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SOME LOWER BOUNDS FOR LEBESGUE AREA

WILLIAM P. ZIEMER

It is well known in area theory that a continuous map /
of the unit square Q2 into Euclidean space E2 can have zero
Lebesgue area even though its range has a nonempty interior.
This cannot happen if / is suitably well-behaved, for example,
if / is light, Lipschitzian, or as we shall see below, if / satisfies
a certain interiority condition. The purpose of this paper is
to determine conditions under which an arbitrary measurable
set A c Q 2 will support the Lebesgue area of /. The results
imply that if /1 A is Lipschitz and if one of the coordinate
functions of / is BVT (and continuous), then the Lebesgue area
of / is no less than the integral of the multiplicity function
N(f, A, y), where N(f, A, y) is the number (possibly oo) of points
in f~Ky) Π A. We show that the BVT condition cannot be
omitted. The proofs of theorems involving Lebesgue area depend
upon a new co-area formula for real valued BVT functions.

2* Preliminaries* Our proofs rely heavily upon the following

topological theorem [3, p. 513] which was first proved by Federer in
the 2-dimensional case [8, p. 358], We believe that this result is yet
to be fully exploited in area theory.

THEOREM 2.1. If X is a k-dimensional finitely triangulable space
and u: X—* E\ v: X-+ Ek~\ f; X—+ E1 x Ek~ι are continuous maps
such that f(x) — (u(x), v(x)) for x e X, then there is a countable set
DczE1 such that

S[f, (s, t)] = S[v I u~\s), t] for (8, t) e (E^ - D) x Ek~> .

Here S[f, (s, t)] denotes the stable multiplicity of f at (s, ί) [9, (3.10)].

In the case X = Q2, the unit square, (and this will be the only-
case of interest to us throughout the remainder of this paper) this
theorem provides a very simple criterion to determine the stability of
/ at a point (s, ί); for t is a positive stable value of v \ u~\s) if and only
if there is a nondegenerate continuum C c u~~\s) such that t e interior
v(C). Thus, the stable multiplicity function is positive at almost all
points in the range of a monotone map and in the case of a light map,
it is positive on an open dense set. In view of the following proposition,
we see that mappings which are similar to Why burn's quasi-open maps
[19, p. 110], [22, (3.9)] also have positive stable values.

PROPOSITION 2.2. Suppose /: Q2—> E2 is a continuous map such that
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for each yef(Q2), there is a component K of f~\y) with the property
that for each sufficiently small open connected set U containing yy

there is a component V of f~\ U) containing K which maps onto U by
/. Then, for all but countably many yef(Q2), S(f, y) > 0.

Proof. Select a point y e f(Q2) whose first coordinate is not contained
in the set D of (2.1). Let Ui be a sequence of sufficiently small open
connected sets such that Ui z> closure Ui+1 and whose intersection is a
closed vertical line segment λ containing y in its interior. Then the
intersection of the corresponding Vi will be a continuum C u K that
will be mapped onto λ. By (2.1), S(f, y) > 0. Now by repeating this
argument with horizontal line segments instead of vertical ones, the
result follows.

It is easy to verify that if S(/, y) > 0, then the converse of (2.2)
holds, c.f. [21, (2.4)].

The notion of stability is crucial in area theory since

(2.2.1) »(/) = ( S(f, y)dL2(y) ,
J 2 2

where £(/) is the Lebesgue area of / and L/is 2-dimensional Lebesgue
measure. By a result of Cesari [1], (2.2.1) is a special case of a more
general theorem due to Federer [9, (7.9)].

DEFINITIONS 2.3. Hi will denote Λ-dimensional Hausdorff measure
in En, F£ ft-dimensional Favard measure [7, (2.18)], Ln -^-dimensional
Lebesgue measure, and dim (A, x) will denote the topological dimension
of a set A at a point x. A real valued map / on a topological space
is called almost light if f~\y) is totally disconnected for Lx almost all
y e E\ A map /: Q2 —> E1 is said to satisfy condition Nx on a set A
if it maps sets of Hi measure zero of A into sets of Lx measure zero.

We will use the following notion which was first introduced in
[6, p. 48], An Ln measurable set EdEn has the unit vector w(#) as
the exterior normal to E at x if, letting

S ( x , r ) = { y : \ y - x \ < r } ,

(2 3 1) S+{X' T) = S{X' T) ° {V: {V ~" X)'U{X) - ° } '
S_(x, r) = S(aj, r) n {y: (y - x)-n(x) ^ 0} ,

α(n) = Ln[S(x, 1)] ,

we have

2 lim LK[S_(«, r) Π E]/a(n)rn = 1 , 2 lim Lκ[S+(a;, r) n E]/a(n)ru = 0 .

Let 5 V denote the class of all locally integrable functions u: Qn —• E1
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such that the ith partial derivative of u in the sense of distributions
is a totally finite measure μi% This class contains those functions which
are BVT. For ueBV and B any Borel subset of Qn let I(u, E) =
μ \(E) where | μ | is the total variation of the vector-valued measure

(μu μ2, . . , μn)m In the case that u is ACT observe that for any Borel
set B c Q»,

(2.3.2) I(u, B) = ( I grad u(x) \dLt(x)
JB

where grad u is the ordinary gradient of u. Thus, in this case I(u, •)
can be extended to all Lebesgue measurable sets.

If Ba En is a Borel set then P(B) will denote the perimeter of B.
If F is the set of x for which the exterior normal to B exists at x
and if P(B) < oo, then we see from [2] and [10] that

(2.3.3) P(B) = Hr\F) .

F is called the reduced boundary of B and note that F c bdry B. For
u: Qn->E1 in BV and E(s) = {x; u(x) > s}, Fleming and Rishel [14]
proved that

(2.3.4) I(u, Q ) - (

In the case that u is Lipschitzian, theorems obtained independently by
Federer [11, (3.1)] and Young [20, Th. 4] imply that

(2.3.5) I(u, A) - ( H:-\u-\s) n A^L^s)

whenever AcQn is a Lebesgue measurable set.

3* Metric theorems* The following co-area formula is an exten-
sion of (2.3.5) and although the proof is only given for functions defined
on E2, it is clear that it will generalize to En without any essential
change. The author is indebted to Casper Goίfman for his suggestion
that this co-area formula might be valid.

The following notation will be used throughout the proof. Let
(g, r, s) be coordinates in Ez and define δ: E*->E\ Π2: E* -> Έ\ Πt: E^E1

by δ(q, r, s) = s, Π2(q, r, s) = (r, s) and Π^q, r) = r. If u\ Q2 -> E1 then
u'\ Q2 -> E3 is defined by u'(q, r) — (q, r, u(q9 r)). G2 will denote the
group of orthogonal transformations on E2 and φ the unique Haar
measure on G2 for which φ(G2) = 1. For i ίeG 2 let R*:E3->ES be
defined by lϋ*(</, r, s) = (g', r', s) where i2(g, r) = (q\ r').

THEOREM 3.1. If u: Q2-*Eι is BVT(ACT), then



384 WILLIAM P. ZIEMER

I(u, D) = \ Hl[u-\s) n

whenever DaQ2 is a Borel (L2 measurable) set.

Proof. Let

g(s) = Hl[u-\s) n ΰ ] = Hl[b-\s) n

If u is B VT and D a Borel set, then A — uf(D) is an analytic set and
therefore it is the union of an increasing sequence of compact sets and
a set N of iJ3

2 measure zero. Using the Eilenberg inequality [4] we
see that

for L1 almost all s e E1. Thus, in order to show that g is Lλ measurable
it is sufficient to consider the case when A is compact; but then, it can
be shown as in [11, (3.1)] that g is the limit of upper semi-continuous
functions.

If u: Q2 — E1 is ACT and JVc Q2 a set for which L2(N) = 0, then
[18, (3.17)] and [12] imply that Hi[u'(N)] = 0. Thus, u'(D) is Hi
measurable whenever ΰ c β 2 is U measurable and the measurability
of g follows as it did above.

Let

a(D) = I Hl[vr\8) Π DldL^s) .

It is now clear that a is a measure on Borel (L2 measurable) sets if
u is £VT(ACT). Moreover, from [18, (3.17)], [12], and [4] we see
that a is absolutely continuous with respect to L2 if u is ACT. Hence,
it is only necessary to prove the theorem in case u is BVT. For this
purpose we only need to show that I(u, W) = a(W) for rectangles
W c Q2 because both I(u, ) and a are measures over the Borel sets.
We may as well assume that W = Q2.

In view of (2.3.4) and (2.3.3) it is obvious that I(u, Q2) ^ a(Q2).
The opposite inequality will follow from the last of four parts into
which the remainder of the proof is divided.

PART 1. For Lλ almost all s e E\ vr\s) is (H2\ 1) rectifiable.

Proof. Since u is BVT, 2(uf) < oo [16, p. 516], If A = u'(Q) then
it follows from [12] that Hi(A) < oo and that A is (Hi, 2) rectifiable.
Now apply [13, (8.16)] to obtain a countable number of 2-dimensional
proper regular submanifolds Mi of class C1 for which
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JJ M«] = 0 .

Letting M = UΓ=i Mi the Eilenberg inequality [4] implies

Ht[δ-\s) Π (A - M)] = 0

and

flJIβ-^β) n A] < oo

for Lx almost all s. In view of (2.3.5) one can easily verify that for
each i, g-^s) Π Λf< is (ίft, 1) rectifiable and therefore that δ-^s) n M ^ n i
is (Ha1,1) rectifiable for Lj almost all s e E1. But the union of
δ~\8) f] M{. f] A occupies HI almost all of δ~\s) Π A and thus the result
follows.

PART 2. For Lx almost all s e E\ F\\ur\s)\ = Hl\μr\s)\.

Proof. This follows from Part 1 and [7, (5.14)].

PART 3.

( ( N[Π2R*u', Q\ y]dL2(y)dφ(R) .(
J E ? 1

Proo/. For each seE1 apply [7, (5.11)] to obtain

Filvr1^)] - /72-1( ί NlΠtf, u-\8)t

= Π2-A \ N[n,E*u', Q\ (r,

By integrating with respect to s, the result follows from Part 2 and
Fubini's theorem.

PART 4.

Proof. Select a sequence of Lipschitz functions uk: Q2 —> JE1 which
converge uniformly to w and for which I(uk, Q

2)—>I(u, Q2) as k—> oo.
A result of [18, (3.5)] states that for each iϋeG 2 and continuous
v: Q2 — JE1,

( 1 ) N[ΠtR*v', Q2, y] = S[Π2R*v\ y]

for L2 almost all ?/ e E2. Recall that the stable multiplicity function
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is lower semi-continuous with respect to uniform convergence. Thus,
from Part 3, (1), Fatou's lemma, and (2.3.5)

- Π2-A \ N[ΠtR*u',Q\y]dLt(y)dφ(R)

= Π2r1\ ( S[Π2R*u',y]dL,(y)dφ(R)

£ lim inf Π2rλ \ S[/72ie*<, y]dL2(y)dφ(R)

- l i m inf Π2rA \ N[Π2R*u'k, Q\ y]dL,(y)dφ(R)

= lim ( Hi[u^(s)]dLM

COROLLARY 3.2. // u: Q2->E1 is BVT, then the following hold
for L1 almost all s e E1:

(i) Hilw^s)] < oo and u-^s) is (H}, 1) rectίfiable,
(ii) the exterior normal to E(s) exists at HI almost all x e ur^s).

Proof. The first statement follows from the proof of Part 1 in
<3.1) and the second from (3.1), (2.3.4), and (2.3.3).

LEMMA 3.3. If u: Q2 -> E1 is BVT, then for L, almost all s e E\
dim^" 1 ^), x] > 0 for HI almost all xeu^is).

Proof. If BaE\xe E\ denote by W(x) the set of all straight
lines passing through x and by U{B, x) those λ e W(x) for which x is
not a cluster point of Xf]B. Since we may identify W(x) with the
unit semi-circle S+, we can regard the restriction of H\ to S\ as
defining a measure μ on W(x). In the same manner, we can define a
measure v on the homogeneous space of all orthogonal projections
p:E2^E\

Suppose, for some s e E1, that ffilur^s)] < oo and that u~1(s) is
(HI, 1) rectifiable. Letting

A - n-\s) Π {x: μ{U(vr\8), x)} = 0} ,

it follows from [7, (8.3)] that L^p{D9)\ = 0 for v almost all p. But
Ds is also (H}, 1) rectifiable and therefore, from [7, (5.14)] it follows
that Hl{Ds) = 0. Thus, in view of (3.2), for L, almost all seE1 the
following two conditions hold at Hi almost all xeu~1(s)\

(i) the exterior normal to E(s) exists at x,
(ii) μ[U-1(8),x}>0.



SOME LOWER BOUNDS FOR LEBESGUE AREA 387

We will conclude the proof by showing that for all such s and x,
dim [u^is), x] > 0. For if we assume that dim [^(s), x] = 0, this means
that there exist arbitrarily small open sets G containing x whose
boundaries do not intersect u^1(s). By the Phragmen-Brouwer theorem,
it can be assumed that bdry G is connected. For every r > 0, let

Ur[vr\s), x] - W(x) n {λ: S(x, r) Π u~\s) n (λ - {x}) = 0} .

From (ii) we know that there exists a > 0 and r0 > 0 such that
fllUr^ur^s), x)] = a. Choose G c S(x, ro/2). Since bdry G is connected
and bdry G Π w^s) = 0, either bdry G c E(s) or bdry G c F(s) =
{a?: u(x) < s}. Suppose bdry GaE(s) and because of (i), r0 may be
assumed to have been chosen so small that (see (2.3.1)),

< 3) 2L2[S+(r0, x) Π E(s)]/Πrl < a/Π .

Now, for each λe U^w^s), x), S(x, r0) ΓΊ u^s) n (λ - {x}) = 0 and
λ Π bdry G ̂  0. Therefore, since bdry G c i?(s), the union of all such
λ in S(x, r0) — {x} is contained in J?(s) and its L2 measure is no less
than arl, which contradicts (3). The case of bdry G c F(s) is treated
in a similar way and thus the proof is concluded.

LEMMA 3.4. Suppose f: Q2 —> E2 is continuous and f = (u, v) where
*u is B VT. Then f"\y) is totally disconnected for L2 almost all y e E2.

Proof. Let λ be a horizontal (or vertical) line segment in Q2 on
which u a s a function of one variable is of bounded variation. Thus,
if λ is the line r — rQ, the function w( , r0) is of bounded variation
and consequently, N[u(-, r0), λ, s] < oo for Lλ almost all seE1. This
implies that /(λ) intersects almost all vertical lines in a finite number
of points and therefore, by Fubini's theorem, L2[/(λ)] = 0. Since u is
BVT, there exist a countable dense set of vertical lines and a countable
dense set of horizontal lines such that the image of each line is a set
of L2 measure zero. If A denotes the union of these vertical and
horizontal lines, then L2[f(A)] ~ 0. Now if C is a nondegenerate
continuum of f~x{y), for some yeE2, then clearly C must intersect A.
Thus yef(A) and the result follows.

COROLLARY 3.5. With the same hypotheses as in 3.4, for Lί

almost all s e E\ v \ u~1(s) is almost light.

THEOREM 3.6. Suppose f: Q2—+E2 is continuous, f — (u, v), u is
B VT and v satisfies condition N1 on an analytic set A c Q2. Then

£(/) ^ \EN(f, A, y)dLi{y) .
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Proof. Let Wa ~ u~l{s) Π {x: dim {vr\s), x] > 0}. It follows from
(2.1), (3.3), (3.5) and [9, (3.3), (3.5), (3.12)] that for Lx almost all seE1

\ S[f, (β, WLψ) =\ S[v\u-W, t\dLx(t)
j£?l JE1

^ ( N[v, W., tyLLJt)

^ ( N[v, vr\8) n A, tld

= \ N[f, A, (s,

Now by integrating with respect to s the result follows from Fubini's
theorem and (2.2.1). The analyticity of A is needed only to assure
the L2 measurability of the last integrand.

COROLLARY 3.7. If f: Q2 —> E2 is continuous, if f is Lipschitziαn
on an L2 measurable set A c Q2, and f = (u, v) where u is B VT, then

« ( / ) ^ ( N(f,A,y)dLt{y).

REMARK 3.8. It is easy to see that if neither of the coordinate
functions of / is BVT, then the conclusion of (3.7) may not hold. For
this purpose let 4 c Q 2 be a dendrite for which L2(A) > 0. Then a
result from [15, p. 290] implies that A is a retract of Q2. If r: Q2 -> A
is the retraction and i: A—> A the identity map, then / = ir is clearly
Lipschitzian on A and £(/) = 0 since the range of / has no interior.

THEOREM 3.9. Suppose f:Q2—+E2 is continuous, f— (M,V), U is
ACT, v satisfies condition N1 on Q2, the approximate partial derivatives
of v exist L2 almost everywhere on Q2, and Jf, the approximate
Jacobian of /, is integrable. Then

Q?
\Jf(x) \dLt(x) = \ N(f Q2y y)dL2(y) .

Proof Referring to [5, (5.4)] and (3.6) we see that we only need
to prove that / carries sets of L2 measure zero into sets of L2 measure
zero. If this were not the case, then there would exist an L2 null set
NdQ2 for which L2[f(N)] > 0. We may assume that f(N) is measurable
since N can be taken as a Gδ set. Thus, Lx[v(u~\s) n N)] > 0 and
therefore U2[u~1(s) Π N] > 0 for all s in some set of positive Lί

measure. But, from (2.3.2) and (3.1)

0 - ( I gradΐφ) \dL2(x) = ( Hi[vr\8) Π N^L^s) > 0



SOME LOWER BOUNDS FOR LEBESGUE AREA 389

a contradiction.

COROLLARY 3.10. If v, is ACT and v Lipschίtzian on Q2, then

) \dL,(x) = ^N(f, Q\ y)dL1{y) .= \

REMARK 3.11. The above corollary is an extension of a theorem
proved in [17, p. 437], where only the first part of the equality is
established. Both (3.8) and (3.9) are related to the following unsolved
problem c.f. [16, p. 380], [17, p. 433]: Let f:Q2-+E° where both
coordinate functions of / are ACT and Jf is L2 integrable. Then, is

8(/) = j J Jf{^ ^dL^x) ?

By using techniques employed in this paper, one can show that if the
additional hypothesis is made that v satisfies condition Nx on Ws =
n~\s) Π {x: dim [^(s), x] > 0} for L : almost all s e E\ then the question
can be settled in the affirmative.
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