Ritz method. That is, one puts piece-
wise differentiable functions vanishing on the boundary into the Poincaré
inequality [14]. It was pointed out by Courant [2] that in the case of
second order operators one can reduce the problem of upper bounds to
a finite difference eigenvalue problem by using piecewise linear functions
(see §6).

Lower bounds are more difficult to find. The only known method
giving arbitrarily close lower bounds for the eigenvalues is that of A.
Weinstein [20], which is usually quite difficult to apply. It was shown
by G. E. Forsythe [5, 6, 7] that if the eigenvalues 1, £2,< --- of the
two-dimensional problem

1.1) du+2u=0 in R

with #=0 on the boundary are approximated by the eigenvalues
A <ZAM< ... of a certain finite difference problem on a mesh of size
h, then there exist constants y®y®... such that

(1.2) A < e — TR +o(h?) .

The ™ cannot be computed, but are positive for convex R. However,
the o(A*) term is completely unknown, so that this asymptotic formula
cannot be used to bound 1, below.

It was shown independently by J. Hersch [8] and the author [18,
19] that if 2, is the lowest eigenvalue of (1.1) and if (™ is the lowest
eigenvalue of a finite difference problem on a mesh that is slightly
arger than R, then 2™ and, in fact, a quantity slightly larger than ™
are lower bounds for 4.
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This result is here extended to higher eigenvalues, higher dimensions,
and variable coefficients by a modification of the method previously used
by the author. The basic idea is to define a mesh function by an
average over mesh squares of a linear combination of the first %
eigenfunctions of (1.1). One then defines the finite difference eigenvalue
problem in such a way that its Rayleigh quotient evaluated for this
mesh function can be estimated in terms of the unknown eigenvalue
Jy. By the Poincaré inequality this leads to an upper bound for the
eigenvalue 1{” in terms of 2,, which serves as a lower bound for 2, in
terms of A{.!

For the sake of clarity, the method is first presented for the prob-
lem (1.1) in §2. It must be noted that while the lower bound (2.25)
holds for all 2, it is not as good for 2, as the bound previously given
either by Hersch [8] or the author [19]. It is smaller, rather than
larger, than ¢V by a term of order A2

The method extends easily to an equation in N dimensions with
variable coefficients when the operator contains no mixed derivatives.
This extension is made in §3. Again the lower bound is smaller than
2 by a term of order A%

In §4 the general second order self-adjoint operator is considered.
The presence of mixed derivatives introduces complications. The lower
bound becomes ¢ reduced by a term of order A/:. Furthermore, it
becomes necssary to assume that B has no re-entrant cusps, corners,
or edges, and that it does not have infinite oscillations.

Section 5 presents an extension of the lower bound to a self-adjoint
system of second order equations with no mixed derivatives. The
extension to a system with mixed derivatives appears to be very
difficult, and is not dene.

In §6 the difference between upper and lower bound is discussed.
It is estimated explicitly for convex B. At the same time this discussion
serves to show when the lower bounds converge to the eigenvalues.

In §7 we take account of the fact that the solution vanishing on
the boundary of a non-homogeneous differential equation can be character-
ized by a minimum principle (Dirichlet’s principle). Using the methods
developed for eigenvalues, we give a methoed for finding a lower bound
for this minimum. It is, of course, true that in this case one can
get a get a lower bound by Thomson’s principle. However, this principle
involves solutions of the differential equation which may be difficult to
find as well as difficult to compute with. Finite difference methods are
more amenable to high speed computation. The upper and lower bounds
so obtained, together with the function that gives the upper bound,
can be used to find upper and lower bounds for the solution at an

(h;l'A' similar idea was used by L. Collatz [1] to establish the order of magnitude of
[Ak "~ 2|.
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interior point by the method of Diaz and Greenberg [3, 4].
Section 8 indicates the extension of our method to an important

class of higher order operators. This extension is applied to the problem
of the vibrating clamped plate.

2. The basic bound. Let the eigenvalues of

2.1) du 4+ =0 in R,
=20 on the boundary R

be denoted by

(2.2) LS A< see

Let the corresponding eigenfunctions, normalized so that
(2.3) Luz o dy=1

be denoted by u, u,, ---.

Consider the z-y plane divided into squares by lines ax=mh, y=nh,
m,n=0, +1, +2-... Let R, be a region consisting of a union of entire
squares of this grid and having the property of containing not only R,
but also all its left and downward translates of distances up to 4 :*

(2.4) R,>D {(z, Yl(@+a, y+F)eR for some 0 =a=<h, 0B =h}.

We consider the class M, of functions wv(mh, nh) defined at mesh
points (mh, nh) in R, and vanishing at boundary points of R,. The
eigenvalues (2.2) are to be approximated by the eigenvalues

(2.5) I < AW < ves

of the finite difference problem

(2.6) A+ = 0

where v is a mesh function of the class M,, and

(2.7) dw=n"v(mh~+h, nh)+v(mh—h, nh)+v(mh, nh-+h)
+wv(mh, nh—h)—4v(mh, nh)] .

The eigenvalues (2.5) are bounded above by the Poincaré (Rayleigh-
Ritz) inequality [14], which states that for v, v, ---, v, of class M,
and linearly independent

2 Equivalently, if the intersection of R and the square mh<zx<(m+1)k, nh<y<(n+1)h
is non-empty, then (mh, nh) is an interior point of Ej.
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D, (¢, - - +60;,)

2.8 PO < max : n\S1v1 3 ¥

(2.8) g Eoeenty B D (EWit e o +E0)
(mh,nh) GR’L

where

(2.9) D,,(v)(ﬁ,n% e{}[;v(karh,nh) — v(mh,nh)P + [v(mh,nh+h) — v (mh,nh)}} .

Let w(x, y) be a continuous piecewise continuously differentiable
function in the whole x-y plane which vanishes outside R. We define
the mesh function

(2.10) o(mh, nh) = h‘zghshu(mk—l—a, nh-+B) da dp .
0Jo
Because of (2.4) this function belongs to M,. We note that

(2.11) Lguzdx dy — 1* 3. v(mh,nh)’

(ml,nh)€ER,

= Z Sh Sh[u(mh+a, nh+ﬂ) — 'U(mk, nh)]z da dﬂ .

(mh,mh)€ER; JO JO
By definition (2.10)
(2.12) X" S” [u(mh + a, nh + f) — v(mh, nh)ldadf =0 .
0 Jo

Consequently, each integral on the right of (2.11) is bounded by the
integral of the gradient of «# times the reciprocal of the second free
membrane eigenvalue for the square of side 4 :

(2.13) g S:[u(mma, nh+B) — vimh, nh)F da dp

=< EZ Shrlgrad w(mh+a, nh+p)*dadp .
T 0

0

Replacing this in (2.11) and summing over all the squares, we have

(2.14) H wdedy — BS v < ESS lgrad u* do dy .
R Rh T R

Now let

(2~15) w==8&u + <+ + &u,

where the u; are the normalized eigenfunctions of (2.1), and the &, are
any real numbers. Then we have

(2.16) v =E&w, + -0+ G,
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where the v, are defined in terms of the u; just as v is defined in terms
of u by (2.10). Inequality (2.14) can be written in the form

k 2 k
@2.17) RS Em e tany =S S,
R, §=1 IIZi=1

This gives a lower bound for the denominator of the ratio in (2.8). In
order to be certain that the mesh functions v; are linearly independent,
we assume that % is chosen so small that this lower bound is always
positive. That is, we take

(2.18) B < iy .

We now turn to the numerator in (2.8). We note that if » and »
are again related by (2.10), we have

(2.19) v(mh—+h, nh)—v(mh, nh)
— Sndashdﬁ 2a) % (mh+a, nh+8),
0 0 0x

with a similar formula for v(mh, nh+h)—v(mh, nk). Here we have put

fac 0ash
2h—«

(2.20) da)= l ha<2h.
L0 elsewhere
so that
(2.21) $(@) + $lath) + gla—n) = b, ["9@)da =1
Consequently, we can write
(2.22) SS |grad ul* do dy—Dy(v)
R

2h h au
=hr'2 S dag dp s//(a)l:{ —= (mh+a, nh+p)
B S0 0 ox
— B Co(mh-h, mh)—v(mh, nh)> }
+ { %‘(mmr B, nh+a) — b= (o(mh, nh-+-h) — v(mh, nh)> }] >0.
Again making the substitutions (2.15) and (2.16), we have

k
(2.23) D&, + -+ + &) = g{ A&

Inserting (2,17) and (2.23) in the bound (2.8) yields
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k
=1

(2.24) 2 < max

et ST
T

i=1

k
Wy

2

T

Solving for 2, we find the lower bound

Pl
o

P

(2.25) 2

v

This bound was derived under the assumption that (2.18) holds.
However, if (2.18) is violated, (2.25) is trivially true. Thus, the lower
bound (2.25) holds for all £ such that A% is defined (k¥ at most equal
to the number of interior mesh points of R,). The same type of
consideration will apply in all the derivations to follow. That is, one
derives the lower bound by assuming an inequality like (2.18) to hold,
and then finds that the lower bound also holds when the inequality is
violated. We shall suppress this argument in what follows.

3. Variable coefficients, no mixed derivatives. We now extend the
results of the preceding section to an eigenvalue problem in N dimensions.
We consider the problem

_$ 0 (0 o
(3.1) S22 () rqu=1u g,

u=0 on the boundary R.

Here R is a bounded N-dimensional domain. The functions p' ¢, and
r are assumed to be piecewise continuously differentiable. We assume
p* and r to be positive and ¢ non-negative in the closure of R. The
eigenvalues are arranged in increasing order

(3.2) MEE e

and the corresponding eigenfunctions, normalized by
(3.3) S rutdv=1,
R

are called u,, u,, ---

The space is divided into N-cubes by the planes z'=m‘h, mi=0,
+1, +£2,---.

We again denote by R, a region consisting of the union of mesh
cubes, and containing not only R but all its translates in negative
w-directions of distances up to 2. We denote by M, the class of functions
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v(m'h, --+, m” k) defined at mesh points and vanishing at all such points
on the bounday of or exterior to R,.

Let w(x', ---, ™) be a continuous piecewise differentiable function
vanishing outside E. Then by definition of R, the mesh funection

(3.4) v(m'h, <+, m'h) = h‘NS ; Iu(m%—l—a‘)da‘ cee da?

is in M,. We define the mesh function®

(8.5) Ay = [ Al dal T

osa’=n r(mih+ )

Analogous to (2.11) we have the identity
(3.6) S 12 dV — WS Fimihyo(mik)?
R

— i i - 3 3 da O’»N
-3 Soe [r(mh-+ayulmh ko) = Hmhyo(mh)T e

Also, by (3.4) and (3.5)

3.7 So [+ ayu(mh+of) — r(m'h)yv(mh)] dc(“ % :l—d;i;v

Thus, we are again led to a free membrane problem, and we find

(3.8)S [ru —rp ™ SARLL: N=

0<al r T

. lgrad ru(m'h+a)Pdat - - - da”,
=h

where we have put

(3.9) 7, = min r{', «--, x¥) .
T€R

By the triangle inequality

(3.10) {Sngrad rul”dV}m < {erlgrad u|2dv}”z+ {Luzlgrad rl'“’dV}m

Hence we have

3 The definition of 7(x) outside R is rather arbitrary. We choose it in such a way
that the term in the bracket is the mean value of 7 over the intersection of the domain

of integration with R. Since /Igcm decreases with increasing Rj;, we can assume without
loss of generality that R, is minimal with respect to the analogue of (2.4), so that for
squares corresponding to interior points of R, this intersection is not empty. Similar
considerations will apply to the mesh functions formed from the other coefficients.
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(3.11) k”§7v2>g rurdv — [KSR[pl( oYy

[ A oxt

(22 oo ] o) ]

where
(3.12) K = max (L) ,
ZER p
fml,eee,N
L = max(——m| grad rlf*) .
r
We also find

—— — . o0 L
@13 [eav-wraw=s| oo QDA‘_qi%__ >0,
' =@ <h

By,

where we have put

— - datte  «da™
3.14 ) = [h NS ]
( ) q(m'h) osatsn q(mih__l_ai)

Using the function ¢(«a) defined by (2.20), we find that

(3.15) S pl( L )2dV—h”'2 S P mth) [o(mih+h, mih, -, mh)
R oxt B,

e ) =) S
Rh 0_<.w1§2h,
0sw =h, j>1

{p (m*h+a ) (m% +at)

-Ipt 1 1 ? 1 da®
— B Blo(mh+h) — vimh)]} e )7’1(77&35(@5 >0,
where we have put’
1 N1
3.16 Dmih) = [k—N_IS ¢(a)dat - -da ] .
( ) p(m'h) osa s P (mih+at)

0<w1
In this way we find that if we define the quadratic form

@1 Q) = k¥ Sk S P03 — we )T + 7w}

for mesh funetions w in M,, where?

— Ndait« - - da¥ -1
3.18 ) = [h“”‘lg 4G ]
( ) p osﬂjsm p(mih+a)

Osa’<h, I#)

4 See footnote 3. We make the convention that ¢=0 if the integral diverges or if
g=0 in an open set,
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and ¢ is defined by (3.14), then

(3.19) o = [ [p( 2y + e +w (28] + aw]av.

oxt ox~

We now define the numbers A<M < ... as the successive minima
of a ratio of quadratic forms:

(3.20) a® = min Q)
weRy BN S rop?
By,

The 2» are eigenvalues of the finite difference problem

(3.21) L®w 4+ quw = 1%rw ,
weM, ,
where
(3.22) LOw(mh) = — h=25 {p(mih) [w(m'h+6,,k) — wm'h)]
j=1

— P(mh—dy,k) [w(m'h) — w(m'h—6,,0)]} .

The equation (3.21) is clearly a finite difference analogue of (3.1).
We now proceed exactly as in § 2 to let

(3.23) U= Uy + -+ Sy
where the u; are the normalized eigenfunctions of (3.1). Then
(3.24) v =60+ e+ S

where the v, are related to the u, by (3.4). We apply the Poincaré
inequality

(3.25) A < max — QEE-c-+ED)
fpeenky k_N%:; (v« « + )
h

together with the inequalities (3.19) and (3.11) to find

2
1~_’L‘[1/E,7+1/f]2 '

(o

(3.26) 0 =<

Solving for 1, we obtain the lower bound
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1+ P -} - 2 gLy
b U o

B2 Az =

Ty,

1+ K

Clearly this lower bound differs from A{” only by a term of order
h*. It should be noted that it is independent of N and, except for i
itself, of k. For the case of the Laplace operator treated in section
2, K=r,=1 and L=0. Then (3.27) reduces to (2.25).

We note that (3.27) simplifies considerably when the function » is
constant so that L=0 .

4. The general self-adjoint case. In the preceding section we
restricted ourselves to the differential equation (3.1), where no mixed
derivatives occur. In this section we shall treat the general case

N
(4.1) - i(aiﬂﬁi) tqu=du inR,
=1 0xt ox’
u=20 on R .

Here a'’ is assumed to be a uniformly positive definite symmetric matrix
in R, r is assumed positive, and ¢ non-negative. All coefficients are
taken as piecewise differentiable.

We keep the notation of §3. In particular, we consider the
continuous function % vanishing outside R, and the mesh funection v in
M, defined by (3.4).

The inequalities (3.11) and (3.13) can be used almost without change.
The problem is to find a quadratic form in v which can be bounded from
above in terms of the quadratic form

Cil ou ou ,
4.2 S [ y 0w ou ‘]dV ,
(42) R wz;‘l ¢ oz’ ox’ o

and which approximates this form for small 4.
We begin with the identity

(4.3) S Sa 0 P gy vy S G,

rij=1  0X' Ox By, ,0=1

— 2 S ivj. a/”[:a,““fa—u(m"h—l—ap) _ Emwk} I:an f}ﬁ_ (mph+ap)
Ry, ox* oxt

0<aP<h 4,3,k,1=1

— E”wl]dal s da” 20 .

Here a;, is the inverse matrix of ¢, and we have defined the mesh
matrix®
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(4.4) T (mih) = I:kNS | ay(mhta)dad - -+ daN]"l ,
0=Sa'<h
ie.,
(4.5) i [h‘NS , @ (m'h+at)dat - - - dac”] ar(mh) = o, ,
p=1 0w =<h
and the mesh vector
(4.6) wy(mh) = [k—N_g z ou (mh+at)dat - - - dazv:l .
o=a'sn Ok

While w, is clearly an approximation to 8u /62, it cannot be obtained
from v or any other mesh function. Therefore, (4.3) does not give a
quadratic form in ». However, since the finite difference

.7 A vl(m'h) = b [o(mih+ k) — v(m'h)]

also approximates 0u/0x®, it must approximate w,. We estimate the
error introduced by using d,v] instead of w,. It follows from the
triangle inequality that

(4.8) {kNth [ ij advld,[v] + aﬂ}”’ <{ws [ S Gwas, + q—vz] }“2

i=1 B L 09
I S S Fo—di) - o))

It can be seen from the definition (4.4) that largest and smallest eigen-
values of a” lie between the maximum of the largest eigenvalue and
minimum of the smallest eigenvalue of @ in the cube of definition.
Hence, a is still positive definite so that the triangle inequality applies.
The first term on the right of (4.8) is bounded by means of (4.3). The
second term is the error due to replacing w, by d,[v]. We shall bound
it.

Let the constant @ be a uniform upper bound for the eigenvalues
of a¥; that is,

N
2. aEE;
(4.9) o= max b=t
Efyoee, fy G4 oo 1EL

Then the same bound holds if @ is replaced by a”. Hence,
N
410) AT S S @w—dfv]) (w,—dv]) < ab¥ 35 (w—dv]) .
R, i,J=1 Ry, i=1

We use the identity
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4.11)  w(mh) — dvlmh) = g o(a@) % (mthtaddat - - - da¥

0=a’<on ox®
0<alsh,li
N 0w 0o’
— g : das, ,

fgo(a) oxt on

where
L opreg@h—a) 0<a<h,

(4.12) o(a) =

_21_ BT 2h—a)  h<a<2h.

The volume integral is actually over the intersection of the
rectangular parallelepiped with 2. On the boundaries of the parallelepiped
the integrand of the surface integral vanishes by the construction of

¢. Thus, the last integal is only over the part of R cut by the paral-
lelepiped.

We apply Schwarz’s inequality and the triangle inequality to (4.11),
and note that R is covered twice by each set of parallelepipeds. Using

the fact that «=0 on R we have

(4.13) {n 5 s (wz—dz[’vl)z}m = {;% w3y L(’g;??)zdv}m

N ou\? gpz dact \* 1/2
n [ fr(2Yas. 2 (2 Yas.| "
+{ RZ,:E{ 6n> F \ on )
Here F is an arbitrary positive function defined on R. To estimate the
last term on the right, we note that f laai/anIdSM‘ represents the pro-

jection perpendicular to the zf-axis of the total surface. We call v, the

maximum number of intersections of R with any line segment of length
2h parallel to one of the coordinate axes. Clearly, v, is a monotone

increasing function of 4. If R is at all regular, v, is bounded, and

equals 2 for sufficiently small 2. Noting that gozg%hmm [oatfon| <1,

and that the projection of any one layer of area within the parallelepiped
in the z’-direction is at most 2%~* we have

2 aai 4 v hl—N
4.14 jf 9> (0o Ygg < w7
(414) F ( on ) = 4F

where
(4.15) F, = min F,

ZER
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Again taking account of the fact that R is covered twice by each
set of parallelepipeds, we have

wo ey Seam)” s ] (e

Ry, i=1 i=1 JrR\ Ox¥
th/’& 7 8_u>zds}llz
+{ 2F, Ji (fm

It thus becomes necessary to bound the integral of the sum of
squares of the second derivatives of u, and a boundary integral of the
square of the normal derivative of . We begin with the latter.

We utilize an identity which was found for the Laplace operator
by F. Rellich [16], for hyperbolic operators by L. Hormander [9], and
which was extensively used for purposes similar to the present one by
L. E. Payne and the author [11, 12, 13]. Let f'(z), ---, fx(x) be an
arbitrary piecewise differentiable vector field in R. The identity is

“n S e
ZS ”1\; 1( ox* o = af I 6‘“) ;Z:L ;ZLJ v

—SRzy(u) izNi £ 22; d

b
where we have written

(4.18) =3 -0 (awﬁfi._) ,

ij=1 0x’ ox’

and n, is the outward unit normal on R
We now assume that the vector field f* has the property that its

outward normal component on R is positive :

N
om0
Then we can put
N Ny
(4.19) F =73 ffn, > dnn,
k=1 i,J=1

in (4.16). For example, if R is star-shaped with respect to the origin,

we may take f*=ux*. More generally, if Ris represented by an equation
R(x)=0 where R(z) is a twice differentiable function in R whose outward

normal derivative on R is positive, we may take f*=o0R/ox*. It still
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remains to bound the right hand side of (4.17). For this purpose, we
restrict ourselves to the function

(4.20) w=&u, + -+ + Euy

where u,, ---, u, are the first & eigenfunctions of (4.1) normalized by
(3.3). Then

k
(4.21) &7 (u) = Z_l Ea(@— 20 .
The integrand of the first integral on the right of (4.17) is a quad-
ratic form in the gradient of . Since the lowest eigenvalue of a¥ is

assumed to be positive and bounded away from zero, there exists a
constant ¢ defined by

i <6f af a_;lc__l__flc i >7i77]
(4.22) ¢ = max .

Niseee, ] @j
by i; @79,

Thus, the first integral on the right of (4.17) is bounded by

(4.23) cS S 2% a—u—dV<cS [Za” ou a“ ]dV
Rij=1 ox* 0x’ =1 oxt

=c(h8 + - H4E) .

Substituting (4.21) in the second integral and using Schwarz’s
inequality, we find the bound

(424) Ml{llff 4 eee 2]65?6}1/2 {/EE% 4oeee 2;52}1/2
+ M {05 + --- + kai}l/z {4 - + AL

where
N ) 1/2 j 2 N
(4.25) M, = 2 max {r;awf’fj} , M, =2 maxlﬁ > uf’f’}
i,j=1 roi.g=1
Thus we find
ou\? ) e 2
(4.26) §k F<6;Z> dS = (A€ + + &%)

FMANE + oo MEF{BE + -0+ REPE
FMANE + e+ BEF{E e G
We now estimate the first integral on the right of (4.16). For

this purpose we extend an argument used in the case of the two-
dimensional Laplace operator by L. E. Payne [10].
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We let
(4.27) a’ =1 gg"
where
(4.28) g = det [g] ,

g5 = [g"]".
In three or more dimensions one can solve (4.27):
g = {det [a]}-en>
(4.29)
gkl — {det [aij]}l/N—Z akl .

In two dimensions (4.27) implies det[a/]=1. If this is satisfied,
one takes g¢g“”=a". If not, one must make a change of dependent and
independent variables to arrive at det[a*]=1. We assume this to have
been done.

We consider g,; as the metric tensor of a Riemannian space. We
derive the tensor identity (using summation convention)

(4.30) V?Q"’(g”unuu)m = 21/5 oI KA VAP S 2R VA

= 2]/3 G5 U e 5 WMy T U B 1]
=21"g 99" Ut +2V" g g, (9" Ui)is
— 21/? R“u[iuu .

Here we have used symbol ;; for covariant differentiation. R, is the
Riemann curvature tensor, and R* is the contravariant Ricci tensor (see,
for example, [17]):

1 0?
4.31 R = gt Jm[~ 1
(4.31) 99" | 5 omag Y
~ U s = 10 ‘]
2 ltm! oar ng ox* Um +{qu}{np ’
where
1 [ 09" | 8g™ _ og™
4.32 {p E._ml:!? g9 _9]
(4.32) lm} 29 2 T o T o

is the Christoffel symbol of the second kind. We have

ou
4.33 Uy, = —n ,
( ) li axi
o0u { D } ou
Uy = Uiy = - - . . ’
1 YT oaiext i g) Bxr

and consequently
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(4.34) 9= WV g

where 7 (u) is the operator (4.18). The left-hand side of (4.30) is a
perfect divergence. Integrating (4.30) over R, applying the divergence
theorem, and transposing terms gives, after use of (4.34),

(4.35) S VG gty dV = L j{ akli(g“ o 0% Ny, ds
R 2 J& 4

oxt ox’
— iy ou 0 [ (u) S iy Ou Ou
gn“ oxt 02’ \ 1V g )dv+ ViR oz i%fdv'

Here we have used Euclidean elements of volume and area.
We now restrict ourselves to functions » of the form (4.20), so that
7 (u)=0 on the boundary. Then by the divergence theorem and (4.27)

(4.36) ~SRa”§%£j(“ff(;))dV - SR171?&/(u)ZdV.

But when u is given by (4.20), o7 («) is given by (4.21). By the triangle
inequality we find the bound

@31 {[, @ V[T S e PR (L e RS

with
(4.38) I, = max (Tl/‘l? )
and

(4.39) t = max( S ).

For the last term on the right of (4.35) we put

(4.40) d= max (

Nttty
xER

ﬁRimi771>

atln;y,

Then

(4.41) S Vg RO U gy dS atr O a“ LAV S AQE + e+ BED
R oxt 0x’ P

We come now to the surface integral in (4.85). We suppose that
in some neighborhood of the surface R there is defined a differentiable
funetion R(x) vanishing on R and such that the outward normal deriva-
tive is positive. Since R(x) vanishes on R we may put
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(4.42) u(@) = R(x)p(x)

in the neighborhood of R. Then we see that on R

(4.43) a’“i(g“ﬂﬂ)m

ox* oxt 0z’
6‘R>’1|:4 wOR R ,6R 8¢ , , ., 0R 0 (M oR 6R>]
=(— Stk Yy 1 e .S ad 22t T .
(an 9 ox* o' oxt ox’ te oxt ox’ ox* ox'
Also on B
(4.44) /() = ¢ A(R) + 20 08 09
oxt ox’

Since u is taken of the form (4.20) and the wu, satisfy (4.1), ¥ (u)
vanishes on E. Hence, we may eliminate the derivaties of ¢ occurring
in (4.43) by setting (4.44) equal to zero. Finally, to identify ¢ in terms
of u we take the normal derivative of (4.42) to find

ou oR
4.45 o _ 0
( ) on ¢ on
Thus, we arrive at
0 i OU  OU
4.46 a“—( w_,_>
( ) ox’* g ox' ox’ "
0 oR 0R V. ,— ,,0R\/ 0u\?
= — 2[g*"n,n,)?? -2 { kl‘f____} v u_AF)<_> .
Lommamd™ 19 o o 99 %0 Nom

The coefficient of (6u/on)* is clearly independent of the particular func-
tion R(x) used to represent R. Tt is a local geometric property of R.
In fact, if ¢* is the unit matrix, the coefficient is just —2(N—1) times
the mean curvature of R, as can be seen by taking for R(z) the distance
from E. If 9.5 is the metric of a flat space, the divergence term is
still proportional to the mean curvature of R in this space. The first
part of the coefficient arises from the fact that we are mixing a
Euclidean and a non-Euclidean metric.
Setting

_ 0 o0R 0R-V*_ — ,, 0R
4.47 = {_F 1T 4P 32 _ Y ‘3 Kl i z;_)}
(4.47) e = max Lg?m,n,] o ( o o W} Vg o

where F' is defined by (4.19) in terms of the arbitrary vector field
pointing outward on R, we have by (4.26)
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(4.48) ; § o o (g“ ou ﬁ“a) ndS < e § F( ) s

ox oxt o0x’
S co(ME 4 - oe A+ WS + Me{A& 4 oo + 451+ - + A R
+ Me{A8 + -« + A& {8 + -0 + &1

We note that in order to have a finite ¢ it is necessary to assume
that the coefficient of (ou/on)* in (4.46) is bounded above. Since this
coefficient, at least in a flat space, is proportional to the negative of the
mean curvature, one sees that this implies that R has no re-entrant
corners, edges, or cusps. On the other hand, non-re-entrant corners,
edges, and cusps cause no difficulty. It is easily ascertained from the
asymptotic form of a solution of (4.1) that the integrals of the squares
of the second derivatives, which we are seeking to bound, actually
diverge at re-entrant corners, edges, and cusps.

Having bounded the right-hand side of (4.85), we turn to the left-
hand side. The positive definite symmetric matrix ¢* may be expanded
in terms of its eigenvalues 0< g, <p, < -.- <py and orthonormal eigenvec-
tors in the form

r N1 . :
(4.49) gv = 25 10y -
Then
N
(4.50) g Ul = e i%‘j l=1/1pluq(cpc Ui (€31 51)
N N
2 % Z (Z C C uhlc>
D=1 \i,k=1
N
=/ Z Utk »
ik=1

the last equality being due to the orthonormality of the eigenvectors.
Now by virtue of (4.33) and the triangle inequality

wn ]S s (] ar)

A E T

Thus, letting

(4.52) b = max < 21};,:> — max [ 77?—}{; s 7y ]21/ ;
/11 g 7,1 ey i3
ser | 25 0737,

and
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N
(4.53) m=max ’q=1a,,q{%%}{iqi}

and applying Schwarz’s inequality we have
N 0% \? 1/2 — 1/2
Z ( ) dV} = {bSRVg gklgijulikuljldv}

i=1 axiz
+{mg are 000 gy}
R ox? 0xt )

(4.54) {SR

We return now to the original problem. We define the quadratic func-
tional Q(w) of mesh function w by

(4.55) Qu) =4S, {éf avd, [w] d[w] + ng}

h
where d, is the first difference operator in the z* direction defined by

(4.7), and a¥ and ¢ are the average functions defined by (4.9) and (3.14).
We let AP <i¥< ... be the successive minima of the ratio

(4.56) hTQé—w?)wz

with respect to mesh functions w in M,. Here 7 is defined by (3.5).

The minimizing functions and the minima satisfy the finite difference
equation

(4.57) ~i§1§1di[&“dj[w] N —d,h) + Gmth)yw(m'h) = A5 (mihyw(m'h) .

This is, of course, a finite difference analogue of (4.1).

The Poincaré inequality (3.25) still holds. Taking for v the mesh
function defined by (3.4) and for « the linear combination &u,+ -« +&u;
of the first # eigenfunctions of (4.1), we get v in the form &v,+ -+ +£&.v;.

We now put together the inequalities (4.8), (3.13), (4.3), (4.10),
(4.16), (4.54), (4.35), (4.48), (4.87), (4.41), and (4.26) to find

(4.58) {Q(Eﬂ)l T+ e + Ekvk)}l/z = {g '{isg}m

/2 )
+ h{ i o} ((co+d) S 08 + Me[S 241 5 21

+ Ml > A8 2617 + (L S 6)” + (L X Ag) T

E‘, 2 /2 1/2{ Nuha }1/2
+ gy am S agf o wel St

X {e 248+ ML A8 X HET + M 28 S 6107
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The denominator is bounded by the generalization of (3.11), namely

(4.59) GO i HK S 52} : {Lz gz}’”T
72' ’)“ f=1 .

where

(4.60) K = max fr“(vi’—l— Ml /7] ;

1IN i
XER E a”?ﬁj
6i=1

L = max (Jgrad r*/v)

Inserting these bounds in the Poincaré inequality (3.25) yields

(4.61) 1 < [x;ﬂ LR {MAYL 4 el + Mg {5;7;59}’ + h{l, + Mo

m

+ (cotd + 2V BL)A + Mt + Lz | ;’(1) ab}
11 1
ot Tl v

This is an implicit lower bound for 1,. We note that the lower
bound differs from ¢ by a term of order A2, rather than A* as in the
absence of mixed derivatives. The inequality (4.61) does not reduce to
(3.27) when a¥ is diagonal.

5. Systems with no mixed derivatives. The process used in §3 is
easily extended to a self-adjoint system of elliptic equations. We must
only consider the unknown function in (3.1) as a vector and the coef-
ficients as symmetric matrices. Thus we have

(5. S-S L (o2) + g} = A5t a=1,-m
=1 x

We assume the matrices pg3 -+ - p@¥ and 7,5 to be positive definite and
Q. semi-definite, and all their components piecewise differentiable. We
put
(5.2) vi(m'h)=h"" S , W'k + af)dat -« - da¥

0sa’<h

and, writing »* for the inverse of r,,’

(5.3) Tas(mih) = [h-”SO P+ atydad - da”:r .
Salsh

Then we have, analogous to (3.6)
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(5.4) SR S AV — WSS

B=1 &, d,B=1

Pag | Pol? — T || 105’ — sV’ [d? «++ da? .
8 24 ay B

Il
2V

Thus, putting

(5.5) ) 7;«377“’76 | e ta
. P = @ s | = min BEEErrE—— )
e A YA e FOV ) p | S e g
x ®,8=1

n
K =max | 3, fp“"”ﬁrwr,;y] R

i=1,-+*N |_a,B,7=!
ZTER

n
L = max [ >, r**gradr, grad rﬂy] ,

ZER @,B,Y=1

where we have written p®* for the inverse matrix of p$3, we have
the analogue of (3.11)

(5.6) > z a2 L 5; rogt AV
0?, @ 1
5 (E @ ou” ou )8
A L, 2 (B e 2508 4 g av}”
n 1/27)2
+{LS > rwﬁu“uﬂdV} ] .
R a,B=!
Similarly, defining®
G.7) aw,s(m%)_:_[h-lvj - Hmh + Y -+ ozozN]‘1
0@’ <h

where ¢*® is the inverse matrix of ¢, and®
(5.8) PE(moh) = [kNj | POP(mh + et - - da”:l-l ,
0=’ <h

we find the analogues of (3.13) and (3.15). Thus, if we define the finite
difference eigenvalues A" <A®< .-. as the successive minima of the
ratio

2 (39 )+ gy )

n
S regwtw®
@,B=1

(5.9)

among sets of mesh functions (w', -+, w") in class M,, we find again
the lower bound (3.27) for the eigenvalues of (5.1) in terms of those
of (5.9).
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h? . 1/2 h? 112 2
1+ 2w} - ¥ xrage)
(5.10) Ly = AP T L
P g
1,

The considerations of §4 do not appear capable of extension to
systems of elliptic differential equations containing mixed derivatives.

6. Error estimation. As has already been mentioned in the in-
troduction, it is rather easy to get upper bounds for the eigenvalues
2, by means of another finite difference problem. Thus in order to
determine the error, one must first calculate the eigenvalues of two
finite difference problems. If the error turns out to be too large, one
must reduce the mesh size and recalculate the eigenvalues. It is a
great saving of labor to have an a priori estimate of the error in terms
of the mesh size. For then one can pick a mesh size to give at most
a given error and do only one eigenvalue computation.

We proceed to estimate the error by considering the scheme for
obtaining upper bounds. For the sake of clarity we begin with the two-
dimensional Laplace operator case treated in § 2.

Following a method suggested by R. Courant [2] (and already im-
plicitly contained in a paper of L. Collatz [1]), we divide each square
of the finite difference mesh into two triangles by means of a diagonal
in a fixed direction. Then, given any mesh function v of class M,, we
can associate with it a piecewise differentiable function u by specifying
that it coincides with v at the mesh points, and is linear in each tri-
angle. This function vanishes on the boundary of the domain R,. Fur-
thermore, if v, ---,v, are linearly independent mesh functions, the
corresponding functions %, ---, %, are linearly independent; and to the
linear combination &wv,+ -+ +&, corresponds the linear combination
§u+ «++ +&u,. Letting g, (R,) be the kth eigenvalue of the fixed
membrane problem

6.1) du + pu =0 in R,

with #=0 on the boundary of R,, we have the Poincaré inequality

SR |grad (51“1’*‘ b +Ekuk)[2dxdy
(6.2) 1 Ry) = max e

o * SR,,,(&ZM‘I‘ tee +Ekuk)2dwdy

Since » depends linearly on its mesh values v, both the numerator
and denominator in (6.2) are quadratic forms in the mesh function v.
They have been explicitly determined by G. Polya [15], who finds that
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(6.3) S | grad uPdady—=Diy(v)
By,

defined by (2.9), while

©.4) | wdsdy = 10) =1 S o0 0 = o [0l + v —0(a, 1))

h h

- 712- [0 s U +5) = (e B)] =[0Iy Do) = (e, 1)}

We now let << ... be the successive minima of the ratio

Di(v)

(6.5) Tw)

Letting v,, +--, v, be the first k¥ minimizing functions, we see from
(6.2) that

(6.6) (R < 12 .

Thus, we have upper bounds for the g(R,) in terms of the minimum
problem (6.5), which can again be formulated as a finite difference pro-
blem. However, noting that

(6.7) 10) = 1 S 06, 1) — %thn(v) ,

we can bound the ¢ in terms of the eigenvalues A{® by

(6 8) )u(h) < 'lgcn)
. k = 1 ’
1 g

assuming, of course, that A is so small that A2®<4. Thus, we have
the upper bound
Z(h)
1—=—Rn2A»

4

This process is easily extended to NNV dimensions. Here each mesh
cube is divided in an arbitrary but fixed manner into simplices with
vertices at the corners. Then the values of the mesh function v deter-
mine a function u coinciding with v at the mesh points and linear in
each simplex. We again find the bound (6.9) with the factor 1/4 replaced
by a constant ¢, depending on the dimensionality.

In the case of variable coefficients an extra error occurs because
the coefficients appearing in the quadratic forms for the upper bound
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are different averages of the coefficients of the differential problem
from those used in finding upper bounds. However, both are averages
over cubes of size at most 2. Thus the differences will be at most 2
times a constant depending on the maximum gradients of the coef-
ficients. This constant can be calculated. Thus we find in general

(6.10) plB) < K + hf(h, 1)

where f(h, X*) is an explicitly known bounded non-decreasing function
of 2 and A,

Now since R is contained in R,, #(R,)<4,. However, if R, is close
to R, we expect the p(R,) to be close to 2,. The estimation of this
closeness depends on the geometry of R. For example, if B contains a
cut, the domains R, will never have this cut, and so the g (R,) will
not approach the J,. However, if R is so smooth that the boundary of
R, approaches that of R as hA—0, then it is easy to show that g (R,)—1:
and the inequality (6.10) together with the lower bound for 2, proves
that 1P —2,.

If R is convex and contains a circle of radius r, then one can see
that the image of R under a dilatation of the ratio (1+8kr'): 1 about
the center of this circle contains a region R,. The eigenvalues of this
image are (1—|—3k;'1)‘2/¥k, and they now lie below the g (R,). Thus, us-
ing (6.10) we have

(6.11) b = (1 + 8hrP (4 + bf (b, 2)) .

In other words, we have an upper bound for 2, differing from 2y by
a term of order 4. The difference between this and the lower bound
thus approaches zero with 2. In order to make this difference explicit,
we need only bound 2 in terms of 2, by the inequality (3.26), (4.61),
or (5.10) and use some upper bound for i,.

For another error estimate when R is not convex the reader is re-
ferred to § 5 of our previous paper [19]. While the argument is given
there only for the lowest eigenvalue, it applies equally well to higher
eigenvalues.

7. The non-homogeneous problem. We consider the elliptic dif-
ferential equation

2,0 ou _ .
(7.1) P <““671) +qu=G iR,

(7.2) u=0 on R.

Here the coefficients a* and ¢ satisfy the hypotheses of §4, and G is a
given continuous function,
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By the well-known Dirichlet principle, » minimizes the ratio

Y ;00 0¢
i
L(;;?’ ) iaxj—i—qso)dV

(SRgoGd vy

among functions ¢ vanishing on the boundary. Let the value of the
minimum be (1/2). It is easily seen from the equation (7.1) that

(7.3)

& ou ou
_ — (X bl 2
(7.4) 1= uoav = (& a2 00 gy

An upper bound for (1/1) is easily found from the minimum principle.
We proceed to find a lower bound. We define the mesh domain R, as
before, the mesh function v in terms of u by (3.4), the mesh coeffici-

ents @ and ¢ by (4.4) and (3.14), and the mesh function?®
(1.5) —G(mih)zh'NS  Glmih + aYda - -da .
0sw =h

Then, by Schwarz’s inequality, the free membrane problem for the
cube, and (7.4)

H wGAV — b, vG]

Ep,

- [2 S L fulh + o) — om )} Gomh + @) - da”T

< [ S o {ulmh - ) = o(mh)} dar - da”]

5] G+ v ]
Sa, =h
= }A lgradul”de GV < ﬁlg GdV
A

where
N
> ay,

(7.6) A=min =

gy A e 7k

ZER

The inequality (7.5) gives the lower bound

(1.7) (n 5 i) = [A - : (4 i SGWV)I’Z]’

We derive an upper bound for the form @Q(v) defined by (4.55) in
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the same way as we derived (4.58). We must, however, use the dif-
ferential equation (7.1) instead of (4.1) and the single function » instead
of the linear combination (4.20). Thus, we find that the bound for the
first integral on the right of (4.17) is, by inequality (4.23), just ¢4 with
¢ defined by (4.22). However, the bound for the second integral on the
right of (4.17) becomes (we again introduce the summation convention)

(7.8) it 2] aurpeav] e

instead of (4.24). Here we have defined
(7.9) P = max [2(qa,, /)] .
Thus, (4.26) is replaced by

(7.10) § . F<%)2d5 <(c+ P2+2 (Sﬂaijf‘f’GZd V)WA’/Z .

Sinece .o~ (1) does not necessarily vanish on the boundary, (4.36) be-
comes

daw g (e

- LT/LM(MV § A ou nJM(u)dS

Using the differential equation and the triangle inequality we bound
the first term on the right.

(7.12) %SR V—lg}: sr@ravl” £ @y + (L {/Gg av)"”
where
(7.13) L=max (/v g) .

If we eliminate the derivatives of ¢ between (4.43) and (4.44),
without assuming .97 (x) to vanish on the boundary, we find

14y Lm0 (g0 0u )n
2 o0x® 690 axf
0 aR 0R? /2 aR
Pdy n, 3/2 ({ Xl )( )
— [g7n,7,] ot 9 o Bt S V gg¥ o27) \om

+ g% %%,&/(u) .

The integral of the second term just cancels the boundary terms of
(7.11) when we substitute in (4.835). The first terms on the right of

(7.14) is bounded as before by e § F(ou|on) dS where e is defined by (4.47).
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Inequality (4.41) remains unchanged. Thus we derive in the same
way as (4.58) that

(1.15)  {QU)' < AP 4 hj1~ab}2j(cs—{—Pe+l3+d)2

-

+2[e<3 aufrEav)” Hn = ~av)’ ]xw + Sm/cg avl”
1;7;’2%} {(c-}—P)R

+2 (La,-, FiFiGed V)”%}W .

sh ] 1L ama)™ 1

We now define

(7.16) y=min - 900
g wE M, N -\
(n z G )
This quantity may be computed by a finite difference analogue of (7.1).
By the minimum property,

1 Q)
(7.17) e s
“ ()

But the right-hand side is bounded by an explicit function of 1 and A
of the form (1/2)+a(2'*) by means of (7.7) and (7.15). This gives a
lower bound for 1/2 in terms of 1/(%).

The absence of mixed derivatives results in a great simplification.
Inequality (3.19) is valid, and we find

1 PR
'2‘> T T
(IL) 2
[z 4 {ALGdV} ]

The upper bound for 1/1 can again be obtained by means of a finite
difference method using piecewise linear functions. Once this piecewise
linear function and the error (difference between upper and lower
bounds) is known, one can find a pointwise approximation to  at any
interior point by the method of Diaz and Greenberg [3, 4].

(7.18)

8. Higher order operators. The methods of § 3 are easily extended
to the eigenvalue problem

(8.1) Ly = aru in R

where L is an elliptic operator of order 2m, and all derivatives of orders
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up to m-1 of » vanish on R, provided the numerator of the correspond-
ing Rayleigh quotient is the integral of a linear combination of squares
of derivatives of u.

We illustrate the extension by applying it to the problem of the
vibrating clamped plate

Adu = du in R,
(8.2) 3
u=~0ulon =0 on R

in two dimensions. The Rayleigh quotient may be written as

0L yre( 2 (7Y e

&) SSRuZ dxdy

The domain R, is defined as before. M, is the set of mesh funections
vanishing everywhere except at the interior mesh points of R,. The
finite difference eigenvalues 1{® are defined as the successive minima of
the ratio

(8.4) Q)
h? RE w?
with we M, and
(8.5) P(w) = RZ {lw(mh + h, nh) — 2w(mh, nh) + w(mh—h, nh)]’
+ 2[w(mh+h, nh+h) — w(mh+h, nh)

— w(mh, nh+h) + w(mh, nh)
+ [w(mh, nh-+-h) — 2w(mh, nh) + w(imh, nh — B} .

The mesh function v is related by means of (2.10) to the function u
having continuous first derivatives and piecewise continuous second
derivatives and vanishing outside R.

We now find

(8.6) Sg (""“) dady — b~ S [o(mh + b, k) — 2o(mh, nh) + v(mh — b, nh)]
r\ ox? R,

= A 3 Sd“S dﬂsz(a)[‘g;% (mh+a, nh+F) — b= {v(mh+h, nh)

— 20(mh, nh) + v(mh—h, nh)}:r >0.

We have put
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[(a+h)2 —h<a=0
(8.7) 20(a) = H+2ha—200 0=<a=<h
I(Zk—a)Z ha<L2h.

A similar inequality holds for &*u/0y*. For the mixed derivative we
have

(8.8) SS ( a"" Zy >2dxdy >
x [v(mh~+h, nh+h) — v(mh+h, nh) — v(mh, nh+h) + v(mh, nh)J*
=i 22§ AROC

[A ' (mh+a, nh+p) — b {v(mh+h, nh+h) — v(mh+h, nh)

— w(mh, nh+h) + v(mh, nh)}]zdadﬁ

W%

0

with ¢(«) defined by (2.20).

Thus Q(v) is bounded by the numerator of (8.3). For the denomi-
nator of (8.4) we use the inequality (2.14) together with Green’s theorem
and Schwarz’s inequality to give

(3.9) Sg wdedy — 12 S0t < 7
R Rh

pr

H udedySS uAAudocdylll2
R R

The substitution (2.15) and Poincare’s inequality then give

A
8.10 K< Tk ,
( ) k= 1— (h‘/ﬂ )11/2

which is a lower bound for i,.
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