SIMPLE MALCEV ALGEBRAS OVER FIELDS
OF CHARACTERISTIC ZERO

ARTHUR A. SAGLE

1. Introduction. Malcev algebras are a natural generalization of
Lie algebras suggested by introducing the commutator of two elements
as a new multiplicative operation in an alternative algebra [3]. The
defining identities obtained in this way for a Malcev algebra A are

1.1) Y = —Yx
1.2) xy - w2z = (xy + 2)x + (yz - ) + (20 - )y

for all z,y,z€ A. Since Albert [1] has shown that every simple alter-
native ring which contains an idempotent not its unity quantity is either
associative or the split Cayley-Dickson algebra C, it is natural to see
if a simple Malcev algebra can be obtained from C. In [3] a seven
dimensional simple non-Lie Malcev algebra A* is obtained from C and
is discussed in detail. In this paper we shall prove the following

THEOREM. Let A be a finite dimensional simple non-Lie Malcev
algebra over an algebraically closed field of characteristic zero. Fur-
thermore assume A contains an element u such that the right multi-
plication by u, R,, 1s mot a wilpotent linear transformation. Then
A is isomorphic to A*.

The necessary identities and notation from [3] for any algebra A
are repeated here for convenience:

(1.3) Commutator, (x,y) = [z, y] = 2y — yx
(1.4) Associator, (x,y,2) =2y -2—2-yYz
(1.5) Jacobian, J@,y,2) =xy-z2+yz-x+zr-y

for z,y,ze¢ A. If Wz, ---,2,) is a function of n indeterminates such
that for any n subsets B; of A and b, € B;,, the elements A(b, ---,b,)
are in A, then h(B,, -+, B,) will denote the linear subspace of A spanned
by all of the elements A(b,, «--, b,).

For a Malcev algebra A of characteristic not 2 or 3, we shall use
the following identities and theorems from [3]:

(1.6) J(@,y, w2) = J(z, 9, 2)x
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(1'7) J(.’/Y?, Y, ’M)Z) + J(wy Y, xz) = J(w’ Y, z)w + J(w, Y, z)x
(1.8) 2wl (x, ¥, 2) = J(w, , y2) + J(w, y, 22) + J(w, 2, xy)
1.9) J(wz, ¥, 2) = wd (z, ¥, 2) + J(w, ¥, 2)x — 2J (yz, w, x)

(1.10) xy - 2w = x(wy - 2) + wyz - ) + yx - w) + 2(xw - yY)

for all w,z,y,ze€¢ A. If N={xe A:J(x, A, A) = 0}, then it is shown
in [3] that N is an ideal of A which is a Lie subalgebra and further-
more for a,bec A

(1.11) J(a,b, A) =0 implies abe N .

It is also shown in [3] that J(A4, A4, A) is an ideal of A. Thus if 4 is
a simple non-Lie Malcev algebra we have

(1.12) N=0 and A=J(A, A4, A).

We shall assume throughout this paper that A is a finite dimen-
sional simple non-Lie Malcev algebra over an algebraically closed field
F' of characteristic not 2 or 3 containing an element % such that R, is
not a nilpotent linear tansformation. In §2 the basic multiplicative
identities are derived using methods analogous to those of Lie algebras.
Decomposing A=A, P A, D --- D A, into weight spaces relative to
R, [2; page 132] we prove the block multiplication identities A,4; C
Ayp if a# B, AL A, and A} = 0. Further identities are derived in
§3 which lead to the important result that there exists a nonzero
weight a such that A = A, P A, P A_, where A= A, A_,.

In §4 we show that R(4,), the set of right multiplications R, by
elements x, € A,, is a set of commuting linear transformations on the
subspaces A, A, and A_,. Analogous to Lie algebras we decompose
A=A DA, PDA_, into weight spaces relative to R(4,) [2; page 133]
and thus find a basis of A which simultaneously triangulates the matrices
of R(A,)). We now introduce the trace form, (x, y) = trace E,R,, in §5
and assume for the remainder of the paper that the algebraically closed
field is of characteristic zero. With this and the results of §4 we
easily show that (x,y) is a nondegenerate invariant form on A =
APA,PA, and A, = uF.

In §6 we show that R, has a diagonal matrix of the form

0 0
al
0 —al

Using this and a few more identities we show in §7 that the simple
Malcev algebra A = A, P A, P A_, is isomorphic to the seven dimen-
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sional algebra A*.

2. Basic multiplication identities. Let R, (v € A) be a fixed non-
nilpotent linear transformation and decompose the simple Malcev algebra
A into the weight space direct sum A = A, P A, D -+ D A, relative to
R, where the wetight space of R,,

A, ={xe A: z(al — R,)* =0 for some integer k& > 0},

is a nonzero R, invariant subspace of A corresponding to the weight a
of R,. Let x,¢c A,, ®z<€ A, then using (1.6)

J(ur Loy xﬁ)Ru = J(u, Loy wﬁ)u = J(u” xau uxﬁ) = _J(uy Loy xBRu)
and therefore
J (U, Tay e)(BI + R,) = J (U, %, x5(B] — R,)) .
Now letting ygz = x4(8I — R,) € As we have
J(u; Loy xB(BI — Ru)z) = J(ur Loy ?/5(:6’1 - Ru))

= J(u; Loy yB)(BI + Ru)
= J(’M,, Loy wB(BI - Ru))(IBI + Ru)
= (u, Loy wﬁ)(BI + Ru)2 .

Continuing by induction we obtain

(2'1) J(u1 wa xﬁ)(BI + Ru)n = J(uv xcw xﬁ(BI - Ru)n)

for every integer m. Since x; € Az there exists an integer N such
that 0 = J(u, x,, (B — R,)") = J(u, ,, 5)(BI +R,)¥ and this shows
J(u, x4, x5) € A_g. Now interchanging the roles of z; and z, in (2.1)
we also obtain J(u, x,, s) € A_, and thus

(2.2) J(u, Ay, Ap)C A, NA,.
From (2.2) we have the following relations

(2.3) J(u, Ay Ay) C A,

(2.4) J(u, Ay, Ag) =0 if a =8,

We shall now prove
(2.5) AAgCAgpg fa+8.
For if o + B and z, € A,, 25 € Az we have by (2.4),
0 = J(U, X, ) = (XuZs)RU — TR, « g — T4+ TR, ;

that is, (.%s)R, = %R, * %z + %, * ¢zR, and so R, is a derivation of
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A,A; into A,4,. This yields
(@axe)(By — (¢ + B)) = xR, — al) - m + @+ xo(Ry — BI)

and in the usual was we prove the Lebnitz rule for derivations which
then yields that for some integer N, (x,2:)(R, — (@ + B)I)* =0 and
therefore x,x5 € A,:p. In particular we have

(2.6) AA,C A, ifa+0.

We shall now investigate A, more closely. Let x, € A,, 3 € Agand
%, € Ay, then by (1.7) J(xy %, Ux,) + J (U, Tg, &) = J (%o, g, T)U +
J(u, xg, £,)%,. Therefore if 0 + a + B we have by (2.4) J(%,, 3, ux,) =
J (%, g, T, ). This yields J(xy, %5, o(al — R,)) = J (o, %4, )] + R,)
and as in the proof of (2.4) we obtain

.7 J(Ay Aa, A) =0 if 0£a+B8+0.

Next let #,y,€ A, and x,c A, where a + 0, then using (1.9),

(2.4) and (2.6) we have
J (@, Yoy Ta) = Bod (U, Yoy Ta) + I (Zoy Yoo o) — 2J (YTar Loy %)
= J(wo; yo; xw)u

and in general we have J(x,RZ, ¥, %) = J (X, Yo, To)Ry which im-
plies J(2, Yo, %a) € 4. Now by (L.7), J(%y, Yo, u%s) + J (%, Yo, T%a) =
I (%o, Yo, o) + J (W, Yy, £,)2%,; and using (2.4) and (2.6) we obtain
J (%o Yor Tuly) = — I (25, Yo, %o)R,, Which implies J(@,, Yo, Tu(B, — al)) =
—dJ (%, Yo, ,)(R, + ). Thus, as usual, we have J(z,, ¥, %,) € A_, and
therefore J(x,, Yo, %) € 4, N A_, which proves

(2.8) J(Ay Ay A) =0 if a#0.

We shall now show A:cC A4,. From our basic decomposition A =
A DA, D+ DA, relative to R, we can find a basis {x(7), -+, x.(7)}
(m = m,) of A, such that

(2.9) wdD)B, = 3 a,A7) + T,0)

where 7,a;;€ F and 4 =1, -+, m. In particular let {x,(0),---, 2, (0)} =
{®,, +++, x,} be the above type for A,. Then 2R, =0 and

i~1

o, R, = X @iy (t=2,---,m).
k=1
Furthermore,
J(u, ;, %) = (@ 2)R, + 2; R, « x; + ;- .1,

j—1 i—1
= (v;)R, + kz_lajkxkxi + 1:2—:1 A%



SIMPLE MALCEV ALGEBRAS OVER FIELDS OF CHARACTERISTIC ZERO 1061

with the understanding that a,, = 0.
Using (1.6) and operating on both sides of the previous equation
with R?, we obtain

(=1)"J(u, x;, x; BY) = J(u, x;, z;) R
= (x;2;) Ry + 12 a () Ry

i—1
+ kZzl a;(e;2,) By .

Now by assuming ¢ < 7 and choosing 7 large enough, a simple induc-
tive argument yields z;x; € A, for all © and 5. Thus A} C A4,.
Using (1.8), A2cC A, and (2.8) we have

AuJ (Ao Aoy Ag) C I (Aa, A, Ai) © J(Aay Ay Ag) =0 for @ #0.

Thus, AJ(A,, Ay, Ay) C Xia Aud (Ao, Ay, Ay) = AJ (Ay, Ay A) T I (4, Ay, Ay),
or J(A, A, A, is an ideal of A. But since J(4,, 4, 4,) € 4, # A and
A is simple we have

(2.10) J (Ao, Ay A) = 0 .

Now using (2.8) and (2.10) we have J(A4,, A,, A) = >\, J(4,, 4., 4.) =
0 and by (1.11) and (1.12),

(2.11) AlcN=0.

In particular this means the kernel of R, is A,.
We shall now show A:c A_,. Let %,,y,<c A, for a + 0, then by

(2'3) J(uy Loy yw) = (xwyw)Ru + wau Ty + Yo * wau = W_y € A-—w . There-
fore (,Y.)R, = 2R, * Yo + Yo * Yoy + w_, which yields
(€Y ) (R, — 20I) = 2,(R, — al) - Y, + %y * Yo Ry — ) + wt, .

By induction we obtain
@) (R, — 2aI)* = W™ + 3 C, Ry — I} + yo( By — o)
r=0

where w™ ¢ A_,. Therefore for large enough N, (x,9.) (R, — 2al)” € A_,.
Now let =9, = 3,2, where =z,€ 4, then (Y.} (R, — 2al)" =
Sv2A(R, — 2al)¥ € A_,. Therefore by the R, -invariance of the A, and
the uniqueness of the decomposition A = A, P A. P -+ D A,, 2R, —
201 =0 if y+#+ —a. Thus if v+# —a,2,€ A;,. Therefore 2.y, =
2. + 2_, which proves

(2.12) A C A, DA, .
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LemMma 2.18. J(u, A%, A,,) = 0.

Proof. Using (2.12), (2.7) and (2.3) we have
J(u, A%, Asy) C I (U, Ay, As) 4 (W, Asy Asa) C Tty Asgy Asa) C Ao

Now for any , ¥y € A,, z € A,, we have by (1.7) J(z, u, xy) + J(x, u, 2y) =
J(, u, y)x + J(x, u,y)z and using (2.4), (2.5) and (2.3) this yields
J(,u, vy) = J(x, u, y)z € A_,» Ay, C A,. Combining these results we
have J(u, A%, A,,) C A, N A_,, = 0.

Now let we A, x,yc A, and xY = 2,5 + 2, Where 2, € A,,,
2_4 € A_,, then using Lemma 2.13 and the fact J(u, A_,, A) =0 we
have

0 = J(u, xy, w) = J (U, 2, W) + J (U, 2y, W) = J(U, Zsq, W) ;
that is,
J(u’ Zoas Azw) =0.

Now since 2z, € A,, we also have by (2.4) J(u, 2., 4;) = 0 if B8+ 2a.
Combining these results, J(u, 2., A) = Ss J (U, 230, Ag) =0 and there-
fore z,u € N=0 by (1.11) and (1.12). Thus 0 = 2, R, and therefore
2 € Ay N Ay, =0 and this proves

(2.14) AR C A, .
Also note that we now have
(2.15) J(A, Ay A) C A, .
3. More identities. Let A=A, P A, P -+ P A, be the decomposi-
tion of A into a weight space direct sum relative to R, and suppose

that for weights «, 8,7 of R,, 8+ v and 8+ v+ a. Then for x € 4,
y € Ag and z € A, we have by (1.9) and (2.4)

J(xu, Y, Z) = xJ(u, Y, Z) =+ J(x, Y, z)u - 2J(yz; x, u) = J(x’ Y, z)u

and therefore J(x(R, — al),y,?) = J(,y,2)(R, —«al). By induction
we have J(x(R, — al)", y,2) = J(x, y, 2 (R, — al)* and hence

3.1) J(As Ag, A)C A, if B#vand B+ v#a.
By the symmetry of the a, 8 and v we may also conclude
3.2) J(Ag, Ay, A) T A if v # a and v +a# B

(3.3) J(Ay, Ay, Ag)c Ay if a+~Band a+B+7.

Now assume o« = B8+ v+ a. Suppose B+v=a. If v+ a=245,
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then v = 0 and therefore @ = B, a contradiction. Therefore v+ o # 8
and by (3.2) J(A4g, 4y, A,) © Ap.  Similarly if a + 8 =1, then =0
and « =1, a contradiction. Therefore a+ S8+~ and by (3.3)
J(Ay, A,, Ag) © Ay. Thus we have J(4,, 4, A)C Ay, N A =0 if a +#
B#+v#aand B8+ v = a.

With the assumption a #+ 8 #* v # «, suppose now that 8+ v # a.
Then by (8.1), J(A., As Ay) C A,. We next note that it is impossible
to have y+a=p8 and o« + B =7v. So using (3.2) or (3.3) together
with J(A4,, 4, Ay) C A, we conclude J(4,, 45 A,) = 0. Thus we can
conclude, using the preceding paragraph,

3.4) J(A,, A5, A) =0 if a=B+v+a.

Now assume two weights are equal, that is, « = 8. Suppose v #
0, a, —a or 2«a, then

J(A,, Auy A) C ALA, + AA, - A, + A)A, - A,
C AA, + Ay A,
c A—w+'y @ A'y+2w .

However using (3.1) J(4,, 4., A,) C A, and therefore J(A4., 4., 4,) C
A, N (A_4y D Ayiae) = 0. This proves

(3.5) J(A,, Ay A) =0 if vy#0,a, or —a 2.
For the “exceptional” cases we have

(3.6) J(A, Ay A)C AL A, C A LA, CA,.

3.7 J(Aay Ay Ag) C ALA + A A - A, C A, .

(3.8 J(Asy Ay A ) C AA_, +AA - A, C A,
(3.9) J(Auy Ayy As) =0

To prove (3.9) let =,y € A,, z € A,,, then by (1.9), (2.5) and (2.4)

J(xu, Y, z) = xJ(u, Y, Z) + J(w’ Y, z)u - 2J(yzy v, u’)
= J(2, Y, 2)u

and as usual we have J(z(R, — al)", y, 2) = J(%, y, 2)(R, — al)". There-
fore J(x,y,2) e A,. However by (1.7 J(x,y,ur)+ J(u,y,xz) =
J(z, ¥, 2)u + J(u, ¥, 2)x and using (2.4) we obtain J(x, y, uz) = J(x, ¥y, 2)u.
This yields J(z, vy, 2(2al — R,)") = J(x, ¥, 2)(2al + R,)* and therefore
J(x,y,72)€ A_,,. Combining the above results we have J(z,y, ) € 4, N
A_,,=0if a=+0.

We shall now show A4,4; =0 if « +0 and 8+ 0, +a. Let « and
B be fixed weights of R, and assume S8 +# ka, k =0, £1, +2, ---, with
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a # 0. Then for any other weight v we have by (3.4) J(4s, Aay 4,) =
0 if B+a+#v+pB However a + S and therefore J(4; A,, 4,) =
if a#9+pB. Suppose vy =a, then by (38.5) and the choice of 2,
J(Ag, As, A) = 0. Suppose v = B, then J(A4,, A,, Ap) = J(Ag, As, A,) =
0if a+0,8 —B or 28. We know a + 0,8 or —p8 soif a = 28, then
by (3.9) J(A4s, 45, A,) = 0. Combining all these cases we have shown
J(Ag, A,, A) =0 for any weight v and therefore J(A4g A., 4) =
2w (A4g A, A)) = 0. By (1.11) and (1.12) A,A; < N = 0. This proves

(3.10) AA, =0 if a+0and B+ ka, k=0, =1, £2, --- .

We now assume « + 0 and 8 = ka for k + 0, =1, then J(4,, 44, 4,) =
J(A,, Ay A)) =0 if a £ ka +v+a, by (38.4). But since k+1 we
have J(A,, A, 4,) =0 if o = v + ka. Suppose ¥ = «, then using (3.5)

J(Awy AB’ A‘Y) = J(Aw’ A’“‘” A'Y)
= J(Aw, Ako'-; Aw)
= J(Aw’ Awy Akw)
=0

if ka =0, @, —a or 2a. But by the choice of k¥ we need only consider
ka = 2a and in this case J(4,, 4., Aw) =0 by (3.9). Now suppose
v = ka, then
J(Aa, Ag, A)) = J(A,, Ava, A,)

= J(Aus Asay Ara)

= J(Avar Abar Aa)

=0
if @+ 0, ka, —ka or 2ka, by (3.5). Again by the choice of k& and «
we need only consider a = 2ka. In this case k = 1/2 and therefore
v =8 =ka =1/2a. This yields J(A,, 45, A,) = J(A4s, Ag, A3) =0 by
(3.9). Combining all of these cases we have for any weight v,
J(A,, Auy A) =0 if o 0,k + 0, +£1 and as before this gives

3.11) AA,.,=0 ifa+0,k+0,x1.
(8.10) and (3.11) yield
(3.12) AA;=0 if a#0,8+0, +a.

Since R, is not nilpotent, there exists a weight a # 0. We shall
now show that —a is also a weight of B,. For suppose —« is not a
weight, then by the usual convention A_, = 0 and noting that none of
the previously derived identities use the fact that A_, = 0 we have for
B+0 or o, that A,A; =0 by (3.12). For 8 =0, A,4;C A, and for
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B=a,A,A; C A_, = 0 using (2.14). Therefore A, is a nonzero ideal of
Aand so A=A, ButueAandug A, = A, a contradiction. There-
fore —a is a weight if « is a weight.

Now set &, = A,A ., PA, P A, where a is a nonzero weight.
Then &7 # 0 and for 8 =0, a we have A4, .. For 8+ 0, >a
we have A,A;, = A_,A; = 0 by (3.12). Now by (3.4) and (3.12) we have
for x e A,,ye A_,,z2€ Ag that 0 =J(x,y,2) =ay-z2+yz-x+2x -y =
2y-2 and so 0 = A,A_, - A;,. Thus in all cases 94A; C . and there-
fore o7 is a nonzero ideal of A and we have A = . This proves

ProrosiTION 3.18. If A is a finite dimensional simple non-Lie Malcev
algebra over an algebraically closed field of characteristic not 2 or 3
and A contains an element % such that R, is not a nilpotent linear
transformation, then there exists an @ # 0 such that A = A, P A. P A_,
where A, = {x € A: (el — R,)* =0 for some k£ > 0} and A, = A,4_..

4. A decomposition of A relative to A, Let us consider the de-
composition of A as given Proposition 3.13; that is,

A=A DA DA..

For any ¥, 2, € A, and z € A,(a =0, £«a), we use (2.8) and (2.11) to
see that

0= J(x’ Yo, zo) = x(RVORzo - RSORJ/O) .
Therefore,
R(A) = {Ra:o: T, € Ag}

is a commuting set of linear transformations acting on A4,. We can
find R(A,)-invariant subspaces M,(a) [2; Chapter 4] such that

Aa = ZAI @ Mh(a) (a = 07 :tO[) ’

where on each M,(a) the transformation R,, for any x,c A4, has a

matrix of the form
[h(xo) 0 1.
o Mw)]’

that is, M,(a) has a basis {x,, @, -+, ©,} (m = m(\, a)) such that for
any x, € A,, there exists a,;(x,) € F' for which

i—1
(4.1) wino = jglaii(xo)xj + Moz, ,

where \(2,) € F' and, of course, ¢ =1,2, ---, m.
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Using the usual terminology we call the function ) defined by
s % — M) a wetght of A, in A, or just a weight and the corresponding
M,(a) a weight space of A, corresponding to N or just a weight space
of A,. It is easily seen [2] that A, has finitely many weights and the
weights are linear functionals on 4, to F. Also

My(a) = {x € A, for all x, € A, 2(R,, — Mz)[)* =0
for some integer k > 0}

and for this weight » we have A(u) = a. For suppose Mu) =b, then
there exists an ¢ = 0 in M,(a) such that bx = xR,. But M\(a) C 4, =
{x € A: (R, — al)" = 0}; therefore (b — a)r = x(R, — al) and by induc-
tion (b — a)'x = (R, — al) so for some integer N, (b— a)'x =
(R, — al) =0 and thus a =b = \Mu). We now combine the weight
space decompositions of the A, to form a weight space decomposition
of A in

ProposITION 4.2, Let A=A, B A, D A_, be a simple Malcev alge-
bra as determined by Proposition 8.13, then we can write A = A, P
S My(ax) D S P M(—a) where all weights are distinct and any
nonzero weight 0 of A4, in A is a weight of A, in 4, or A_, but not
both.

Proof. The first part is clear noting that in the original weight
space decomposition 4, = >, P M (a) the weights of A, in 4, can be
taken to be distinct. Also if A\ is a weight of 4, in 4, and ¢ a weight
of A, in A_,, then Mu) = a +# —a = ((u) and therefore N #* p. Now
let 00 be any weight of A, in A with weight space M, =
{re A: x(R,, — p(x)])* = 0} and let y =y, + Yo + Y_o € M, where y, € 4,
with @ = 0, +a. Then for some integer N > 0,

0 = y(R,, — p(x)I)"
= yo(Rxo — p(x)I)”
+ Yol Byy — 0(@) 1) + Yol B,y — p(20) )"

and by the uniqueness of the decomposition A = A, P A, PA_, we
have y.(R,, — p(x,)I)" =0 for a =0, =a. Now by using the binomial
theorem and A5 =0 we have 0 = y(R,, — 0(x))])" = y,0(%,)" and since
p+0,9% =0. Thus we have y, (R, — p(x,)[)" =0, a = *a, for some
integer N and so p is a weight of 4, in 4, and A_,. Now suppose ¥,
and y_, are both nonzero, then since p is a weight of 4, in A,, p(u) =
a and since p is a weight of 4, in A_,, p(w) = —a, a contradiction.
Thus o is a weight of A, in either A4, or A_, but not both.

We shall use the usual convention that if o is not a weight of A,
in 4, then M, =0. Let M,(a) and M, (a) be weight spaces of A4, in 4,



SIMPLE MALCEV ALGEBRAS OVER FIELDS OF CHARACTERISTIC ZERO 1067

and let x,, ¥, € 4, and x € My(a), ¥y € M,(a), then using (2.8) and (1.7)
we have

J (@, o, YY) = J (Yo, Ty TY) + I (2, o, YY)
= J(Wo, %o, Y)& + J (2, %o, Y)Y
= J(, %o Y)Y, -
Thus J(x,, =, y(B,, — t(y)])) = —J (2, , y)(E,, + ¥y,)]) and by induction

J (@, 2, Y(Ry, — ((Y)I)") = (=1)"J (%, @, Y)B,, + (y)I)" .

From this we obtain J(x,, ,y) € M_,(—a) and interchanging the roles
of  and ¥y we see J(x, %, ¥) € M_,(—a); this proves

(4.3) J(4,, M\(a), M (a)) € M_,(—a) N M_.(—a) .
From (4.83) we obtain

(4.4) J(4,, M\(a), M\(a)) € M_\(—a)
(4.5) J(Ay, My(a), M (a)) =0 if N+ pe.

We shall next show
(4.6) M(@)M(a) =0 if x#p.

For let x, € A,, x € M,(a) and y € M, (a), then by (4.5) 0 = J(x, ¥, %,) and
therefore xyR, = xR, -y + x - yR, and hence xy(R, — (£(x,) + Mx,)]) =
2(R,, — Mx)I) -y + © - y(B,, — (x,)]). In the usual way we can prove
there exists an integer N such that xzy(R,, — (1(2,) + M,))I)Y = 0 and
since we know xzy € A_, this shows zy € M, .(—a) if A + p¢ (defined by
O+ () = M=) + M) is a weight of 4, in A_,, or 2y =0. If
2y # 0, then ) + ptis a weight of 4, in A_, where A\ and /¢ are weights
of A, in A, and therefore —a =\ + #)u) =NMu) + (u)=0a +a, a
contradiction.
Next we have for any weight \ of 4, in A4,

(4.7) My(a)M\(a) C M_\(—a)

if —X\ is a weight of 4, in A_,. For let z,€ 4, and A = \(x,) € F and
let M,(a) have basis {®,, ---, z,} as in (4.1). Then using (1.2) we obtain
N2, = AO(AD; + Aplly)
= le:co : szxo
= (®g; * T3)To + (T2, * T,)To + (X2 * L),
= =A@, R, + 2.0, R; + Ny,
and thus

0 = z@(R2, — AR, — 2\I) = w@(R,, + MR, — 2\]) .
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Now since )\ is a weight of A4, in A,, —2\ is not a weight of 4, in
A_;: —a = (2\)(u) = 2Mu) = 2a. Thus the above equation implies
xR, + ) =0 and therefore xx,e M ,(—a). Next wzx,- >, =
Ao, (Ney + g, + a52) = N2, + 8 where s € M_\(—a) and (2,2, « x,)x, +
(@105 ), + (2520 )2, = — N2 R, + 2,2, R2 + Moy, +1 where t € M_,(—a).
Therefore using (1.2) we obtain 0 = zx.(R,, + M)(E, — 2\I) + w where
w e M_,(—a) and actually w = 3xa,x,w,. Therefore 0 = z,2,(R, + M)
(R,, — 2xI) and as before zxy(R, + M) =0 so that zx, € M \(—a).
Continuing this process we obtain 2z, € M_,(—a) for £k =1,2, -+, m.
Next consider the product z.,x,.

Lo, + X = (N, + a21w1)(>\lx3 + a5, + ay®,)
= N,%, + 8

where s € M_,(—a) and
(45 + 23), + (X225 + L)y + (X520 * X)T, = Too(BE — AR, — M) + ¢

where ¢t € M_,(—a), therefore 0 = xxy (R, + M)(R,, — 2\]I) + w where

w € M_,(—a). Therefore for some integer k > 0 such that w(R,, + \)* =

0 we have 0 = xx,(R,, + M)**(R,, — 2\I) and as before x,2, € M_\(—a).

We continue this process showing 2, € M_,(—a) and in general

zx; € M_y,(—a) for 2,7 =1, ---, m. This completes the proof of (4.7).
We now show

(4.8) Ma)  M(—a) =0 if A+ p+0.

By (2.7) we have for x e M,(a), ¥y M,(—a) and z, e A, that 0 =
J(x,y, %) and as usual we obtain xy(R, — (M=) + t(x,))I)” =0 for
some integer N > 0. Now z = ay € A, and suppose z # 0, then, since
AN+ p#0,N+ ¢ is a nonzero weight of A4, in 4,, a contradiction to
Proposition 4.2.

Let v € M,(a), y € M\(a) and z € M, (—a), then using (1.9), (2.7) and
(2.8) we have

J (@2, ¥, 2) = xJ (%, ¥, 2) + J (%, ¥y, 2)x, — 2J (yz, «, 2,)
= J(w, y, 2),

and therefore J(x(R, — po(x)I),y,?) = J(z,¥y,2)(R,, — o(x)]) and as
usual we obtain J(z, ¥, 2) € M,(a). Interchanging x and ¥ we also obtain
J(x,y,2) € My(a) and therefore J(z, vy, 2) € M,(a) N M(a) =0 if N = p.
Now assume A\ # 0 and assume (£ = —\ is a weight of 4, in A_,, then

O0=J@y,2)=2y-2+yz - +20-Yy=9yz-o,
using (4.6) and (4.8). This proves



SIMPLE MALCEV ALGEBRAS OVER FIELDS OF CHARACTERISTIC ZERO 1069
(4.9) My(@)M_\(—a) - M(a) =0

if N # p are weights of 4, in A, such that —X\ is a weight of 4, in
A_,.

We shall now show if A\ is a nonzero weight of A4, in A4, with
weight space M,(a), then —X\ is a nonzero weight of 4, in A_, with
weight space M_,(—a). The proof is similar to that following (8.12):
Suppose —N\ is not a weight of 4,in A_,, then M_,(—a)=0; M,(a)M,(a)=
0; My(a)M(a) =0 if o+ \; AM(a) < M(a) and M,(a)M.(—a) = 0 if
¢+ N +#0. Thus M,(a) is a proper ideal of A, a contradiction.

Set M, = M\(@)M_,(—a)® M,(a) D M_,(—«) for some nonzero weight
» of A, in A,. Then analogous to Proposition 3.13, M, can be shown
to be a nonzero ideal of A and we have

ProrosiTioN 4.10. If A=A P A, P A ., is a simple Malcev alge-
bra as determined by Proposition 8.13, then there exists a nonzero
weight A of 4, in A with weight space M,(«) = A, and such that —x
is a weight of A, in A with weight space M_,(—a) = A_,.

We shall identify « with A\ as a weight, that is, use the notation
a(x,) for n(z,) and also identify M,(a) = A,, M_,(—a) = A_,. Note
that Proposition 4.10 implies there exists a basis for A so that for every
z € A, R, has a matrix of the form

0 0 0 )

a(x) 0
0 { e } 0
* a(x)

—a(x) 0
o 0 [ - }
i . —a(@))

5. The trace form. Set (x,y) = trace R,R,, then it is shown [3]
that this is actually an invariant form; that is (x, y) is a bilinear form
on A such that for all z, ¥y, z € A, (zy, 2) = (x, yz). Also a bilinear form
(z, y) is mondegenerate on A if (x,y) = 0 for all y € A implies x = 0.

THEOREM 5.1. If A=A, P A, D A_, 1s a finite dimensional simple
non-Lie Malcev algebra over an algebraically closed field of character-
istic zero and if A contains an element w such that R, is not milpotent,
then (z,y) = trace R,R, is a nondegenerate invariant form on A and
dimension A, = dimension A_,.

Proof. On A=A,PA, P A_, R, has the matrix
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and since v € A = J(4, 4, A) (by 1.12) we have by [3; 2.12] that 0 =
trace R, = a(n, — n_,) where n, = dimension 4,, ¢ = *a.

Now to show (x,%) is nondegenerate, let T = {x € A: (x, A) = 0}
where for subsets B,C of A we set (B, C)={b,c):bec B,ce (C} and
for x € A, (x, C) = {(x,¢c):c € C}. Since (z,y) is an invariant form on
A, T is an ideal of A and since A is simple, T=0o0or T=A. If T =
A, then (4, A) = 0 and from the matrix of R, we see that

0 = (u, u) = trace R; = 2na’®

where » = dimension A,. Since F is of characteristic zero, a =0, a
contradiction. Thus 7 = 0 which implies (¢, ¥) is nondegenerate on A.

COROLLARY 5.2. If A=A,P A, D A_, is a simple Malcev algebra
as above then

(AO: Aw) = (Am A—w) = (Aw’ Aw) = (A—w’ A——w) = O .

Proof. Since R, is nonsingular on A,,a + 0, A, = A,R,. Therefore
(4,, A,) = (4, A.R,) = (AR, A,) = 0, the second equality uses (x, y) is
an invariant form and the third uses (2.11). Also (4,, 4,) = (u4,, A,) =
(u, A,A,) C (u, A_,) = 0.

COROLLARY 5.3. If Ay 1is the dual space of A, consisting of linear
functionals on A, and f € Af, then f = ca for some c € F.

Proof. First, (x,y) is nondegenerate on 4,. For if x, € 4, is such
that (x,, 4,) = 0, then

(@0, A) = (0, A, D Au D A-a)
C (@00, Ao) + (20, As) + (20, A-0)
=0

by the preceding corollary and therefore z, = 0 by Theorem 5.1. Now
if fe A, then there exists a unique element [2, page 141] a, € 4,
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such that for all x e A, f(x) = (, a,) = trace R.R,, =
K 0 0 K 0 0 ]

a(xr) O a(a,) 0
S R Nec N
trace * ar) * alay)

—a(z) O —afa;) 0
0 0 { . } 0 0 [ . i\
L * o —a(@)d )L Y —ala,) -

= 2na(a,)a(x); using the remarks at the end of §4 to obtain the form
of the matrices of K, and R,,. Thus f = ca where ¢ = 2na(a,) € F.

COROLLARY 5.4. The dimension of A, is one.

Proof. 0 < dimension 4, = dimension Af = dimension uF = 1.

We shall frequently refer to a Malcev algebra A that satisfies
Theorem 5.1 as a “usual simple non-Lie Malcev algebra” and for the
remainder of this paper we shall assume the algebraically closed field F'
is of characteristic zero.

6. The diagonalization of E,. Using Proposition 4.10 and Corollary
5.4 we are able to decompose A relative to R(A,) into the form
A= Ao 69 Aw @ A—w

where A, = uF. From this the matrix of R, on A, a = +a«, has the

form
o 0
{i* e a} .

We shall show in this section that R, can be diagonalized. Put R, into
its Jordan canonical form on A,, that is, find R,-invariant subspaces
Uila) of A, such that A, = Ufa)@ -+ P U, (a) and each Ui(a) has a
basis {;, +++, ¥;s,} so that the action of R, is given by

xR, = ax;,
(6.1) xRy = am;; + 54
J=2,0,m;.

Thus on Uya), R, has an m x m matrix of the form
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where m = dimension Uy a). We shall now investigate the multiplicative
relations between the U’s and show that the dimension of all the Uya)
is one and therefore R, will have a diagonal matrix.

LemmA 6.2. Uia)Uyla) = 0.

Proof. Let U(a) have basis {x,, -+, %} as given by (6.1). If m =
1, we are finished. Suppose m > 1, then using (1.6)

0= —Ju, x, 2,)R,
= J(u, z,, 2,R,)
= aJ(u, x,, x,) + J(u, ©, x;)
= J(u, %,, ®,)
= XLy U+ XU Ty + UL, Xy
= x.2(R, — 2al) .

But we know A,, = 0, therefore x,x, = 0. Now using (1.6) we have, in
general, for any ¢t =1, -+, m,

O = J(u’ wir szu)
= J(u, x;, ©;_)) + aJ(u, z;, x,)
= J(u, z;, ;)

and again using (1.6),

0 = J(’M;, Ly wi—lRu,)
= J(u, ®;, T;y) + aJ (u, ;, T;_,)
= J(u, z;, x;_,) .

Continuing this process we have
J(u, 2, 2,) =0
for all £k < 4. Now if © < k, then by the preceding sentence
0 = J(u, x, ;) = J(u, x;, ;) .

Thus

J(u,z;,x,)=0 foralli,k=1,.-+,m.
By linearity this implies

Ju,z,y) =0 for all =,y € Uya) .
Thus
xyR, = vR, -y + -yR,
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and
2y(R, — 2al) = 2(R, —al) -y + x - y(R, — al)

As usual we can find an N large enough so that xzy(R, — 2al)¥ = 0.
But we know A,, = 0, therefore zy = 0.

LEMMA 6.3. Let x € A, be such that xR, = ax and let Uf(—a)=
WY, *++, Yn}, then 2y, =0 for 1=1,--,m —1 and xy, = Nu where
A= — (Y., x)/2na.

Proof. Using the invariant form (z, ¥) we have (¥, 4) = (Yn, *U) =
(Y., x). Since xy, € A, = uF we may write zy, = \u, then (y,x, u) =
(—wu, u) = —Mu, ) = — \2na’(a = +a). Thus » = —(y,, ¥)/2na.

Now since « € 4, and U,(—a) C A_,, we have by (2.4) and (2.11) that
0=J(@, Y u) =Y, + U + Yt » & + UL + Yy = (—aY, + Y)T — a2Y, = Y.
Again 0 = J(x, ¢, ) = XYy«  + Yo+ & + UL » Yy = (—ay, + Y2)T — axY; =
y,x. Continuing this process we eventually obtain 0= J(x, Yn, u) =
CYm * U+ Yph * T + UL * Yy, = Yp_i%.

THEOREM 6.4. Let x € A, be such that xR, = ax and let U(—a) be
such that xU,(—a) # 0, then dimension U(—a) = 1.

Proof. Let B=uF@zF @ U(—a), then using the preceding
lemmas and their notation we see that B is a subalgebra of A and
Y. = M where M #= 0. Now by (2.4) we have J(u, , ¥,) = 0, there-
fore by [3; Corollary 4.4] we see that u,x and y, are contained in a
Lie subalgebra, L, of A. However this implies ¥, 4 = —a¥,, + Yu_ € L
and therefore y,_, € L; again ¥, %4 = —aYn_1 + Yn_ € L and therefore
Ym—s € L. Continuing this process we obtain B< L and so B is a Lie
subalgebra of A. Thus for any 2z € B,

0=J(z, %, Yn)
= ?(R,R, — R, R, — R,, )
= #([R,, R, ] — \R,) .
Thus on B we have MR, = [R,, B, | and therefore the trace of E, on

B is zero. But calculating the trace of R, from its matrix on B, we
obtain that the trace is 0 + @« — am. Thus m = 1.

COROLLARY 6.5. The dimensional of all the U(—a), e = *+a, 8
one.

Proof. Suppose there exists Uj(—a)= {y;, -+, ¥,} of dimension
m > 1. Then for every U a), v.U(a) =0. For if there exists some
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Uia) such that y,Ui(a) + 0, then by Theorem 6.4, dimension Uy a) = 1.
But this means there exists ¢ ¢ A, such that xR, =ax and 0+
a2y, € U (—a); so again by Theorem 6.4, dimension U;(—a) = 1, a contra-
diction. Thus y,U,(a) = 0 for all 7 and this implies ¥,4, = ¥,(Uy(a) P --- D
U, (a)) = 0. Now from Corollary 5.2 we have, since ¥, € A_,, (4, ¥,) =
(A_,, ¥) = 0 and using the preceding sentence

(Aay yl) = (Azu ylu) = (Aayly u) = 0 .

Thus (4, ¥,) = 0 and since (x, ¥) is nondegenerate on A4, y, = 0, a contra-
diction.

7. Proof of the theorem. Let A=A, P A, P A_, be the usual
simple non-Lie Malcev algebra, then we have just seen that A, is the
null space of R,— al,a =0, ta. The choice of a #+ 0 is fixed but
arbitrary. In particular we want to consider the case & = —2, then all
we must do is consider #' = (—2/a)u and decompose A relative to R,,
(which is also not nilpotent) to obtain A = A, P A_,P A,. However we
shall work with a fixed @ and normalize when necessary.

Let a,b € F be any characteristic roots (weights) of R,, that is,
a,b =0, +a with characteristic vectors z, y € A; that is, ax = zR,, by
=yR, or x € A,,y € A,, then we have

(7.1) Jx,y,u) =2y -u — (@ + b)xy where x € A,,y€ A4, .
Using (2.4) and (7.1) we also have

(7.2) 2y - u = (@ + bxry where ye A,,ye A, and a # b .
Since xy € A_, if z,y € A,, we have

(7.3) 2y - = —axy where x,yc A, .

Combining (7.3) and (7.1) yields

(7.4) J(x,y,u) = —3axy where z,y € A, .
Let z,y, z € A,, then using (2.14), (2.4), (1.9) and (7.4) we have
0 = J(zy, 2, u)

= xJ(y! 2, ’U/) + J(x; z, u)y -2 J(zu, z, y)
= 2(—3ayz) + (—3axz)y — 2aJ (2, x, y) .

Therefore
2J(x,y,2) = —3(x - yz + 22 - ¥Y)
=3@xy-2+yz-x+zx-y) —32Y -2
and thus
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(7.5) J(x,y,2) =3xy -2z where x,y,2¢€ A, .

Now J(z, 2, ¥) = 3xz - y and adding this to (7.5) yields 0 = xy - 2 + 2z - ¥
and with a slight change of notation we have

(7.6) xYy 2= —x Y2 where x,y,2¢€ A, .
From (7.6) with z = # we obtain
(7.7 xy-x =0 where x,yc A,.

Now let z,ye A,,ze A_,, then —aJ(x,y,2) =J(,y,2u) and
J(2, 9, 2u) = aJ (2, ¥, %) = —aJ(z,¥,2). So

—2aJ (2, ¥, 2) = J (2, ¥, zu) + J (2, ¥, 2u)
= J@z, 9, u)x + J(x, ¥, w)z = J(z, y, w)z,

using (1.7) for the second equality, (2.4) for the third. Thus we have
—2ad(z, ¥, 2) = J(, ¥y, w)z = (—8axy)z using (7.4) and hence
(7.8) 2J(x,y,2) = 3wy -2 where x,yc A,,zc A_,.
This yields 3xy - 2 = 2(xy - 2 + yz + & + 22 - y) or
(7.9) 2y-z2=—2@xz+y +x-y2) where x,yc A,z A_, .

We now use (7.9) to prove the important identity (7.10). Thus let
w, %, Y, 2 be elements of A4, and set v = J(x, ¥, 2), 2&' = yz, —2y' = xz
and 22’ = 2y. Then

(7.10) YW =6"w -2+ yw-y+Zw-z).
To prove this note that «/, ¥’, 2’ ¢ A_, and using (7.9) we have 2x'x - w =

2w — 2wy’ 2,2y - w=yw- -y — 2wy -y, 2%z w=zw-2' — 2wz’ - 2.
Adding these equations and multiplying by 2 yield

20 =2(@w & +yw Y +2w )+ 4@w - +Yyw-y + 2w - 2).
Now using (1.10),

2xw 2" +yw -y +2w-z2) = 2w Yz + Yyw - 26 4+ 2W - Y
= z(zw - ¥) + 2(wy - ) + w(yz - 2) + y(xz - w) + Yy(ew - 2) + (W2 - Y)
+ w(zy - ) + 2(yx - w) + 2(yw - x) + y(wa - 2) + wzz - y) + 2y - w)
= wyx - 2) + w(zy - ) + w(xz - y) + y(xz - w) + 2(yx - w) + 2(2y - w)
= —wv + y(—2y'w) + 2(—22'w) + x(—2x'w)
noting some cancellation to obtain the third equality. Thus 20w =

vw+ 20w +yYyw-y + 2w-2) + 4wz +yw-y+ 2w - 2z) and this
proves (7.10).
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Since A is simple non-Lie Malcev algebra, we shall use the facts
A*=A and A= J(A, A, A) to obtain more identities for A. First we
have

ABA,DPA . =A=J(4,A4, A
cJA, A A+ JA, A A+ JA,, A, A)
c J(A4, A, Ay) + J(Ay, A_,, A_,) + J(A,, Aa, 4L)
+ J(Aa Any A L) + J(As, Ay Ay) + J(As, A, ALL)
CADA DA,
and therefore

Ao = J(Aom Aw A‘,) =+ J(A—m A—m A—w) ’
A, =J(A, A_,, A_) + J(4,, A,, A_,) ,
A_,=J(4,, A, A,) + J(A,, A_., A_L) .
We now use A = A’ to obtain
APA, DA, =A=A
=AA, +AA_, + AL+ AA_, + A,
and therefore
A, =AA_,,
A,=AA, + A%, ,
A, =AA_,+ A%,
Since 4, = uF' we have A,A, = A (e = +a). Also
J(Ao’ A—a’ A—a) c Aa = AoAa
CAJ(A, A, A) + AJ (A, A, ALY
C J(Ay, Ay, A2) + J (A, A, A LA) + J(4,, A, AAL)
+ J(4y, A, AA) + (4, A, ALA) + J(4,, A, AY)
cJ(4, A, A),

obtaining the second inclusion from A, = J(4,, 4A_., A_,) + J(A., A,, A_,)
and the third inclusion from (1.8). Thus we have

A, =J(A,A ., A), a+0.
From this and remembering A, = uF' we obtain
A, =4 A ,, a+0.
For A A, cA, =JA,4A_,A )Cc A A, Also

AO = J(Aay Aa, Aa) y @ = ia M
For
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J(A, A, A)C A, = A A,
= A.J (4, A, A,)
c J(A,, A, A2) + J(A., A, AA) + J(A,, A, AAL)
c J(A, A, A) .

We summarize these identities in

ProrosITION 7.11. Let A = A, P A, D A_, be the usual simple non-
Lie Malcev algebra, then we have for a = +a,

Aa, = AI)Aa = A—aA—a
and
AO = AaA_a, = J(A:u Aa, Aa) .

THEOREM 7.12, Let A=A DA, P A_, be the usual simple non-
Lie Malcev algebra, them A is isomorphic to the stmple seven dimen-
stonal Malcev algebra A* discussed in the introduction.

Proof. Since uF = A, = A,A_, = A, - A, A,, there exists z, y,z¢€ A,
such that «:yz = 2u. Define 2% = yz, —2y' = 2z and 22’ = xy and
form the subspace B generated by {u,x,¥,z, 2,9, 2'}. First the z,y
and 2z are linearly independent over F. For if ax + by + ¢z = 0 with
a,b,c e F and, for example, a # 0, then write x = b’y + ¢’z and there-
fore using (7.7) 2u =2-yz =0b'y-yz + ¢'z-yz =0, a contradiction.
Similarly noting w = x2’ and assuming a relation of the type «' =
b’y + ¢'?” and using the definitions of «',%" and 2’ we see that the
2',y" and 2’ are also linearly independent. Since A=A, PHA, P A,
{u,z,y,2 2,9,2} is a linearly independent set of vectors over F.
Using identities (1.2), (7.6) and (7.7) we obtain the following multiplica-
tion table for B.

U 2 Y 2 2 Yy 2
u 0 —ar —ay —ar ax' ay' az'
@ ax 0 2z -2y u 0 0
Y ay —22' 0 2z’ 0 u 0
z az 2y’ — 2z’ 0 0 0
x' —ax' —u 0 0 0 az —ay
! —ay' 0 —U 0 —az 0 ax
2 —az 0 0 —U ay —ax 0

By the remarks at the beginning of this section we can choose & = —2
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and consequently obtain that B is isomorphic to A*. It remains to
show the dimension of A over F' is seven. For this it suffices to show
dimension 4, = 3, since dimension A, = dimension A_,. Let 0 + w € 4,,
then by (7.5)

6u =3x-yz = —J(x, ¥, 2)
and therefore by (7.10),
6aw = 6wu = & + YY + 2R

where x,, ¥, 2, € 4, = wF. But by the action of 4 on z,y¥ and z we

have 6aw = a@ + by + ¢z where ay, b, ¢, € F. Thus the dimension of
A, is three.
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