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DUALITY AND TYPES OF COMPLETENESS IN
LOCALLY CONVEX SPACES

WILLIAM B. JONES

The purpose of this paper is to extend and sharpen a
result of Grothendieck concerning dual properties of complete
locally convex topological vector spaces. Among other things,
this leads to a rough dual characterization of sequential com-
pleteness and to the definition of a new type of completeness,
which is studied briefly.

A dual characterization of completeness has been obtained in
various forms. The first such was obtained by Grothendieck [3], who
showed that the completion E of E is the set of all linear functionals
/ on the dual Er of E whose restriction to each equicontinuous subset
Q of Ef is continuous in the the topology induced on Q by the weak-*
topology. Ptak [8] and Collins [1] have proven essentially equivalent
results to the effect that / is in E if and only if its null-space is
relatively closed in every Q. Both of these approaches raise the fol-
lowing question: the open and closed sets required for / in the various
Q's are given by a relatively small subset X of E, and we should
expect some relationship to exist between this subset and /. Luxemburg
[7] has exhibited a partial answer (/ is in the closure in E of the linear
span of X) using the Grothehdieck approach. It is one of our main
purposes to improve this result; in fact, using the approach of [8]
and [1] we will show (Theorem 2.4) that if X is suitably normalized,
then / is in the closure in E of X, and we will be able to identify
with precision those parts of X which are "close" to /. In addition
we will generalize the dual notion of completeness to include weaker
types, one of which appears to be new.

The material is divided up as follows: after a brief resume of
our notation and terminology in § 1, we define the notion of (a, /S)-
closure on the dual space in § 2 and prove most of our fundamental
results. In § 3 we use these concepts to define (a, /5)-completeness and
derive the existence of completions. In § 4 we identify the various
types of (a, /3)-completeness by their properties on the original space
and in § 5 we present some suggestions for a dual theory of net
convergence.

I* Notation and terminology* Throughout, E will be a Haus-
dorff locally convex topological vector space (lcs) over the real numbers
R, with (topological) dual space E' and completion E. When we use
topological terms with regard to E\ this will refer to the weak-*
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topology (in most circumstances any topology compatible with the
duality <E, £"> will do). If AsE,

A0 = {ueE:\ u{x) \ S 1, all x e A}.

(if AQE', A°^E is formed similarly.) Q g £ " is equicontinuous if Q°
is a neighborhood of 0 in E. For Q equicontinuous we let pQ be the
pseudo-norm whose unit ball is Q°, and if p is an arbitrary pseudo-
norm on E, we set

Qp = {u e Ef\ I u(x) I S p(x), all xeA}

= {x e E: p(α) g 1}°.

p is the unique extension of p toJE. A hyperspace is a subspace of
codimension 1.

Let AξΞ:E. A is absolutely convex (ac) if it is convex and cir-
cled, i.e., if rxA + r2A S A whenever | r1 | + | r2 \ S 1, r l5 r2 e iϊ. AA)
is the absolutely convex hull of A, S(A) the linear span of A, card A
the cardinality of A, and clA (or cϊ^A when the space is to emphasized)
is the closure of A. If B gΞ E, A — B is the set theoretic difference
(= A ~ (A n #))• If f:E^R, then /-L = {a?e #:/(&) - 0}.

We will be quite free with our use of notation. If j y is a set
of subsets of E, A^E, ae E, we will write £(J^< A, α) for
S ( U J / U i U {α}). Note also that if a; e E, xL<^ E'.

2. (H, /3)-closure* We will be interested in the order properties
of cardinal numbers for notational purposes. As a convenience we
will add to the class of cardinals the symbols "fc$0 — *\ where α ^ ^ 0 —
if and only if a < ^ 0 , and " F " , where a ^ F for all cardinals α.
The reader may well wonder why we do not include "a. —" for any
cardinal a. This is because we are able to show the equivalence of
y$0 — and F to ordinary cardinal numbers for our purposes, while
this may not be true for a —, a > ^ 0 and could cause difficulties in
the proof of Corollary 3.3. Throughout we will use a, β, 7, and § to
represent elements of this extended class.

NOTATION. Let E be a lcs, x e E, and ε ^ 0. A slice in Ef is a
set of the form

Sl(α>,e) = {ueEΊ \u(x)

Note that if ε > 0, then Sl(α, β) = (Γ(x/ε))Q and that Sl(α, 0) = x1.

DEFINITION. Let E be a lcs, Xg=E, Mg=E', and Q an equicon-
tinuous subset of E', Then we say that M is an intersection of
slices of X on Q if for all xe X, there is an ex ^ 0 such that
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= Π
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A subset M of Er is (a, β)-closed if there is a subset X of E with
card X ^ a such that for every equicontinuous QξΞ=Er there is a set
F g X with card F55 /3 such that ilf is an intersection of slices of Yon
Q. we will summarize this by writing

χJL>M or X ,M.

REMARKS. If M is (a, /3)-closed, it is necessarily ac, and if a ^ 7,
β ^ δ, then ikf is (7, <5)-closed. Also, if M is an intersection of slices
of X on Q, then M is an intersection of slices on Qf, for any Q'ξΞ=Q.

NOTATION. For fixed M^Er and for XeE any Q any equicon-
tinuous subset of -E", we define

ex> Q = inf {ε ^ 0: Sl(a;, ε) 3 M f] Q} .

Note that since Q is weakly bounded, ex,Q < 00 for all x and Q.
If Q g Q ' then εx,Q 5j ε,.̂ ,. Finally, if ilf is an intersection of slices
of X on Q, then

M ΓΊ Q - Π Sl(», εx,Q) n Q .

We begin our study by relating the above concepts to the Xf

topology on E' (see [6, Section 21, 8.-10., pp. 269ff]). %f is also
often called the e — w* topology.), the weakest topology on Er agree-
ing with the weak-* topology on equicontinuous subsets of E'.

PROPOSITION 2.1. An ac subset M of E' is ^/-closed if and
only if it is (F, F)-closed.

Proof. Clearly if M is (F, F)-closed, then M Π Q is a weakly
closed subset of Q for every equicontinuous Q, so M is 27-closed.

Now suppose M is 2/-closed and let Q be a closed ac equicon-
tinuous subset of Er. If ue E' ~ M, then since MΓ\ Q is closed and
convex in £", there is an x e E such that

sup{v(x): veQ Π M} = ε < M(B) ,

by [6, § 20, 7.(5), p. 246]. Since Q Π Λf is ac we have

s u p { — v ( x ) : veQ Π M} = ε ,

and therefore ε = ex, β and u ? Sl(a?, ex, Q)m Hence we have

Q Π M = Π Sl(s, eβ, β) .
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Since every equicontinuous Q is contained in a closed ac equicontinuous
subset, we are done.

Note that to get JlίcQ, we need intersect the slices with Q only
if Q is not ac and closed. While this is true for X = E, it is of
course not true for X in general.

COROLLARY 2.2. A Us E is B~complete [Br-complete] if and
only if every (F, V)-closed subspace [(F, V)~closed dense subspace] of
Er is closed.

(For definitions, see [8].)

Proof. By [8, (3.3), p. 49 and (4.1), p. 54].

COROLLARY. 2.3. M is a (F, V)-closed hyperspace if and only if

M = x1 for some x e E.
Proof. By [6, Section 21, 9.(1), p. 271].

Henceforth we will make the blanket assumption that M is a
hyperspace in E\ E a lcs. We now state our fundamental theorem,
the proof of which will occupy the rest of this section. In the pro-
cess, we will develop several subsidiary results which will aid us in
later work.

n

THEOREM 2.4. Suppose I g £ and X—^—>M, and let ue E' ~M.

Set

Y = {x/u(x): xeX, u{x) φ 0} .

o

Then Y — -̂> M and M = xL for some x e clβ Y.

We begin by proving a series of lemmas.

LEMMA 2.5. Let M ~ f1- where f is a linear functional on Ef

which is bounded on equicontinuous subsets of Er, and let ue Ef ~ M.
Then if Q is any ac equicontinuous subset of Ef containing u, we
have

Q s 6Γ((rf + 1)Q Π M, rfu)

where

rf = suv{\f(v)\:veQ}/\f(u)\},
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and if & is a fundamental system of equicontinuous subset of E'
in the sense that every equicontinuous subset of Er is contained in
some member of &, then so is

&> = {Γ(Q n Λf, ru): Q e O>, r > 0} .

In particular, the above results hold if M is (F, V)-closed.

Proof. If veQ, then \f(v)/rff(u)\^l and since 2ί/(ί - 1) =
2 + 2/(t — 1) is strictly decreasing for t < 1, we can find a t e [ — 1,1/3]
such that

2ί/(ί - 1) = f(v)/rff(u) .

Then f[2trfu + (1 - t)v] = 0 so

and since

I 2r,ί I + 11 - 11 ̂  2r7 + 2 , ί e [-1,1/3] ,

we have m e (2rf + 2)Q. We write

v = [2/(1 - ί)][(l/2)m -

and since for t e [-1,1/3], 1/2 + 111/2 ^ 1 and | 2/(1 - ί)| ̂  2(3/2) = 3,
we have

v e 3Γ((2rf + 2)Q Π Λf, 2r/%) - 6Γ((r/ + 1)Q Π M, rfu) .

The remaining statements follow easily, the last resulting from M = x1

for some xe E by Corollary 2.3 and the fact that any x e E is con-
tinuous on any equicontinuous Q [6, Section, 21, 4. (5), p. 263],

The principal use of this lemma will be to conclude that whenever
M is (V, F)-closed and ueEf ~ M, then there is fundamental system
of equicontinuous Q such that each Q = Γ(Q Π M, ru) for some r > 0.

0

COROLLARY 2.6. Let X—t—>M, suppose that ueE'~M, and

let Y={xeX:u(x)^0}. Then Y-L+M.

Proof. If Q is equicontinuous then Q g Qr = Γ(Q' Π M, ru), r > 0.
A n y veQr i s o f t h e f o r m v = s m + t r u , \ s \ + \t\ ^ l , m e Q f Π M
and for any xe X — Y,

v(x) I = I s I I m(x) I ̂  ε,,^ ,

so ve S\(x, eXtQ,) and hence Q' £i Sl(α?, 6βfQ/), so if M is an intersection
of slices of Z £Ξ X an Q', it is on intersection of slices of ^ Π F on
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Qr, and hence on Q by an earlier remark.

Our main lemma will be obtained by generalizing the proof of
Corollary 2.6, but first we need a more precise notion of when two
hyperspaces are "near" each other. For x e E and Q S Ef equicon-
tinuous, we define

bx,Q = s u p {I u(x) \:ueQ} < oo .

For a given M, the ratio AX,Q = sx>Q/bx,Q can be considered as a measure
of the difference between x-L and M on Q (conventionally, we set AXyQ — 1
when bX)Q — 0); in fact 0 ̂  AX)Q ̂  1, AX}Q ~ 1 implies that Q ̂  x1 and
hence that xx and Λf are unrelated on Q, and Z .̂Q = 0 implies that
M f] Q — x1 f) Q, as we will digress to prove in the following lemma.

LEMMA 2.7. // Q is an equicontinuous subset ofEf, xeE, then
JX}Q = 0 implies that x1 f] Q = MΓiQ.

Proof. First assume that Q is ac. Since JXfQ = 0we have εXtQ = 0
and Q g α;1-, so choose ^ e Q ~ ĉ -1. If ίc1 Π Q ̂  MD Q, then since
x1 f]Q ^ M f] Q, UίίM and we may choose a ^2 e (x1 Γ\Q) ~ M.
Ef — 2(M, u2) so ux = m + ru2, me M and

m = (1 + I r |)(W(1 + I r |) - ru2/(l + \ r |))

e (1 + I r |)Λf n Q S (1 + I r Da?-1- Π Q ,

and therefore

0 = m{x) = ^i(x) — ru2(α;) = ^(cc) ,

so ^ e a ; 1 , a contradiction. If Q is arbitrary, let Qf = ΓQ. Clearly
s*,β' = ε ,̂Q, &*,«' = Kg, so Λ,β' = Λ,e = 0 and ̂ n β ' = I ί l Q'. There-
fore a;1 n Q = M n Q.

Note also that if &1 = yL, then zfα,Q — Δy,Q. The notion of ^ ^
as a measure of difference will be brought out more fully as this
section progresses.

LEMMA 2.8. Let Q be an ac equicontinuous subset of Ef and
suppose that M is an intersection of slices of X £ E on Q. Then
ifYQX and inf{Ay,Q :ygY}>0, M is an intersection of slices of
Y on Q. In particular, Q ξ£ M implies that

inf {AXtQ: x e X} = 0 .

Proof. Let 0 < ε ̂  1. Then
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=±(n S\(x, e,,β) Π Q) = Π Sl(x, e.Je) Π ~Q .
> e / ε «

ζ) g (l/ε)Q since ε g 1, so

Q Π M - Π Sl(a, εxjε) Π Q ,
sex

and if we set Xε = {x e X: ΔX)Q < ε}, we have

since if xeX~Xε, then εX}Q/ε ^ bXίQ so Sl(x, ε^/ε) 3 ζ) and is thus
superfluous in the intersection. By definition of εZtQ,

Q Π M S fl Sl(x, 6βlβ) n Q S Π Sl(a?, exjε) n Q = Q i l M .

Therefore M is an intersection of slices of Xε on Q. For Y s X, set
ε = inf {J^: T/ g F}. If ε > 0, then the first statement of the lemma
follows from the above and the fact that Y a Xε. If inf {JX}Q: x e X} > 0,
then

Q Π M - n Sl(α, eβfQ) Π Q - S ' Π Q - Q ,

so Q S ikί, a contradiction.

Our final lemma is a series of computations which further
demonstrate the relation between ΛXtQ and the "difference" between
x1 and M.

LEMMA 2.9. Let MQE', veEf~M, and let xeE be such
that u(x) — 1. Suppose that Q — Γ(Q Π M, ru), r > 0, is an equicon-
tinuous subset of E'm Then we have

(2.10) If AX,Q < 1, then εX)Q ^ rΛx,Q/(l — AxiQ). In particular, if
Ax,q ^ ε/(r + ε), ε ^ 0, then εx,Q ^ ε.

(2.11) If M—xL for some x e E with u(x) — 1, then pQ{x — x) = εX)Q.

Proof If v is any element of Q,

v = sm + ί r ^ , I s I + I ί I ̂  1, m e l f l β ,

we have

I v(a?) I ^ I s I I m(x) \ + \ t \ r \ u(x) \

S I s \εx,Q + \ t \ r

^ ε,,β + r,

so 6 ^ g εβfQ + r and
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f r o m w h i c h (2 .10) f o l l o w s i m m e d i a t e l y .
T o p r o v e (2 .11) , l e t veQ b e a s a b o v e . T h e n \v(x — x)\ =

\s\\ m(x) ] so

pQ'x — X) = sup,e<21 v(x - x) 1 = sup I s I I m(x) \ = ex,Q .

We will say that X S E is normalized by ueEf if w(sc) = 1 for
all x e X. We now proceed to the proof of Theorem 2.4.

Proof of Theorem 2.4. We assume that X is normalized by u,
i.e., that X is the F of the statement of the theorem. We may do
this by Corollary 2.6 and the fact that for r Φ 0, Sl(x/r, e) = Sl(x, \r\ε).
Choose xeE such that M = xL and u{x) = 1. Let & be the set of
all equicontinuous subsets Q of Ef with the property that Q =
Γ(Q Π M, ru) for some r > 0, and let ^ = {<Q, £ > : Q e ^ , £ > 0} with
ordering given by <Q, ε> ^ <Q;, ε'> if Q S Q' and ε' g ε. By Lemma
2.8, for every <(Q, £}&£& there is an x = ^Q>ε G X with

Λ,β ^ ε/(r + ε) (Q = Γ(Q Π M, ru)) ,

and hence

pQ{xQ,ε — x) = eXyQ ^ ε

b y (2 .10) a n d ( 2 . 1 1 ) . I f < Q ' , ε '>G ^ a n d < Q ' ? ε ' > ̂  < Q , ε > , t h e n Q ' 3 Q

so pQ ^ p Q , a n d h e n c e

Since by Lemma 2.5 {pρ :Qe<^} is a basic set of pseudonorms,

{%e:<Q, ε > ^ ^"} is a net in X converging to x.
As Corollary, we can show that we obtain all {a, /3)-elosed

hyperspaces by restricting β to 1 ^ /S ̂  ^ 0 . To be precise, we have

COROLLARY 2.12. Lβί M be a hyperspace in E'. Then M is
(a, V)-closed if and only if M is (a, ^Q)-closed.

Proof. Necessity is obvious. Part of the proof of sufficiency is
contained in the following lemma, which is a partial converse of
Lemma 2.8.

LEMMA 2.13. Let Q be an equicontinuous subset of Ef with
Q — Γ(Q Π M9 ru), u$M,r > 0, and suppose that for some X S E,
we have inf {ΔXtQ: x e X} = 0. Then M is an intersection of slices
of x on Q.
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Proof. Assume that X is normalized by n. Then by (2.10),
inf {εx,Q: x e X} = 0. If

v e Π Sl(α, εβfβ) n Q ,

then v — tru + sm, \ s | + 11 \ S 1, m e i l ί n β , so we have

εx,Q Ξ> I tru(x) + sm(αι)

^ I ί I r - I 8 I I m(x) |

^ I ί I r - I s \eXtQ ,

so I £ I ̂  (1 + I s \)eX)Q/r for all xe X and hence ί = 0 and ve M. This
gives us one of the required inclusions, the other being obvious.

Each Qf <Ξ Ef is contained in some Q — /^(Q Π M, ru), and for
each n > 0, there is an x B e I such that ^ n > ρ ̂  1/w by Lemma 2.8.
Hence by the above lemma, M is an intersection of slices of {xn} on
Q, and hence the same is true of Q', which completes the proof of
the Corollary.

It is convenient to note here that the β's considered may be
still further restricted.

PROPOSITION 2.14. Let Q be an ac equicontmuous subset of £",
Q §£ M, and suppose that for X = {xu ,xn} a subset of E, M is an
intersection of slices of X on Q. Then there is an i with ΔX.,Q — 0.

Proof. Let ε̂  = εx.tQ, bi = bx.,Q for all i. Suppose that the Pro-
position is false, i.e., et = 0 only if b{ — 0. Let ueQ ~ M and let

r = min {1, {ε,/| ufa) |: ε, Φ 0, u(a;,) Φ 0}} .

Then 0 < r ^ l so rueQ and | r φ i ) | ^ ε̂  for all i with ε̂  ̂  0,
u(Xi) Φ 0. But this inequality certainly holds if u(Xi) ~ 0, and if
£. = 0, bi = 0 and hence r^(^i) = 0 = s{ since r ^ 6 Q. Therefore
I ru(Xi) I g 6{ for all i, so rue M f]Q and ue M, a contradiction.

COROLLARY 2.15. A hyperspαce in Er is 0&0—, ^ 0 —)-closed if
and only if it is closed (i. e., (1, l)-closed).

Proof. Suppose {xu ,xn} —> ikf. If Q is ac and Q g= M, then there
is an ί such that εx.,Q — ΛX.,Q = 0. If Q' 2 Q, then eXi,Q, ^ eβί,ρ, 6β l f β, ^
**<»« > 0, so in fact there must be an i such that ex.,Q = 4^^ — 0 for
•all ac Q ξ£ M. Hence by Lemma 2.7,

for all ac Q ξL M and therefore xi = ikί, which gives us the result.
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COROLLARY 2.16. A hyper space in E' is (a, ^ 0 —)-closed if and
only if it is (a, l)-closed.

Proof. Sufficiency is obvious and necessity follows immediately
from Proposition 2.14 and Lemma 2.7.

Hence we have shown that we do not really need the symbols
^ 0 — and V as we promised we would at the beginning of this sec-
tion (we can always assume that a, β ^ card E). However we will
continue to use F a s a convenient notation.

3* (<x, /3)-comρleteness, Completions*

DEFINITION. An lc space E is (a, β)-comρlete if and only if every
(a, /9)-closed hyperspace in Er is closed.

If follows immediately from the results of § 2 that we need only
consider (a, ^-completeness for a ^ ^ 0 , β = 1 or ^ 0 . We will devote
this section to the study of (a, /3)-completions using the methods of
§ 2 and will defer until § 4 characterizations of (a, β)-completeness
wholly in terms of the original space E.

Our basic result is the following:

THEOREM 3.1. Let xe E,ue E' ~ x1, and let Q = Γ(xL n Q, ru),

r > 0, be an equicontinuous subset of Ef. Suppose that for some
I g ί / , x1( = SI (x, 0)) is an intersection of slices of X on Q. Then
for all ε ^ 0, SI (%, ε) is an intersection of slices of X on Q.

Proof. The proof is clear when contemplated geometrically. Ef ~
S\(x, ε) = Ae U Bε where Aε and Bε are half-spaces. If veQ ~ Sl(x, ε),
say v e Aε, then, As Π Q is similar to Λ f l Q , v corresponding to
veA0Γ\Q. v<ί some SI (x, εX}Q) and running the similarity backwards
we get vg SI (x, vx) =2 SI (x, ε) f] Q for suitable vx. The proof is now
merely a matter of computation, which we proceed to perform.

Assume Q §£ SI (x, εx,Q) for all xe X, that X is normalized by u,
that u(x) — 1, and that ε < r (if r ^ e, then ru e SI (x, ε) 3 Q Π M so
Q <Ξ SI (x, ε) and the result is trivial. For each xe X, set vx =
(r - ε)εX}Q/r + ε. If v e Q Π SI (x, ε), then v = tm + sruy \ s \ + \t \ g 1,
m G Q Π Λ ί a n d ε ^ | t;(£c) | = | s \ r. T h e r e f o r e \s\ ^ ε/r a n d

I v(x) I g I ί I I m ( » I + I s | r

^ ( l - \ s \ ) ε x , Q + \ s \ r

= I s I (r - ε,,Q) + ε,,Q .

Since Q £ SI (a?, εx,Q), ru 0 SI (a?, εx,Q) so r > ex>Q and the r ight hand



DUALITY AND TYPES OF COMPLETENESS 535

q u a n t i t y a b o v e is l a r g e s t w h e n \ s | is l a r g e s t , i . e . , w h e n \s\ — ε/r, so

I v(x) \Sl(r - εx>Q) + εXfQ

= ( r - ε)εx,Q/r + ε = vx ,

and therefore SI (x,ε) C Q Π Sl(x, v j .
Now suppose that v e Q ~ SI (x, ε). Then | v(x) \ > ε, say v(x) > ε.

v — sm + ^r^ and since Q Π M is ac, we may assume that s ^ 0,
s + 1 ί I = 1. ^(x) = ίr > ε so v = sm + (1 — s)rt6 and (1 — s)r > ε,
i. e., sr < r — ε. Set

r — ( ^ _ s^)
r — ε

— (rsm + [(1 — s)r — ε]ru) .

r — ε

(1 — s)r > ε and rs + [(1 — s)r — ε] = r — ε so v G Q.

v(χ) = r(v(x) ™ ε)/(r — ε) > 0

so i ί M and there is an x e X such that vg SI (x, εXtQ), i.e., | v(x) \ > εx>Q.

v(χ) = (rsm(x) + [(1 — s)r — ε]r)
r ε

.

r — ε

rsm(x)
r — ε

so if v(α?) < 0, then m(x) < 0 and

m{x) < r g m ( α ; ) < v(x) < - ε,,ρ

r — ε

so m g SI (#, εa.,ρ), a contradiction. Hence v(x) > ε^^ and

vx = (r - ε)εa;,ρ/r + ε

< (r — ε)v(x)/r + ew(α?)

and v g SI (ίc, vx). The case v(5c) < — ε follows from the above by
symmetry, so we are done.

By Lemma 2.5 and our usual argument we obtain

COROLLARY 3.2. Let X~^-> xL g E\ xeE. Then for all ε ^ 0,

X - ^ S l ( x , ε).

Notice that we do not claim that if xL is intersection of slices
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of Y( gΞ X) on Q for arbitrary Q, then SI (x, ε) is an intersection of
slices from Y on Q. For the latter we must use a Y' which is
perhaps larger than Y and which is such that x1 is an intersection of
slices of Y' on Q' for some Q' = /"(Q' Π x^, r%) 2 Q.

COROLLARY 3.3. Le£ i? ί>e the set of all xeE for which x1 is
{a, β)-closed on E, and suppose that M is (a1', β')-closed on E, i.e.,

for some I g l , card X g a! and X-^M. Then M is (a", β")~
closed on E where a" = max (a, a') and β" = max (β, β').

Proof. We may assume that α, a! ^ fc$0 and that /9 and β' are
either 1 or fc$0. For each x e l , there is a subset X, of E such that

X, -£-> a? and card Xx ^ α. Let X = \Jxex Xx £ £/. Then we have
card X ^ card X sup,, (card X^) ̂  α' α = α". For each equicon-
tinuous Q £ Er we may choose 3Γ £ X with card F ^ α' such that
ilί is an intersection of slices of 7 on Q, By Corollary 3.2, for each
yeY there is a Yy £ X^ with card Γ^ g /S such that SI (y, sy>Q) is an
intersection of slices of Ϋy on Q. Then clearly M is an intersection
of slices of Γ = \Jyer Yy on Q and card Ϋ^ β-βf = /9;;, so we are
done.

DEFINITION. The (α, β)-completion E~a>β of £7 is the set of all
x e E with S1- (a, /3)-closed on ΐ?.

e. 0 1 = E' is not a hyperspace, but is trivially (a, /3)-closed
and hence in E~a>β.

COROLLARY 3.4. E~a'β is (a, β)-complete and is the smallest
(a, β)-complete subspace of E containing E.

Proof. If x1- is (a, /9)-closed over E~a>β, then xeE~a>β by Corol-
lary 3.3 so E~a>β is (α, /3)-complete. Clearly JK~ Λ ^ is the minimal
(α, /3)-complete set containing E, so we are done if we can show that
E~a>β is a subspace. Given the results of §4 this is easily ob-
tained, but we feel that it is instructive to continue in the spirit
of §2.

Since E~a*β obviously contains rx whenever it contains x ((rx)-1 —
xL or E'), we are done if we can prove that whenever x, yeE, xL,
y\a, /5)-closed, we have M = (5? + y)1 is (a, /3)-closed. We may assume

that x Φ § Φ y and that x Φ ry for all r e R. Let X • xL, Y > y1-
and choose uex1 ~ y1, v e y± ~ xL so t h a t u(y) — v(x) — 1. Clearly
M — 2(u — v, xL Π y1). Finally, we assume t h a t X and Y a re normalized
by v and u respectively. Let Q be ac and equicontinuous wi th u,
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veQ and choose Γ g ί , Y' C Y so that card X\ card Γ ' g β and
S 1 ^ 1 ] is an intersection of slices of Xr [Yr] on Q. We will show
that (x + I/)1 is an intersection of slices of Xr + Yf on Q.

Every element w of Er is of the form ru — sv + m, m e ^ f l f 1 ,
and w G ikf if and only if r — s. Then for x e X', y e Y',

w(x + y) — (r — s) + ru(a ) — sv(y) + m(a? + i/)

(u(y) = v(x) = l). Set

^ = sup { I r I, I s I : r u = sv + m G Q for some mexL Π ̂ x} .

2/ is weakly continuous on Q, whose weak closure is compact, and
{ru — sv + m)(y) = r (and similarly for x), so ^ < oo. Now suppose
that w0 = rou — s0^ + m0 G Q, r o ^s o , i. e., ιv0 & M. We may choose
x G X', yeY' so that

r0 - 2μ)

by (2.10) and the fact that if Q S Q',
vey1- Γ) Q, and

and

= w0 — rou *•„ +

y) I = I ( r 0 —
- I r 0 1 I u(x) I

mo(x) I - I mo(y)

2/) I
v(v)\

2( I r 0 - 2/ί)e,,β

> j r 0 - s01 - 4( I r 0 - So j/8)

o - So |/2 .

If w e Q f] M, w = ru — rv + m, then similarly we have

I w(x + y) I S I r I«(«) | + | r\ \ v(y) \ + \ m(x) \ + | m(y) |

so w0 ί SI (» + i/, I r0 -s01/2) and Q Π -M S SI (α? + i/, | r0 ~ s01/2), from
which the result follows.

Note that we cannot conclude from X-^x1 and Y—^y1 that
J Γ + Y—>(x + ^ ) x . -X and F must first be suitably normalized.

Our final result in this section follows immediately from Corollary

S.3.
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COROLLARY 3.5. Let a" = max (a, a'). Then

There is much we do not know about various relations of this
type. For instance, we do not known if any of the equalities in

is true in general.

4* Characterizations in E. In this section we will determine
necessary and sufficient conditions for E to be (α, /2)-compIete which
involve only E itself. There are two cases, (a, ^0)-completeness and
(a, Incompleteness, which will be studied in turn. First we will
show that the former is equivalent to ^-completeness, as defined
below.

DEFINITION. A lcs E is a-complete if whenever I g £ and card
I ^ α , then chX g E.

A few remarks are in order concerning the relationship between
^-completeness and sequential completeness. Clearly the former im-
plies the latter, but the converse is false, as is demonstrated by the
space H[ZS] of [4] which is sequentially complete (in fact, quasi-com-
plete) and separable but not complete. Also ^-completeness does
not imply quasi-completeness, for let S be the topological space of
[2, Ex. 4N, p 64], i.e., an uncountable set all of whose points are
open except for a single exceptional point whose neighborhoods are
complements of countable sets. The space of all continuous jβ-valued
functions on S is then easily seen to be ^-complete but not quasi-com-
plete in the topology induced by the product topology on jβ^.

Our first equivalence theorem is

THEOREM 4.1. The following conditions on a lcs E are equivalent;

(a) E is (a, V)-complete

(b) E is (a, \$0)-complete

(c) E is a-complete .

Proof, (b) ==> (a) follows immediately from Corollary 2.12 but we
will obtain a second proof by showing (b) => (c) => (a) ((a) => (b)
trivially) and simultaneously develop some results which will prove
useful in later work.

(b) => (c) follows immediately from:
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LEMMA 4.2. Let {xλ} be a net in E, limλ#λ — xe E, let p be a
continuous pseudo-norm on E, and let Xn be chosen for each n > 0
so that p(xλ — xμ) 5* 1/n if λ, μ > ln. Then

x1 Π QP = ή SI (a?λn, 1/n) Π Qp .
l

Proof. If % e &1 Π Qp, then w(#) = 0 and \u\ ^ p. u is continuous

on £7 so

u(xλj \ = \u(x- xλj I = limλ | u(xλ - α λ j |

^ limλ

so u e SI (αλft, 1/w) for all w. Conversely, if ^ e SI (a?λn, 1/w) for all
n, fix ^ and choose λ ^ λΛ so that | u(x) — u(xλj \ ̂  1/^. Then

I u(x) I g I u(x - xλ) I + I π(x λ - a?λw) I + I u(xλj \

Since n is arbitrary, tt(a?) = 0 and uexL f) Qp, proving the Lemma.
(c) ==> (a) is a trivial Corollary of Theorem 2.4, but it can also be

given a very simple direct proof as follows; We first show that if
X^E, X->xL, xeE, then xechfyX). If x$ch%(X) then there
is a ue E' such that u(2(X)) = {0} and %(«) ^ 0. But then Q = Γ{u}
is equicontinuous, x1 f] Q = {0} ̂  Q, and Q £ SI (T/, 0) for all yeX,
contradicting X—+X1. Now assume (c) and let M be (α, F)-closed,
X g^ E, X-+M. By Corollary 2.3 and the above remarks ikf = x-1

for some a? e cZ^S(X). If X is finite then 2(X) is closed in E, being
being finite dimensional, so xeE; if X is infinite the set Y of all
finite linear combinations of elements of X with rational coefficients
has the same cardinality as X and since Y is dense in X, x e cl^ Y 5Ξ E
by hypothesis. In either case, M = xJ- is closed and we are we are
done.

From Lemma 4.2 we obtain

COROLLARY 4.3. Let I e £ and suppose that x e cl^X. Then
X—*x1and x1 is (card X, #0)-closed.

By [7, Th 4.3, p. 310] and the proof of (c) => (a) we have

COROLLARY. 4.4. X-^M~xL for some xeE if and only if
for all equicontinuous Q in E', x, considered as a function on Q, is
continuous in the topology of uniform convergence on finite subsets
of X.
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We now turn our attention to (a, Incompleteness. We will need
notions of completeness and convergence which as far as we know
are original. Moreover, they have applications to other areas of
topological vector spaces (see [5]).

DEFINITION. Let E be a Ics, & a set of continuous pseudo-norms
on E, and {xλ} a net in E. Then {xλ} is 0-convergent to x on & if
for any p e ^, there is a λ0 such that if λ Ξ> λ0 then p(x — xλ) — 0.
If & is the set of all continuous pseudo-norms on E, we say that
{xλ} is 0-convergent to x. 0-Cauchy on & and 0-Cauchy are defined
in an analogous manner.

We collect some useful facts in the Proposition below. The
proofs are trivial.

PROPOSITION 4.4. Let E, &*, and {xλ} be as in the definition
above. Then

(a) If {xλ} 0-converges to x on ^ , then {xλ} is 0-Cauchy on &
and {xλ} converges to x, and conversely, if {.τλ} is 0-Cauchy on & and
converges to x, then {xλ} is 0-convergent to x on &>.

(b) If & defines the topology of E, then {xλ} is 0-Cauchy [0-
convergent to x] if and only if it is 0-Cauchy on ^ [0-convergent to
x on

DEFINITION. Let E, & be as above. Then E is a-0-complete
[on ^] if and only if every net {xλ} in E with card {xλ} S cc which
is 0-Cauchy [on &\ is 0-convergent [on ^ ] . If E is F-0-complete,
we say that E is ^-complete.

An immediate consequence of Proposition 4.4 is:

PROPOSITION 4.5.

(a) Every complete Ics is 0-complete.
(b) If & defines the topology of E then E is α-0-complete if

and only if E is <2-0-complete on ,ζp.

Proposition 4.5 (b) states that 0-completeness is independent of
the set of pseudo-norms defining a topology, a fact which is useful
in many proofs.

We may now characterize (a, Incompleteness.

THEOREM 4.6. The following conditions on a Ics E are epuiva-
lent:

(a) E is (a, Incomplete.
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(b) E is (a, ̂ o — )-complete.
(c) E is a-0-complete.

Proof. The equivalence of (a) and (6) follows from Corollary 2.16.
(a) => (c). Let {xλ} be 0-Cauchy, hence 0-convergent to some xe E.

For any equicontinuous Q Q E' there is a λ0 such that λ, μ ^ λ0

implies that pQ(xλ — xμ) = 0. Thus we may set λn = λ0 for all n in
Lemma 4.2, and we obtain

x1 n Q ( v - x1 n Q00

= si (χλQ, o) n Q0 0,

and hence x 1 Γi Q = SI (α?λo, 0) Π Q and a;-1 is (card {xλ}, l)-closed.
(c)=>(a). Let MQE' be an (a, l)-closed hyperspace, X-+M

for X £ £7. Let ueE' ~ M, let X be normalized by w, and let ^
be the set of all equicontinuous Q <ΞΞ Ef such that Q = Γ(Q Π M", ri6)
for some r > 0. Let # e ^ be such that xL — M and %(#) = 1. If
Q e ^ 3 , there is an xQe X such that Q Π Jlf = SI (&ρ, s, β), and by
Proposition 2.14, eXQtQ = 0. Hence by (2.11), pρ(x — a;ρ) = 0 and if
Q' e ^ , Q' 3 Q, then

pQ(x -xQt) g pρ/(a; - xqt) = 0 .

Therefore ordering ^ by inclusion makes {xQ} a net in JE7 which is 0-
convergent to x on {pQ: Qe £?}, and hence is 0-convergent by Lemma
2.5 and Proposition 4.4 (b). Moreover card {xQ} ̂  card X g a so
# G £/ by assumption.

In the case of (F, l)-completeness, we have some additional pro-
perties.

COROLLARY 4.7. ΪT ê following conditions of a Ics E are equiva-
lent:

(a) E is 0-complete
(b) E is (F, Incomplete
(c) J? ΐs (F, y$0 —)-complete
(d) If M is a hyperspace in Er such that for every equicon-

tinuous subset Q of Ef there is an xe E such that MΓ\ Q — x1 Γ\ Q,
then M is closed.

(e) If M is a hyperspace in Ef such that for every equicon-
tinuous subset Q of -E", M f]Q = [cl(2(M Π Q))] Π Q, then M is closed.

Proof. We have already shown the equivalence of (a) through
(c) and their equivalence with (d) follows from Propositions 2.7 and
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2.14. Clearly (e) => (d) so we will be done if we can show that (d) =>
(e). To this end, let M be a hyperspace in Ef, Q an ac equicontinuous
subset of Ef, F = cl(2(M Π Q))9 and M 0 Q = F Π Q. We wish to
find an xeE such that x1 Π Q — M Π Q. If Q C Λf we may simply take
a; = 0, so assume there is a ueQ ~ M= Q ~ F. Define / : 2(F, u)—*R
by f(v + ru) = r for ve F. / i s continuous (its null-space is
closed) and thus may be extended to a continuous / on E\ Choose
x e E such that f(v) = v(α?) for v e E'. Clearly x±f)Q^FnQ =
MΓ\Q and if v e x1 Π Q, v = w + ru for some we M, re R{Ef =
S(Λί, %)) so

w/(l + M ) = r%/(l + I r I ) - v/(l + | r \) e Q, M .

Since Q n Λ ί ^ Q n ί 7 , weF so 0 = v(aj) + ru(x) = ru(α?). u(») ^ 0
and hence r = 0 and v e M, completing the proof.

We complete our characterizations of (a, /9)-completeness on E
itself by noting that every lcs is ( ^ 0 —, Wo — )-complete by Corollary
2.15.

It is interesting to note that we have proven all of the implications
between (a, /3)-and (7, ^-completeness for various a, β, 7, δ. This
can be demonstrated by showing the independence of (a, l)-and (7, ̂ 0 ) -
completeness for a > 7 sδ ^ 0 . Since any noncomplete normed linear
space is clearly (F, Incomplete but not (^ 0, F)-complete, we need only
find a (7, ^0)-complete space which isn't (a, l)-complete. Let A be an
index set of cardinality a and let E be the subspace of ΠλβΛR( = Ra)
consisting of all elements all but 7 of whose coordinates are 0. Let-
ting ζxλy be the element of E whose λ th coordinate is xλ, we set
Pλ«^λ» = | # \ | . Then {pλ} defines the topology of E and clearly the
(a, l)-completion on {pλ} of E is Ra. However if X g E has cardinality
no greater than 7, the number of coordinates in which some element
of X is nonzero has cardinality no greater than 72 = 7, so E is (7, F)-
complete.

5* Nets of hyperspaces* We end our study with a brief outline
of a dual theory of net convergence. The theory is of necessity sketchy
and incomplete, but we will present some possibilities for further in-
vestigation. We begin in the spirit of the preceding sections and will
ultimately translate our ideas into notions concerning only the dual
space.

Let {xλ} be a net in E and let M be a (F, F)-closed hyperspace
in Ef. We say that {x^} converges to M if lim λΛZλ,Q — 0 for all
equicontinuous Q Φ M in E' (compare with Lemma 2.8). By Lemma
2.13, if {xj;} converges to M, then {xλ} —• M and by Lemma 2.9, we
have immediately
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PROPOSITION 5.1. Let x e E and let {xλ} gΞ E be normalized by u
for some ueE' with u(x) — 1. Then limλ$λ = x if and only if {â }
converges to a?1.

Notice that it is necessary to assume that M is (F, F)-closed (or
at least that M = f1 where / is bounded on equicontinuous subsets)
in order to prove that {xλ} —> Λf, even though this hypothesis is not
necessary for Lemma 2.13. The reason is that the Lemma concerns
only those Q of the form Q = Γ(Q Π M, ru), and we know that this
class is sufficiently large only when Lemma 2.5 is applicable. This in
fact is one of the major problems of this study and one to which we
will return for further comment at the end of this section.

We now consider our notion entirely in terms of E'. Let ^ [ J F 7 ]
be the set of all closed [(F, F)-closed] hyperspaces in E\ For any
H, Me £%f and Q an equicontinuous subset of Ef', we define a number
Q(H, M) as follows:

First we assume that Q is ac and closed. Then there is a hyper-
plane of support of Q, H', which is parallel to H, and a maximal r such
that O ^ r ^ 1 and rW is a hyperplane of support to Q Π M. We
define Q(H, M) = r. For arbitrary Q set

Q(H, M) - [clΓ{Q)\{H, M) .

It is easy to see that if H=xL, then Q(H, M) = 4XtQ. If we
define lim λHλ = M to mean lim λQ(Hλ, M) = 0 for all Q Γι M, then by
Proposition 5.1 we have

PROPOSITION 5.2. Let {Hλ} be a net in £(f and M e J 7 . Then
lim λHλ = If if and only if there are xλe E with a^ = ί ί λ for each λ
and an a efi with xL — M such that limλ#λ = x.

Unfortunately the above characterization introduces more problems
than it solves. It would be desirable to avoid the assumption that
J l ί e # in Proposition 5.2 but as we mentioned above, we do not
know if this can be done. Moreover we have been able to obtain no
results at all on a Cauchy-type theory, with at least part of the
problem certainly due to the lack of knowledge mentioned above. We
are further bothered by the fact that Q(H, M) is not symmetric in
H and M, as the reader can demonstrate to himself by letting Q be a
square in jβ2 with H parallel to a pair of sides and M not parallel to
either pair of sides. Nonetheless we feel that further study of these
concepts or modifications thereof could prove quite interesting.
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