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l Introduction* Malcev algebras are a natural generalization of
Lie algebras suggested by introducing the commutator of two elements
as a new multiplicative operation in an alternative algebra [3]. The
defining identities obtained in this way for a Malcev algebra A are

(1.1) xy = ~yx

(1.2) xy xz = (xy z)x + (yz x)x + (zx x)y

for all x,y, z e A. Since Albert [1] has shown that every simple alter-
native ring which contains an idempotent not its unity quantity is either
associative or the split Cayley-Dickson algebra C, it is natural to see
if a simple Malcev algebra can be obtained from C. In [3] a seven
dimensional simple non-Lie Malcev algebra A* is obtained from C and
is discussed in detail. In this paper we shall prove the following

THEOREM. Let A be a finite dimensional simple non-Lie Malcev
algebra over an algebraically closed field of characteristic zero. Fur-
thermore assume A contains an element u such that the right multi-
plication by u, Ru, is not a nilpotent linear transformation. Then
A is isomorphic to A*.

The necessary identities and notation from [3] for any algebra A
are repeated here for convenience:

(x, y) — [x, y\—xy — yx

(x, y, z) = xy z — x yz

J(x, y, z) = xy z + yz x + zx y

for x,y,ze A. If h(xlf , xn) is a function of n indeterminates such
that for any n subsets B{ of A and b{ e B{, the elements hφlf •••, bn)
are in A, then h(Blf , Bn) will denote the linear subspace of A spanned
by all of the elements h(blf •••,&„).

For a Malcev algebra A of characteristic not 2 or 3, we shall use
the following identities and theorems from [3]:

(1.6) J{x, y, xz) = J(x, y, z)x

(1.3)

(1.4)

(1.5)

Commutator,

Associator,

Jacobian,

Received September 2, 1961. The author would like to thank Professor L. J. Paige
for his assistance in the preparation of the manuscript. This research was sponsored in
part by the National Science Foundation under NSF Grant G-9504.

1057



1058 ARTHUR A. SAGLE

(1.7) J(x, y, wz) + J(w, y, xz) = J(x, y, z)w + J{w, y, z)x

(1.8) 2wJ(x, y, z) = J(w, x, yz) + J(w, y, zx) + J(w, z, xy)

(1.9) J(wx, y, z) = wJ(x, y, z) + J(w, y, z)x — 2J(yz, w, x)

(1.10) xy zw = $(te^ 2) + w(ys #) + y(sa? w) + 2(#w y)

for all w, x, y, z e A. If N = {x e A: J(x, A, A) = 0}, then it is shown
in [3] that N is an ideal of A which is a Lie subalgebra and further-
more for α, b e A

(1.11) J(a, 6, A) = 0 implies ab e N.

It is also shown in [3] that J(A, 4̂, ̂ L) is an ideal of A. Thus if A is
a simple non-Lie Malcev algebra we have

(1.12) N = 0 and A = J(A, A, A) .

We shall assume throughout this paper that A is a finite dimen-
sional simple non-Lie Malcev algebra over an algebraically closed field
F of characteristic not 2 or 3 containing an element u such that Ru is
not a nilpotent linear tansformation. In § 2 the basic multiplicative
identities are derived using methods analogous to those of Lie algebras.
Decomposing A = AQ 0 AΛ 0 0 Ay into weight spaces relative to
Ru [2; page 132] we prove the block multiplication identities AΛAβ c
Aa+β if a Φ β, Ala A-a, and Al — 0. Further identities are derived in
§ 3 which lead to the important result that there exists a nonzero
weight a such that A = 4 o 0 A α 0 A-Λ where AQ— A*A-.».

In § 4 we show that R(A0), the set of right multiplications RXQ by
elements x0 e A09 is a set of commuting linear transformations on the
subspaces Ao, Aω and A-Λ. Analogous to Lie algebras we decompose
A = A0Q) AωQ)A-Λ into weight spaces relative to R(A0) [2; page 133]
and thus find a basis of A which simultaneously triangulates the matrices
of R(A0). We now introduce the trace form, (x, y) — trace RxRy, in § 5
and assume for the remainder of the paper that the algebraically closed
field is of characteristic zero. With this and the results of § 4 we
easily show that (x, y) is a nondegenerate invariant form on A =
Λ Θ 4 Θ A - « and A, = uF.

In § 6 we show that Ru has a diagonal matrix of the form

Ό 0"

al

0 -al_

Using this and a few more identities we show in § 7 that the simple
Malcev algebra A = Ao 0 Aa 0 A-^ is isomorphic to the seven dimen-
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sional algebra A*.

2. Basic multiplication identities* Let Ru (u e A) be a fixed non-
nilpotent linear transformation and decompose the simple Malcev algebra
A into the weight space direct sum A = 4 o © 4 Λ 0 0 i v relative to
Ru where the weight space of Ru,

Aa = {x e A: x(al — Ruf = 0 for some integer k > 0} ,

is a nonzero ^-invariant subspace of A corresponding to the weight a
of Ru. Let xω e Aω, xβ e Aβf then using (1.6)

J(u, xΛ, xβ)Ru = J(u, xΛ, xβ)u = J(u, xΛf uxβ) = —J(u, xa, xβRu)

and therefore

J(u, xΛ, xβ)(βl + Ru) = J{u, xΛ, xβ(βl - Ru)) .

Now letting yβ = xβ(βl — Ru) e Aβ we have

J(u, x«y xβ(βl - Ruf) = J(u, xΛ, yβ{βl - Ru))

= J(u, xω, yβ)(βl + Ru)

= J(u, xai xβ(βl - Ru))(βl + Ru)

= (u, xa, xβ)(βl + RJ .

Continuing by induction we obtain

(2.1) J(u, x«, xβ)(βl + RUY = J(u, xΛ, xβ(βl - Ru)
n)

for every integer n. Since xβ e Aβ there exists an integer N such
that 0 = J{u, xaf xβ(βl— RU)N) = J(u, xa, xβ)(βl +RU)N and this shows
J(u, xΛ, xβ) e A_β. Now interchanging the roles of xβ and xa in (2.1)
we also obtain J(u, xm xβ) e A-a and thus

(2.2) J(u, AΛ, Aβ) c A-Λ Π A-β .

From (2.2) we have the following relations

(2.3) J(u, Am AΛ) c A_Λ

(2.4) J(u, Am Aβ) = 0 if a Φ β .

We shall now prove

(2.5) AaAβ c Aa+β if a Φ β .

For if a Φ β and xΛ e Am xβ e Aβ we have by (2.4),

0 = J(n, xa, xβ) = (xΰύxβ)Ru — xjtu xβ — x« xβRu

that is, (xaxβ)Ru = xaRu xβ + x* %βRu and so Ru is a derivation of
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AcbAβ into AaAβ. This yields

{xaxβ){Ru - (a + β)I) = &Λ(iJtt - α l ) α

and in the usual was we prove the Lebnitz rule for derivations which
then yields that for some integer N, (x«xβ)(Ru — (a + β)I)N = 0 and
therefore xobxβ e Aω+β. In particular we have

(2.6) A0A«c:Aa if a Φ 0 .

We shall now investigate Ao more closely. Let xa e Aa9 xβ e Aβ and
#0 e Ao, then by (1.7) J(xOf xβ, uxω) + J(w, xβ, xQxa) = J(x0, xβ9 xa)u +
J(u, xβf xa)xQ. Therefore if 0 Φ a Φ β we have by (2.4) J(xQ, xβ, uxa) =
J(x0, xβ, xΛ)u. This yields J(x0, xβ, xjfiίl — Ru)) = J(x0, xβ, xΛ)(aI + Ru)
and as in the proof of (2.4) we obtain

(2.7) J(A0, Aa, Aβ) = 0 if 0 ^ α Φ β Φ 0 .

Next let x09 y0 e Ao and xΛ e AΛ where a Φ 0, then using (1.9),
(2.4) and (2.6) we have

J(xQu, yQ, xΛ) = x0J(u, y0> xΛ) + J(xQ9 y0, xa)u - 2J(yQx«, x09 u)

and in general we have J(x0R%, y0, xa) = J(#o, l/o> ̂ β») Bί which im-
plies J(a?0, y0, »„) G Ao. Now by (1.7), J(^ o , y0, uxΛ) + J(u, yQ, xoxa) =
J(a?0, i/o,««)% + J(u9 y0, x*)x0; and using (2.4) and (2.6) we obtain
J(x0, y0, xaRu) = —J(x0, Vo, x«)Ru which implies J(x0, y0, xa(Ru - al)) =
—J(xOf y0, x<x)(Ru + oil). Thus, as usual, we have J(x0, y0, xa) e A-a and
therefore J(x0, y0, xΛ) e Ao Π A_Λ which proves

(2.8) J ( Λ , Λ , Λ.) = 0 if a Φ 0 .

We shall now show Al c Ao. From our basic decomposition A =
Λ Θ Λ Θ Θ Λ relative to Ru we can find a basis {xx{τ)y , ̂ w(τ)}
(t^ = mτ) of AΓ such that

(2.9) Xι(τ)Ru = Σ aij%Aτ) + ^ ( τ )

where τ, α^ e F and i = 1, , m. In particular let {^(0), , a
{xlf •••,.»«} be the above type for AQ. Then xjiu = 0 and

χ.jζw _ γ^aikxk (i = 2,

Furthermore,

£, ajt , a?y) =
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with the understanding that α10 = 0.
Using (1.6) and operating on both sides of the previous equation

with Rl, we obtain

i - i

Now by assuming i < j and choosing n large enough, a simple induc-
tive argument yields %&5 e Ao for all i and j . Thus Ao c Ao.

Using (1.8), A0

2 c Ao and (2.8) we have

AΛJ(AQ, Ao, Ao) c J ^ c , Ao, Ajj) c /(A*, Ao, Ao) = 0 for ^ ^ 0 .

i n u s , ^±«y (^i0, u4.0, -Ao) c ^JQJ A^J (AO, AOf Ao) — A0J \A0, J±09 Ao) cz «y(A0, A.Q, A.Q),

or J(^40, AQ, AO) is an ideal of A. But since /( io, AQ, Ao) c AQΦ A and
A is simple we have

(2.10) J(A0, Ao, Λ) = 0 .

Now using (2.8) and (2.10) we have J(A0, Ao, A) = Σ » ̂ (Λ> Λ , ^«) =
0 and by (1.11) and (1.12),

(2.11) AlcN=0 .

In particular this means the kernel of Ru is ̂ 40.
We shall now show A\ c A_Λ. Let xΛ, ya e Aa for a Φ 0, then by

(2.3) / ( ^ , a?rt, 2/J = (xaya)Ru + 2/<Λ xa + yΛ α;ΛieM = w^ e A-a . There-

fore (xaya)Ru — %«RU y<* + y«- y<*Ru + w-<* which yields

(x»V.)(Ru - 2αl) - &„(!?* - α Z ) . yΛ + xa . yΛ(Λβ - α l ) + wL1^ .

By induction we obtain

where ί̂_%2 6 A_*. Therefore for large enough ΛΓ, (x^y^iRu — 2^/)^ 6 A_Λ.
Now let ajΛj/Λ = Σ Y ̂ V where 2:γ e Ay, then (α?Qί7/0>)(JBw — 2aI)N =
Σ Y «γ(βf» — 2α/)* G A-β,. Therefore by the ^-invariance of the Ay and
the uniqueness of the decomposition A = AQ φ Aa 0 0 Aλf ^γ(i2tt —
2a/)^ = 0 if y Φ —a. Thus if y Φ —a,zy e A2». Therefore α;^^ =
z2a + ^_Λ which proves



1062 ARTHUR A. SAGLE

LEMMA 2.13. J(u, A%, A2a) = 0.

Proof. Using (2.12), (2.7) and (2.3) we have

J(u, Al, A2cύ) c J(u, A-m A2cύ) + J(u, A2Λ, A2cύ) c J(u, A2cύ, A2cύ) c A_2QJ .

Now for any x, y e Aa, z e A2oi we have by (1.7) J(z, u, xy) + J(x, u, zy) =
J(z, u, y)x + J(%, u, y)z and using (2.4), (2.5) and (2.3) this yields
J(z, u, xy) = J(x, u, y)z e A-a A2ΰύ c Aa. Combining these results we
have J(u, Al, A2a) c Aa Π A_2α> = 0.

Now let w 6 A2m x,y e Aa and xy — z20b + 2_Λ where z2ΰύ e A2ΰύ,
Z-a 6 A-a, then using Lemma 2.13 and the fact J(u, A-m A2cύ) = 0 we
have

0 = J(u, xy, w) = J(u, z2a, w) + J(u, £_„, w) = J(w, 2;2α, w)

that is,

J(u, z2m A2Λ) - 0 .

Now since z2oύ e 4̂2OJ we also have by (2.4) J(u, z2oύ1 Aβ) = 0 if /3 ψ 2a.
Combining these results, J(u, z2m A) = Σβ J(u$ z™, Aβ) = 0 and there-
fore z2au e N= 0 by (1.11) and (1.12). Thus 0 = z2aRu and therefore
z2cύ e 4 0 ί l A2α> = 0 and this proves

(2.14) Al c A_* .

Also note that we now have

(2.15)

3, More identities• Let A = Ao 0 Aα 0 0 Ay be the decomposi-
tion of A into a weight space direct sum relative to Ru and suppose
that for weights α, /S, 7 of 22W, β Φ j and β + j Φ a. Then for a? e AΛ,
y e Aβ and ^ e Aγ we have by (1.9) and (2.4)

J(xu, y, z) = α;J(%, 1/, «) + J(x9 y, z)u — 2J(yz9 xy u) = J{x, y, z)u

and therefore J(x(Ru — al), y, z) = J(x, y, z)(Ru — al). By induction
we have J(x(Ru — al)n, y, z) — J(x, y, z)(Ru — al)n and hence

(3.1) J(AΛ, Aβ, Ay) c i α if β Φ 7 and β + Ί Φ a .

By the symmetry of the a, β and 7 we may also conclude

(3.2) J(Aβ, Ay, Aa)(zAβ if 7 Φ a and 7 + a Φ β

(3.3) J(Ay, AΛ9 Aβ)dAy if a Φ β and a + β Φ 7 .

Now assume a Φ β Φ y Φ a. Suppose /3 + 7 — a. If 7 + a = /3,
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then 7 = 0 and therefore a = β, a contradiction. Therefore 7 + cc φ β
and by (3.2) J(Aβ, Ay, Aa) c Aβ. Similarly if a + β = 7, then β = 0
and α = 7, a contradiction. Therefore a + β Φ 7 and by (3.3)
J(Aγ, AΛ, Aβ) c Ay. Thus we have J{Aa, Aβf Ay) c Ay Γi Aβ = 0 if a Φ
β Φ 7 Φ a and /5 + 7 = <*.

With the assumption a Φ β Φ 7 Φ a, suppose now that β + j Φ a.
Then by (3.1), J{Aa, Aβ, Av) c Aα. We next note that it is impossible
to have 7 + oc = β and a + β = 7. So using (3.2) or (3.3) together
with J(Aωf Aβ, Ay) c Aω we conclude /(A*, Aβ, Ay) = 0. Thus we can
conclude, using the preceding paragraph,

(3.4) J{AΛ, Aβ, Ay) = 0 if α =£ /3 ̂  7 ^ a .

Now assume two weights are equal, that is, a = β. Suppose 7 Φ
0, a, —a or 2α, then

U yjΓXtfj -Li-cύf L*-y) — ** cύ ^*-y 1 L*-oύ-L*-y * " - α > " 1 "

c A_α

However using (3.1) J{Aa, AΛf Ay) c Aa and therefore J(Aα, A^, Ay) c

Aα Π (A_α+Y 0 Ay+2ΰύ) = 0. This proves

(3.5) J{AΛ, Aa, Ay) = 0 if 7 ^ 0, α, or - α 2α .

For the "exceptional" cases we have

(3.6) J(A«, Aa, Aa) c A\ AΛ c A-βΛ* c Ao .

(3.7) J(Aα, AΛ, Ao) c A1Λ + AaAQ. A. c A_α .

(3.8) /(A,,, AΛ, A_*) c AM-« + A^A.. Aa c AΛ .

(3.9) J(AΛ, Aα, A2α) - 0 .

To prove (3.9) let x,y e Aa,ze A2α>, then by (1.9), (2.5) and (2.4)

J(xu, y, z) = χj(u, y, z) + J(x, y, z)u — 2J(yz, x, u)
= J(%, y, z)u

and as usual we have J(x(Ru — al)n, y, z) = J{x, y, z)(Ru — al)n. There-
fore J(x, y, z) e AΛ. However by (1.7) J(x, y, uz) + J(u, y, xz) =
J(x, y, z)u + J(u, y, z)x and using (2.4) we obtain J(x, y, uz) — J(x, y, z)u.
This yields J(x, y, z(2al — Ru)

n) = J(x, y, z)(2al + Ruf and therefore
J(x, y, z) e A_2Q>. Combining the above results we have J{x, y, z) e Aa Π
A_2α> = 0 if a Φ 0.

We shall now show A^Aβ — 0 if a Φ 0 and β Φ 0, ±a. Let α and
/5 be fixed weights of Ru and assume β Φ ka, k = 0, ± 1 , ± 2 , , with
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a Φ 0. Then for any other weight γ we have by (3.4) J(Aβ, Aay Ay) =
0 if β φ a Φ γ Φ β. However a Φ β and therefore J(Aβ, Aa, Ay) =
if a Φ γ Φ β. Suppose γ = α, then by (3.5) and the choice of β,
J(Aβ, Aa, Aa) = 0. Suppose γ = β, then J(Aβ, Aβ, Aβ) = J{Aβj Ae, Aa) =
0 if α =£ o, β, -β or 2/9. We know a Φ 0, β or -/3 so if α: = 2/5, then
by (3.9) J(Aβ, Aβ, Aα) = 0. Combining all these cases we have shown
J(Aβ, AΛ9 Ay) = 0 for any weight γ and therefore J(Aβ, AΛ, A) =
Σ Y J(Aβ, A«, Ay) = 0. By (1.11) and (1.12) AaAβ c N = 0. This proves

(3.10) AaAβ = 0 if a Φ 0 and β Φ ka, k = 0, ± 1 , ± 2 , .

We now assume a Φ 0 and β = ka for & =£ 0, ± 1 , then J04*, Aβ, A7) =
J(Aa, Akoύ, Ay) = 0 if a Φ ka Φ j Φ a, by (3.4). But since k Φ 1 we
have J(Aα, A^ ,̂ Av) = 0 if a Φ 7 Φ ka. Suppose γ = a, then using (3.5)

Aβ, Ay) = J ( A Λ , i4 A Λ , Ay)

- 0

if &α: ̂  0, α:, — a or 2#. But by the choice of k we need only consider
ka = 2α and in this case J{AΛ, AΛ, Akoύ) — 0 by (3.9). Now suppose
y = ka, then

#, Aβ, Ay) = j ( A α , A^^, Aγ)

Akcύ, Akoύ)

- 0

if α: Φ 0, &α, — fcα: or 2ka, by (3.5). Again by the choice of k and a
we need only consider a — 2ka. In this case k — 1/2 and therefore
γ = £ = ka = l/2a. This yields J{Am Aβ, Aγ) = J(Aβ, Aβ, A23) - 0 by
(3.9). Combining all of these cases we have for any weight γ,
J(Aa, Akcύ, Ay) — 0 if a Φ 0, k Φ 0, ± 1 and as before this gives

(3.11) A Λ A , . - 0 if aΦθ, k Φ 0, ± 1 .

(3.10) and (3.11) yield

(3.12) AaAβ = 0 if a Φ 0, β Φ 0, ± α .

Since iϋω is not nilpotent, there exists a weight a Φ 0. We shall
now show that —α is also a weight of iϋw. For suppose — a is not a
weight, then by the usual convention A_Λ = 0 and noting that none of
the previously derived identities use the fact that A_Λ Φ 0 we have for
β Φ 0 or a, that A«Aβ = 0 by (3.12). For £ = 0, AΛAβ c A0 and for
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β — a, AoύAβ c A - β = 0 using (2.14). Therefore Aa is a nonzero ideal of
A and so A = AΛ. But u e A and ujϊ Aa — A, a contradiction. There-
fore —a is a weight if a is a weight.

Now set J ^ = AΛA_a φ i t f φ A-* where a is a nonzero weight.
Then s/& Φ 0 and for /3 = 0, ±a we have J*£Aβ c s*ζ. For /5 =£ o, ±a
we have AαAβ = A-aAβ = 0 by (3.12). Now by (3.4) and (3.12) we have
for x e AΛf y e A_Λ, 2 € Aβ that 0 = J(x, y, z) = xy > z + yz x + zx * y ~
xy £ and so 0 = AaA-a Aβ. Thus in all cases S$ζAβ c J^J and there-
fore s/co is a nonzero ideal of A and we have A = j^£. This proves

PROPOSITION 3.13. If A is a finite dimensional simple non-Lie Malcev
algebra over an algebraically closed field of characteristic not 2 or 3
and A contains an element u such that Ru is not a nilpotent linear
transformation, then there exists an a Φ 0 such that A — Ao 0 AΛ 0 A-a

where Aa — {x e A: x(al — Ru)
k = 0 for some A; > 0} and Ao = AaA^Λ.

4 A decomposition of 4̂ relative to ^40. Let us consider the de-
composition of A as given Proposition 3.13; that is,

-ti- — -tio M7 -̂ -α vi/ ^±_φ

For any j / 0 , z0 e Ao and a; e Aa(a = 0, ± α ) , we use (2.8) and (2.11) to
see that

0 = J(x, Vo, z0) = α;(i?^o - Rzβy) .

Therefore,

is a commuting set of linear transformations acting on Aa. We can
find i2(A0)-invariant subspaces Jlfλ(α) [2; Chapter 4] such that

Aα = Σ θ ΛΓχ(α) (α - 0, ± α ) ,
λ

where on each Mλ(a) the transformation RXQ, for any α;0 6 Ao, has a
matrix of the form

( 0 ) o
L *

that is, ikfλ(α) has a basis {a?lf a?2, , xm} (m = m(λ, α)) such that for
any x0 e AQ, there exists α o (α?0) e F for which

(4.1) ajiie = Σ αii(»o)«i + λ ί ^ ) ^ ,

where λ(a?0) 6 F and, of course, i = 1, 2, , m.
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Using the usual terminology we call the function λ defined by
λ: x0—> X(x0) a weight of Ao in Aa or just a weight and the corresponding
Mλ(a) a weight space of Aa corresponding to λ or just a weight space
of Aa. It is easily seen [2] that Aa has finitely many weights and the
weights are linear functionals on Ao to F. Also

Mλ(a) = {xe Aa: for all x0 e A , x(RXQ - \(xo)I)k = 0

for some integer k > 0}

and for this weight λ we have X(u) = a. For suppose X(u) = b, then
there exists an x Φ 0 in Mλ(a) such that bx — xRu. But Mλ(a) a Aa —
{x £ A: x(Ru — al)n = 0}; therefore (6 — a)x = a?(l?tt — α/) and by induc-
tion (δ — a)nx — x(Ru — aiy so for some integer JV, (b — a)Nx =
x(Ru — α/)^ — 0 and thus a = δ = λ(^). We now combine the weight
space decompositions of the Aa to form a weight space decomposition
of A in

PROPOSITION 4.2. Let 4 = A o 0 i « 0 A-a be a simple Malcev alge-
bra as determined by Proposition 3.13, then we can write A = Ao ®
Σλ®-Mλ(^)® Σj*Θ-Mμ(~"α) where all weights are distinct and any
nonzero weight p of Ao in A is a weight of AQ in Aa or A-a but not
both.

Proof. The first part is clear noting that in the original weight
space decomposition Aa — Σγ Θ Λfy(α) the weights of Ao in Aα can be
taken to be distinct. Also if λ is a weight of Ao in AΛ and μ a weight
of Ao in A_α, then λ(^) = a Φ —a = μ(n) and therefore λ Φ μ. Now
let |O Φ 0 be any weight of AQ in A with weight space Mp =
{xe A: x(RXQ - ρ(xo)I)k = 0} and let y = yo + ya + y-»e Mp where ya e Aa

with a = 0, ±a. Then for some integer N> 0,

0 =

and by the uniqueness of the decomposition A — AQ 0 Aω φ A_Λ we
have 2/β(i2β0 — p(xo)I)N = 0 for α = 0, ± α . Now by using the binomial
theorem and A2

0 — 0 we have 0 = yo(RXQ — p(xo)I)* — yop(xo)
N and since

P Φ 0, yQ = 0. Thus we have ί/α(i2ίCo — p(xQ)I)N = 0, α — ± α , for some
integer JV and so /> is a weight of Ao in AΛ and A_α. Now suppose yΛ

and 2/_Λ are both nonzero, then since p is a weight of -Ao in AΛ, ρ{u) —
a and since p is a weight of Ao in A_α, p(u) = — a, a contradiction.
Thus /> is a weight of Ao in either AΛ or A-a but not both.

We shall use the usual convention that if p is not a weight of Ao

in A, then ikΓp = 0. Let Mx{a) and Mμ(α) be weight spaces of Ao in Aa
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and let x0, y0 e Ao and x e Mλ(a), y e M^a), then using (2.8) and (1.7)
we have

J(x, x0, yoy) = J(y0, x0, xy) + J(x, x0, yoy)

Thus J(x0, x, y(Ry0 - μ(yo)I)) = -J(%0, %, y)(RyQ + iKv^I) and by induction

J(x0, x, y(Ryo - μ(yo)iy) = (- l )V(s 0 ,

From this we obtain J(^o, x, y) e Af_μ(—α) and interchanging the roles
of a? and y we see J(a?0, x, y) e M-λ(~a); this proves

(4.3) J ( Λ , Mλ(α), Mμ(α)) c ikf_λ(-α) ΓΊ Λf_μ(-α) .

From (4.3) we obtain

(4.4) J(A0, Mλ(α), Mλ(α)) c ikf_λ(-α)

(4.5) J ( Λ , ilfλ(α), Λfμ(α)) = 0 iί X Φ μ .

We shall next show

(4.6) Mλ(a)Mμ(a) = 0 i ί X Φ μ .

For let x0 e Ao, α? e Mλ(a) and y e Mμ(α), then by (4.5) 0 = J{x, y, x0) and
therefore xyRXQ = ^i2χ0 y + a? 2/i2χ0 and hence xy(RXQ — (μ(x0) + λ(a?0))/) =
^(i2Xo — λ(a?0)/) •!/ + «• 2/(-Bχ0 — μ(xo)I). In the usual way we can prove
there exists an integer N such that xy(RXQ — (μ(x0) + X(xo))I)N = 0 and
since we know xy e A-a this shows xy e Mλ+[l(—a) if λ + μ (defined by
(λ + μ)(x0) = λ(#0) + μ{x0)) is a weight of Ao in A_α, or a?2/ = 0. If
xy φ o, then λ + μ is a weight of Ao in A_α where λ and μ are weights
of Ao in Aa and therefore — a = (λ + /£)(u) = λ(u) + /ί(u) = a + α, a
contradiction.

Next we have for any weight λ of Ao in Aa

(4.7) Mλ(α)Mλ(α) c ikf_λ(-α)

if — X is a weight of Ao in A_α. For let xQ e Ao and λ == X(x0) e F and
let Mλ(a) have basis {xlf •••, ccm} as in (4.1). Then using (1.2) we obtain

and thus

0 = x^2(i2,2

n - XRXn - 2XU) = ^ ,(22^ + λl)(2?.o - 2λl) .
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Now since λ is a weight of Ao in Aa, —2λ is not a weight of Ao in
A-a: —a = (2λ)(^) = 2X(u) = 2a. Thus the above equation implies
x1x2(RXQ + λJ) = 0 and therefore xλx2 e MLλ(—a). Next xtx0 x3x0 =
Xx^XXz + a32x2 + aslxτ) — X2xxx% + s where s e M_ λ(—a) and (xo#i Xz)%o +
(x1xs x0)x0 + (α?3Xo ^o)^i = — λΈi#3-R*0 + ̂ 1̂ 3-B̂ π + λ^asx + f where ί e ikf_λ(—α).
Therefore using (1.2) we obtain 0 = x&^R^ + Xl)(RXQ — 2X1) + w where
w e M-λ(—a) and actually w = SXαg^a?!. Therefore 0 = a?1a;3(Jίa.n + λ J ) 2

(i?Xo — 2λ7) and as before x&^R^ + λ/) 2 = 0 so t h a t xxxz e M_ λ (—α).
Continuing this process we obtain xλxk e ML λ(—α) for fc = 1, 2, •••, m.
Next consider the product

XzX0 = (λa?2 + αala?i)(λfl?3 + α 3 2x 2

= X2X2X3 + S

where s e ikf_λ(—α) and

(α?0^2 ^ 3 ) ^ 0 + (^2α;3 xo)xQ + (x,x0 α;0)^2 = x2x^(R!0 - \RXQ - λ2/) + t

where t e M_λ(—α), therefore 0 = x*%JίRXQ + Xl)(RXQ — 2λ/) + w where
11; 6 ikf_λ(—α). Therefore for some integer & > 0 such that w(RXQ + λ/)fc —
0 we have 0 = x2x3(RXQ + Xl)k+1(RXo — 2X1) and as before x2x3 e M l λ ( — a ) .
We continue this process showing x2xk e M-k(—a) and in general
XiXj e M-λ(—a) for i, j = 1, •••, m. This completes the proof of (4.7).

We now show

(4.8) Mλ(a) Mμ{-a) = 0 if λ + μ =£ 0 .

By (2.7) we have for x e Mλ(a), y e Mμ(—a) and #0 e Ao that 0 —
J(x, y, x0) and as usual we obtain xy(RX(i — (λ(α?0) + μ(xo))I)N = 0 for
some integer N> 0. Now 2 = #2/ e Ao and suppose 2 =£ 0, then, since
X + μ Φ 0, X + μ is a nonzero weight of Ao in ^40, a contradiction to
Proposition 4.2.

Let x e ikfp(α), 1/ e Mλ(a) and 2 e Λfμ(—α), then using (1.9), (2.7) and
(2.8) we have

/(α^o, y, z) = a?J(a?o, 1/, 2) + «/(&, 1/, ̂ )̂ o - 2J(yzf x, x0)

= J(χ, y, z)x0

and therefore J(x(RXQ — p(xo)I), y, z) = J(x, y, z)(RXQ — ρ(xo)I) and as
usual we obtain J(x, y, z) e Mp(a). Interchanging x and y we also obtain
J(x, y, z) e Mλ(a) and therefore J(x, y, z) e Mλ{a) n Mp(a) = 0 if λ Φ p.
Now assume λ Φ p and assume μ = — λ is a weight of Ao in A_α, then

0 = J(cc, y,z) = xy * z + yz x + zx y — yz * x ,

using (4.6) and (4.8). This proves
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(4.9) Mλ(α)M_λ(-α) . Mp(a) = 0

if λ Φ p are weights of AQ in Aa such that — λ is a weight of Ao in

We shall now show if λ is a nonzero weight of Ao in Aa with
weight space Mλ(a), then — λ is a nonzero weight of Ao in A_α with
weight space M_λ( — a). The proof is similar to that following (3.12):
Suppose — λ is not a weight of Ao in A_β, then M_λ(—a) = 0; Mx(a)Mk(a) =
0; Mλ(α)ikfp(α) = 0 if iO Ψ λ; ΛMλ(α) c Λfλ(α) and Mλ(a)M^(-a) = 0 if
μ + λ ^ 0. Thus Λfλ(α) is a proper ideal of A, a contradiction.

Set ikfλ = Mκ(a)M-λ(—a)Q) Mλ(a) 0 Λf_λ( —α) for some nonzero weight
λ of Ao in AΛ. Then analogous to Proposition 3.13, Mλ can be shown
to be a nonzero ideal of A and we have

PROPOSITION 4.10. If A = A 0 A*0^-« is a simple Malcev alge-
bra as determined by Proposition 3.13, then there exists a nonzero
weight λ of Ao in A with weight space Mλ(α:) = Aa and such that —λ
is a weight of AQ in A with weight space Λf_λ(—α) = A_α.

We shall identify α with λ as a weight, that is, use the notation
a(xQ) for λ(θ50) and also identify Mλ{ά) — Aa, M_λ{—a) — A_«. Note
that Proposition 4.10 implies there exists a basis for A so that for every
x 6 Ao, RX has a matrix of the form

0

0

0

0
ra(x)

*

0

o -

a(x)-

0

0

*

0

-a(x)

5 The trace form* Set (x, y) — trace RxRy, then it is shown [3]
that this is actually an invariant form-, that is (x, y) is a bilinear form
on A such that for all x, yf z e A, (xy, z) = (x, yz). Also a bilinear form
(x, y) is nondegenerate on A if (x, y) — 0 for all y e A implies x = 0.

THEOREM 5.1. // A — Ao 0 Aa 0 A_α is α ,/ϊmίβ dimensional simple
non-Lie Malcev algebra over an algebraically closed field of character-
istic zero and if A contains an element u such that Ru is not nilpotent,
then (x, y) — trace RxRy is a nondegenerate invariant form on A and
dimension AΛ = dimension A^a.

Proof. On A = Ao φ AΛ 0 A_a Ru has the matrix
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0

0

-a 0 Ί

and since u e A = J(A, A, A) (by 1.12) we have by [3; 2.12] that 0 =
trace Ru = a(na — n^a) where na — dimension Aaf a — ±a.

Now to show (x, y) is nondegenerate, let T = {x e A: {x, A) = 0}
where for subsets J5, C of A we set {B, C) = {(&, c):b e B,c e C) and
for x e A, (x, C) — {{x, c): c e C}. Since (x, y) is an invariant form on
A, T is an ideal of A and since A is simple, T — 0 or T = A. If T =
A, then (A, A) = 0 and from the matrix of Ru we see that

0 = (u, u) — trace El =

where w = dimension AΛ. Since F is of characteristic zero, a = 0, a
contradiction. Thus Γ = 0 which implies (cc, T/) is nondegenerate on A.

COROLLARY 5.2. 7/ A = Ao φ A^ © A_α is α simple Malcev algebra
as above then

(Ao, AΛ) = (Λ, A_α) = (Aa, Aa) = (A_Λ, A-*) = 0 .

Proof. Since i?w is nonsingular on Aα, α ̂  0, Aα = Aαi?M. Therefore
(Ao, Aα) = (Ao, 4 α K ) = (Aoί2w, Aα) = 0, the second equality uses (a;, j/) is
an invariant form and the third uses (2.11). Also (Aα, Aa) = (%Aβ, Aα) =
(u, AaAa) c (w, A_α) = 0.

COROLLARY 5.3. / / Ao* is ίfee d^αί s^αcβ of AQ consisting of linear
functionals on Ao and f e Ao*, then f = ca for some c e F.

Proof. First, (x, y) is nondegenerate on Ao. For if x0 e Ao is such
that (x0, Ao) = 0, then

\XQ9 Λ.) = (#

c (a?0, Ao) + (x0, Aa) + (xo, A-a)

= 0

by the preceding corollary and therefore x0 — 0 by Theorem 5.1. Now
if / G AQ, then there exists a unique element [2, page 141] af e Ao
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such that for all x e A0,f(x) — {x, af) = trace RxRaf —

trace

0

0

0

-a(x)

*

0

o -

a(x)-

0

0

0

*

0 Ί1

0

0

0

0
ra(af)

•
_ * α

0

o -

(a,)-

0

0

Γ-αία,) 0 -,

= 2na(af)a(x); using the remarks at the end of § 4 to obtain the form
of the matrices of Rx and RΛf. Thus / = ca where c = 2na(af) e F.

COROLLARY 5.4. The dimension of Ao is one.

Proof. 0 < dimension AQ = dimension A* = dimension uF = 1.
We shall frequently refer to a Malcev algebra A that satisfies

Theorem 5.1 as a "usual simple non-Lie Malcev algebra" and for the
remainder of this paper we shall assume the algebraically closed field F
is of characteristic zero.

6 The diagonalization of Ru. Using Proposition 4.10 and Corollary
5.4 we are able to decompose A relative to R(A0) into the form

Jx '=- JTLQ (37 -ΛLQJ {37 J\— a

where Ao = uF. From this the matrix of Ru on Aa, a = ±af has the
form

-a 0Ί

aJ

We shall show in this section that Ru can be diagonalized. Put Ru into
its Jordan canonical form on Aaf that is, find i?w-invariant subspaces
Uiia) of Aa such that Aa = U^a) φ 0 Uma(a) and each U^a) has a
basis {xil9 , xim.} so that the action of Ru is given by

(6.1)

xiyRu = axix

xi3-Ru = axi5

3 = 2, -

Thus on Z7i(α), Ru has an m x m matrix of the form

a

1 a

1

0

0

1 a
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where m = dimension Ui(a). We shall now investigate the multiplicative
relations between the U's and show that the dimension of all the Ui(a)
is one and therefore Ru will have a diagonal matrix.

LEMMA 6.2. Ufa) Ufa) = 0.

Proof. Let Ufa) have basis {xlf , xm) as given by (6.1). If m —
1, we are finished. Suppose m > 1, then using (1.6)

0 = —J(u, x2, x2)Ru

= J(u, x2, x2Ru)

= α/(w, a?a, a?a) + J(u, x2, xλ)

= J(u, x29 xλ)

— x2xx u + xλu x2 + ux2 a?χ

= x2xλ{Ru - 2α7) .

But we know A2a = 0, therefore sc^a = 0. Now using (1.6) we have, in
general, for any i = 1, , m,

0 = J( i6, a?i, XiRJ

= J ( ^ , £Ci, a?<_!) + α J ( w , a?ίf α?,:)

= J(u, xi9 Xi-X)

and again using (1.6),

0 = J(u, xif Xi^Ru)

= J(u, xif Xi-2) .

Continuing this process we have

J{u, xif xk) = 0

for all k ^ i. Now if i < fc, then by the preceding sentence

0 = J{u, xk, Xi) = J ( ^ , aji, a?Λ) .

Thus

J(u, xif xk) = 0 for all i, fc = 1, , m

By linearity this implies

J(u, x, y) = 0 for all a j j e Z7i(α)

Thus

xyRu = Λ?i2M 2/ + -2/K
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and

xy(Ru - 2al) = x(Ru - al) y + x y(Ru - al)

As usual we can find an N large enough so that xy(Ru — 2aI)N = 0.
But we know A2a = 0, therefore &$/ = 0.

LEMMA 6.3. Lei a? e ^4α δ# s%c/& ίλαί #i?w = α# αwd Zeί Ui(~a) =
{l/i, > l/m}» t ^ w ^ i — 0 / o r i = 1, , w — 1 αwcί xym = λu where
X = -(ym,x)l2na.

Proof. Using the invariant form (a?, y) we have (i/wa?, w) = (i/m, a?%) =
, »)• Since ^ m e Ao = uF we may write ^ /̂m = Xu, then (ί/ma?, %) =

(—Xu, u) = — λ(^, w) = — X2na*(a = ±a). Thus λ = —(ym, x)/2na.
Now since x e Aa and U^—a) c ^L_α, we have by (2.4) and (2.11) that

0 = J(x, y2, u) = xy2 u + y2u x + ux - y2 — (—ay2 + yjx — α ^ 2 = yxx.
Again 0 = J(^, y39 u) = xy3 - u + y3u - x + u% * y3 = (—ay3 + y2)x — axy3 =
^2cc. Continuing this process we eventually obtain 0 = J(x, ym,u) =
%ym' u + ymu - x + ux - ym = ym-Ύx.

THEOREM 6.4. Let x e Aa be such that xRu = ax and let Ui{—a) be
such that xUi(—a) Φ 0, then dimension Ui(—a) — 1.

Proof. Let B = tfφ # i ^ θ ?/<(—a), then using the preceding
lemmas and their notation we see that B is a subalgebra of A and
#2/m = xu where λ ^ 0. Now by (2.4) we have J(u, x, ym) — 0, there-
fore by [3; Corollary 4.4] we see that u, x and ym are contained in a
Lie subalgebra, L, of A. However this implies ymu = — aym + τ/w_1 e L
and therefore 2/w_! e L; again 2/m_i% = ~aym-x + ?/m_2 e L and therefore
7/w_2 G L. Continuing this process we obtain Bzi L and so B is a Lie
subalgebra of A Thus for any z e B,

0 = J(z, x, ym)

= z(RxRym — RymRx — RxyJ

- z([Rβ, RyJ - XRU) .

Thus on B we have XRU = [β^, i2 y J and therefore the trace of Ru on
JB is zero. But calculating the trace of Ru from its matrix on B, we
obtain that the trace is 0 + a — am. Thus m = 1.

COROLLARY 6.5. The dimensional of all the Uii—a), a = ±a, is
one.

Proof. Suppose there exists Uj(—a)={yl9 9yn} of dimension
m > 1. Then for every Ui(a)fy1Ui(a) = 0. For if there exists some
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Ui(a) such that yJJiia) Φ 0, then by Theorem 6.4, dimension Ui(a) — 1.
But this means there exists x e Aa such that xRu = ax and 0 Φ
xyx G xUά{—α); so again by Theorem 6.4, dimension Uά{—a) — 1, a contra-
diction. Thus VίUiia) — 0 for all i and this implies yλAa — y^U^a) 0 0
Uma{a)) = 0. Now from Corollary 5.2 we have, since y1 e A_α, (Ao, yλ) =
(A_α, I/O = 0 and using the preceding sentence

(Aβ, ί/0 = (Aα, jfctt) = (A,?/!, %) = 0 .

Thus (A, 7/i) = 0 and since (x, y) is nondegenerate on A, yλ — 0, a contra-
diction.

7 Proof of the theorem. Let 4 = i o φ i Λ φ A_Λ be the usual
simple non-Lie Malcev algebra, then we have just seen that Aa is the
null space of Ru — al, a = 0, ±a. The choice of a Φ 0 is fixed but
arbitrary. In particular we want to consider the case a = — 2, then all
we must do is consider uf = ( — 2/a)u and decompose A relative to Ru,
(which is also not nilpotent) to obtain A = Ao 0 A_2 0 Aa. However we
shall work with a fixed a and normalize when necessary.

Let α, 6 e F be any characteristic roots (weights) of i?w, that is,
α, 6 = 0, ± α with characteristic vectors α?, ̂ / e A; that is, αx = xRw by
—yRu or x e Aa, y e Ab, then we have

(7.1) J(x, y,u) = xy u — (a + b)xy where x e Aa, y e Ab .

Using (2.4) and (7.1) we also have

(7.2) xy u = (α + 6 ) ^ where y e Aa,y e Ab and a Φb .

Since ## e A_α if α?, 2/ e Aβ, we have

(7.3) xy u = —axy w h e r e x,y e A a .

Combining (7.3) and (7.1) yields

(7.4) J(x, y , u) = —Saxy w h e r e x,y e A a .

Let x,y,ze Aa> then using (2.14), (2.4), (1.9) and (7.4) we have

0 = J(xy, z, u)

= xJ(y, z, u) + J(x, z, u)y —2 J(zu, x, y)

— x{—Zayz) + (—Zaxz)y — 2aJ(z, x, y) .

Therefore

2J(x, y, z) = —3(x yz + xz y)

= 3 {xy z + yz x + zx y) — Sxy z

and thus
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(7.5) J(x, y , z) = 3xy z w h e r e x,y,z e A a .

Now J(x, z, y) — Sxz y and adding this to (7.5) yields 0 = xy z + xz y
and with a slight change of notation we have

(7.6) xy z = —x yz w h e r e x,y,z e A a .

From (7.6) with z = x we obtain

(7.7) xy x = o where a?, # e Aα .

Now let x, y e Aa, z e A_α, then —aJ(x, y, z) — J(x, y, zu) and
J(z, y, xu) =• αJ(2, 2/, x) = —aJ(x, y, z). So

— 2α«7(aj, i/, z) = J(z, i/, aw) + J(#, y, zu)

= J(z, i/, tt)& + /(a?, ί/, w)« = J(x, y, u)z ,

using (1.7) for the second equality, (2.4) for the third. Thus we have
—2aJ(x, y, z) = J(x, y, u)z = (—3axy)z using (7.4) and hence

(7.8) 2J(x, y, z) — Sxy z where x, y e Aa, z e A_α .

This yields 3xy z — 2(xy * z + yz > x + zx y) or

(7.9) xy z = — 2(a?2 y + a? 2/2) where x,y e Aa,z e A_a .

We now use (7.9) to prove the important identity (7.10). Thus let
w, x, y, z be elements of Aa and set v = J(x, y, z), 2xf — yz, —2yr = xz
and 2s' = a?j/. Then

(7.10) vw = 6(α?'^ a? + 2/'w y + zrw 3) .

To prove this note that x', y\ zf e A_a and using (7.9) we have 2xfx w =
xw #' — 2^ίc' #, 2y'i/ w — yw yr — 2wyr 2/, 22;'̂  w = zw 2' — 2wzf 2.
Adding these equations and multiplying by 2 yield

2vw = 2(#w #' + yw 7/' + zw 2') + i(xfw a? + y'li; y + z'w z) .

Now using (1.10),

2(xw x' + yw y' + zw z') = xw yz + yw zx + zw xy

= x(zw y) + z(wy x) + w(## z) + #(#2 w) + y(xw 2) + x(wz 7/)

+ w(2ί/ x) + z(yx w) + z(yw a?) + y(wx 2) + w(xz ?/) + α?(̂ ?/ w)

— w(yx ' z) + w(zy x) + w(xz y) + y(xz w) + 2(ya? w) + α?(̂ j/ w)

= —wv + y{—2y'w) + ^(—22;'^) + x{—2xfw)

noting some cancellation to obtain the third equality. Thus 2vw —
vw + 2{xrw x + y'w y + z'w 2) + 4(a?'w a? + ί/f/w; y + z'w 2) and this
proves (7.10).
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Since A is simple non-Lie Malcev algebra, we shall use the facts
A2 = A and A — J(A, A, A) to obtain more identities for A. First we
have

Λ 0 A β 0 A _ β = A = J(A, A, A)

c J(A0, A, A) + J(Aa9 A, A) + J(A_α, A, A)

Am Aa) + J (Ao, A_α, A_α) + J (Aα, AΛ, A^)

_α, A_α, A_α)

and therefore

} Ά—Λ9 Ά — CC)

We now use A = A2 to obtain

Λ Q3 A_α = A — A

and therefore

Ao = AαJA_Q} ,

Since Ao = u F we have A0Aa — Aa(a — ±a). Also

o> A _ α , A _ α ) CI A α

 : = Λ.QA.a

d A0«y (Ao, A_α, A__α) + Aoe7 (Aα, A α , A_α)

d e/ (Ao, Ao, A_α) + «/ (Ao, A_α, A—aA.o) -f- e/(^.o, A_α, A 0A_α)

0, Aα, AαA_α) + «/(A0, Aα, A_αAα) + «/(A0, A_α, A | )

obtaining the second inclusion from Aa — /(Ao, A_α, A_α) + J(Aα, Aα, A_o)

and the third inclusion from (1.8). Thus we have

Aa = J(A0, A_α, A_α) , a Φ 0 .

From this and remembering Ao = uF we obtain

Aα = A_aA_a , a Φ 0 .

For A-aA_a (Z Aa = J(A0, A_α, A_α) c A_αA_α. Also

Ao = J(A α , Aα, Aα) , α =

For
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Of A.af Λ.a)

ci J\Aa, Ao, Aα) + J(Aa, Aa, AaAQ) + J{Aa, Aa, A0Aa)

d e/(Aα, A.a9 Λ.a) .

We summarize these identities in

PROPOSITION 7.11. Let i = i f l φ 4 0 A-Λ be the usual simple non-
Lie Malcev algebra, then we have for a — ±a,

and

" 0 =
a, J±a)

THEOREM 7.12. Let 4 = Ao 0 i ^ 0 A_Λ 6e ίfee usual simple non-
Lie Malcev algebra, then A is isomorphic to the simple seven dimen-
sional Malcev algebra A* discussed in the introduction.

Proof. Since uF = Ao = AJί-Λ — A^ AaAΛ, there exists x,y,ze AΛ

such that % * yz — 2u. Define 2a?' = yz, —2yf — xz and 2z' = #τ/ and
form the subspace B generated by {u, x, y, z, xr, yr, z'}. First the x, y
and z are linearly independent over F. For if ax + by + cz = 0 with
a,b, c e F and, for example, α ^ 0, then write a? = 6'# + c's and there-
fore using (7.7) 2u — x > yz = b'y yz + cfz yz — 0, a contradiction.
Similarly noting u = $#' and assuming a relation of the type xr —
b'y' + c'z' and using the definitions of x\ yf and zr we see that the
x\ yr and zf are also linearly independent. Since 4 = 4 O 0 A Λ 0 A_β,
{u, x, y, z, x', y\ z'} is a linearly independent set of vectors over F.
Using identities (1.2), (7.6) and (7.7) we obtain the following multiplica-
tion table for B.

u

X

y

z

X'

y'

z'

u

0

ax

ay

az

—ax'

—ay'

—az'

—ax

0

- 2 2 '

2y'

—u

0

0

y

—ay

22'

0

-2x'

0

—u

0

z

—az

-2y'

2x'

0

0

0

—u

x'

ax'

u

0

0

0

—az

ay

y'

ay'

0

u

0

az

0

—ax

z'

az'

0

0

u

—ay

ax

0

By the remarks at the beginning of this section we can choose a — — 2
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and consequently obtain that B is isomorphic to A*. It remains to
show the dimension of A over F is seven. For this it suffices to show
dimension Aa = 3, since dimension Aa = dimension A_α. Let 0 Φ w e AΛ,
then by (7.5)

6u = 3% * yz = —J(x, y, z)

and therefore by (7.10),

= Gwu = α?ocu + yoί/ + 2:02;

where α?0, i/0, z0 e Ao = uF. But by the action of u on a?, y and s we
have Qaw = αoα; + δ0?/ + coz where α0, δo> ̂ o 6 F. Thus the dimension of
AΛ is three.
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