COMMUTING BOOLEAN ALGEBRAS OF PROJECTIONS
C. A. McCARTHY

0. Introduction. One of the more important problems in the theory
of spectral operators is to decide when the sum and product of two
bounded commuting spectral operators is again spectral. J. Wermer [7]
has shown that the sum and product of two bounded commuting spectral
operators on Hilbert space is again spectral. N. Dunford [4, Theorem 19]
and S. R. Foguel [5, Theorem 7] have shown that if the Boolean algebra
of projections generated by the resolutions of the identity of two bounded
commuting spectral operators on a weakly complete Banach space is
bounded, then the sum and product of these operators are spectral. We
therefore wish to determine conditions that insure the boundedness of
the Boolean algebra of projections generated by two bounded commuting
algebras of projections on a Banach space. We shall show that it suffices
that one of the original algebras be strongly complete, countably decom-
posable, and contains no projection of infinite multiplicity. The example
of S. Kakutani [6] shows that the Boolean algebra of projections gen-
erated by two commuting, strongly complete, algebras of bound 1, but
both of infinite multiplicity on a non weakly complete space, need not
be bounded. By slightly reworking his example, we shall show that the
order of magnitude of our estimates is sharp, even for spaces of finite
dimension. By taking a suitable direct sum of these examples, we
obtain a separable reflexive Banach space on which we have two com-
muting, strongly complete, Boolean algebras of projections, both of bound
1, neither having a projection of infinite uniform multiplicity, but such
that the algebra of projections they generate is unbounded. On this
same Banach space we also show that the sum and product of two
bounded commuting spectral operators need not be spectral.

This paper is divided into four sections: the first is devoted to the
proof of a combinatorial inequality, the second contains our main theorem
on the boundedness of projections, the third section consists of examples.
The last section is an appendix to section two.

1. A combinatorial inequality. The required inequality is the
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assertion of the following theorem.

TuEorREM 1.1. Let ay, ++-, ay be any N complex numbers, and let
& be the collection of all subsets S of the set 1,.-+, N of indices.
Then for any S, m &,

>, Qs

SES l

1.1)

s asl < 2V N7-2¥ 5

S€Sy sed

That is, the sum of any particular subset of the a’s cannot exceed in

absolute value the average of the absolute values of sums taken over

all subsets by more than a factor which has order of magnitude N'2.
It suffices to prove the slightly stronger

THEOREM 1.1. a. Let By, +++, By be any 2N complex numbers, and
@ the collection of all subsets R of {1, --+,2N}. Then

<2V Nz-4" 3,

ReEHA

>, By -

TER

1.2)
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This implies Theorem 1.1, for suppose that N, S, and the o’s of that
theorem are given, with S, = {s;, -+, s,}. Define

Br=a,, 1=r=n; Byu=0,1=r=N;
B,=0, n+1=r=N; Byyw=a,, n+1=7r=N;

where s,,,, +++, Sy are those integers between 1 and N which are not in
S,. Then we have

2 @

SES)

TZZIB,«
Also, every S in .&¢ determines 2¥ R’s in Z2: namely
frlt<r=mnands eSjU{riln+1=r =N and s, ¢S}

together with any of the 2¥ subsets of {w + 1, .-+, N+ n}, such that

Z asl = Z 187' ’
SES TER
so that
2V S a| = X | X B
seF 1s€S 1€ \TER
Now if (1.2) holds, then we have
S a| <2V Nx2r S [ Sa,
S€Sy sed |s€s
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which is (1.1).
We will now show that it suffices to prove Theorem 1.1.a in the
special case

Bi=-++=By=1, Byyu=++=Lpy=-—1.

We will first show that if we replace both 8; and 3,,1 <14,j < N,
by their common average (8, + B;) and we have (1.2) for this new set
of B’s, then we necessarily had (1.2) for our original 5’s (Lemma 1.2
below). We then show that we can perform these two-at-a-time aver-
agings in such a way as to eventually make the resulting 8;’s, 1 <7 < N,
all arbitrarily close to their common average (Lemma 1.3 below). By
the continuity of both sides of (1.2) in the B,’s, it then suffices to prove
(1.2) in the case 8, = +++ = By. Similarly, we may assume By., = +++ =
B.x. By re-indexing the 3’s if necessary, we may suppose

2N

2 By

r=N+1

=

S6,

.
b

and by the homogenity of both sides of (1.2), it suffices to prove Theorem

1.2 in the case B, = +++ = By =1, Byss = +++ = By = ¥ Where 7 is some
complex number, |v| £ 1. We will then show that we need only consider

v = —1 (Lemma 1.4 below).

LEMMA 1.2. Suppose we set 8, =85 =3(B, + L), B =L, 3=r =< N.
Then if (1.2) holds for the Bs, then it holds for the [3’s.

Proof. Partition =2 into four disjoint classes:
#, ={R|1eR,2e R}, #,={R|1¢R,2¢ R},
#,={R|1eR,2¢ R}, %, ={R|1¢ R,2¢ R}.

If Ris in <#, or &, then 3,z B, = >,czB.. Now note that there is
a one-to-one correspondence between <7, and <#,;; R is in <%, if and
only if R = RU{2} — {1} is in <#,. Then we have

Sel+| s el=|atere 5 8
rER rER’ r€RNR’
=128+ 2B
rTER rER’
é[ZB,.‘+ AR
rER rER’
Summing over all R in <#,, we have
> RPNy > B
ResaU.gg | TER Re#aUsp3 | TER
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together with equality for R in <#, and <#,, this proves the lemma.
Note that the use of the particular indices 1 and 2 is irrelevant for our
purposes; we only need that both indices are no greater than N or that
both exceed N, so that 37, 8. = > 6,.

LEMMA 1.3. Let B, -+, By be any N complex numbers. Then by
a finite sequence of two-at-a-time averagings, we may obtain new numbers
Bis *++, By such that max,, | B — B}| is arbitrarily small.

Proof. Suppose that all the B’s are real and let 3 be their average.
Let 0 = max, |8 — B,|. Partition {1, .-+, N} into three disjoint classes:

RIZ{TIB—Héﬁ"<B_0/3}!
RB,={r|B—-083=p=B+0/3},
Ry,={r|B+0683<B, =B+ 6}.

By averaging a 8;, © in R, with a 8;, § in R;, we obtain numbers between
B — 0/3 and B + 6/3; by doing this, we may exhaust either R, or R;, so
that we may initially assume that one of these, say R,, is empty. In
this case the cardinality of R, must exceed that of R, for otherwise
the sum of the B’s would be less than NB. Now we may average each
By, © in R, with a distinet B, 7 in R,, and obtain numbers between
B —20/3 and B. Then if B; are the resultant set of numbers,
max, |8 — B.] = 20/3. By repeating this process, we may arrive at
numbers differing arbitrarily little from B. For complex B’s, we first
perform two-at-a-time averagings to make the real parts of the B’s as
nearly equal as desired, and then do the same for the imaginary parts.
Notice that when we perform any averagings, neither the maximum
difference of the real parts nor of the imaginary parts can increase, so
that when we average to make the imaginary parts nearly equal, we
do not increase the maximum difference of the real parts.

We therefore assume B, = ++» =8y =1and By, =+ =L =79,
|[v] £1. Now each set R of & determines two integers k and p which
are respectively the numbers of indices of R which do not, resp. do,
exceed N. For such an R, |X,exB,| = |k + py|. Since there are ()
subsets of {1, -+, N} of cardinality &, and (7) subsets of {N + 1, ---, 2N}
of cardinality p, the number of R’s for which | >,exB.| = |k + p7]| is
@) (@). Thus in this case (1.2) becomes

N = Ayn) = 2VNREY 5 5k + 0| ()6) -

Since |k + pv| = |k — p|v]||, it suffices to prove that Ay(—1) < 4Ax(¥),
—1 <7 <0, and then that Ay(—1) = N.
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LEMMA 14. Ay(—1) £ A7) for all |v]| £1

Proof. We have just seen that it suffices to consider real negative
v; to see that it suffices to consider v = —1, note that for fixed N,

1 N — 5 g NY(NY —
S A = ) 3 5 1+ 7| )6) = Ga)

is a piecewise linear continuous function of . Where it exists, its
derivative with respect to 7 is

SEPOO -5 S a0
z5 S0 - 5 S p)e)
=S - £ 5 s

Il
M=
Ma-

[PE)G) — (N — » + DEF-0) G-l

>
Il

o
A~
Il
o

Il
=

Thus G(7) is a non-decreasing function of ¥ and so obtains its minimum
at vy =—1.

Finally, we compute Gy = Gy(—1). We have

N+l N+1 .
Gyn= 2 2 |k —p[EHE)
k=0 p=0
N+1 N+

=2 g [k —p[IG)E) + GG + GL)E) + CDE]

=S S -pIOO + 5 51k +1- ()

+ 5 51— —1O® + X X1k — 21O

an

— 4G, + 23 () = 4G, + 2() .

k=0

We have used the convention (§) =0 if n <0 or » > N. The third
equality is a simple change of index of summation. The next-to-last
equality comes from noting that

Oifk#0p

E—p—1 k— 1] -2k —»p| =
b—p—1l+lk—p+1l=2k—pl=1,. "
We then have by an easy induction

_ v (N +1/2)
Gr=4 V7 I'(N) ’
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whence by Stirling’s formula, and the crudest sort of estimates,
Gz Ly,
2 T
so that A, = N.

2. The boundedness theorem. Let X be a Banach space, X* its
adjoint, & and % bounded Boolean algebras of projections on X, with
bounds M, and M, respectively, such that KF = FE for all £ in & and
F in & ; E will be assumed to be strongly complete [1, Definition 2.1].
I is the identity operator on X and will be assumed to belong to both
% and & ; we denote I — E (I — F') by E’ (F'). The operator >, a FE,
where the E, are mutually disjoint projections from & and sup|a.| < o,
is a bounded operator on X with norm at most 4M,-sup|a,| [4, p. 341].
We use the usual lattice supremum, infimum, and comparison signs for
our projections as well as for closed subspaces of X:E,V E,=
E +E,—EE,ENE,=EFE,E < E,if and only if E.E, = E; I,V I,
is the smallest closed manifold in X containing both of the closed
manifolds M, and Wi,, M, A M, is the intersection of M, and M,, and
M, < M, means that M, is contained in M,. D(x) denotes the least
closed manifold of X containing Ex for all £ in &. If z is in X, we
call the projection in &, C(x) = A{Ex| Ex = x} the carrier projection
of x; x is full over K if C(x) = F.

We assume that there is an integer N for which the following
condition (*y) holds:

(xy) Let  be in X, and suppose that M(Fx) N A M(EFsx) =0
Sfor all 4, 1<% =<mn, for some choice of F, «+-,F,. Then either
AL, C(Fx) =0, or else n < N.

This condition holds, for example, if & is countably decomposable
and has no projection of infinite multiplicity. The proof requires rather
extensive background material which we will have no other occasion to
use, and so is deferred to an appendix.

We wish to obtain a bound for the norm of VZX_.E,F, which is
independent of M and the particular E,’s in & and F,’s in &% . Ac-
cordingly, fix £, &, and F,,e &, m=1, -+, M; x ¢ Xand ¢* ¢ X*
with || =< 1,|2*| < 1. We will estimate z*>¥_ E, . F,x.

First notice that, without loss of generality, we may assume that
the F,’s are all disjoint: let L be an index running over all subsets of
{1, +++, M}, and define

ELZVZGLEty FLzAzeze/\l\zeze'-

It is well known that the non-zero F, are the atoms of the Boolean
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algebra of projections generated by the F’s, and are mutually disjoint
with sum I. Now we have

VZEIFZ’ = VzEz(V(meL}FL) = VL(V(LlleL)ELFL)
= V.EF, = ViVie:E)F = ViV e EF) = VL EF,

thus we have found a way of expressing VZ_,E, F, with the F’s dis-
joint.

Now let J and K be two indices running over all subsets of {1, -+, M},
and define

E; = AjesE; N\ ANjsesES Ge = AiexCF@) N AvexC(F2)

{E;} and {Gx) are both disjoint families of projections with sum I.

Lemma 2.1. 1. C(Fx) = V (xirex)Gx »

2. GgFx=01f k¢ K,

8. If ke K and Gg #+ 0, then G.Fx = 0,
4. Fux = ZJZK EJGKFkx,

5. m=1 EnFp2 = EJZKE(MGJHK}EJGKme’
6. For a fixed K, there are most N
integers m for which G,F,x + 0.

Proof. 1 — 4 are clear. 5 follows from the fact that the E,’s and
Gx’s have sum I, and if m ¢ J, then E,E, = 0; if m ¢ K, then GgF,z =
0; while if m € J N K, then E,G.E, F,x = E,G.F,x.

6. Suppose that G F,x +0 for m =m,, +++, My,. Then by 2,
{my, -+, my} € K, and by 1, each F,, xis full over G.. Since F,z =z
for every z in M(F,x), the disjointness of the F),’s gives

T(F ) A V g T(Fop7) = 0

for 1 <4 < N + 1, which contradicts (ky).
Now define

aim, J, K) = 2*E,GeF .

As a corollary to Lemma 2.1, parts 5 and 6, we have

ba. o* SE_ E,F.x = > >k Dimesnky &(m, J, K),

6a. For a fived K, there are at most N integers m for which
a(m, J, K) # 0.

Let P be any subset of {1, --+, M} and define

B(P, T, K) = S, a(p, J, K) = o*( 3, F, )G -

Let T, be the operator 3, S sgn B(P, J, K)E,Gx, where sgn re¢¥ = ¢~
if %0, and 0 if » =0. T, is an operator on X of norm at most 4M,.
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Thus we have

= ¥

(3 F,) T, 1T, || < 4MM, ;
DPEP

>, F
DEP

but on the other hand

@.1) w*(% F) Teo =3 5 [sg_n B(P, J, K)-x*(pz FP>E‘JGKx]

€P

=33 |8([P, J, K)| = AMM, .

We are now in a position to prove the principal theorem of this
paper.

THEOREM 2.2. Let & and & be commuting bounded Boolean
algebras of projections on a Banach space with bounds M, and M,
respectively, & strongly complete. Suppose condition («*N) is satisfied
for some N. Then the Boolean algebra of projections generated by &
and Z is bounded, with bound 8V NtM,M,.

Proof. For each J, K, there are at most N integers my, «++, my
for which a(m, J, K) #+ 0. Let

a, =a(m,J,K), 1=s=N,
S,={s|m,e JNK},

and apply Theorem 1.1. We obtain

S amm,J, K)| <2V Nz-27 S, | S a(m,, J, K)| .
mEJNK ses | ses
Now for any S, there are 2¥—¥ distinct sets P of {1, ---, M} for which
Sses(mg, J, K) = 3 ,ep0(p, J, K); namely, {m,|s € S} together with any
of the 2¥~¥ subsets of integers between 1 and M which are not one of
My, »++, My. Thus

5 atn, J, K)| = S| S ak, 7, )|,

SES

2M—N 2

sSed

and

5 a0, 7,K)|

> a(m, J, K)l < 21/ Nz.2-x s

meINK

Summing over all J, K, we have for arbitrary «,x* of norm 1, E,’s
and F,’s,
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ERARIES

J K

S am, J, K)l

meJNK

< 2V/Nrx.2-% ; ; %

>, a(p, J, K)‘

pEP

< 2V'Nr.27* 5, (4M,M,) = 2V 'Nz-4M, M, ,
P

which is exactly our theorem.

3. Examples. Inspired by the example of S. Kakutani [6], we
construct an example in a finite dimensional space to show that the
order of magnitude of our bound is sharp. We imitate his paper in the
construction of algebras of projections as much as possible and omit
proofs which essentially appear in his paper.

Let N be a power of 2, N =2" and let S and S’ be the set of
integers {1, -+, N}; C(S), the continuous functions on S with the sup
norm, is simply the N dimensional vector space of N-tuples. Let S* =
S x S’, and let our Banach space X be C(S*), but with the minimal
«cross product norm induced from C(S) and C(S’). Our X corresponds
to the space C(S)@C(S’) of Kakutani, and has dimension NZ?. The
elements of X may be thought of in a natural way as N x N matrices
(s, 8'). Let &, and &, be the commuting Boolean algebras of projec-
tions of bound 1 generated respectively by E, and F;,, 1 <7 < N, both
of multiplicity N:

, x2(s,s') if s=1, , x(s,s") if 8’ =1,

B $) =10 ie 524, B o) =104 g 24
'Then there is a projection G in the Boolean algebra of projections
generated by &, and %, such that 2G — I takes the element of X
defined by x(s, s’) = 1 into the element o(s, s’) defined by

o(s, 8') = (—1) g} &i(8)e:(s")
-where s has the unique representation

s = €,(8)2" 1 + 8,(8)2" P 4 cor 4+ 6,4(8)2 + g4(8) +1,6(8) =0 or 1.

If we put a measure ¢ on S which assigns to each point the meas-
ure 1/N, then the N functions on S, p(s, %), 1 < ¢ < N, form an ortho-
normal base for L*(S, yt), and the computations on pp. 368 and 369 of
[6] carry over exactly to show that the norm of 0(s,s’) in X is no less
than 1N. Since the element of X, (s, s’), has norm71, this says that
the norm of 2G — I is at least VN, or that the norm of G is at least
(VN —1).

Let us now take one copy X, of the above example for each N,



304 C. A. McCARTHY

and form the [, direct sum of the X,, which we call X. Elements of
X are sequences {xy} where x, € X, and

Ml = Sl ] < .

The algebras &, and . on X, have a natural extension to all of X
by defining &, (Xy) = F(Xy) =0, M+ N. Let & and & be respec-
tively the commuting Boolean algebras of bound 1 of projections on X
generated by all the &, resp. %, and note that the generated algebra
contains a projection of norm at least 4(VN — 1) on the subspace Xy;
we thus see that the algebra generated by & and & 1is not bounded.
Since X is an [, direct sum of finite dimensional (hence reflexive) spaces,
X must be itself reflexive and also separable.
Now let T and T’ be operators on X, defined by

T( Ng @ wa(s, s’)> - Ni ® 2-73-51(s, 5')
T'(é‘_i B xx(s, s’)) = Nf};l B 5 xy(s, s').

Then T and T' are bounded commuting scalar-type spectral operators
on X. The operator T7T' has simple eigenvalues at the distinct points
2-#3-5-7,1 < 4,5 = M < «. The projection E, ;, corresponding to the
eigenvalue 27%3-%5~/ gsatisfies

Byio 58045, 5)) = 5B 8unbubintals, ) ,
N=1 N=1

where 8, is the Kronecker delta. Thus the Boolean algebra of projec-
tions generated by the K, ;; contains both & and % and therefore is
unbounded. T7T' cannot be spectral. Also the sum of two spectral
operators on X need not always be spectral. For if this were so, 7'+ T
would be spectral, hence (T'+ T')%; also (T + T’y — T =2TT".

4. Appendix. We show that (x,) is satisfied if the Boolean algebra
% 1is countably decomposable and has no projection of infinite multiplicity.
We will make use of the representation theory of such algebras of pro-
jections originally given by J. Dieudonné [3] but used here in the form
due to W.G. Bade [2]:

There is a compact Hausdorff space 2, the Stone space for &, and
a natural correspondence between % and the Boolean algebra of Borel
sets of 2. We will allow ourselves to confuse the set ¢ — 2 with the
corresponding projection E(g) in &, A projection E has multiplicity N
if there exist N elements x,, ---, 2, of X such that EX = VI_M(x,),
and if for every N —1 elements y,,+--, yy_, of X, EX + VY M(y,). E has
uniform multiplicity N if E has multiplity N, and 0 < E, < EF implies
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that £, has multiplicity N. By using theorem of Bade [2, Theorem 3.4],
and assuming that & contains no projection of infinite multiplicity, we
can decompose £ into a finite union of disjoint sets, 2 =e, U +-- Uey
for some N, where ¢, has uniform multiplicity n. It will suffice to
consider the case 2 = e,. In this case, we can find an & -basis x;, ++-, ©y
for X and a dual basis «f, ---, 2} such that X = VI, M(x,) and
2xE(o)x, =0 if m #n and is >0 if m =n and E(0)x, # 0. Let us
write p(x*, x) for the measure x*E(+)x. Then each x in X determines,
essentially uniquely, N scalar functions f,(w) on 2, f.(®w) being the
Radon-Nikodym derivative of p(x}, ) with respect to p(x;, x,). Also
each z* in X* determines, essentially uniquely, N scalar functions g,(®)
on 2, g,(w) being the Radon-Nikod§m derivative of p(x*, x,) with respect
to p(xk, x,). The product f,9, is in LYQ, p(x}, x,)) for each m, and
#'s = S | F@@dpr, ).

Note that the measures p(x}, x,) are all absolutely continuous with
respect to one another, and every measure p(xz*,x) is absolutely con-
tinuous with respect to all of the p(x}, x,). When we say measurable,
we mean with respect to any, hence all, p(x}, x).

Now suppose that F,, --., Fy,, are disjoint projections, commuting
with each E e &, and such that for some 2 and some ¢ C 2, ¢ + 0,
each F,x is full over 6. We can assume for simplicity that ¢ = 2.
The fact that each F is a bounded projection commuting with every E
in &, insures that F, =z for every z in M(Fx). The disjointness of
the F,’s then gives us W(F,x) A ViU Fi) for =1, «o+, N+ 1.

The following two lemmas will allow us to reach a contradiction.

LEMMA 4.1. Let A(w) be a matriz of measurable functions on Q.
Then if M(w) is a fixed minor of A(w), det M(w) is a measurable
Sunction. If r(A, ®) denotes the rank of A(w), then r(A, ) is @ measur-
able function.

Proof. If M(w) is a fixed minor of A(w), det M(w) is a sum of
products of measurable functions, hence is measurable. Also the set on
which det M(w) #+ 0 is measureable, and so the Boolean algebra of sets
generated by the supports of M(w) for all minors M of A, is an algebra
of measurable sets. 7(A4, w) is a simple function on this algebra, and
so is measurable.

a(r,, A) will denote the set of w for which (4, w) = r,. a(r,, A, M)
will denote the subset of o(r,, A) for which the r,rowed minor M has
non-zero determinant. The a(r,, 4, M) mutually exhaust a(r,, 4). Let
{o} be a finite collection of mutually disjoint Borel sets such that each
o is contained in some o(r, A, M), and mutually exhaust ¢(r, A) and
hence exhaust 2.

For the moment, fix 6. Let M be a r-rowed minor of A(w) for
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which o c o(r, A, M). Let p, -+, D, be the row indices of M and
Q1 ***, q, the column indices.

LEMMA 4.2. Let g(w), <+, gy(w) be N measurable functions such
that on o, the column N-tuple (9(®), -, gy(®) is pointwise linearly
dependent upon the r columns (@14 (@), * 2+, Ox g (@) of Aw). Then
there exist r measurable functions u,(w) such that on o,

gu(®) = jiu,(a))a,,,qj(w) for m=1,--+,N.

Proof. The minor M(w) has non-zero determinant on. Let M () =
(Wp,.q,(@)), the w’s being measurable functions on 2. We have

.1§1 apiyqj(w)ij.qk(w) = Sik .
Define
uj(w) = ig]‘. ij'qi(w)'gpi(w)

Then, if » is one of the p;,, we have

M-

5 U(@)00.0,(0) = 3, 3 1y, (0)0, ()05, (@)

J

1l
-

M*}

8,092, (@) = 9u(®@) .

4

|
-

And if for some w, and some 7, not a p,,

; uj(wo)ano.qj(wo) # gno(wo) ’
then the matrix, evaluated at w,,

Oppa *°* a'Prqr 9,
cee
’
a'pr'-ql ot al’r'qr gp,.
Angay **°* Cnyq, Iy

has rank 7 4+ 1, contrary to the assumption that the g, are linearly
dependent upon the 7 .columns of A with indices g;.
Now let the matrix A have its entires defined by

_ dp(xxF) 1<i<N 1<i<N+1
(@) e + i

Then the N + 1st column is pointwise linearly dependent upon the
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first N columns. Selecting one of the non-zero sets ¢ and applying
Lemma 6.2, we have the existence of N measurable functions u,(®) on
o for which we have

N
@, y1(®) = E; uw)ay (@), 1=i1=<N.

Let now 7 = 0 be a subset of ¢ on which each of the functions u,(®) is
bounded. We then have

2 E () Fy % = xi*ﬁ, S u(w)E(dw)Fx
which implies
N
E@)Fy0 = 3, (Sruj(w)E(dw)>F,x
(this makes sense all the u,’s are bounded on 7); that is,
N
B@)Fyut ¢ Y IFia),

which is the desired contradiction.
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