REPRESENTATION OF A POINT OF A SET AS SUM OF TRANSFORMS OF BOUNDARY POINTS

T. S. Motzkin and E. G. Straus

In a previous paper [1] we established a condition (Theorem I) for real numbers such that, in a linear space of dimension at least 2, every point of a 2 -bounded set can always be represented as a sum of boundary points of the set, multiplied by these numbers. It is natural to ask for the corresponding condition in the case of complex numbers. Multiplication of a point by a real or complex number can be regarded as a special similarity. A more general theorem in which these similarities are replaced by linear transformations, or operators, will be proved in the present paper.

Definition. Let B be a real Banach space with conjugate space B^{\prime}. Let $S \subset B$ and $x^{\prime} \in B^{\prime},\left\|x^{\prime}\right\|=1$. The x^{\prime}-width of S is

$$
w_{x^{\prime}}(S)=\sup _{x, y \in S}(x-y) x^{\prime}, \quad w_{x^{\prime}}(\phi)=-\infty
$$

The width of S is $w(S)=\inf w_{x}(S)$.
Let $\mathfrak{l l}$ be a linear transformation of B and $\mathfrak{H} *$ the adjoint operation

In the following all sets are assumed to be in a real Banach space.
Lemma 1. (1) If S is bounded then $w_{x^{\prime}}(S)$ is a continuous function of x^{\prime}.
(2) $w_{x^{\prime}}(S+T)=w_{x^{\prime}}(S)+w_{x}(T)$ (with the proviso that $-\infty$ added to anything-even $+\infty-i s-\infty$.
(3) If S has interior points then $u(S)>0$.

The proofs are all obvious.

Lemma 2. Let T be a connected set so that no translate of $-T$ is contained in the interior of S, then $S+T \subset T+\operatorname{bd} S$.

Proof. Let $s \in S, t \in T$; then $s+t-T$ contains $s \in S$ but is not contained in the interior of S. Hence $(s+t-T) \cap \mathrm{bd} S$ is not empty and $s+T \subset T+\mathrm{bd} S$.

[^0]Lemma 3. If S is bounded and $-\mathrm{clS} \subset$ int T then no translate of $-\mathrm{cl} T$ is contained in $\operatorname{int} S$.

Proof. For one-dimensional spaces this is obvious since the hypothesis implies diam $S<\operatorname{diam} T$. If the lemma were false then $a-\operatorname{cl} T \subset \operatorname{int} S$ for some point a. The mapping $x \rightarrow a-x$ leaves the lines through $a / 2$ invariant and the contradiction follows from the fact that the inclusion is false for the intersection of the sets with such lines l for which $l \cap \operatorname{int} S \neq \phi$.

Lemma 4. Let $w_{x^{\prime}}(S)<\infty$, let T be a connected set, and let $U=(S+T) \backslash(T+\mathrm{bd} S)$, then

$$
w_{x^{\prime}}(U) \leqq w_{x^{\prime}}(S)-w_{x^{\prime}}(T)
$$

Proof. If $w_{x^{\prime}}(T)=\infty$ then $S+T \subset T+\operatorname{bd} S$ by Lemma 2. If $w_{x^{\prime}}(T)<\infty$ let $a=\inf _{s \in S} s x^{\prime}, b=\sup _{s \in S} s x^{\prime}, c=\inf _{t \in T} t x^{\prime}, d=\sup _{t \in T} t x^{\prime}$. If $s \in S, t \in T$ so that $(s+t) x^{\prime}<a+d$ then $s+t-T$ contains s in S and $\inf _{t_{1} \in T}\left(s+t-t_{1}\right) x^{\prime}<a$ so that $s+t-T$ contains points in the complement of S. Since $s+t-T$ is connected it follows that $(s+t-T) \cap \operatorname{bd} S \neq \phi$ or $s+t \in T+\operatorname{bd} S$. Thus $\inf _{u \in U} u x^{\prime} \geqq a+d$.

Similarly, if $s \in S, t \in T$ and $(s+t) x^{\prime}>b+c$ then $s+t-T$ contains $s \in S$ while $\sup _{t_{1} \in T}\left(s+t-t_{1}\right) x^{\prime}>b$ so that $s+t-T$ contains points in the complement of S. Hence $(s+t-T) \cap \mathrm{bd} S \neq \phi$ and $s+t \in T+\mathrm{bd} S$. Thus $\sup _{u \in J} u x^{\prime} \leqq b+c$, and hence

$$
\begin{aligned}
w_{x^{\prime}}(U) & =\sup _{u \in J} u x^{\prime}-\inf _{u \in U} u x^{\prime} \leqq(b+c)-(a+d)=(b-a)-(d-c) \\
& =w_{x^{\prime}}(S)-w_{x}(T)
\end{aligned}
$$

Definition. Let S be a bounded connected set in B. The outer set, oS, of S is the complement of the unbounded component of the complement of S and the outer boundary, obd S, of S is the boundary of $o S$. Clearly $\operatorname{obd} S \subset \mathrm{bd} S$ and if $\operatorname{dim} B \geqq 2$ then $\operatorname{obd} S$ is connected.

Theorem 1. Let $S_{1}, S_{2}, \cdots, S_{n}$ be bounded connected sets in B with $\operatorname{dim} B \geqq 2$ so that no translate of $-\mathrm{cl} o S_{1}$ is contained in int $o S_{i}(i=2, \cdots, n)$. Then

$$
\begin{aligned}
& w_{x^{\prime}}\left(\left(S_{1}+S_{2}+\cdots+S_{n}\right) \backslash\left(\operatorname{obd} S_{1}+\operatorname{obd} S_{2}+\cdots+\operatorname{obd} S_{n}\right)\right) \\
& \quad \leqq w_{x^{\prime}}\left(S_{1}\right)-w_{x^{\prime}}\left(S_{2}\right)-\cdots-w_{x^{\prime}}\left(S_{n}\right)
\end{aligned}
$$

Proof. By repeated application of Lemma 2 we have $S_{1}+\cdots+$ $S_{n} \subset o S_{1}+\cdots+o S_{n} \subset o S_{1}+\operatorname{obd} S_{2}+\cdots+\operatorname{obd} S_{n}$ and the theorem follows from Lemma 4 where $o S_{1}$ plays the role of S and obd $S_{3}+$ $\cdots+\operatorname{obd} S_{n}$ that of T.

Corollary. If S_{1}, \cdots, S_{n} satisfy the conditions of Theorem 1 and in addition for each i there is an x_{i}^{\prime} so that $w_{x_{i}^{\prime}}\left(S_{i}\right)<\sum_{j \neq i} w_{x_{i}^{\prime}}\left(S_{j}\right)$ then $S_{1}+\cdots+S_{n} \subset \operatorname{obd} S_{1}+\cdots+\operatorname{obd} S_{n}$.

Definition. Let B be a real Banach space with $\operatorname{dim} B \geqq 2$. A set of bounded linear operators $\mathfrak{A}_{1}, \cdots, \mathfrak{N}_{n}$ is admissible if for every bounded set $S \subset B$ and every point $p \in S$ there exist outer boundary points $x_{1}, \cdots, x_{n} \in \operatorname{obd} S$ such that

$$
p=x_{1} \mathfrak{A}_{1}+\cdots+x_{n} \mathfrak{N}_{n} .
$$

Theorem 2. If a set \mathfrak{A} of operators $\mathfrak{A}_{1}, \cdots, \mathfrak{A}_{n}$ is admissible then
(i) $\mathfrak{M}_{1}+\cdots+\mathfrak{A}_{n}=\mathscr{I}$, the identity.
(ii) For each i there exists an $x^{\prime} \in B^{\prime}, x^{\prime} \neq 0$ such that

$$
\left\|x^{\prime} \mathfrak{U}_{i}^{*}\right\| \leqq \sum_{j \neq i}\left\|x^{\prime} \mathfrak{U}_{j}^{*}\right\| .
$$

If B is finite dimensional, $\operatorname{dim} B \geqq 2$, and \mathfrak{A} satisfies (i) and

$$
\begin{equation*}
\left\|x^{\prime} \mathfrak{U}_{i}^{*}\right\| \leqq \sum\left\|x^{\prime} \mathfrak{A}_{j}^{*}\right\| \tag{ii'}
\end{equation*}
$$

$$
i=1, \cdots, n
$$

for all $x^{\prime} \in B^{\prime}$ then \mathfrak{A} is admissible.
Proof. The necessity of (i) and (ii) is nearly obvious. If $\mathfrak{N}_{1}+$ $\cdots+\mathfrak{U}_{n} \neq \mathscr{I}$, let $p \in B$ be a point which is not invariant under $\mathfrak{N}_{1}+\cdots+\mathfrak{N}_{n}$ and let $S=\{p\}$.

If S is the unit ball of B and

$$
0=x_{1} \mathfrak{A r}_{1}+\cdots+x_{n} \mathfrak{A}_{n}, \quad\left\|x_{1}\right\|=\cdots=\left\|x_{n}\right\|=1
$$

then

$$
\left\|x_{i} \mathfrak{A}_{i} x^{\prime}\right\| \leqq \sum_{j \neq i}\left\|x_{j} \mathfrak{A}_{j} x^{\prime}\right\|
$$

or

$$
\left\|x_{i} x^{\prime} \mathfrak{A}_{i}^{*}\right\| \leqq \sum_{j \neq i}\left\|x_{j} x^{\prime} \mathfrak{U}_{j}^{*}\right\| .
$$

Now if $\inf _{\|x\|=1}\left\|x \mathfrak{C}_{i}\right\|=0$, then for every $\varepsilon>0$ there exists an x^{\prime} with $\left\|x^{\prime}\right\|=1$ and $\left\|x^{\prime} \mathfrak{I}_{i}^{*}\right\|<\varepsilon$ and (ii) is trivial. If $\inf _{\|x\|=1}\left\|x \mathfrak{Y}_{i}\right\|>0$ then \mathfrak{A}_{i}^{*} is onto and we can pick x^{\prime} so that $\left\|x_{i} x^{\prime} \mathfrak{N}_{i}^{*}\right\|=\left\|x^{\prime} \mathfrak{A}_{i}^{*}\right\|$ and hence $\left\|x^{\prime} \mathfrak{U}_{i}^{*}\right\| \leqq \sum_{j \neq i}\left\|x_{j} x^{\prime} \mathcal{U}_{j}^{*}\right\| \leqq \sum_{j \neq i}\left\|x^{\prime} \mathfrak{H}_{j}^{*}\right\|$.

To prove the sufficiency of (i) and (ii') we may restrict attention to connected sets since we may consider the component of p in S. Let $S_{i}=S \mathfrak{H}_{i}$. If for each S_{i} there is an S_{j} so that $j \neq i$ and no translate of $-\operatorname{cl} S_{j}$ is contained in int S_{i} then according to Lemma 2 we have

$$
\begin{aligned}
S \subset S_{1} & +\cdots+S_{n} \subset o S_{1}+\cdots+o S_{n} \\
& \subset \operatorname{obd} S_{1}+\left(o S_{2}+\cdots+o S_{n}\right) \\
& \subset \operatorname{obd} S_{1}+\operatorname{obd} S_{2}+\left(o S_{3}+\cdots+o S_{n}\right) \subset \cdots \\
& \subset \operatorname{obd} S_{1}+\cdots+\operatorname{obd} S_{n} .
\end{aligned}
$$

Since B is finite dimensional we have obd $S_{i}=(\operatorname{obd} S) \mathfrak{M}_{i}$ so that

$$
S \subset(\operatorname{obd} S) \mathfrak{N}_{1}+\cdots+(\operatorname{obd} S) \mathfrak{N}_{n}
$$

which was to be proved. We may therefore assume that - $\mathrm{cl} S_{j}$ has a translate in int S_{1} for each $j=2, \cdots, n$. Then according to Lemma 3 and Theorem 1

$$
\begin{align*}
& w_{x^{\prime}}\left(\left(S_{1}+\cdots+S_{n}\right) \backslash\left(\operatorname{obd} S_{1}+\cdots+\operatorname{obd} S_{n}\right)\right) \tag{1}\\
& \quad \leqq w_{x^{\prime}}\left(S_{1}\right)-w_{x^{\prime}}\left(S_{2}\right)-\cdots-w_{x^{\prime}}\left(S_{n}\right)
\end{align*}
$$

Since S_{1} has an interior \mathfrak{N}_{1}, and hence \mathfrak{N}_{1}^{*}, are regular and we can choose x^{\prime} so that $w_{x_{1}^{\prime}}(S)=w(S)$ where $x_{1}^{\prime}=x^{\prime} \mathfrak{U}_{1}^{*} /\left\|x^{\prime} \mathfrak{N}_{1}^{*}\right\|$. By part (4) of Lemma 1 we have $w_{x^{\prime}}\left(S_{j}\right) \geqq w(S) \cdot\left\|x^{\prime} \mathfrak{H}_{j}\right\|$. Thus (1) becomes.

$$
\begin{aligned}
w_{x^{\prime}}\left(\left(S_{1}+\cdots S_{n}\right) \backslash\left(\operatorname{obd} S_{1}+\cdots+\operatorname{obd} S_{n}\right)\right) & \leqq w(S)\left(\left\|x^{\prime} \mathfrak{2}_{1}^{*}\right\|-\sum_{\partial \neq 1}\left\|x^{\prime} \dot{2} \mathscr{L}_{j}^{*}\right\|\right) \\
& \leqq 0
\end{aligned}
$$

so that $\left(S_{1}+\cdots+S_{n}\right) \backslash\left(\operatorname{obd} S_{1}+\cdots+\operatorname{obd} S_{n}\right)$ has no interior points. and is therefore empty since $\operatorname{obd} S_{1}+\cdots+\operatorname{obd} S_{n}$ is closed. So we have again

$$
\begin{aligned}
S \subset S_{1}+\cdots+ & S_{n} \subset \operatorname{obd} S_{1}+\cdots+\operatorname{obd} S_{n} \\
& =(\operatorname{obd} S) \mathfrak{N}_{1}+\cdots+(\operatorname{obd} S) \mathscr{N}_{n} .
\end{aligned}
$$

Remark. The hypothesis that B is finite dimensional can be dropped if we assume that the mappings \mathfrak{H}_{i} are onto. If the \mathscr{H}_{i} are similarities of B onto itself then (ii) and (ii') have the same simple form

$$
\begin{equation*}
\left\|\mathfrak{U}_{i}\right\| \leqq \sum_{j \neq i}\left\|\mathfrak{H}_{j}\right\| \quad i=1, \cdots, n \tag{ii'}
\end{equation*}
$$

We thus have the following:
Theorem 2'. A set of similarities $\mathfrak{Y}_{1}, \cdots, \mathfrak{U}_{n}$ of a Banach space B of dimension at least 2 onto itself is admissible if and only if it satisfies conditions (i) and (ii").

In the manner analogous to that used in [1] we can generalize the validity of Theorem 2 to a class of linear spaces which we define as. follows.

Definitions. Let B be a linear space and let \mathscr{F} be a family of linear transformations of B onto itself so that \mathscr{F} is transitive on the nonzero elements of B. A B-space S is a linear subspace of a (finite or infinite) direct product of copies of B that is closed under simultaneous application of \mathscr{F} to the components of a point. If x, $y \in S$ and $y \neq 0$ then $\{x+y F \mid F \in \mathscr{F}\}$ is a B-subspace of S. The B subspaces can be given the topology of B by the association $x+y F \leftrightarrow z F$, $z \in B, z \neq 0$ where the choice of z is arbitrary due to the transitivity of \mathscr{F}. We can therefore define boundedness in B-subspaces (if boundedness is defined in B) and a set in S is B-bounded if through every point of the set there is a B-subspace whose intersection with the set is bounded.

Theorem 3. Theorem 2 remains valid for B-bounded sets in a B-space where B satisfies the conditions stated in Theorem 2. If B is one-dimensional then the same theorem holds for sets which are 2-bounded (in the sense of [1]) and satisfy the other conditions of Theorem 2.

This is an immediate consequence of Theorem 2 if we consider the bounded intersection of S with a B-subspace through a point p of S.

Theorem 3 applied to the conditions of Theorem 2^{\prime} subsums the results of [1]. As one application we give the following:

Theorem 4. Let $f(z)$ be analytic in a proper subdomain D of the Riemann sphere and continuous in $\operatorname{cl} D$. Let $\alpha_{1}, \cdots, \alpha_{n}$ be complex numbers satisfying

$$
\begin{equation*}
\alpha_{1}+\cdots+\alpha_{n}=1 \tag{i}
\end{equation*}
$$

and
(ii)

$$
\left|\alpha_{i}\right| \leqq \sum_{i \neq j}\left|\alpha_{j}\right|
$$

Then for every $z_{0} \in D$ there exist z_{1}, \cdots, z_{n} in $\operatorname{bd} D$ such that

$$
f\left(z_{0}\right)=\alpha_{1} f\left(z_{1}\right)+\cdots+\alpha_{n} f\left(z_{n}\right)
$$

Reference

1. T. S. Motzkin and E. G. Straus, Representation of a point of a set as a linear combination of boundary points, Proceedings of the Symposium on Convexity, Seattle 1961.

[^0]: Received January 1963. Presented to the American Mathematical Society (by title) October 26, 1962. Sponsored (in part) by the Office of Naval Research, U.S.A.

