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In a previous paper [1] we established a condition (Theorem I) for
real numbers such that, in a linear space of dimension at least 2,
every point of a 2-bounded set can always be represented as a sum
of boundary points of the set, multiplied by these numbers. It is
natural to ask for the corresponding condition in the case of complex
numbers. Multiplication of a point by a real or complex number can
be regarded as a special similarity. A more general theorem in which
these similarities are replaced by linear transformations, or operators,
will be proved in the present paper.

DEFINITION. Let B be a real Banach space with conjugate space
B'. Let ScB and x'eB', \\x'\\ = 1. The x'-width of S is

Wχ-(S) = sup (x — y)x' , wx,(Φ) = — co .
x.ves

The width of S is w(S) = inf wx.(S).
Let SΆ be a linear transformation of B and 2ί* the adjoint operation

on B' defined by a?(α'2l*) = (xl\)x\ Then #'<>i* = 0 or we can define

In the following all sets are assumed to be in a real Banach space.

LEMMA 1. (1) If S is bounded then wx(S) is a continuous
function of x\

(2) wx (S + T) = wx,(S) + wx(T) (with the proviso that -co
added to anything—even +co—is -co).

(3) If S has interior points then u(S) > 0.
JO if x'tx* = 0

(4) w(S*) j

The proofs are all obvious.

LEMMA 2. Let T be a connected set so that no translate of —T
is contained in the interior of S, then S + Tcz T + bdS.

Proof. Let s e S, te T; then s + t — T contains s e S but is not
contained in the interior of S. Hence (s + t — T) Π bd S is not empty
a n d s + Γ c Γ + bdS.
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LEMMA 3. If S is bounded and — clScint T then no translate
of — clT is contained in int S.

Proof. For one-dimensional spaces this is obvious since the hy-
pothesis implies diam S < diam T. If the lemma were false then
a — cl T c int S for some point a. The mapping x —> a — x leaves the
lines through α/2 invariant and the contradiction follows from the
fact that the inclusion is false for the intersection of the sets with
such lines I for which I Π int S Φ φ.

LEMMA 4. Let wx,(S) < •<», let T be a connected set, and let
U=(S+ T)\(T+MS)f then

wAU) £ wAS) - wAT) .

Proof. If wAT) = co then S+TczT+bdSbγ Lemma 2. If
wx,(T)< co let a = mΐsessx', 6 = sups€Ssx', c — mίteτtx', d — s\i^teτtx

f.
If s e S, teTso that (s + £)#' < a + d then s + £ — T contains s in
S and inftler(s + ̂  — £i)#' < α so that s + t — Γ contains points in the
complement of S. Since s + t — T is connected it follows that
(s + t - T) n bd S Φ Φ or s + t e T + bd S. Thus infw€Z7 WB' ^ α + cί.

Similarly, if seS, te T and (s + t)x' >b + c then s + t - Γ
contains s e S while sup ί l€Γ (s + t — Qx' > 6 so that s + ί — T contains
points in the complement of S. Hence (s + t — T) Π bd S Φ Φ and
s + t e T + bd S. Thus supweσ ux' <; 6 + c, and hence

= sup w#' — inf ucc' ^ (6 + c) — (α + d) = (b — a) — (d — c)
ueσ ueσ

DEFINITION. Let S be a bounded connected set in B. The
set, oS, of S is the complement of the unbounded component of the
complement of S and the outer boundary, obd S, of S is the boundary
of oS. Clearly obdScbdS and if dimi? Ξ> 2 then obdS is connected.

THEOREM 1. Let Sl9 S2, •• ,SW be bounded connected sets in B
with dim 2? ^ 2 so that no translate of — cl oSτ is contained in
int oSi (i = 2, , w). Then

wA(Si + S2 + + SJVobdSx + obdS2 + - + obdSJ)

- wAS,) wASn) .

Proof. By repeated application of Lemma 2 we have Sx + +
Sπ c oSi + + oSn c oSχ + obd S2 + + obd Sn and the theorem
follows from Lemma 4 where oSx plays the role of S and obd S2 +
• + obd Sn that of T.
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COROLLARY. If Su •• ,SW satisfy the conditions of Theorem 1
-and in addition for each i there is an x\ so that wx,t(Si) < ΣJV*

 wχfi(Sj)
then S1 + + Sn c obd S1 + + obd Sn.

DEFINITION. Let B be a real Banach space with dim B^2. A
set of bounded linear operators 2ίx, , SίΛ is admissible if for every
bounded set SczB and every point p e S there exist outer boundary
points xl9 - , xn G obd S such that

p = a ^ + + a.a* .

THEOREM 2. // α set 21 0/ operators 21̂  , 2ln is admissible then
( i ) 2ΪX + + 2IΛ = ^ , ί/Z'β identity.
(ii) JF'or eαcfe i there exists an x' eBf, x' φ 0

// J5 is finite dimensional, dim I? ^ 2, αtid 21 satisfies (i)

Jor all x' G JB' ίfee^ 21 is admissible.

Proof. The necessity of (i) and (ii) is nearly obvious. If 2^ +
••• + 9 I Λ = £ ^ , let peB be a point which is not invariant under
21, + . . . + 2IΛ and let S = {p}.

If S is the unit ball of B and

0 = x&x + - + a ? A , II xx II - = II xn \\ - 1

then

or

< V

Now if inf,!x,,=1 ||α;2Ii || = 0, then for every ε > 0 there exists an
x' with II x' [I = 1 and || x'%t \\ < ε and (ii) is trivial. If inf,,.,,̂  || x% \\ > 0
then 21* is onto and we can pick x' so that H ί̂c'21* || = ||ίc'2If || and
hence || xWf \\ S Σ ^ II *flWϊ II ̂  Σ i ^ II *Wt \l

To prove the sufficiency of (i) and (ii') we may restrict attention
to connected sets since we may consider the component of p in S.
Let Si = S2Ii. If for each Si there is an Sj so that j Φ i and no
translate of — cl Sj is contained in int S{ then according to Lemma 2
we have
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SdS1+ + Sn c oS1 + +oSn

c obd Sx + (oS2 + + oSw)

c obd Sι + obd S2 + (oS3 + + oSw) c •

c obd S1 + + obd Sn .

Since B is finite dimensional we have obdS* = (obdS)2I; so that

S c (obd S)2IX + • • + (obd S)3W

which was to be proved. We may therefore assume that — clSy has
a translate in int Si for each j — 2, , n. Then according to Lemma 3
and Theorem 1

(1) wAiS, + • + SJ\(obd Sx + + obd Sn))

wASn) .

Since Si has an interior 21̂  and hence 21?, are regular and we
can choose x' so that wx.χ(S) = w(S) where x[ = ^2I*/|| α'21? ||. By
part (4) of Lemma 1 we have wx,(Sj) ^ w(S) || a 'SIy ||. Thus (1) becomes

χ + SB)\(obd S, + + obd S.)) g

so that (Si + + Sn)\(obd Si + + obd Sn) has no interior points
and is therefore empty since obd Sx+ + obd Sn is closed. So we
have again

ScSι+ ••• + S n c o b d S 1 + •••

REMARK. The hypothesis that B is finite dimensional can be
dropped if we assume that the mappings 21; are onto. If the 2ί; are
similarities of B onto itself then (ii) and (ii') have the same simple
form

(ii") I I ^ I I ^ Σ I I δ l / l l ί = l, --,n.

We thus have the following:

THEOREM 2'. A set of similarities 2IX, , 2fw of a Banach space
B of dimension at least 2 onto itself is admissible if and only if it
satisfies conditions (i) and (ii").

In the manner analogous to that used in [1] we can generalize the
validity of Theorem 2 to a class of linear spaces which we define as
follows.
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DEFINITIONS. Let B be a linear space and let ^ be a family
of linear transformations of B onto itself so that ^ is transitive on
the nonzero elements of B. A B-space S is a linear subspace of a
(finite or infinite) direct product of copies of B that is closed under
simultaneous application of JΓ to the components of a point. If x9

y e S and y φ 0 then {x + yF\ Fe J?~} is a Bsubspace of S. The B-
subspaces can be given the topology of B by the association x+yF*-*zF,
ze B, z Φ 0 where the choice of z is arbitrary due to the transitivity
of j ^ ~ . We can therefore define boundedness in l?-subspaces (if bound-
edness is defined in B) and a set in S is B-bounded if through every
point of the set there is a I?-subspace whose intersection with the set
is bounded.

THEOREM 3. Theorem 2 remains valid for B-bounded sets in a
B-space where B satisfies the conditions stated in Theorem 2. // B
is one-dimensional then the same theorem holds for sets which are
2-bounded (in the sense of [1]) and satisfy the other conditions of
Theorem 2.

This is an immediate consequence of Theorem 2 if we consider
the bounded intersection of S with a J5-subspace through a point p
of S.

Theorem 3 applied to the conditions of Theorem 2' subsums the
results of [1]. As one application we give the following:

THEOREM 4. Let f(z) be analytic in a proper subdomain D of
the Riemann sphere and continuous in cl D. Let alf , an be complex
numbers satisfying

(i) aλ + . . . + an = 1

and

(ϋ) | α < | 5 * Σ I « i l .

Then for every zoe D there exist zl9 , zn in bd D such that

/(So) = «i/(Si) + + OC%f(zn) .
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