REPRESENTATION OF A POINT OF A SET AS SUM OF TRANSFORMS OF BOUNDARY POINTS

T. S. MOTZKIN AND E. G. STRAUS

In a previous paper [1] we established a condition (Theorem I) for real numbers such that, in a linear space of dimension at least 2, every point of a 2-bounded set can always be represented as a sum of boundary points of the set, multiplied by these numbers. It is natural to ask for the corresponding condition in the case of complex numbers. Multiplication of a point by a real or complex number can be regarded as a special similarity. A more general theorem in which these similarities are replaced by linear transformations, or operators, will be proved in the present paper.

DEFINITION. Let B be a real Banach space with conjugate space B'. Let $S \subset B$ and $x' \in B'$, ||x'|| = 1. The x'-width of S is

$$w_{x'}(S) = \sup_{x,y \in S} (x-y)x'$$
, $w_{x'}(\phi) = -\infty$.

The width of S is $w(S) = \inf w_x(S)$.

Let \mathfrak{A} be a linear transformation of B and \mathfrak{A}^* the adjoint operation on B' defined by $x(x'\mathfrak{A}^*) = (x\mathfrak{A})x'$. Then $x'\mathfrak{A}^* = 0$ or we can define $x'_{\mathfrak{A}} = x'\mathfrak{A}^*/||x'\mathfrak{A}^*||$.

In the following all sets are assumed to be in a real Banach space.

LEMMA 1. (1) If S is bounded then $w_x(S)$ is a continuous function of x'.

(2) $w_x(S+T) = w_x(S) + w_x(T)$ (with the proviso that $-\infty$ added to anything-even $+\infty$ -is $-\infty$).

(3) If S has interior points then u(S) > 0.

$$(4) \quad w_{x'}(S\mathfrak{A}) = egin{cases} 0 & if & x'\mathfrak{A}^* = 0 \ w_{x'_{\mathfrak{A}}}(S) \cdot || \, x'\mathfrak{A}^* \, || & if \, x'\mathfrak{A}^*
eq 0 \ .$$

The proofs are all obvious.

LEMMA 2. Let T be a connected set so that no translate of -T is contained in the interior of S, then $S + T \subset T + bd S$.

Proof. Let $s \in S$, $t \in T$; then s + t - T contains $s \in S$ but is not contained in the interior of S. Hence $(s + t - T) \cap \operatorname{bd} S$ is not empty and $s + T \subset T + \operatorname{bd} S$.

Received January 1963. Presented to the American Mathematical Society (by title) October 26, 1962. Sponsored (in part) by the Office of Naval Research, U.S.A.

LEMMA 3. If S is bounded and $-clS \subset int T$ then no translate of -clT is contained in int S.

Proof. For one-dimensional spaces this is obvious since the hypothesis implies diam S < diam T. If the lemma were false then $a - \operatorname{cl} T \subset \operatorname{int} S$ for some point a. The mapping $x \to a - x$ leaves the lines through a/2 invariant and the contradiction follows from the fact that the inclusion is false for the intersection of the sets with such lines l for which $l \cap \operatorname{int} S \neq \phi$.

LEMMA 4. Let $w_{x'}(S) < \infty$, let T be a connected set, and let $U = (S + T) \setminus (T + \operatorname{bd} S)$, then

$$w_{x'}(U) \leq w_{x'}(S) - w_{x'}(T)$$
.

Proof. If $w_{x'}(T) = \infty$ then $S + T \subset T + \operatorname{bd} S$ by Lemma 2. If $w_{x'}(T) < \infty$ let $a = \inf_{s \in S} sx'$, $b = \sup_{s \in S} sx'$, $c = \inf_{t \in T} tx'$, $d = \sup_{t \in T} tx'$. If $s \in S$, $t \in T$ so that (s + t)x' < a + d then s + t - T contains s in S and $\inf_{t_1 \in T} (s + t - t_1)x' < a$ so that s + t - T contains points in the complement of S. Since s + t - T is connected it follows that $(s + t - T) \cap \operatorname{bd} S \neq \phi$ or $s + t \in T + \operatorname{bd} S$. Thus $\inf_{u \in \sigma} ux' \ge a + d$.

Similarly, if $s \in S$, $t \in T$ and (s+t)x' > b+c then s+t-Tcontains $s \in S$ while $\sup_{t_1 \in T} (s+t-t_1)x' > b$ so that s+t-T contains points in the complement of S. Hence $(s+t-T) \cap \operatorname{bd} S \neq \phi$ and $s+t \in T+\operatorname{bd} S$. Thus $\sup_{u \in T} ux' \leq b+c$, and hence

$$w_{x'}(U) = \sup_{u \in U} ux' - \inf_{u \in U} ux' \leq (b+c) - (a+d) = (b-a) - (d-c)$$

= $w_{x'}(S) - w_x(T)$.

DEFINITION. Let S be a bounded connected set in B. The outer set, oS, of S is the complement of the unbounded component of the complement of S and the outer boundary, obd S, of S is the boundary of oS. Clearly obd $S \subset bd S$ and if dim $B \ge 2$ then obd S is connected.

THEOREM 1. Let S_1, S_2, \dots, S_n be bounded connected sets in B with dim $B \ge 2$ so that no translate of $-cl \ oS_1$ is contained in int oS_i $(i = 2, \dots, n)$. Then

$$w_{x'}((S_1 + S_2 + \cdots + S_n) \setminus (\operatorname{obd} S_1 + \operatorname{obd} S_2 + \cdots + \operatorname{obd} S_n)) \\ \leq w_{x'}(S_1) - w_{x'}(S_2) - \cdots - w_{x'}(S_n) .$$

Proof. By repeated application of Lemma 2 we have $S_1 + \cdots + S_n \subset oS_1 + \cdots + oS_n \subset oS_1 + obd S_2 + \cdots + obd S_n$ and the theorem follows from Lemma 4 where oS_1 plays the role of S and $obd S_2 + \cdots + obd S_n$ that of T.

COROLLARY. If S_1, \dots, S_n satisfy the conditions of Theorem 1 and in addition for each i there is an x'_i so that $w_{x'_i}(S_i) < \sum_{j \neq i} w_{x'_i}(S_j)$ then $S_1 + \dots + S_n \subset \text{obd } S_1 + \dots + \text{obd } S_n$.

DEFINITION. Let B be a real Banach space with dim $B \ge 2$. A set of bounded linear operators $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ is *admissible* if for every bounded set $S \subset B$ and every point $p \in S$ there exist outer boundary points $x_1, \dots, x_n \in \text{obd } S$ such that

$$p = x_1\mathfrak{A}_1 + \cdots + x_n\mathfrak{A}_n$$
.

THEOREM 2. If a set \mathfrak{A} of operators $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ is admissible then (i) $\mathfrak{A}_1 + \dots + \mathfrak{A}_n = \mathscr{I}$, the identity.

(ii) For each i there exists an $x' \in B'$, $x' \neq 0$ such that

$$||x'\mathfrak{A}_i^*|| \leq \sum_{j\neq i} ||x'\mathfrak{A}_j^*||$$
.

If B is finite dimensional, dim $B \ge 2$, and \mathfrak{A} satisfies (i) and

(ii')
$$||x'\mathfrak{A}_i^*|| \leq \sum ||x'\mathfrak{A}_j^*||, \qquad i = 1, \dots, n$$

for all $x' \in B'$ then \mathfrak{A} is admissible.

Proof. The necessity of (i) and (ii) is nearly obvious. If $\mathfrak{A}_1 + \cdots + \mathfrak{A}_n \neq \mathscr{I}$, let $p \in B$ be a point which is not invariant under $\mathfrak{A}_1 + \cdots + \mathfrak{A}_n$ and let $S = \{p\}$.

If S is the unit ball of B and

$$0 = x_1 \mathfrak{A}_1 + \cdots + x_n \mathfrak{A}_n$$
 , $||x_1|| = \cdots = ||x_n|| = 1$

then

$$||x_i\mathfrak{A}_ix'|| \leq \sum\limits_{j
eq i} ||x_j\mathfrak{A}_jx'||$$

or

$$||x_i x' \mathfrak{A}_i^*|| \leq \sum_{i \neq i} ||x_j x' \mathfrak{A}_j^*||$$
.

Now if $\inf_{||x||=1} ||x\mathfrak{A}_i|| = 0$, then for every $\varepsilon > 0$ there exists an x' with ||x'|| = 1 and $||x'\mathfrak{A}_i^*|| < \varepsilon$ and (ii) is trivial. If $\inf_{||x||=1} ||x\mathfrak{A}_i|| > 0$ then \mathfrak{A}_i^* is onto and we can pick x' so that $||x_ix'\mathfrak{A}_i^*|| = ||x'\mathfrak{A}_i^*||$ and hence $||x'\mathfrak{A}_i^*|| \le \sum_{j \neq i} ||x_jx'\mathfrak{A}_j^*|| \le \sum_{j \neq i} ||x'\mathfrak{A}_j^*||$.

To prove the sufficiency of (i) and (ii') we may restrict attention to connected sets since we may consider the component of p in S. Let $S_i = S\mathfrak{A}_i$. If for each S_i there is an S_j so that $j \neq i$ and no translate of $-\operatorname{cl} S_j$ is contained in int S_i then according to Lemma 2 we have

$$egin{aligned} S \subset S_1 + \cdots + S_n \subset oS_1 + \cdots + oS_n \ & \subset \operatorname{obd} S_1 + (oS_2 + \cdots + oS_n) \ & \subset \operatorname{obd} S_1 + \operatorname{obd} S_2 + (oS_3 + \cdots + oS_n) \subset \cdots \ & \subset \operatorname{obd} S_1 + \cdots + \operatorname{obd} S_n \ . \end{aligned}$$

Since B is finite dimensional we have $\operatorname{obd} S_i = (\operatorname{obd} S)\mathfrak{A}_i$ so that

$$S \subset (\text{obd } S)\mathfrak{A}_1 + \cdots + (\text{obd } S)\mathfrak{A}_n$$

which was to be proved. We may therefore assume that $-\operatorname{cl} S_j$ has a translate in int S_1 for each $j = 2, \dots, n$. Then according to Lemma 3 and Theorem 1

Since S_1 has an interior \mathfrak{A}_1 , and hence \mathfrak{A}_1^* , are regular and we can choose x' so that $w_{x'_1}(S) = w(S)$ where $x'_1 = x'\mathfrak{A}_1^*/||x'\mathfrak{A}_1^*||$. By part (4) of Lemma 1 we have $w_{x'}(S_j) \ge w(S) \cdot ||x'\mathfrak{A}_j||$. Thus (1) becomes

$$w_{x'}((S_1 + \cdots S_n) \setminus (ext{obd} \ S_1 + \cdots + ext{obd} \ S_n)) \leq w(S)(|| x' \mathfrak{A}_1^* || - \sum_{j \neq 1} || x' \mathfrak{A}_j^* ||) \leq 0$$

so that $(S_1 + \cdots + S_n) \setminus (\text{obd } S_1 + \cdots + \text{obd } S_n)$ has no interior points and is therefore empty since $\text{obd } S_1 + \cdots + \text{obd } S_n$ is closed. So we have again

$$S \subset S_1 + \cdots + S_n \subset \operatorname{obd} S_1 + \cdots + \operatorname{obd} S_n$$

= $(\operatorname{obd} S)\mathfrak{A}_1 + \cdots + (\operatorname{obd} S)\mathfrak{A}_n$.

REMARK. The hypothesis that B is finite dimensional can be dropped if we assume that the mappings \mathfrak{A}_i are onto. If the \mathfrak{A}_i are similarities of B onto itself then (ii) and (ii') have the same simple form

(ii'')
$$|| \mathfrak{A}_i || \leq \sum\limits_{j \neq i} || \mathfrak{A}_j ||$$
 $i = 1, \cdots, n$.

We thus have the following:

THEOREM 2'. A set of similarities $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ of a Banach space B of dimension at least 2 onto itself is admissible if and only if it satisfies conditions (i) and (ii'').

In the manner analogous to that used in [1] we can generalize the validity of Theorem 2 to a class of linear spaces which we define as follows.

636

DEFINITIONS. Let B be a linear space and let \mathscr{F} be a family of linear transformations of B onto itself so that \mathscr{F} is transitive on the nonzero elements of B. A B-space S is a linear subspace of a (finite or infinite) direct product of copies of B that is closed under simultaneous application of \mathscr{F} to the components of a point. If x, $y \in S$ and $y \neq 0$ then $\{x + yF | F \in \mathscr{F}\}$ is a B-subspace of S. The Bsubspaces can be given the topology of B by the association $x+yF \leftrightarrow zF$, $z \in B$, $z \neq 0$ where the choice of z is arbitrary due to the transitivity of \mathscr{F} . We can therefore define boundedness in B-subspaces (if boundedness is defined in B) and a set in S is B-bounded if through every point of the set there is a B-subspace whose intersection with the set is bounded.

THEOREM 3. Theorem 2 remains valid for B-bounded sets in a B-space where B satisfies the conditions stated in Theorem 2. If B is one-dimensional then the same theorem holds for sets which are 2-bounded (in the sense of [1]) and satisfy the other conditions of Theorem 2.

This is an immediate consequence of Theorem 2 if we consider the bounded intersection of S with a B-subspace through a point pof S.

Theorem 3 applied to the conditions of Theorem 2' subsums the results of [1]. As one application we give the following:

THEOREM 4. Let f(z) be analytic in a proper subdomain D of the Riemann sphere and continuous in cl D. Let $\alpha_1, \dots, \alpha_n$ be complex numbers satisfying

(i)
$$\alpha_1 + \cdots + \alpha_n = 1$$

and

(ii)
$$|\alpha_i| \leq \sum_{i \neq j} |\alpha_j|$$

Then for every $z_0 \in D$ there exist z_1, \dots, z_n in bd D such that

$$f(z_0) = \alpha_1 f(z_1) + \cdots + \alpha_n f(z_n) .$$

Reference

1. T. S. Motzkin and E. G. Straus, Representation of a point of a set as a linear combination of boundary points, Proceedings of the Symposium on Convexity, Seattle 1961.

UNIVERSITY OF CALIFORNIA, LOS ANGELES