ISOMORPHISM ORDER FOR ABELIAN GROUPS

STEVEN BRYANT

In the theory of isometric embedding in metric spaces the following
theorem is proved: Let M be a metric space every n + 3 points of
which can be mapped isometrically into Euclidean n-space, then there
exists an isometry from all of M into Euclidean n-space. Because of
this theorem Euclidean n-space is said to have congruence order n -+ 3.
[1].

L. M. Blumenthal has raised the question as to whether a notion
analogous to that of congruence order could be developed for algebraic
systems. In this paper a definition of isomorphism order is introduced
for groups and a complete description of all Abelian groups having finite
or hyperfinite isomorphism order is obtained.

First a well known definition to avoid any possible misunderstanding
of the use of the concept of rank.

DEFINITION, A group G is said to have rank n if every finitely
generated subgroup can be generated by » or fewer elements and n is
the smallest natural number with this property.

For convenience we introduce the following definition.

DEFINITION, If % elements ¢,, ¢, ---, g, of a group G generate a
subgroup of G which is isomorphic to a subgroup of a group H, we
will say that ¢, g,, -+ -, g« are embeddable in H and that the subgroup
generated by the ¢’s is embeddable in H.

Now we are ready for the definition of isomorphism order.

DEFINITION. A group G is said to have isomorphism order k if and
only if any group H is embeddable in G whenever every k of its ele-
ments are embeddable in G.

In the above definition £ may be any cardinal number, however, in
this paper k will always stand for a natural number.

If A and B are two cardinal numbers such that A4 is less than or
equal to B then it is easy to see that if a group G has isomorphism
order A then G has isomorphism order B.

Every group has some isomorphism order, since if G is a group of
cardinality M then G has isomorphism order N where N is any cardinal

vPresenté?l to the Society November 17, 1956; received by the editors May 14, 1958,

679



680 STEVEN BRYANT

number which is larger than M. Since the cardinals can be well ordered
every group has a smallest isomorphism order. However, in what is
to follow, if we say G has isomorphism order ¢ we will not mean that
k is the smallest isomorphism order of G unless we explicitly say so.

The following lemmas lead to a theorem describing all Abelian groups
having finite isomorphism order.

LEMMA 1. Let k be a natural nuwinber and p a fived prime. Let G
be a direct sum of k groups each of which is a cyclic group of order a
power of p or a group isomorphic to Z (P ). Then G has isomorphism
order k + 1.

Proof. Let H be a group every k + 1 elements of which are
embeddable in G. H is primary and has rank 4. From this the conclu-
sion easily follows. (Exercise 49, [2])

LEMMA 2. An Abelian torsion group G has isomorphism order I if
and only if G is a direct sum of fewer than k subgroups of the rationals
mod, one.

Proof. Let G be an Abelian torsion group having isomorphism order
k. Write G as a direct sum of primary groups that is G = 3 G,, where
p ranges over the primes and G, consists of all elements whose order
is a power of p. Now G, does not contain the integers mod p taken
k times for, if it did, arbitrarily large groups constructed by taking
direct sums of the integers mod » would (by hypothesis) be embeddable
in G. From this it follows that G, has rank less than k. Hence (exer-
cise 49, [2]) G, is a direct sum of fewer than k subgroups of Z(P =),
and therefore G is a direct sum of fewer than %k subgroups of the
rationals mod one by rearrangement of summands.

Conversely, let, G be a direct sum of fewer than % subgroups of
the rationals mod one. Let H be a group every k elements of which
are embeddable in G, so that H is torsion. Write H = >\ H, and consider
H,. Every k elements of H, are embeddable in G,, but by Lemma 1,
G, has isomorphism order %, hence H, is embeddable in G, and so H
is embeddable in G.

LEMMA 3. A torsion free Abelian group has isomorphism order k if
and only if it is a vector space over the rationals of dimension less than k.

Proof. Let G be a torsion free Abelian group having isomorphism
order k. Now G does not contain the direct sum of the integers taken
k times, for, if it did, the group consisting of the direct sum of the
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integers taken a greater number of times than the cardinality of G
would have every k elements embeddable in G and hence by hypothesis
would be embeddable in G, a contradiction.

Let m be the maximal number of elements of G which are independ-
ent over the integers. By what was just said m must be less than k.
Any m dimensional vector space over the rationals is embeddable in G,
by hypothesis. So G contains a vector space over the rationals of dimen-
sion m, call this space V. The space V is a divisible subgroup of G
and hence is a direct summand so G= A 4 V. Let a be a nonzero
element of A. Since m is the maximal number of independent elements
of G, na is in V for some nonzero integer n, but since na is in A4 it
is zero and therefore a is zero and so G = V.

Conversely, if G is a vector space over the rationals of dimension
less than k& and H is a group every k elements of which are embeddable
in G then H is embeddable in G. To see this, observe that H can be
embedded in a vector space over the rationals consisting of all couples
of the form (n,%,) when » is a nonzero integer and equivalence is
defined in the natural way, and the dimension of this space is less than
k for if not, there exist k& elements of H not embeddable in G, which
completes the proof.

THEOREM 1. An Abelian group G has isomorphism order k &f and
only if G is the direct sum of two groups, one torsion, the other torsion
Sfree. The torsion free group is « wvector space over the rationals of
dimension less than k, while the torsion group can be written as a direct
sum of fewer than k subgroups of the rationals mod one.

Proof. Let G be an Abelian group having isomorphism order k.
The theorem follows from the lemmas if G is torsion or torsion free,
Now G contains a vector space V over the rationals of dimension n less
than & where n is the maximal number of elements of G which are
independent over the integers. This holds by an application of the
argument of Lemma 3. Regard V as a group, then V is a direct sum-
mand of G since V is divisible. So G=A4 + V and A is torsion, for
if  is in A then ma is in V for some nonzero integer m, hence mxz = 0.
Now apply Lemma 2 to A and obtain the necessity of the theorem.

To prove the sufficiency, let G be an Abelian group such that G =
T+ V where T = A, + 4, + --- + A, and each A, is a subgroup of the
rationals mod one and s < k, and V is a vector space over the rationals
of dimension less than £.

We must show that if H is an Abelian group, every k (or fewer)
elements of which are embeddable in G, then H is embeddable in G.

H does not contain % elements which are independent over the
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integers. Hence H contains at least one subgroup H, such that 2 e H
implies r~ € H, for some natural number r and such that H, is embed-
dable in G.

Let T* be the direct sum of the rationals mod one taken s times.
Let G¥*=T* 4+ V. We will show that if ¢ is an isomorphism from H,
into G* then if H, #+ H, ¢ can be proporly extended. Then the embed-
dability of H in G* can be obtained by a transfinite argument. Finally,
we will see that H is embeddable in G.

So let H, be a subgroup of H such that ~ e H implies 2 e H, for
some integer r and let F be an isomorphism from H, into G*. If H,=
H we are done, if not, let 2 ¢ H,, and m the smallest natural number
such that mh e H,.

Case 1. m =p, p a prime. Let M = [z|pz = F(ph),z € G*]. For
convenience, we will refer to M as the set of all the *‘ pth roots’’ of
F(ph), and note that M is finite, and that the number of elements in
M is exactly the number of ‘‘pth roots’ of 0 in G*. Now, not every
element of M is in F(H,), for if so, a glance at the inverse images
will show that the inverse image of every element of M is a ‘‘pth
root’’ of ph. But F(ph) has at least as many ‘‘pth roots’’ in G* as
oh has in H. Hence b itself is in H, a contradiction.

We conclude that some element of M, call it z, is not in F(H,).
Furthermore, if 0 < n < p, then nz ¢ F(H,) and hence F can be extended
in the natural way.

Case 2. m not a prime, then m = ¢t where ¢ is a prime. Apply
the argument of Case 1 to the set of all qth roots of F(mh).

This shows that H is embeddable in G*. But by Lemma 2, if 7V
is the torsion subgroup of H, 7" is embeddable in 7. Hence it is easily
seen that H is actually embeddable in G, which completes the proof.

In the above theorem, nothing has been said about smallest isomor-
phism order. However, it is easy to see that, if G has smallest iso-
morphism order % then either the torsion free summand of G has rank
k-1 or the torsion summand cannot be written as a direct sum of fewer
than k-1 subgroups of the rationals mod 1.

The next step up in the hierarchy of isomorphism order is given
by the following definition.

DEFINITION. A group G is said to have hyperfinite isomorphism
order if, whenever every finitely generated subgroup of a group H is
embeddable in G, then H is embeddable in G.

The proof of the next theorem is similar to that of Theorem 1, and
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rests on the fact that a torsion group has hyperfinite isomorphism order
if and only if the rank of each primary subgroup is finite, while a
torsion free group has hyperfinite isomorphism order if it is a finite
dimensional vector space over the rationals.

THEOREM 2. An Abelian group G has hyperfinite isomorphism order
if and only if it is the direct sum of two groups, one torsion, the other
torsion free. The torsion free group is a finite dimensional vector space
over the rationals while the torsion summand has mo primary subgroup
of infinite rank.

REMARK. If the smallest isomorphism order G has is hyperfinite,
then there is no upper bound on the ranks of the primary subgroups
of G.

This concludes the analysis of Abelian groups having finite or hyper-
finite isomorphism order.”? In a subsequent paper, we hope to give some
results concerning Abelian groups having transfinite isomorphism order.

Also, this notion can be carried over to other systems, such as
rings, a direction in which some preliminary results have been obtained.

REFERENCES

1. L. M. Blumenthal, Theory and applications of distance geometry, Oxford at the
Clarendon Press, 1953.

2. 1. Kaplansky, Infinite Abelian groups, University of Michigan Press, Ann Arbor, 1954,

FRESNO STATE COLLEGE
UNIVERSITY OF MISSOURI

2 The author wishes to acknowledge his indebtedness to Joseph Zemmer for help in
the initial stages of this work, and to Paul Cohen for part of the proof of Theorem 1.








