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SOME LOWER BOUNDS FOR LEBESGUE AREA

WILLIAM P. ZIEMER

It is well known in area theory that a continuous map f
of the unit square Q? into Euclidean space E? can have zero
Lebesgue area even though its range has a nonempty interior.
This cannot happen if f is suitably well-behaved, for example,
if f is light, Lipschitzian, or as we shall see below, if f satisfies
a certain interiority condition, The purpose of this paper is
to determine conditions under which an arbitrary measurable
gset A c Q® will support the Lebesgue area of f. The results
imply that if f| A is Lipschitz and if one of the coordinate
functions of fis BVT (and continuous), then the Lebesgue area
of f is no less than the integral of the multiplicity function
N(f, A, y), where N(f, A, y) is the number (possibly ) of points
in f7i(y) N A. We show that the BVT condition cannot be
omitted. The proofs of theorems involving Lebesgue area depend
upon a new co-area formula for real valued BVT functions.

2. Preliminaries. Our proofs rely heavily upon the following
topological theorem [3, p. 513] which was first proved by Federer in
the 2-dimensional case [8, p. 358]. We believe that this result is yet
to be fully exploited in area theory.

THEOREM 2.1. If X is a k-dimensional finitely triangulable space
and u: X— E' v: X— E* fi: X— E' X E*' are continuous maps
such that f(x) = (u(z), v(x)) for xe X, then there is a countable set
Dc E* such that

SLf, (s, )] = S[v|u™(s), t] for (s,¢)e(E' — D) x E**.
Here S[f, (s, t)] denotes the stable multiplicity of f at (s, t) [9, (3.10)].

In the case X = @?, the unit square, (and this will be the only
case of interest to us throughout the remainder of this paper) this
theorem provides a very simple criterion to determine the stability of
f at a point (s, t); for ¢ is a positive stable value of v | u~'(s) if and only
if there is a nondegenerate continuum C C #~'(s) such that ¢ < interior
v(C). Thus, the stable multiplicity function is positive at almost all
points in the range of a monotone map and in the case of a light map,
it is positive on an open dense set. In view of the following proposition,
we see that mappings which are similar to Whyburn’s quasi-open maps
[19, p. 110], [22, (3.9)] also have positive stable values.

PROPOSITION 2.2. Suppose f: @ — E* is a continuous map such that
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for each y ¢ f(@*), there is a component K of f~'(y) with the property
that for each sufficiently small open connected set U containing v,
there is a component V of f~*(U) containing K which maps onto U by
f. Then, for all but countably many y < f(&%), S(f, y) > 0.

Proof. Select a point y € f(Q?) whose first coordinate is not contained
in the set D of (2.1). Let U, be a sequence of sufficiently small open
connected sets such that U, Dclosure U, and whose intersection is a
closed vertical line segment \ containing y in its interior. Then the
intersection of the corresponding V; will be a continuum C > K that
will be mapped onto n. By (2.1), S(f,y) > 0. Now by repeating this
argument with horizontal line segments instead of vertical ones, the
result follows,

It is easy to verify that if S(f,y) > 0, then the converse of (2.2)
holds, c.f. [21, (2.4)].

The notion of stability is crucial in area theory since

@.2.1) ) = | S, viLw),

where £(f) is the Lebesgue area of fand L, is 2-dimensional Lebesgue
measure, By a result of Cesari [1], (2.2.1) is a special case of a more
general theorem due to Federer [9, (7.9)].

DErINITIONS 2.3. H} will denote k-dimensional Hausdorff measure
in B, F} k-dimensional Favard measure [7, (2.18)], L, n-dimensional
Lebesgue measure, and dim (4, ) will denote the topological dimension
of a set A at a point x. A real valued map f on a topological space
is called almost light if f~'(y) is totally disconnected for L, almost all
yeE'. A map f:Q*— E' is said to satisfy condition N, on a set A
if it maps sets of H; measure zero of A into sets of L, measure zero.

We will use the following notion which was first introduced in
[6, p. 48]. An L, measurable set £ C E™ has the unit vector n(x) as
the exterior mormal to E at « if, letting

S(x,¢)={y:|y—x|<'r‘},
S, r) = S(x, r) N {y: (y — z)-n(z) = 0},

(2.3.1)
S_(x, ) = S, r) N {y: (y — z)-n(x) < O},
a(n) = L,[S(z, 1)],
we have
2 linl LJS_(xz,r) N Elja(r)yr" =1, 2 lirriLﬂ[S+(9c, r) N Elja@m)r = 0.

Let BV denote the class of all locally integrable functions u: Q" — E*
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such that the ith partial derivative of w in the sense of distributions
is a totally finite measure g;. This class contains those functions which
are BVT. For ue BV and B any Borel subset of Q" let I(u, E) =
|t |(E) where |pt]| is the total variation of the vector-valued measure
(#t4, ttoy ++ -, ££,). In the case that u is ACT observe that for any Borel
set BC Q",

2.3.2) I(u, B) = SBI grad u(z) |dL(2)

where grad u is the ordinary gradient of u. Thus, in this case I(u, -)
can be extended to all Lebesgue measurable sets,

If B E™ is a Borel set then P(B) will denote the perimeter of B.
If F' is the set of x for which the exterior normal to B exists at =
and if P(B) < oo, then we see from [2] and [10] that

(2.3.3) P(B)=H;(F).

F' is called the reduced boundary of B and note that F' bdry B. For
u: Q" — E' in BV and E(s) = {x: u(x) > s}, Fleming and Rishel [14]
proved that

(2.3.4) I(u, Q") = SElP[E’(s)]dLl(s) .

In the case that u is Lipschitzian, theorems obtained independently by
Federer [11, (3.1)] and Young [20, Th. 4] imply that

(2.3.5) Iu, 4) = S Hr~[u(s) N AJdLy(s)
El
whenever A Q" is a Lebesgue measurable set.

3. Metric theorems. The following co-area formula is an exten-
sion of (2.8.5) and although the proof is only given for functions defined
on E?, it is clear that it will generalize to E" without any essential
change. The author is indebted to Casper Goffman for his suggestion
that this co-area formula might be valid.

The following notation will be used throughout the proof. Let
(g, 7, ) be coordinates in E°* and define é: E*— E*, II,: E*— E* Il : E*—E"*
by d(q, r,s) =s, II,(q, r,s) = (r,s) and II,(q, r) = r. If u: @ — E* then
u'; @ — E*® is defined by u'(q, r) = (q, 7, u(q, r)). G* will denote the
group of orthogonal transformations on E*? and ¢ the unique Haar
measure on G? for which o(G*) = 1. For ReG* let R*: E*— E* be
defined by R*(q,r,s) = (¢, r’,s) where R(q, r) = (¢, 7).

THEOREM 3.1. If w:@Q*— E' is BVT(ACT), then
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I(u, D) = S 3[u~(s) N D)ALy(s)
nl
whenever DC @ is a Borel (L, measurable) set.

Proof. Let
g9(s) = Hi[w™'(s) N D] = H;[o7'(s) N w'(D)] .

If wis BVT and D a Borel set, then A = «/(D) is an analytic set and
therefore it is the union of an increasing sequence of compact sets and
a set N of H; measure zero. Using the Eilenberg inequality [4] we
see that

Hi[6~(s) N N] =0

for L, almost all se E*, Thus, in order to show that g is L, measurable
it is sufficient to consider the case when A is compact; but then, it can
be shown as in [11, (3.1)] that g is the limit of upper semi-continuous
functions.

If u: @ — E'is ACT and NcC @* a set for which L,(N) = 0, then
[18, (3.17)] and [12] imply that Hj[w'(N)] =0. Thus, w'(D) is H?
measurable whenever DcC Q* is L* measurable and the measurability
of g follows as it did above.

Let

a(D) = | Hi{u(s) N DILs) .

It is now clear that « is a measure on Borel (L, measurable) sets if
w is BVT(ACT). Moreover, from [18, (3.17)], [12], and [4] we see
that « is absolutely continuous with respect to L, if » is ACT. Hence,
it is only necessary to prove the theorem in case » is BVT. For this
purpose we only need to show that I(u, W)= a(W) for rectangles
W c @ because both I(u, -) and a are measures over the Borel sets.
We may as well assume that W = @,

In view of (2.3.4) and (2.3.3) it is obvious that I(u, Q) < a(Q?.
The opposite inequality will follow from the last of four parts into
which the remainder of the proof is divided.

PART 1. For L, almost all se E', w™'(s) is (H}, 1) rectifiable.

Proof. Since u is BVT, 8(u') < o [16, p. 516]. If A = «'(Q) then
it follows from [12] that H}(A) < « and that A is (H2, 2) rectifiable.
Now apply [13, (8.16)] to obtain a countable number of 2-dimensional
proper regular submanifolds M; of class C* for which
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H{4-0M]=0.
Letting M = Ui, M; the Eilenberg inequality [4] implies
Hi[o(s)N(A—M)] =0
and
Hi[o-(s) N A] < oo

for L, almost all s. In view of (2.3.5) one can easily verify that for
each 1, 07'(s) N M; is (H}, 1) rectifiable and therefore that 6—*(s) N M; N A
is (Hj,1) rectifiable for L, almost all se E'. But the union of
07%(s) N M; N A occupies H; almost all of 67'(s) N A and thus the result
follows.

PART 2. For L, almost all se E*, Fi[u~'(s)] = H[u"'(s)].

Proof. This follows from Part 1 and [7, (5.14)].

PArT 3.
|, Hlu WL = 127 | NULRW, @, yJdLw)do(B) .

Proof. For each se E* apply [7, (5.11)] to obtain
Fifu~(s)] = 1127 | NULE, u(s), rdL()dp(R)
2 ) gl
= n27| | NULR'W, @, (r, 9lAL(r)dp(R) .

By integrating with respect to s, the result follows from Part 2 and
Fubini’s theorem.

PART 4.

I, @) = | Hilw L)

Proof. Select a sequence of Lipschitz functions u,: @* — E* which
converge uniformly to % and for which I(u,, @) — I(u, @) as k— oo,
A result of [18, (3.5)] states that for each ReG* and continuous
v: Q*— EY,

(1) N[II.R*', @, y] = S[II,R*v', y]
for L, almost all y € E%, Recall that the stable multiplicity funection
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is lower semi-continuous with respect to uniform convergence. Thus,
from Part 3, (1), Fatou’s lemma, and (2.3.5)

SmHzl[u_l(s)]dLl(S) = H2~1§02SE2N['”2R*%’! @', yldL(y)dp(R)
= 2| | SULR*w, ylAL@)dp(R)

< lim inf H2“592§E28[H2R*u2, ¥1dLy(v)dep(R)

k—oo

— lim inf H2—1§ML3N[II2R*%§,, @, yldLu(y)dop(R)

k—oo

=lim | Hifur )WL)
= lim I(u,, @) = I(u, @) .

COROLLARY 3.2. If u:@*— E*' is BVT, then the following hold
for L, almost all se€ E*:

(i) Hju™(s)] < > and u'(s) is (H}, 1) rectifiable,

(ii) the exterior mormal to E(s) exists at H;y almost all x € u=(s).

Proof. The first statement follows from the proof of Part 1 in
(3.1) and the second from (3.1), (2.3.4), and (2.3.3).

LEMMA 8.3, If u:@*— E* is BVT, then for L, almost all sc E*,
dim [u~(s), ] > 0 for H; almost all x e u'(s).

Proof. If BC E* xe E* denote by W(x) the set of all straight
lines passing through « and by U(B, xz) those » € W(x) for which z is
not a cluster point of A N B. Since we may identify W(x) with the
unit semi-circle Si, we can regard the restriction of H; to Si as
defining a measure ¢ on W(x). In the same manner, we can define a
measure ¥ on the homogeneous space of all orthogonal projections
Pz E*— E°,

Suppose, for some se E*, that H;[u™"(s)] < « and that u='(s) is
(H}, 1) rectifiable. Letting

D, = u™(s) N {a: [ U™(s), @)] = 0},

it follows from [7, (8.3)] that L,[p(D,)] = 0 for v almost all p. But
D, is also (Hj, 1) rectifiable and therefore, from [7, (5.14)] it follows
that H}(D,) = 0. Thus, in view of (3.2), for L, almost all se E* the
following two conditions hold at H; almost all ze€ u(s):

(i) the exterior normal to E(s) exists at z,

(i) p[U(s), ] > 0.
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We will conclude the proof by showing that for all such s and z,
dim [u~'(s), ] > 0. For if we assume that dim [#~'(s), ] = 0, this means
that there exist arbitrarily small open sets G containing x whose
boundaries do not intersect #~'(s). By the Phragmen-Brouwer theorem,
it can be assumed that bdry G is connected. For every » > 0, let

UJu=(s), 2] = W(z) N {n: S, r) Nu'(s) N (v — {x}) = 0}.

From (ii) we know that there exists @« >0 and », >0 such that
¢U, (u(s), )] = a. Choose G < S(x, r,/2). Since bdry G is connected
and bdry G Nwu™'(s) =0, either bdry GC E(s) or bdry Gc F(s) =
{x: u(x) < s}. Suppose bdry G < E(s) and because of (i), », may be
assumed to have been chosen so small that (see (2.3.1)),

(3) 2L,[S (7o, @) N E(s)]/ 75 < /1T .

Now, for each Me U, (u7'(s), ®), S(x, r) Nu™'(s) N (A — {x}) =0 and
AN bdry G = 0. Therefore, since bdry G < E(s), the union of all such
A in S(x, r,) — {x} is contained in E(s) and its L, measure is no less
than ar?, which contradicts (3). The case of bdry G c F'(s) is treated
in a similar way and thus the proof is concluded.

LEMMA 3.4. Suppose f: Q* — E* is continuous and f = (u, v) where
w18 BVT. Then f~'(y) s totally disconnected for L, almost all ye E®,

Proof. Let ) be a horizontal (or vertical) line segment in @* on
which % as a function of one variable is of bounded variation. Thus,
if x is the line 7 = », the function (-, 7,) is of bounded variation
and consequently, N[u(-, ), N, s] < o« for L, almost all se E*. This
implies that f(\) intersects almost all vertical lines in a finite number
of points and therefore, by Fubini’s theorem, L,[ f(\)] = 0. Since  is
BVT, there exist a countable dense set of vertical lines and a countable
dense set of horizontal lines such that the image of each line is a set
of L, measure zero. If A denotes the union of these vertical and
horizontal lines, then L,[f(4)]=0. Now if C is a nondegenerate
continuum of f~(y), for some y e E*, then clearly C must intersect A,
'Thus y € f(4) and the result follows,

COROLLARY 3.5, With the same hypotheses as in 3.4, for L,
almost all se E', v|u~'(s) is almost light.

THEOREM 3.6. Suppose f: Q*— E* is continuous, f = (u, v), % 18
BVT and v satisfies condition N, on an analytic set Ac Q. Then

o) = | N, 4, 9dLw) .
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Proof. Let W, == u7(s) N {x: dim [u~'(s), ] > 0}. It follows from
@2.1), (3.3), (3.5) and [9, (3.3), (3.5), (3.12)] that for L, almost all s E*

I

[,SL. 6 0lLit) = | Slolu=), tlaLy)

El

§
[N, W,, tlaL)
5

\%

1\%

Niv, u™(s) N 4, t]dLy(t)

= |, NIf, 4, s, 01L,0) .

Now by integrating with respect to s the result follows from Fubini’s
theorem and (2.2.1). The analyticity of A is needed only to assure
the L, measurability of the last integrand.

COROLLARY 3.7. If f: Q" — E* is continuous, if f is Lipschitzian
on an L, measurable set AC QF, and f = (u, v) where uw is BVT, then

8 2 | N, 4, 9dLy) .

REMARK 3.8. It is easy to see that if neither of the coordinate
functions of f is BVT, then the conclusion of (3.7) may not hold. For
this purpose let Ac @* be a dendrite for which L,(4) > 0. Then a
result from [15, p. 290] implies that A is a retract of Q*. If »: Q*— A
is the retraction and 7: A — A the identity map, then f = ir is clearly
Lipschitzian on 4 and {(f) = 0 since the range of f has no interior.

THEOREM 3.9. Suppose f: Q*— E* is continuous, f = (u, v), w is
ACT, v satisfies condition N, on @, the approximate partial derivatives
of v exist L, almost everywhere on Q, and Jf, the approximate
Jacobian of f, is integrable. Then

o) = | | I7@dL@ = | N7, @, L) -

Proof. Referring to [5, (5.4)] and (3.6) we see that we only need
to prove that f carries sets of L, measure zero into sets of L, measure
zero, If this were not the case, then there would exist an L, null set
N c @ for which L,[ f(N)] > 0. We may assume that f(N) is measurable
since N can be taken as a G; set. Thus, L,fv(u~'(s) N N)] > 0 and
therefore H,[u™'(s) N N] >0 for all s in some set of positive L,
measure, But, from (2.3.2) and (3.1)

0= §N| grad u() [dLu(x) = SE A (s) N N1AL,(s) > 0
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a contradiction.
COROLLARY 3.10. If w is ACT and v Lipschitzian on Q°, then

o(f) = | | If@ o) = | N7, @ L) .

REMARK 3.11. The above corollary is an extension of a theorem
proved in [17, p. 437], where only the first part of the equality is
established. Both (3.8) and (3.9) are related to the following unsolved
problem c.f. [16, p. 380], [17, p. 433]: Let f:@*— E* where both
coordinate functions of f are ACT and Jf is L, integrable. Then, is

o) = | | 97@) dLe) ?

By using techniques employed in this paper, one can show that if the
additional hypothesis is made that v satisfies condition N, on W, =
w™(s) N {x: dim [w~'(s), ] > 0} for L, almost all se E*, then the question
can be settled in the affirmative.
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