
ON THE LOCATION OF THE ZEROS OF
SOME INFRAPOLYNOMIALS

WITH PRESCRIBED COEFFICIENTS

J. L. WALSH AND 0. SHISHA

l Various results have been obtained regarding the zeros of infra-
polynomials with prescribed coefficients. (See e.g. [Walsh, 1958], [Walsh
and Zedek, 1956], [Fekete and Walsh, 1957], [Shisha and Walsh, 1961,
1963], and [Shisha, 1962]). Our purpose in the present note is twofold:

(i) to contribute more deeply to that study, making use of some
properties of polynomials and rational functions, and

(ii) conversely, further to show how results concerning infra-
polynomials can be used in the investigation of some rational functions
and in particular some combinations of a polynomial and its derivative.

2 We repeat here the underlying definition. Let n and q be
natural numbers (q ^ n), nl9 n2, , nq integers such that 0 ^
nλ < n2 < nq g n, and S a pointset in the (open) complex plane. An
nth infrapolynomial on S with respect to (nlf n2, , nq) is a polynomial
A(z) = Σv=o <̂ v2v having the property: There does not exist a polynomial
B{z) = Σ?=oMv such that B{z) ξέ A(z), bnv = α»v (v = 1, 2, , q),
I B(z) I < I A(z) I whenever z e S and A(z) Φ 0, and B(z) = 0 whenever
zeS and A(z) = 0.

3* Of special importance among the above sequences (nl9 n2, , nq),
are "simple ^-sequences" [Shisha and Walsh, 1961]. Given a natural
number n, we define a "simple ^-sequence" to be a sequence having
one of the forms (0, 1, , k, n - I, n - I + 1, , n) [k ^ 0, I ^ 0,
k + l + 2^ri\; (0, 1, ••-,&) [0 ^ k < n]; (n - I, n - I + 1, , n)
[0 S I < ri\. We shall consider wth infrapolynomials on some special
sets S with respect to simple ^-sequences σ. The sets S will consist
of n — s + 2 points, where s is the number of elements of σ, and S
will be required not to contain the origin, in case σ contains zero.
As explained in the Introduction to the last mentioned paper, this
particular situation is of special importance, as the general case is to
a large extent reducible to it, and as these particular nth infrapolynomials
are closely related to certain combinations of a polynomial and its
derivative. Numerous results on such combinations exist in the litera-
ture.
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4* THEOREM. Let n be a natural number, σ a simple n-sequence,
s its number of elements. Let S = {zlf z2, , zn-s+2} be a set of
n — s + 2 (distinct) points of the (open) complex plane, and set
δ(z) Ξ Πv=ί+2 (z - zv). In case σ = (0,1, , k) or a = (0,1, , k,
n — I, n — I + 1, , n) set K = k + 1. In case Ogσ, set K— 0
(Thus K = min [v,v£σ, v = 0,1, 2, •]). Also, in case Oeσ, assume
0 g S. Let A(z) = Σv =o ̂ v2v be an nth infrapolynomial on S with
respect to σ.

Then [by Theorem 1, Shisha and Walsh, 1961] one can set

{ 1) A(z) = P(z)g(z) + azκ * Σ ' \Φ)K* ~ *v) .

i, λa, •• ,λn-β + a are nonnegative reals with Σv=ί+ 2λ v = 1, a is
a complex number, and P(z) is a polynomial of degree1 ^ s - 1 such
that P(z)g(z) + az

κ+n~8+1 is of degree ^ n.2

I. Let S be contained in a disc C: \ z — c \ ̂  r. Then every
zero ζ($C) of A(z) satisfies

< 2 ) \P(Q + (ζ - c)aζ*/{\ζ - c | 2 - r 2 } | ^ r | α ζ ' | / { | ζ - c |2 - r2} .

If K = 0, and if a zero ζ o/ A(^) satisfies r <. p± ^ \ζ — c\ ^ p2,
then I α I/{ft + r} ^ | P(ζ) | ^ | α: |/(ft - r) i.e. (in case a Φ 0 and P(z)
is not a constant) ζ ϊΐes m the closed interior of the lemniscate
I p(z) I — I a I/(ft — r), awd w ί/̂ β closed exterior of the lemniscate

II. Lei P(^) Ξ βz* + T^;'"1 + (ί ^ 0, /3 ̂  0), and suppose that
S and all the zeros of P(z) lie in some closed disc C, and that a Φ 0,
K—Q. Let wl9 w2, , wt+1 be distinct solutions of wt+1 — — a/β.
Then every zero (ίC) of A(z) lies in \J\t\(wv + C).3

III. Suppose that A(z) is a real polynomial,4 and that a Φ 0.
Assume, furthermore, that P(z)/(ctzκ) is of the form A + Σv=i ^v^v +
Σί=i Bvz~v with all Re(Av) ^ 0 and all Re(Bv) ^ 0. Let z0 be a non-real
zero of A(z) satisfying | arg z0 \ ̂  min (π/p, τr/g).5 Then z0 belongs to
-at least one (Jensen) disc

( 3 )
Δ

1 Degree of a polynomial means its exact degree. The polynomial 0 is assigned the
degree —1.

2 One can show that a and P(z) are uniquely determined, and in case a Φ 0, so are
2ίj λϊ, * *, λn—s+2.

3 wv + C denotes the closed disc consisting of all points wv + z, zeC.
4 i.e. the coefficients of A{z) are real.
5 arg denotes the principal value of the argument.



ON THE LOCATION OF THE ZEROS OF SOME INFRAPOLYNOMIALS 1105

In particular, if p ~ q = 1, every non-real zero of A(z) belongs to at
least one of these discs.

IV. Suppose that A(z) is a real polynomial, a Φ 0, and that
P(z)/(azκ) is of the form Σ?=o A^ + Σί=i ^ ~ v (p ^ 0, q ^ 2) with
all Re(Av) ^ 0 and all Re{Bv) ^ 0. Suppose furthermore that λv > 0
implies Re{zv) > 0 (v = 1, 2, , w — s + 2). Lei 20 6e α non-real
zero of A(z) satisfying \ arg£01 ^ min {π/(p + 1), π/(q — 1)}. 7%β%:

A. There exists a v, l^v^n~s + 2, Im(zv) Φ 0, such that z0

belongs to the closed interior of the circle passing through zv and ~zv

and tangent to the line 0zv.

B. If neither zQ nor ~zQ belongs to S, one can choose v so that
λv > 0, and therefore Re(z0) > 0.

V. Suppose that S is a real set contained in a finite interval
J: ojj. rg x ^ x2, that A(z) is a real polynomial, and that K = 0.
Suppose P(z) is of the form βzt + ΊZ^1 + (t ^ 0, β Φ 0), and that
all zeros of P(z) lie in the above interval. Then every real zero ($ J)
of A(z) is of the form ξ + ω where ξ e J and ω is a real number
satisfying ωt+1 = —a/β. Thus, if t is odd and aβ > 0, all real
zeros of A(z) lie in J.

5. Proof of Part I. Let ζ ( ί C) be a zero of A(z). Then by (1),

P(ζ) + aζκ T λv/(ζ - zv) - 0 .
V = l

By a result due to Walsh [cf. 1950, § 1.5.1, Lemma 1]

By an elementary mapping property of the function 1/z we have

- ^) - (C - c)/{|ζ - c | 2 - r 2} | ^ r/{|ζ - c(2 - r2} ,

from which (2) follows. The rest of part I is easily obtained from (2).

Proof of Part II. Let ζ ( ί C) be a zero of A(z). Again we have
a relation (4), which implies P(ζ)(ζ — s') = — α. Furthermore, the last
left hand side can be written [Walsh, 1922] β(ζ - η)t+1 with ηeC.
Hence ζ e U S (w> + C).

Proof of Part III. We may assume g(z0) Φ 0, g(z0) Φ 0. Since
ϊ = A(z0) = 0, we have by (1),
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0 = P(zo)/(aFo«) + f λv/(z0 -
l

V = l V = l

V q

— A I V A ^v I V
v=i v=i v^i

q

- 2V)-X + (Zo - 2,)"1}
v=i

By theorem 21 [Shisha and Walsh, 1961], there exists a v (with λv > 0) 1
such that z0 lies in (3).

Similarly, using Theorem 22 [loc. cit.] one proves Part IV.6

Proof of Part V. Let ζ (g J ) be a real zero of A(z). Then
ί>(ζ) + <*Σv=ί+2 V ( ζ - *v) = 0. Now, Σv=ί+2λv/(ζ - zv) can be written
as l/(ζ — x')9 x' G J . Also, since all zeros of P(z) lie in J, one can
set P(ζ)(ζ - a;') - β(ζ - ξ)t+\ ξeJ. Setting ω = ζ - f, we have ζ -
f + ω, ω ί + 1 = -α//3.

6. We apply now our results to some special cases. We continue
to assume the contents of the first paragraph of the Theorem. Thus,
the contents of the second paragraph of the Theorem hold, too.

(a) Suppose σ — (n). If an = 0 then A(z) = 0, for otherwise the
polynomial B(z) = 0 would fulfill the properties stated at the end of
§ 2. We thus assume that an Φ 0. Then a~xA(z) is an infrapolynomial
("Extremalpolynom") on S in the sense of Fekete and von Neumann
[1922], Also one easily sees that P(z) = 0, a = an. By a known result
[loc. cit., p. 138, cf. also Fejer 1922] all zeros of A(z) belong to the
convex hull of S. Thus Parts I, II and V of the Theorem do not
apply. Parts III and IV do apply; but they can be derived from known
results [Fekete and von Neumann 1922 p. 138, and Walsh 1958 p. 305].
Thus, if z0 is a non-real zero of A(z), and if A(z) is a real polynomial,
then z0 belongs to at least one of the discs (1). If, in addition, λv > 0
implies Re(zv) > 0 (v = 1, 2, , n + 1), then A and B of Part IV hold.

(b) Suppose σ = (n — 1, n). Then s = 2, K = 0 and [Shisha and
Walsh 1961, p. 146]

6 Observe that if (i) A{z) is a real polynomial, (ii) a φ 0, and (iii) S is symmetric in.
the axis of reals, then (i) a is real, (ii) λ\, = λμ. if 2V = zJL, and (iii) g(z) and P(z) are real
polynomials. Indeed, suppose zv = zjl. Then (1) yields azξλ vg'izv) — A(zv) = A(zμ) =
azκ?ψgr(Z),). Thus, if a is real, λv = λμ.. To prove that a is real, choose vo, μo so that
λvQ > 0 and 2v0 = Zμ70. Then (ΛVo + λ^Imiμ) = 0, and therefore I miμ) = 0. From (1) we
see now that P(z)g(z) is a real polynomial; therefore, so is P(z).
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A(z) = ang(z) -

λv ^ 0, Σ?=i λv = 1. Thus, P(z) = an and a = an^ + an Σv=i Sv One
can apply Part I. Part II implies that if an Φ 0 and if S lies in a
closed disc C, then every zero ( ί C ) of A(z) lies in — (tf/αn) + C.
This, however, is a known result [loc. cit. Theorem 14, cf. also Walsh
1922 Theorem VI]. Again, the information we obtain from Part III
follows from known results [Fekete and Walsh 1957 Theorem X,
Fekete and von Neumann 1922 p. 138]. Assume that A(z) is a real
polynomial, a Φ 0, λv > 0 implies Re(zv) > 0 (v = 1, 2, , n), and
Re(aja) ^ 0 (i.e. if an Φ 0 then Σ ί U ^ Φ v ) ^ -an^/an). By Part IV
if 20 is an arbitrary non-real zero of A(z), then the conclusions A and
B there hold. Finally, one can apply also Part V.

(c) Suppose σ = (n — 2, n — 1, n). Then s = 3, K — 0. We set
P(z) = ^ + τz, so that (1) yields

n—1 w—1

Thus, setting σx — Σΐllzv, σ2 = ΣisyocSM-i^ϋj we have

A(z) = (p + τz)g(z)

Σv=

Σ
V = l

where

/? = anσλ + αw_ x, τ = αΛ , α =α%_ 2 + ^ ( α ^ + αw_i) - αwσ2 .

We may apply Parts I-V. For example, suppose that A(z) is a real
polynomial, that a Φ 0, and that either an = 0, or an Φ 0 and

(αw_2K) + {anjan) Re{σx) + Re{σ\ - σ2) ^ 0 .

Then Re(τ/a) ^ 0, and therefore, by Part III, every non-real zero of
A(z) belongs to at least one of the discs (3).

(d) Suppose σ — (n — 3, n — 2, n — 1, n). Here s = 4, if = 0.
We set P(z) = p + σoz + τ^;2, and from (1) we get

Thus, setting
we have7

Ai

/n—2

\V=1

/T 'T*
n—2

V = l

2 = Σ

n-Z = P

ZjZfc i —

(z) + a

<

V = l

/n—2

.(Σ
\V = 1

ζj<lc<

Σ

7 Observe that if w = 4, Σi£i<k<mgn-rzjZkZm is zero, being an empty sum;



1108 J. L. WALSH AND O. SHISHA

where

τ = an , σo = an^ + anσ1 , p = αΛ_2 + (an^ + anσ1)σ1 — anσ2 ,

α = αw_3 + (αw_2 + α ^ . ^ + anσ\ - 2α%<J2)σ1 - an^σ2 + anσ3 .

Here again we can use I-V of the Theorem. For example, suppose S
is contained in a disc C: | z — c | ^ r . By I, if a zero ζ of A(z) satis-
fies r < ρλ <: I ζ - c I <; P2, then

I a |/(ft + r) ^ I ^ + σo2; + τz2 \ ̂  | α |/(ft - r) .

By II, if aτ Φ 0, if C contains also the zeros of P(z) = p + σoz + τz2,
and if wl9 w2, w3 are distinct zeros of w2 + a/τ, then every zero ( ί C)
of A(«) lies in U U (wv + C).

7* The following theorem is due to Marden [contained in his
Theorem (1,1), 1949]. Let zl9z2,' ,zm be (distinct) points of the
(open) complex plane, let μl9 μ2, , μm be positive numbers, and let
Ao, Alf , Ap-! (p ^ 1) be arbitrary complex numbers. Let

p-i

V=0

and set S = {zlf z2, •••, zm}. Let T be the set of those zeros of F(z)
at which S subtends an angle < π/(p + 1). Then the number of
points of T (each counted according to its multiplicity) is ^ p.
From this follows a result on the zeros of combinations of the form
Q(z) = P(z)f(z) + f'(z) where f(z) and P(z) are polynomials. (See loc.
cit. Theorem (4.3)).

Using known results on infrapolynomials, we can derive Marden's
theorem very easily. For the theorem is obviously true if all the Av

are zero. Furthermore, one obviously may assume that Ap-λ Φ 0, m > 1.
Set g(z) = ΠΓ=i (s - O , μ = ΣΓ=i μv, \ = μjμ (v = 1, 2, , m). Con-
sider the polynomial

A(z) = A~1_1g(z)F(z) =

= zm+v-χ + . •

which by Theorem 1 of [Shisha and Walsh, 1961] is an (m + p — l)th
infrapolynomial on S with respect to (m — 1, m, , m + >̂ — 1). By
a theorem due to Zedek [cf. Zedek 1955, Walsh and Zedek 1956, and
Fekete and Walsh 1957] the number of points of T (which is the
number of zeros of A(z), multiplicities taken into account, at which
S subtends an angle < π/(p + 1)) is g p.



ON THE LOCATION OF THE ZEROS OF SOME INFRAPOLYNOMIALS 1109

BIBLIOGRAPHY

1. L. Fejer. 1922. Uber die Lage der Nullstellen von Polynomen, die aus Minimum-
forderungen gewisser Art entspringen, Math. Ann. 85, pp. 41-48.
2. M. Fekete. 1951. On the structure of extremal polynomials, Proc. Nat'l. Acad. Sci.
U. S. 37, pp. 95-103.
3. M. Fekete and J. L. von Neumann. 1922. Uber die Lage der Nullstellen gewisser
Minimumpolynome, Jber. Deutsch. Math. Verein. 31 , pp. 125-138.
4. M. Fekete and J. L. Walsh. 1957. On restricted infrapolynomials, J. Analyse Math.
5. pp. 47-76.
5. M. Marden. 1949. On the zeros of rational functions having prescribed poles, with
applications to the derivative of an entire function of finite genre, Trans. Amer. Math.
Soc. 66, pp. 407-418.
6. O. Shisha. 1962. An extension of Jensen's theorem for the derivative of a polynomial
and for infrapolynomials, J. of Res. of the Nat'l. Bur. of Standards, 66B, pp. 53-55.
7. O. Shisha and J. L. Walsh. 1961. The zeros of infrapolynomials with some prescribed
coefficients, J. Analyse Math. 9, pp. 111-160.
8. J. L. Walsh. 1922. On the location of the roots of certain types of polynomials, Trans.
Amer. Math. Soc. 24, pp. 163-180.
9. , 1950. The location of critical points of analytic and harmonic functions,
Colloquium Publications, Amer. Math. Soc. 34.
10. , 1958. On infrapolynomials with prescribed constant term, J. Math. Pures
Appl. 37, pp. 295-316.
11. J. L. Walsh and O. Shisha. 1963. The zeros of infrapolynomials with prescribed
values at given points, Proc. Amer. Math. Soc, 14, pp. 839-844.
12. J. L. Walsh and M. Zedek. 1956. On generalized Tchebycheff polynomials, Proc.
Nat'l. Acad. Sci. U. S. 42, pp. 99-104.
13. M. Zedek. 1955. Fejer's theorem on the zeros of extremal polynomials generalized.
Preliminary report. Bull. Amer. Math. Soc. 6 1 , p. 49.

HARVARD UNIVERSITY

AEROSPACE RESEARCH LABORATORIES, WRIGHT-PATTERSON AIR FORCE BASE

AND

NATIONAL BUREAU OF STANDARDS






