
THE RING OF NUMBER-THEORETIC FUNCTIONS

E. D. CASHWELL AND C. J. EVERETT

Introduction. The set Ω of all functions a(n) on N = {1, 2, 3, •}
to the complex field F forms a domain of integrity under ordinary ad-
dition, and arithmetic product defined by: (α β)(n) = ^Λa{d)β{n\d)1

summed over all d \n, d e N. The group of units of this domain contains
as a subgroup the set of all multiplicative functions. Against this back-
ground, the "inversion theorems" of number theory appear as obvious
consequences of ring operations, and generalizations of the standard
functions arise in a natural way. The domain Ω is isomorphic to the
domain P of formal power series over F in a countable set of indetermi-
nates. The latter part of the paper is devoted to proving that the
theorem on unique factorization into primes, up to order and units, holds
in P and hence in Ω.

l Definition, The class Ω of all number-theoretic functions α,
[4; Ch. IV], i.e., functions a(n) on the set N of natural numbers
n = 1, 2, 3 to the complex field F, forms a domain of integrity (com-
mutative, associative ring with identity and no proper divisors of zero)
under ordinary addition: (a + β)(n) == a(n) + β(n), and an operation,
frequently occurring in number theory in various disguises, which we
call the arithmetic product:

the summation extending over all ordered pairs (d, d') of natural numbers
such that ddr = n.

The commutativity a β = β a follows from the fact that the cor-
respondence (d, dr) -> (df, d) is one-to-one on such a set of ordered pairs to
(all of) itself, while the associative law a (β γ) = (a β) γ can be verified
by observing that, in either association, (a β γ)(w) = ^Ia(d)β(dr)rγ(dff)J

summed over all ordered triples (d, d', d") with dd'd" = n.
The zero 0 and additive inverse — a of a are of course the functions

defined by 0(n) == 0, and (—ά)(n) = —a(ri), and one sees at once that
the function ε with ε(l) = 1, ε(n) = 0 for n > 1, is the identity: ε a = a
for all a of Ω.

That the ring Ω has no proper divisors of zero may be seen in
various ways, three of which occur incidentally in the following sections
(2,4,5).

2. A norm for number-theoretic functions, A function N(a) on
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Ω to the set of non-negative integers 0,1,2, ••• which is zero if and
only if a = 0, and has the property N(a β) = N(a)N(β) for all a, β of
Ω, may be defined by setting JV(O) = 0, and, for all a φ 0, taking N(a)
to be the least natural number n for which a(n) φ 0.

Indeed, we find that, if a and β are non-zero functions of Ω with
N(a) = α and N(β) = δ, then (α /S)(n) = 0 for all (if any) n of JVwith
n < ab, and (a β)(αδ) = α(α)/9(δ) Φ 0. It follows that β is domain of
integrity, and that the norm N(a) has the multiplicative property.

3. Group of units. If for a, β in the domain of integrity Ω, there
exists a γ in Ω such that a — β γ, we say /9 divides α and write β\a.
The set T of all units v, i.e., elements of Ω which divide the identity ε,
forms a commutative group under (•) with identity ε. Two functions a,
β of Ω are called associates (notation a ~ β) in case there is a unit v
such that β — a v. One sees that a ~ β if and only if α|/3 and /S|α,
and that (-^) is an equivalence relation which splits i3 into disjoint
classes [ ] of associates. For example, the class [0] contains only 0,
while [ε] = T. These trivial properties are shared by all domains of
integrity.

In our ring Ω, an element a is a unit if and only if α(l) Φ 0,
equivalently N(ά) — 1. For, if aar — ε, 1 = ε(l) = α(l)α'(l) implies
α(l) Φ 0. To see that this is also sufficient, we first introduce the
(number-theoretic) function λ(w) defined by λ(l) — 0, X(pλ pt) = / for
any product of / (not necessarily distinct) primes. We have λ(α) = 0 if
and only if a — 1, and X(ab) = λ(α) + λ(b) always. This function has
the property of classifying all natural numbers according to their length.
We have now to construct a function af in Ω with (a a')(ri) = ε(w) from
a given a for which α(l) = A Φ 0. Manifestly, for w > 1, this relation
itself defines the value of a'{ri) unambiguously for each n of length
χ(n) — / in terms of values af(df) with λ(c£') < /. Thus, if we define
α'(l) = I/A for the single n of length 0, and proceed inductively on X(n),
we automatically obtain the desired a!.

We note in passing that if α, β are any two number-theoretic func-
tions and v i/ = ε, then β = a v if and only if a = β ι>'. This trivial
relation between associates is the basis for the so-called inversion theorems
of number theory. (Cf. § 7).

4 The degree of a number*theoretic function* Just as a natural
order 1 < 2 < 3 < of the set N permitted the definition of a norm,
so does the order implicit in the λ function enable us to introduce what
we may call the degree D(a) of a non-zero function α of fl.

Specifically we take D(a) — d to mean that a(n) = 0 for all (if any)
n of N with λ(w) < d, and that there exists an n with X(n) — d for
which a(n) Φ 0. Thus D(ά) is a function on all non-zero a of Ω to the
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non-negative integers, with D(a) — 0 if and only if a is a unit, and
D(a β) = D(a) + D(β) for all non-zero a, β.

We may indeed show somewhat more. Let D(a) = d9 D(β) — e, and
suppose a and b are respectively the least integers with λ(α) — d, X(b) = e,
for which α(α) =£ 0, /3(6) ^ 0. Then (a β)(w) = 0 for all (if any) n with
X(n) < d + e; (α β)(ab) — a(a)β(b) Φ 0, where, of course, λ(αδ) = d + e;
and finally, indeed, (a /3)(w) = 0 for all n < ab with λ(w) = d + e, that
is to say, α& is itself the least integer of its length at which a β does
not vanish.

5. A second norm* The final remarks of the preceding section
make it clear that another norm M(a) is available. Specifically, set
M(0) = 0, and for a Φ 0 with D(a) = d, set M(a) = α, where α is the
least integer of length λ(α) = cί for which a(a) φ 0. It follows that
M(α) is a function on all a of β to the non-negative integers such that
M(ά) = 0 if and only if a = 0, M(α) = 1 if and only if a is a unit, and
M(a /3) = M(a)M(β) always.

Thus ikί(α) has all the properties proved for N(a) and moreover
determines D(a) = λ(M(α)) for α ^ 0.

6. The multiplicative functions. This and the following few sections
(7-10) are to some extent expository, our object being to observe how
familiar results appear when considered from the point of view of the
ring Ω or to propose some natural generalizations suggested by the new
notation. After this we return to the " arithmetic'' of the domain Ω
itself.

A number-theoretic function a is said to be multiplicative in case
(α, b) — 1 implies a(ab) = a(a)a(b) and (to exclude the trivial a — 0) there
is an integer n for which a(n) φ 0. In the presence of the former
property, the latter is equivalent to the condition a(l) = 1, which signifies
for us that the set M of all multiplicative functions is a subset of the
group T of units of Ω.

Clearly (1) a function a for which α(l) = 1 and a(Πpa) = Πa(pa) is
multiplicative, a(pa) being quite arbitrary for each power a = 1,2, •••
of each prime p; and (2) two multiplicative functions identical on all
such pa are equal.

That M M c M follows readily from the definition of M, and the
identity ε is in M, seen perhaps most trivially from (1) above. To see
that M i s a subgroup of Y requires only the further fact that the inverse
af of a multiplicative function a, which we know exists uniquely, is
itself multiplicative. This we prove in a way which provides a second
construction of the inverse in the case of a multiplicative function.
[5; p. 89]



978 E. D. CASHWELL AND C. J. EVERETT

Given a in Λf, define a function β in Ω as follows. Set β(l) = 1.
For each p, define β(pa) for a — 1,2, ••• successively by the relation
Σ a{d)β{df) — 0, summed over all pairs (d, df) with dc£' = pa. Finally,
define β(Πpa) = Ilβ(pa). The /S thus defined is in Af by (1) above.
Since a is also in M, we know a βe M M a M. To verify that the
functions a β and ε of M are equal, it suffices, by (2) above, to
observe that (a β)(pa) = ε(#α) = 0, which is the defining equation for
β(pa). Since the inverse of any unit is unique, the β so constructed
must coincide with that obtainable by the λ construction of § 3.

7 The special multiplicative functions nk. Define the (multiplica-
tive) function vk for arbitrary real k by vk(n) — nk. Its inverse vt is
seen by the preceding construction to be: v£(l) = 1, vk(n) — ( — l)ιn
when n is a product of / distinct primes, and zero otherwise.

Now (a) v'k vfc = ε, and (b) if α, β are any two number-theoretic
functions, we have β — a vk if and only if a — β v£. For the special
case Λ = 0, (a) yields the familiar equation ΣamKd) — ε(w), and (b) becomes
the "Mobius inversion theorem" [Cf. 4; Th. 35, 38], since v'o is the
Mobius function μ. Indeed, we may write v'Jyi) = μ{n)nk for all k, n.

We may note one further generalization in this direction. If a and
β are any two number-theoretic functions, we see that

( 1 ) Σ (ot. β)(m) = Σ Σ <x(d)β(m/d) - Σ <x(d)ΣΪ β(0

In particular, if β is a unit, and a — βr, we obtain

k

Further specializing to β — vk,

n ίn/d}

1 = Σ /W* Σ /*

Finally, k = 0 gives the familiar [4; Th. 36]

1 = Σ μ(d)ίnld] .

8. The sum of the k-th powers of the divisors. It is clear that
the transform β(n) — Σdin^(^) of number theory [5, Th. 6-8] appears in
our notation as β = a v0. Thus in particular the number theoretic
function σjji) = Σua\ndk is seen to be the (multiplicative) function
σk = vk vQeM Ma M. The most familiar are τ = σ0 = ι>0 v0, the
number of divisors, and σ = σx = ^ v0, the sum of the divisors.

As an illustration, note that equation (1) of the preceding section
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yields

Σ (α v*)(m) = Σ a(d)[nld]
m = 1 <Z = 1

in particular, for a = v0,

±τ(m) = tln/d] ,
TO = 1 (1 = 1

and for α = vlt

The inverse ff£(w) is 1 for n = l, ( — l)λ/7 i(p£+2 —α4) for n=p?i p"/,
where 1 ^ αβ ^ 2 and λ = X(n), and zero otherwise. This may be seen
from σ'k = V'Q vk and the value of (v'Q vk)(pa) obtained from § 7. For
the special case k = 0, we may write τ'(w), for n of the second type,
a s (~l)λ2i/a, ••• α/.

We note that the relation σ'k = v'k v'o, besides determining the
function σ[ explicitly as indicated above, yields also the equation
σί(n) = Σa\nd

kμ(d)μ(nld), in particular τ'(n) = Σ^a\nμ(d)μ(nld).

9 A generalized ^-function. The well-known relations ψ v0 = vx

and 9> = vf

0 Vi satisfied by the Euler ^-function [4; Th. 39, 40] suggest
definition of a general function φk%ί = ι>ί vt, specifically

which has the value n'Π^l — pkrί) for n =pf l ••• va

t

ι. We should then

have the relation vk φkΛ — vt or Σ^<ι\n(Pk,ι(d)d~lc = n^k.

It is clear that the derivation of relations between arithmetic func-
tions becomes simplified by employing the algebra of the ring Ω, or of
the groups T or M. Consider for instance how' easily a = vQ vlf

Vi = ô <P, and v0 v0 = r implies G — τ * φ>

Not quite so elegant is the generalization:

( 1 ) nkσ^k(n) = (vk v){n) ,

( 2 ) ^ = ^ ^ f c f / ,

( 3 ) vk vk(n) = nkτ(n) (special case of (1)),

imply nkσ^k(n) = Σa\ndkτ(d)φktί(nld).

1O The ^-function. Define the number-theoretic function Φ(n) to
be the sum of the integers in N which are prime to n and do not ex-
ceed n. Obviously Φ(n) = nφ(n)/2 unless n = 1 and Φ(l) = 1. Although
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Φ is thus a unit in T, Φ(ab) = 2Φ(a)Φ(b) for (a, b) = 1, a > 1, b > 1, and
therefore 0 is not in M.

If we classify the integers 1, 2, •••, w according to their greatest
common divisor d with n, we find in the d-class the integers a with
(a,n) — d, 1 ^ a ^ n. There are exactly as many such a as there are
b with (6, w/<Z) = 1, 1 ^ 6 ^ w/d. This yields for Landau [4; Th. 39] the
relation Σd\n<P(nld) = w and the formula for <p by Mobius inversion. We
may note that the same partition suggests the additional relation:

2 o-l

As a final example, we note that, since vx vQ = σ,

Λ: v0 = 0 . # .

11. Primes. A number-theoretic function a is said to be a prime
in case a Φ 0, α is not a unit, and α = β γ implies y8 or γ is a unit.
The associates of a prime are also prime. The remaining functions,
neither 0, units, nor primes, are called composite. The associates of a
composite function are composite.

Any function with N(a) a prime natural number is prime; more
generally any function with M(a) a prime, or equivalently, any function
with D(a) = 1. As an example, note that from §9 S == a — vλ —
τ ψ — vQ ψ — (τ — vύ) <p. Since δ(l) = 0 and δ(2) = 1, we see that
M(S) — 2 and so σ — vx and τ — v0 are associated primes. If two non-
unit functions α, β are associates, we see that β(p) = (v a)(p) = v(l)a(p)
for all prime p, where v(l) Φ 0. Hence there is a continuum of non-
associated primes even of this simple type.

Naturally there are many other kinds of primes, a fact which will
become glaringly obvious in § 16.

12. The chain condition. If a0 Φ 0, ax\a^ and in the correspond-
ing equation aQ = aλ βx the (uniquely determined) βx is not a unit, we
say ctx properly divides aQ and write αJIcto. For example, every com-
posite element a has a factorization a = /3 γ in which /8||α and 7 | | α .
If in a domain of integrity, every chain of proper divisors a2\\aΎ \\a0 Φ 0
is finite, we say the domain satisfies the chain condition. In any such
domain it is easy to see [2; p. 117] first that every a not zero and not
a unit has a prime divisor, and from this that every such a is expres-
sible as a finite product of primes.

That our ring satisfies the chain condition is an obvious consequence
of the properties of either the norm or the degree functions. For ex-
ample, a^laoΦO, aQ=^a1 βlf β1 not a unit, implies D(βλ) > 0 and
D(aQ) = D(aι) + D(βλ) > D(αx), where D has non-negative integral values.
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Having come this far, it is natural to ask whether the expression
of a non-zero, non-unit number-theoretic function as a product of primes
is unique (up to order and units). We have been unable to find a refe-
rence for such a theorem, and offer a proof in the remaining sections.

In the presence of the chain condition, the existence of a greatest
common divisor for every two elements is necessary and sufficient for
the uniqueness property. [2; p. 120]. Although we have an abundance
of norms, we cannot hope to obtain a Euclidean algorithm, since we
certainly could not have linear expressibility of the g.c.d. For suppose
α, β are non-associated primes. Then (α, β) certainly exists and is ε.
whereas a linear relation ε = γ a + 8 β is impossible (consider n = 1),

13. A reduction theorem. It simplifies matters to show first that
if the uniqueness of factorization fails, it must fail in a particularly
simple way. Suppose indeed that uniqueness in false in Ω. Following
an argument of Lindemann and Davenport [1; §2.11] let us divide the
set of all non-zero non-unit elements of Ω into normal elements, whose
factorization into primes is unique, and abnormal elements, which can
be factored into primes in two essentially different ways. Clearly a
prime a is normal by definition.

We prove that if a is an abnormal element of minimal norm N(a),
and a = σx σ,n — τλ τn are two essentially different factorizations
of a into primes, σu τj9 then necessarily m = n = 2 and σlf σ2, τlf τ2 all
have the same norm N.

Note first that neither m nor n is unity, since a prime is normal.
Moreover, no σ5 is the associate of any τJf for if so, cancellation would
produce an abnormal element of norm N< N(a). Without loss of gen-
erality, we may assume N(σλ) ^ N(σ2) ίg <£ N(σm), Nifa) <; iV(τ2) <̂
•.. ^ JV(rn), and N(σλ) ^ NfτJ. Then N(σx τx) = N{σλ) N(τx) ^ N^N^)
^N(τ^N(τ^ ^ N(a). If any one of these (^) relations is actually (<) ,
we have N(σ1 τλ) < N(a), which we will see leads to a contradiction.

Suppose indeed that N(ax τλ) < N(a), and consider β = a — σx τx.
Certainly β Φ 0, for a = σλ τλ implies σ2 σm = τlf and since τx is
prime, we have m = 2 and τλ ~ σ2, contradiction. Also β is not a unit,
since σλ\β. From the definition of norm N and the assumption
N(σλ τλ) < N(a) it follows that N(β) = N(σλ τλ) < N(a). Hence β is
normal. However, the non-associates σlt τλ both divide β, and, β be-
ing normal, σx τλ\β. Hence σλ τL\a = σx σw = σx rx γ. Thus
α2 σm — τ1 γ. But iV(cr2 σm) < JV(α), and o2 σm is not zero
and not a unit (m ^ 2). It follows that σ2 σm = τx γ is normal and
τλ is associated with some σh a contradiction.

We are forced to conclude that NiaJNfa) = NiτJNfa)
- N(a) and so iVί^) = Nfa) = N(τ2) = N and n = 2. Hence
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) = N(a) = JVifo) N(σm) ^ ΛΓm implies m ^ 2. But m > 1 so
m = 2, JV(<72) = N, and all is proved.

Thus if unique prime factorization fails in Ω, we should have an
element of form a β = y 89 a, β, γ, 8 primes (of identical norm N)
and a not associated with either γ or 8.

14* The ring of formal power series. Let the primes p of N be
listed in any definite order pl9 p29 p39 • ••. Then every integer n may be
written uniquely in the form n = pV-PP * and uniquely described by a
vector (al9a29 •••) with non-negative integral components, finitely many
of which are non-zero, all such vectors being realized as n ranges over
N. Hence a number-theoretic function a — a(n) may be associated with
a definite "formal power series" in a countably infinite number of in-
determinates x19 x29 , having coefficients in the complex field F, by
means of the correspondence

a -> P(a) = Ί<a(ri)x¥>xp

Here, the summation extends over all n = p^pp of N.
This correspondence is clearly one to one on Ω to the set

Fω = F{xl9x2, •••} of all such power series. Moreover, addition is pre-
served, and P(a β) = P(a)P(β), the latter operation being the usual
formal operation on power series involving multiplication and collection
of (finite numbers of) "like terms."

Thus the ring of all number-theoretic functions is isomorphic to the
ring of all formal power series Fω = F{xl9 x2, •••}. We emphasize that
the only restriction on these series is that only a finite number of xi

actually appear (i.e., have a% > 0) in any term. However, infinitely many
Xi may well occur (in terms with non-zero coefficients) in the same series,
so that we have here a more general ring than that discussed by Krull
[3; §4]. Indeed, each series of KrulΓs ring of power series (over F)
corresponds to a number theoretic function zero except on a set of
integers generated by some finite set of primes.

15; Some preliminaries. We deal in the remainder of the paper only
with the power series representation A — A{xu x29 •••} = Σairήxpxp •••
of number-theoretic functions. The domain Fω = F{xlf x2, •••} contains
(in the sense of isomorphism) for every / = 1,2, the domain FL =
F{xu •••,&'/} of power series in / "variables." For the latter domains,
the theorem on unique factorization into primes is known. [3; §4 and
6; §2]. The units of Ft are again the series with non-zero constant
term.

If / is any integer 1,2, ••• and if A — A{xί9x29 •••} is in Fω or
some Fm with m ^ /, we mean by (A)t the series A{xlf ••-, x[9 0, 0, •••}
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obtained from A by deleting all terms of A actually involving any xt

with i > /. Indeed, the mapping A -» (A)t is a ring homomorphism of
Fω or Fm onto FL. One can write A —{A)ί + Af, where the latter series
involves only terms containing at least one xt with i > /, and in this
way one sees that (AB)t = (A)L(B)[U

In reality all series we consider are actually in Fω, but we do not
hesitate to say A{xιy • ••, x[9 0, 0, •••} is " i n i * y Our objective is to
throw the proof of unique factorization in Fω back onto the rings F[9

/ = 1,2, ••-, in which the theorem is known to be true. But first we
have to show that the primes of Fω are all of a special kind.

16. The nature of a prime. If a series A of Fω is neither zero
nor a unit, then there is some minimal L — L(A) for which (A)[ is neither
zero nor a unit of FL, I ̂  L. For A{0, 0, •••} = 0, and since A Φ 0, A
must contain with non-zero coefficient some product xpxp with
(a19 a2, )Φ(0, 0, •)• If in this term #fc is the last variable with α f c>0,
then (A)fc Φ 0. Hence there is a minimal L with (A)z ^ 0, L ^ 1. But
then (A)/ is not zero or a unit for any / ̂  L.

Now if A is not zero or a unit in Fω, and any (A)/ is prime in Flf

where of course / ̂  L = L(A), then (A)m is prime in Fm for all m ^ /,
and also A is prime in F ω . For example, if (A)m = RmSm, where JBW,
Sm are non-units in Fm, then (A)/ = (Am)/ = (Rm)L(Sm)ίf where neither of
the latter factors in Ft are units. For such A, there is a minimal integer
P = P(A) ^ L(A) such that (A)/ is prime in FL for all / ̂  P(A). We say
such primes are finitely prime.

The remaining logical possibility is that for some A, not zero or a
unit, we have (A)t composite in FL for all / Ξ> L(A). We shall show that
such an A is composite in Fω9 and hence the

Principal Lemma: all primes of Fω are finitely prime.

17'. Proof of the principal lemma. Let A be a fixed non-zero
non-unit series in Fω with L = L(A), and suppose that, for every / ̂  L,
(A)/ = ϋ ! ^ where RL and Sz are non-units of FL. We say ^ and St are
true factors of (A)L and JB^ is a true factorization of (A)^ A true factor
of (A)/ is thus a non-unit proper divisor of (A)/ in J^, and so has a
companion of the same kind.

We shall call any chain [RL, RL+1, ••, RM] of true factors of the
corresponding (A)[9 ί = L, , M telescopic if each R^ = J B ^ I , , #/-i, 0)
= (Rj)ι-i. Now observe that any true factorization (A)m = RmSm, m > L
induces a true factorization of (A)?n_1 = ((A)m)m_1 = (#„>)„,-ΛS™)™-! = J B ^ . ^ - I

and so down to (A)ί — RLSL, where the chain of true factors \RL, , i2J
is telescopic. Thus we have from the original assumption on A, the
existence of a sequence
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fCQ =

of telescopic c h a i n s κ% of true f a c t o r s R i j 9 j = 0, 1, •••, i of ( A ) L + j .
We want to prove the existence of an infinite chain of true factors

/c* = [Rf,Rf,R*, •••] which is telescopic throughout. If we could do
so, we should have (A)£+J = RfSf for all j ^ 0. Clearly the chain
[So*, S*, •••] is also telescopic, since (Rf^Sf^) ~ (RfSf)L+j-ι — (Rf^+j^
(Sf)L+j^1 — Rf-^Sfyz+j^. But any infinite telescopic chain defines un-
ambiguously a series of Fω. If R* and S* are the (non-unit) series
defined by the Rf and S'f chains, we must have A = i?*S*, since we
can prove identity of the left and right coefficients of any term by
regarding (A)£+J = RfSf for suitable j . Thus the principal lemma would
be proved.

Since unique factorization holds in Fl9 there are only a finite number
of classes of associates into which the true factors of any {A)ί can fall.
Hence (pigeon-hole principal!) an infinite set of the chains tci have their
first entry equivalent to some one true factor To of (A)L. Choose one
of these and call it ATJ. Of this infinite set, there is an infinite subset
of κ% whose second entry is equivalent to some one true factor Tλ of
(A)£+ι. Choose one and call it κ[. Continuing in this way we are led
to a subsequence of (telescopic) chains

κ'o = [R'OOy • • • ]

κ[ = [ J R J O , R[u •••]

each of which extends at least to the main diagonal, such that the entries
on this diagonal and below have the property that, for each j — 0, 1, 2,
Rlj ~ Tj f o r a l l i^j.

We can now construct the telescopic infinite chain Λ;* working only
with the main diagonal and the diagonal next below it, as follows.
Define Rϊ = Rf

00. Since R[o ~ To ~ R* in F£, there is a unit UL of FL

such that R* = R[0UL - (R'nUL)L. Define Rf = R'nUL in F z + 1 , and note
that Rf is a true factor of (A)£+1, (Rf)£ = i20*, and i2f ^ Γx in FL+1.

To make the process perfectly clear and to avoid a formal induction,
we carry the construction through one more step. Since R'Ά ~ Tλ ~ Rf in
F£+1, there is a unit U£+1 of F£+1 such t h a t Rf = R!21U£+1 = (R!22UL+1)L+1.

Define i2* = Rf

22UL+ι in JPX + 2 and note that i?* is a true factor of (A)£+2,
(Rf)£+ι = -R*, and i22* ~ Γ2 in i^+a. The proof of the lemma is now
clear.



THE RING OF NUMBER-THEORETIC FUNCTIONS 985

18. Proof of unique factorization. Suppose unique factorization
into primes fails in Ω = Fω. By § 13, we must have a series of the form
AB — CD where A, B, C, D are primes in Fω and A is not associated
with C or D. Since all primes are of finite type, there exists an integer
P such that, in the equation (AB\ = (A)fβ)L = (C)ί(D)ί = (CD)L, (A)L, (B)ί9

(C)t, (D)ί are primes in Ft for all / ĵ> P. Since factorization in each Fί is
unique, (A)̂  must be associated with either (C)/ or (D)ί in i^ for each
/ ̂  P. Hence there must be an infinite increasing subsequence σ = {m}
of integers m ^ P such that either (A)m ~ (C)m in Fm or (A)m ^ (D)m in
î TO for all me σ. Without loss of generality we may suppose the former
case. Then (A)m = Um(C)m, where Um is a unit of Fm, for each m of σ.
If m < w are any two integers of the sequence σ, Um{C)m — (A)m =
(An)m = (Un)m(Cn)m = (Un)m(C)m, and Un is an extension of Um by terms
each of which involves a variable xi with i > m and so does not occur
in Z7TO. Thus the sequence Um, me σ defines a unit U of Fω, and
A = Z7C, by the same type of argument used in the preceding section
in showing A = R*S*. But then A ~ C in i^ω, which is a contradiction.
Hence factorization into primes exists and is unique in the rings Ω
and Fω, up to order and units.
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