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METRIZABILITY AND COMPLETENESS
IN NORMAL MOORE SPACES

D. REGINALD TRAYLOR

B. Fitzpatrick, Jr. and D. R. Traylor proved [Theorem 1,
Pac. J. Math., to appear] that if there is a normal, non-
metrizable Moore space then there is one which is not locally
metrizable at any point, The primary purpose of this paper
is to extend the stated result to include normal, complete
Moore spaces. That is, it is established that there is a
normal, complete, Moore space which is not locally metrizable
at any point, provided there exists a normal, complete, non-
metrizable Moore space. Indeed, it is further established
that, provided there exists a nonmetrizable, normal, complete
Moore space, then there is one which is also connected, locally
connected, not locally metrizable at any point, and, using a
result of Younglove’s [Theorem 1, ‘‘Concerning metric sub-
spaces of nonmetric spaces,”” Fund. Math., 48 (1949), 15-25],
which contains a dense metrizable subset.

F. B. Jones [Bull. Amer. Math. Soc. 43 (1937), 671-677]
showed that if 2% < 2®1.. then every normal separable Moore
space is metrizable. It is established in this paper that if
each normal, separable, connected space satisfying Axioms
0,1, and 2 of [R. L. Moore, Foundations of Point Set Theory,
Amer, Math, Sec. Collog. Pub. No. 13 Providence, R. 1. 1962]
is metrizable, then each normal separable Moore space is
metrizable,

Other theorems of this ilk are included in this paper.

The statement that S is a Moore space means that there exists
a sequence of collections of regions satisfying Axiom 0 and the first
three parts of Axiom 1 of [5]. Such a sequence is said to be a
development and should a Moore space have a development which also
satisfies the fourth part of Axiom 1 of [5], that space is said to be
a complete Moore space.

All other definitions and terms are as in [1, 2, 3, 4, 5,6, 7].

LEMMA. If each mnormal, connected, locally connected Moore
space 8 metrizable, then each mormal Moore space is metrizable.

Proof. The proof is similar to that used to establish Theorem 3

of [6].

Received November 1, 1964, Theorem 1 and Theorem 4 were presented to the
American Mathematical Society August 27, 1964,
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Suppose that S is a normal Moore space. Denote by w a well-
ordering of the points of S and by G the collection to which the
ordered pair z, y belongs if and only if » precedes y in w. If G is
the power of G, then G is the power of S.

Denote by Z a space of power G with the discrete topology such
that Z and S are mutually exclusive. Suppose that Z’ is the car-
tesian product of Z with the unit interval of the real line. There is
a reversible transformation 7 from G onto Z. If T(x,y) is ¢, let
(z, ¥) denote ¢ x (0, 1).

Denote by S’ a space in which P is 2 point if and only if P is a
point of S or a point of Z'. If G, @G, --- is a development of S,
then g is a region of G; in S’ if and only if there is a region R of
G; such that P belongs to g if and only if either
A. (i) for some points « and y of R, z, ¥ belongs to G and P is
x, P is y, or P is a point of (x, y), or

(ii) there is a point «# in R, a point ¥ in S — R such that z,y
belongs to G, and P is ¢ or P is a point of ¢ x (0,1/5), or

(iii) there is a point y of R, a point x in S — R such that =z, y
belongs to G, and P is y or P is a point of ¢ X (1 — 1/4,1), or
B. for some pair z,4 of G, no region of G, contains (x + %) and
there is a point @ of (x, i) such that P is a point of an open sub-
segment E of (x,y) of length less than 1/ and E contains Q.

That S’, with the development of Gj, Gi, -.-, satisfies the lemma
follows from an argument similar to that given in Theorem 3 of [6].

THEOREM 1. If each normal, complete, connected, locally con-
nected Moore space 1s metrizable then each normal, complete Moore
space is metrizable.

Proof. If S is a normal, complete Moore space, denote by S’ a
space as defined in the proof of the lemma, If G|, Gi --- is the
development defined in the lemma, let G, denote G] and for each
positive integer » > 1, denote by G, the subcollection of G to which
the region R belongs if and only if R is a subset of some region of
G,_.. To prove that S’ is complete, suppose that M, M, --- is a
sequence of closed point sets such that for each positive integer n,
M,., is a subset of M, and of the closure of some region of G,.,,
Say Gp+1e

Either (i) there is a positive integer N, such that if & is greater
than N, then g, intersects S, or (ii) if N, is any integer then there
is an integer k greater than N, such that g, is a subset of S"— S.
If (i) is the case, the completeness of S guarantees that there is a
point P common to each of the sets g,. Since each M, is closed it
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follows immediately that P is a point of each M,. If (ii) is the case,
then some g, is a subset of (x,y) for some x,y of G. But then g,
is a closed subset of ¢ x (0,1) for some ¢, and from the completeness
properties of the real line, it follows that g,-[¢ X (0,1)] is complete.
Thus there must be a point common to each of the sets M,.

It perhaps should be noted that this has established that there
exists a nonmetrizable, connected, normal space satisfying Axiom O,
Axiom 1, and Axiom 2 of [5], provided that there exists a complete,
normal, nonmetrizable Moore space.

THEOREM 2. If each mormal, separable, complete, connected
space satisfying Axioms 0,1, and 2 of [5] is metrizable, then each
normal, separable Moore space is metrizable,

Proof. Fitzpatrick and Traylor [2, Theorem 2] have established
that if there is a normal, separable, nonmetrizable Moore space, then
there is one which is also locally compact. Since each locally compact
Moore space satisfies all of Axiom 1, then there must exist a normal,
separable, complete Moore space S which is not metrizable. Denote
by K a countable dense subset of S. If w is a well-ordering of the
points of K, denote by G the collection to which the ordered pair z, y
belongs if and only if & precedes ¥ in w. Then G = K = W,. Define
S’ as in the lemma. If G, G, --- is a development of S, then g is a
region of G} in S’ if and only if there is a region R of G; such that
P belongs to g if and only if either

(e) Pis a point of S— K in R, or

(f) either A or B of the lemma.

It follows immediately that S’ is normal, separable, connected,
and locally connected. Let H, denote Gi and for each integer = > 1,
denote by H, the subcollection of G; to which R belongs if and only
if R is a subset of some region of H, ,. The existence of S’ with
the development H,, H,, H;, --- established the theorem.

THEOREM 3. If each mormal, pointwise countably paracompact,
connected, and locally connected Moore space is metrizable, then each
normal, pointwise countably paracompact Moore space is.

Proof. Suppose that S is a normal, pointwise countably para-
compact Moore space and S’ is as defined in the proof of the lemma.
Denote by H’ an open covering of S’ and by H the collection of open
sets, in S, to which % belongs if and only if there is an element A’
of H' such that h is A’-S. Then H is an open covering of S and
there exists a refinement V of H such that no point of S belongs to
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uncountably many elements of V. Each element v of V is a subset
of some element, say h, of H’. For each element v of V, denote by
o’ the subset of S’ to which « belongs if and only if there is a region
¢ in S’ such that ¢'-S is a subset of v,¢" is a subset of %,, and ¢’
contains . If V' is that collection to which % belongs if and only if
there is an element v of V such that % is 2" then V'’ is a collection
of open sets in S’ such that no point belongs to uncountably many
elements of V.

Now if P is a point of T'=S’"— V*.8" then there is an ordered
pair «,y of G such that P is a point of (x, y). Denote by U an open
refinement of H' such that each element of U is a subset of (x,y)
for some %,y of G and such that U covers T. Since (0,1) is point-
wise countably paracompact, then each (x, y) is. Thus there exists a
refinement U’ of U such that no point of T belongs to uncountably
many elements of U’. Then (U’ + V') is a refinement of H’ such
that no point of S’ belongs to uncountably many elements of (U’ + V")
and the proof is complete.

COROLLARY. If each mormal, complete, pointwise countably
paracompact, connected, locally conmected Moore space is metrizable,
then each normal, complete, pointwise countably paracompact Moore
space is metrizable.

Proof. The theorem follows from Theorem 1 and Theorem 3.

Note. The proof of Theorem 4 depends heavily on the proof
given for [2, Theorem 1]. Indeed, the notation used in the proof
of Theorem 4 is that which is used to construct the space which
established Theorem 1 of [2].

THEOREM 4. If there is a mnormal, complete, monmetrizable
Moore space (S°, 2°) then there is one, say (S, 2), which is not locally
metrizable at any point.

Proof. Denote by (S°, 2° a normal, complete nonmetrizable Moore
space and by (S¥, £") the space defined exactly as in the proof of
Theorem 1 of [2]. In that theorem, it is established that (S%, Q%) is
a normal Moore space which is not locally metrizable at any point.
Should (S° £°) be complete, there is no reason to expect that (S¥, Q")
is also complete. It is necessary then, to “complete” (S%, 2%) without
losing either the property of normality or the property that the com-
pleted space is not locally metrizable at any point.

A, “Completing” the space (S¥, 2%).
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If (S7, Q") is not complete there exists a sequence M, M,, --- of
closed point sets such that each M., is a subset of M; and for
each positive integer n, M, is a subset of the closure of a region,
say ¢,, of GY and there is no point common to each M;. In this case
it is true that for no positive integer n, does each g; intersect S~.
This follows since S° is complete and S™ consists of copies of S°.
Indeed, if for each integer ¢, §; were to intersect S° the completeness
of S° would force a point common to each M,. If infinitely many of
the regions g, of GY intersect S!, then since only finitely many may
intersect S° it is immediate that for some integer k, it is true that
there is a copy of S° in S*, such that that if m > k, then g,-S*' is
a subset of that particular copy. Again the completeness of S° assures
the existence of a point common to each of the M,. Similarly, it
follows that if only finitely many of the regions g, interseect S?, then
since S*! consists only of copies of S° only finitely many of the g;
may intersect Si+!, Otherwise the completeness of S° would force a
point common to each M,. Thus it is necessary to introduce new
points into the space.

The statement that x is an element of V means that there exist
an infinite point sequence P,, P,, --- such that each P; is a point of
S? in S%, an infinite sequence of integers m,, m,, --- such that for
each 4, P;;; is a point of S° x (P;) X n; = S;},., the sequence 1/n,,
1/n,, 1/n,, « -+ converges to 0, and « is the point sequence P,, P, P,, +--.
It perhaps should be noted that there exists an infinite sequence or
regions R,, R,, -+ such that for each 7, R, is in GY, R,., intersects
R;, P; is a point of R;, for some infinite sequence of integers m,, m,, - - -,
R,,,, is a subset of R, , for each positive integer M there is a posi-
tive integer # such that R, does not intersect S¥ and no point is
common to each of R, R,, ---.

The statement that P is a point of S means that P is a point of
S¥ or P is an element of V., The statement that R is a region G, in
(S, 2) means that there is a region R" of G} of (S%, 2¥) such that
the point # of S belongs to R if and only if

(i) « is a point of R” in S", or

(ii) « is an element of V, = P, P,, --+ such that R", [(P) +
(P) + --+] is an infinite set.

B. Space is a Moore space.

It is clear that Axiom 0 and the first two parts of Axiom 1 are
satisfied. To consider the third part of Axiom 1, suppose that R is a
region, A is a point of R, B is a point of R, and B is not A4.

Note. If R is a region in S, then R.-S¥ is 3\=, R:+ for some
integer m, some integer k, and some sequence R%, R:*! ... such that
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(i) RE is a region of G%,

(ii) Skri-i.REri = RE+i—1

(iii) REfcCR!'CRI*C..-,

(iv) RErtc S*+ and RE+ig SkHi—t,

(v) In S¥, the boundary of R-S% is a subset of S* if the
boundary exists,

(vi) If R is a region of G,, P is a point of S** for some integer
k, and j is a positive integer such that R contains P and intersects
S° X (P) x (j) = Sk, then » is less than or equal to j and R contains
Sk ;.

(vil) If R is a region which intersects S* but not S** and g is
a region which intersects S7 but not S’~* and & is less than j, then
R contains g if R intersects g¢.

Now let z denote a point of S — S% such that x is not in R,
Then ¢ = P, P, --- and since « is not in R, at most finitely many
of the P; belong to >\, RE*%, Denote by N a positive integer such
that if ¢> N then P, is not a point of 32, Rt*", It is no restriction
to assume that ¢ is greater than k. But P, is a point of S* and, for
some integer n,_,, is a point of S° X (P,_,) X (n,_,). It follows that
there is some region g = 332, ¢4 in S¥ such that u is greater than
t, g9 does not intersect S*!, g does intersect S! and g contains =z.
To show that z is not a limit point of R-(S — S¥), assume that @ =
Qo, Qy, -+ is a point of [R-(S — S¥)]-g. Then (R-S¥)-(g-S") must
exist., There is a least integer j such that there is a positive integer
n;_, and a point c¢;, of S’ such that S/,  contains a point of
(R-S%)-(g9-S¥). Since w is greater than k + 1 it follows that 7 —1 is
greater than k. But R must contain S/,  if R intersects it, by
property (vi) listed above. If g were to intersect S, then g would
contain the point ¢;_, and, in that case, 7 would not be the least
integer as described. Thus g does not intersect S?—! and it follows
from the definition of region that R contains g. This establishes a
contradiction since R does not contain x. It is immediate that if R
is a region of S then R-(S — S¥) = R-(S — S¥).

Case 1. A belongs to S” and B belongs to S¥.

There is a positive integer n such that if & is a region of GV
containing A then % is a subset of R-S¥ and does not contain B.
But for each % of GY for which there is a region ¢ of G, such that
g-S¥ — h, g is a subset of R and does not contain B, from the
preceding note.

Case 2, A belongs to S” and B belongs to S — S7,
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For some integer ¢, A is a point of S* but not a point of S,
Then for some integer #,_, and some point P,_, of S*~!, 4 is a point
of S x (P,_)) X (n,_,). Now B is b, b, --+ where each b; is in S* and
for some integer m,_,, b; is a point of S° X (b;_,) X (n,_;). But in S7,
there is an integer k such that if 4 is a region of G7 containing P,_,
then % does not contain b, , and % is a subset of R-S%. Thus if ¢
is a region of G, which contains A then § is a subset of R and does
not contain B since § does not contain b,_, but does contain P,_,.

Case 3. A is a point of S — S¥ and B is a point of S — S¥,

Then A is a,, @, --- and B is b, b, --- with the usual notation.
There is a least integer N such that a, is not b,. Then in S¥ there
is an integer %k such that if h is a region of G} containing a,, then
h is a subset of R-S¥ and & does not contain b,. Hence, let g be
any region of G, that contains A. It follows that g is a subset of
R and does not contain B.

Case 4. A is a point of S — S" and B is a point of S¥,
This follows from the arguments given for the previous three cases.

C. Space is normal,

To see that S is normal, denote by H and K mutually exclusive
closed subsets of S. For each positive integer #, denote by H, the
subset of H-(S — S™) such that y belongs to H, if and only if it is
true that if g is a region of G, containing y and & is a region of G,
intersecting g, then i does not intersect K. For each positive integer
n, the subset K, of K is defined in a similar fashion. Denote by P
some point of H-(S — S¥). It needs to be proved that P is a point
of some H,. Suppose the contrary; that P does not belong to any
H,. Then if n is any positive integer, there exists a point y, of
K-(S — S¥), a region of g, of G,, a region h, of G, such that g,
intersects h,, g, contains P, h, contains y,, and %, does not intersect
H. Since P is in H, P is not a limit point of K. Thus there is a
positive integer N such that no region of Gy containing P intersects
K. Let g denote one region of G, such that g contains P. Then
there exist a sequence g,, gn+, =+, @ sequence h,, h,., -+, and a
sequence Y,, Ym+1, *++ such that for each ¢, g,,, contains P, g,., is a
subset of g+@pri_1, hmys interseets g,.i, Any; does not interseet H, and
Ymei 18 @ point of K-(S — S¥) in h,.;. It is clear that each &,
interseets g. Now g¢-S% is 3, Ry with the usual notation, It is
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no restriction to assume that there is an integer ¢ such that ¢ is
greater than N and &, intersects g. Note that g intersects S* but
not S*~!, Thus there are a point ¢ of S*' and a positive integer d
such that S-S? is a subset of S° X (¢) X (d). Let v the least integer
such that &, intersects g-S*®. Since, for each =, h, does not intersect
S»=!, it is no restriction to assume that ¢ is greater than ¢. Thus v
is greater than ¢+ 1 and h, does not intersect S*!. Hence, h, does
not intersect S!. Then there is a point ¢, of S°' and a positive
integer j, such that £,-S” is a subset of S° X (e) X (4,). It is clear
that j, is greater that or equal to ¢ and since ¢ is greater than N,
then j, is greater than ¢, Indeed, if g intersects S° X (e) X (4,), then
g must contain S° X (e,) X (J,) since ¢ is less than ¢ and j, is greater
than N, It remains to be proved that g does intersect S° x (&) X (7).
Since g does intersect h,, let z denote the least integer such that g-h,
intersects S®. Then z is greater than ¢ and z is greater than or equal
to v. Indeed, there exist a sequence of points e,e, ---,¢,, and a
sequence of integers 7,7, +++,J.,, €ach of which is greater than or
equal to ¢ such that each e¢; is a point of S? e;., is a point of
S°x (e)) % (4;), and S° X (e,_,) X (J,—,) contains a point of h,-g-S?. But
since z is greater than ¢ and j,_, is greater than ¢, g must contain
S° X (e,_,) X (J.—,). In like fashion, g contains S° X (e;) x (j;) for
each 7 and indeed, then g must contain S° X (e) X (J,) for the same
reason. Then g contains h,. But h, contains a point of K and this
is impossiblze, Therefore g does not intersect K,

The argument above has established: If P is a point of H-(S — S¥)
there exists a positive integer N such that if g and ¢’ belong to Gy
such that ¢ contains P and ¢ intersects ¢’, then ¢’ does not intersect
K-(S — S¥).

Therefore, denote by H, the subset of H-(S — S%¥) to which x
belongs if and only if » is the IV above and z is P and by K, the
corresponding subset of K-(S — S¥). Then >\, H,= H-(S — S") and
S K,=K-(S—S8S"). For each n and each point = of H,, let g,
be a region of G, containing x and for each point y of K,, let g, be
a region of G, containing y. Note that, by the definition of region,
neither ¢, nor g, intersect S*. Let D = Y.cng, and E = 3 cxg,.
Then D does not intersect E.

Since S¥ is normal, there exist domains in S¥, say D, and E,,
containing S¥-H and S7-.K respectively, such that D, does not inter-
sect E, in S¥. For each point © of K-E, let h, be a region containing
x such that h, is a subset of E, and let E, = S,cx h,. Suppose that
P is a point of H-(S — S¥). Then P is not a limit point of K and
there is a region g containing P such that § contains no point of K.
It remains to be proved that P is not a limit point of E,. Now
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9-S7 = 3= Rkt for some m and some k. That is, for some point Q
of S*-! and some integer 7, g intersects S° X (Q) X (r) but g does not
intersect S*-', Suppose that some h, of E, intersects g. Then
h,-S" = S, Ri** for some integer ¢ and some integer 5. If 7 <k
and ¢ > 7, it is impossible for %, to intersect g. Indeed, since g-S**
does not exist, it follows that m is greater than or equal to » + 1.
If <k and ¢ <r, and h, intersects g then h, must contain g and
this is impossible. Similarly, if 7 > &k and ¢ = r then ¢ must contain
h, if they intersect. Since h,-S¥ is 3.2, R/*, there is a point y of
Si-' and an integer u such that h, intersects S, X (y) x (x) but not
Si-1, Then ¢ must be greater than or equal to . Thus g does not
intersect h,. It follows that P is not a limit point of K, In a
similar fashion, there is a domain D, containing H such that D, is a
subset of D, and no point of K-(S — S¥) is a limit point of D,.
Then D'=D + D, and E’' = E + E, are mutually exclusive domains
containing H and K respectively. This establishes that S is normal.

That (S, 2) is complete follows immediately from the definition of
point and region. Clearly, S is not locally metrizable at any point
since each region contains a copy of a nonmetrizable space.

THEOREM 5. If each locally comnected, connected, complete,
normal Moore space is locally metrizable at some point, then each
complete, normal Moore space is metrizable.

Proof. Suppose that S is a complete, normal, nonmetrizable
Moore space. By Theorem 1, S is topologically equivalent to a subset
of a connected, locally connected, normal, complete Moore space, say
(S°, 29 Using the method of Theorem 4, there exists a normal,
complete Moore space (S¢, 2!) which is not locally metrizable at any
point and which consists of copies of (S° £°). Again, using the
construction of Theorem 1, there is a locally connected, connected,
normal, complete Moore space, (S, 2'), which contains a subset that
is topologically equivalent to (S¢, 2!). Indeed, continuing this process
indefinitely, for each positive integer =, (S*, 2") is a connected, locally
connected, normal, complete Moore space which contains a subset that
is topologically equivalent (by the construction of Theorem 1) to the
normal, complete space (S?~!, 27~') which is not locally metrizable at
any point, and (S?, 27) is the space defined as in Theorem 4, based
on (S*, Q") and such that (S?, 27) is normal, complete, and not locally
metrizable at any point. This defines a sequence S}, S}, Si, ---, each
of which is normal, complete, not locally metrizable at any point and
S»+t consists of copies of S in the sense of Theorem 4.

Referring again to the proof of [2, Theorem 1], if for each n, S*
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of that proof is replaced by S?, the resulting space S" has the
properties deseribed by that theorem. That space, S¥, if “completed”
as in Theorem 4 of this paper, results in a Moore space which is
normal, complete, connected, locally connected, and not locally metrizable
at any point,
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