A GENERALIZATION OF
THE STONE-WEIERSTRASS THEOREM
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1. Introduction. Consider a compact Hausdorff space X and the
set C(X) of all continuous complex-valued functions on X. Consider also
a subset A of C(X) which is an algebra, which is closed in the uniform
topology of C(X), which contains the constant funections, and which
contains sufficiently many functions to distinguish points of X. Such
an algebra A is called self-adjoint if the complex conjugate of each
function in 2 is in 2. The classical Stone-Weierstrass Theorem states
that if 2 is self-adjoint then A = C(X). If A has the property that
the only functions in 2 which are real at every point of X are the
constant functions then 2 is called anti-symmetric. Clearly anti-
symmetry and self-adjointness are opposite properties, in the sense that
if A has both properties then X must consist of a single point.

Hoffman and Singer [2] have studied these two properties and given
several interesting examples. The present paper was inspired by their

work but it more directly relates to a previous paper of Silov [3]. The
purpose of the present paper is to prove the following decomposition theorem
for a general algebra U of the type defined above.

THEOREM. There exists a partition P of X into disjoint closed
sets such that

(i) Jfor each S in P the restriction s of A to S is anti-symmetric,

(ii) if a function f in C(X) has, for each S in P, a restriction
to S which belongs to s, then f is in A,

(iii) for each S in P, each closed subset T of X — S, and each
e > 0 there exists g in A with |[g|l =1, with [g(x) — 1] <e for x in
S, and with |g(x)| < e for x in T.

Property (ii) of this theorem is the essential new fact of this paper.
The construction given below which leads to the partition P is due to
Silov [3], who in essence proved (i) and (iii). Silov proved a weaker
property than (ii). Our proofs are different from those of Silov,
although the construction is the same.

The fact that the Stone-Weierstrass theorem is a special case of
the theorem to be proved here is clear. If U is self-adjoint then each
A is self-adjoint. Since Ay is also anti-symmetric, each set S in P
consists of a single point. Therefore Ay = C(S). By the theorem to
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be proved, it follows that each function in C(X) is in 2. Thus A = C(X),
which is the conclusion of the Stone-Weierstrass Theorem.

2. Proof of the theorem. The key step in the proof will be the
following lemma.

LEMMA. Let Y be a compact Hausdorff space and B be a sub-
algebra of C(Y) which contains the constant functions. Let R be all
real fumctions in B. Define y, = y,, for ¥, and y, in Y, to mean that
fW) = F) for all fin R. Let Q be the set of all equivalence classes
for this equivalence relation, so that Q is a partition of Y imto dis-
joint closed sets. Let pt be a finite complex-valued Baire measure on
Y and f a function in C(Y) such that

(@ llell=1,
(b) Sgdp =0 for all g in B,
© S fdp + 0.

Then there exists S, in @ and a finite complex-valued Baire measure
v on S, such that
@) Ivll=1,

(by) Sgdv =0 for all g in B,
@ |{rav| = |[ran|.

Proof. Tt is clearly no loss of generality to assume that B is closed
in C(Y). Let ¥ = {g;} be a finite set of functions in R such that
g; = 0 for all 7,
ng = 1 .

Let I” denote the class of all such . Define a partial ordering on I”
by writing

{od = {93}

if there exists a mapping @ of the set of indices ;7 onto the set of
indices ¢ such that
g; = Z 9;
eI =1

for all 7. To see that I" is a directed set relative to this partial order-
ing, let {g;} and {g}} be any two elements of /. Then the set {g.g}} is
clearly a common successor of {g;} and {g}}.

Consider ¥ = {g;} in I". For each index ¢ let p; be the measure
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defined by
w(H) = gygid#
for each Baire subset H of S. Clearly

lpmll=llpgll=1

and
= s\ sdp..

Thus for at least one value of 4 with ||z || # 0 we have

|fraes] 1201 2| {rape]
Choose such a value of ¢ and write
It follows that
() el =1
and
® [ = |[ran .

By the compactness in the weak* topology of the unit sphere of the
set of Baire measures on X, it follows that the net {¢,} has a cluster
point v in the weak™ topology. Let x, be any point in the support of
the measure v, and let S; be that member of the partition P which
contains z,. Let 2, be any point in X — S,. Thus there exists &, in R
with hy(x,) # ho(x,). Let

h, = ch, + ¢, .
If the real constants ¢; and ¢, are chosen properly then
hx) =1, h(z)=0.

It follows that there exists a neighborhood U, of x, and a neighborhood
U, of 2z, such that

hxy <%, xe U,

and



780 ERRETT BISHOP

@) >3, zel,.

Let )\ be continuous real-valued function on the range of 4, with 0 <
M1, Mt)=01fort <4, Mt) =1fort = %. By the Weierstrass approxi-
mation theorem, \(t) is a uniform limit of polynomials in ¢. Therefore
the function

hy, = N\oh,

isin R. Clearly 0 < h, =1, hy(x) =0 for « in U,, and h,(x) =1 for x
in U,.

Define g, = h, and g, =1 —h,, so that {g;} € I". If v = {g}} is an
element of I which follows {g;}, then each ¢} vanishes on either U, or
U,. Therefore the support of p, is either a subset of X — U, or of
X — U,. Thus the support of v is either a subset of X — U, or X — U,.
By the choice of z,, it follows that the support of v cannot be a subset
of X — U, and is therefore a subset of X — U,. Therefore x, is not
in the support of v. Since %, was any point in X — S,, it follows that
the support of v is a subset of S,. Thus v is a Baire measure on S,.
It is clear from the definition of v and from () and (8) that (a,) and (c,)
are valid. It only remains to prove (b,). Now for each g in B and
each v in I we have

Sgdﬂy = Sggid# =0,

by (b) and the fact that gg, € B. Passing to the limit gives (b,). This
completes the proof of the lemma.

Let 2 be the class of ordinal numbers whose cardinal numbers are
less than or equal to 2°, where 8 is the cardinal number of X. For
each ¢ in 2 we define by transfinite induction a partition P, of 2 into
disjoint closed sets. This is to be done in such a way that P, is a
refinement of P, for 0 > v. The definition is started by defining P, = {X},
so that the first partition P, consists of the set X alone. Assume that.
P. has been defined for all ordinals 7 < ¢. If ¢ has a predecessor a,,
let S be any element of P,, and let ¥ be the set of all functions in
A which are real on S. Partition S by defining %, = z, for 2, and =,
in S to mean that f(x,) = f(x,) for all f in . Clearly S is partitioned
into disjoint closed sets by this equivalence relation. The totality of all
sets into which the elements S of P, are partitioned in this way is
defined to be the class P,.

If o has no predecessor, define x, = x,, for x, and x, in X, to mean
that x, and z, belong to the same element of P, for all 7 < ¢. The
equivalence classes of this equivalence relation clearly form a partition
P, of X into disjoint closed sets. Thus the classes P, are defined for



A GENERALIZATION OF THE STONE-WEIERSTRASS THEOREM 781

all ¢ in 2, and it is clear that P, is a refinement of P, whenever ¢ > 7.
Assume that P,., is a proper refinement of P, for all ¢ in 2, i.e.,
that P,,, #+ P,. Then P,,, contains a set not in any P, for t < o -+ 1.
Therefore the cardinal number of subsets of X is at least equal to the
cardinal number of the set 2. This contradicts the choice of 2. There-
fore there exists an ordinal in o such that P,., = P,. We shall show
that the partition P = P, satisfies all requirements of the theorem.

The fact (i) that 2 is anti-symmetric for each S in P = P, is a con-
sequence of the fact P, = P,,..

We next prove (ii). Consider to this end f in C(X) such that the
restriction of f to S belongs to Ag for all S in P. Assume that f is not
in %A. By the Hahn-Banach theorem, there exists a bounded linear
functional on C(X) which vanishes on 2 and does not vanish at f. By
the Riesz representation theorem, this functional can be realized as a
measure ¢ on X. Thus

ngp:O, ge U

Sfd/zio.

we may clearly assume that || ¢|] £1. We now construct, by transfinite
induction, a set S, in P, for each ¢ in 2 and a finite complex-valued
Baire measure g, on S, with

(1) S,cS. for <o,

) |[ranz||ran

(3) llell=1,

(4) Sgd/x, —0, all gin 9.
Clearly the measure p, = ¢t does the trick for ¢ = 1. Assume therefore
that the sets S. and the measures g, have been constructed for all
T < og. If ¢ is a limit ordinal, let

S, =M S-

<o

and let g, be any cluster point in the weak* topology of the net
{¢t:}.<.. Clearly this set S, and the measure g, do the trick.

If o is not a limit ordinal, then there exists 7 witho =7 + 1. Let
Y be S, and let B be the restriction to Y of the algebra 2. By the
above lemma, applied to the measure p., there exists a finite complex-
valued Baire measure t, on some S, € P,, with S; € Y = S,, such that

(3) lull=1,
(4) ggd.ﬂla:O, all g in B
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(2) |§fd/¢cr z!gfd#rlzlfdﬂl .

Thus the set S, and the measure p, do the trick.
This completes the construction of the sets S, and the measures (..
For o0 = p we have

[ raz.

= [ dp| 0

and \gdy, =0 for all g in A. Therefore the restriction of f to S, is

not in %Isp. This contradicts the assumption of (i), thereby proving that
f is in 2. This proves (ii).

It remains to prove (iii). To do this we prove by induction on o
that for each o in 2, each S in P,, each closed subset T of X — S, and
each ¢ > 0 there exists g in o with ||g|| =1, |g(®) — 1| < e for all
in S, and |g(x)| < e for all  in T. Once this is done (iii) is obviously
obtained by letting ¢ equal p. Since the existence of g is clear if 0 =1,
consider ¢ > 1 and assume that all smaller values of ¢ have been disposed
of. If o is a limit ordinal, there exists 7 < ¢ and R in P, with SC R
and Tc X — R. By the induction hypothesis, there exists g in U with
lgll =1, |glx) —1| < e for all # in R, and |g(x)| < ¢ for all  in T.
Since S ¢ R this function ¢ has the required properties.

It remains to consider the case of an ordinal ¢ which has a predecessor
7, so that 0 = 7 4+ 1. Let R be that element of P, for which S c R. Let
D be the closure in C(R) of ;. Let x, be any point in S and x, any point
in TN R. By the definition of the partition P, there exists &, in 2 such
that the restriction of h, to R is real and such that h,(x,) # h(x,). Let
M be a function on 2,(R) with 0 < )\ < 1, MAu(x,)) = 0, MAy(x,)) = 1. Define
the function %, in C(R) by

hy = Noh, .

Since M is a uniform limit of polynomials, 7, € . Clearly ||k =1,
hy(x,) = 0, and h,(x;) = 1. Thus hy(x) =1 for all # in S. By the com-
pactness of T'N R, the product of a certain finite number of such func-
tions &, will be a function h; in D with || A || £ 1, hy(x) =1 for z in S,
[hy(x) | < & for xin T N R, where 8 is an arbitrarily small positive number.
By the definition of 9, there exists h, in A with

[ hy() — hy(x)| < 8
for all x in R. Define
hy = (1 + 28)7*h, ,
so that h; e A. Also
[hy(@) | = (L + 28)7 (| ho(w) | +8) <1
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for all x in B. Thus there exists an open set U, € X with R c U, such
that |hy(x) | < 1 forall z in U, If & is sufficiently small it is clear that

Ih5(w)—1l<%

for all z in S and
[hy() | < e

for all x+ in TN R. Thus there exists an open set U, in X with
TN Rc U, such that |hsx)] <e for all x in U,. By the induction
hypothesis at stage 7 there exists h; in U with ||h]] £ 1, |h(x) — 1| <
¢/2 for x in R,

() [ Bo() | < min {| hy(x) [7: € X — Uy}
for all # in X — U,, and
) |ho(®) | < min {e [hy(x) [ 2 e T — Uy},

for all x in T — U..

Define g = hh,, so that g€ A. For x in U, we have |hyx)| =1,
so that | g(x) | < 1 since || k|| = 1. For x in X — U, we have |gx)| =1
because of (¥). Thus ||g|| =1. For x in S we have |hyx) — 1] < ¢/2
and |hy(x) — 1] < ¢/2, so that

lg(@) — 1] = [ho(@) | [ ho(@) — 1| + [ho(x) — 1] <.

For # in U, we have |hix)| <e, so that |g(x)| < & since || k|| < 1.
For # in T — U, we have (¥), so that |g(x)| <e. Thus |g(x)| < e for
all 2 in T. Thus ¢ has all of the required properties. This completes
the proof of (iii) and thereby the proof of the theorem.

We note in conclusion that property (iii) and some results to be
found in [1] imply that s is closed in C(S) for each S in P.
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