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ON UNIQUELY DIVISIBLE SEMIGROUPS
ON THE TWO-CELL

JOHN A. HILDEBRANT

A topological semigroup S is a Hausdorff space together
with a continuous associative multiplication on S. A semigroup
S is said to be uniquely divisible if each element of S has
unique roots of each positive integral order in S. The present
paper concerns uniquely divisible semigroups on the two-cell.

The main result of this paper is a statement of equivalent
conditions for a commutative uniquely divisible semigroup on
the two-cell to be the continuous homomorphic image of the
cartesian product of two threads. This result is applied to
determine the structure of commutative uniquely divisible
semigroups on the two-cell whose idempotent set consists of a
zero and an identity.

A U-semίgroup is a semigroup which is iseomorphic (topological-
ly isomorphic) to the real unit interval [0,1] under usual multiplica-
tion. A thread is a semigroup on an arc such that one endpoint is a
zero and the other endpoint is an identity.

For a semigroup S, E(S) denotes the set of all idempotent elements
of S. The statement "E(S) = {0,1}" means that the only idempotents
of S are a zero (0) and an identity (1).

Throughout this paper N denotes the set of all positive integers
and R denotes the set of all positive rational numbers. Hereafter the
statement "S is an UDS" means that S is an uniquely divisible
topological semigroup.

If S is an UDS, x e S, and neN, then xlln denotes the unique
nth. root of x in S. If r e R, r = m/n; m,neN, and xe S, then
xr — (xlln)m. It is not difficult to show that xr is unique for each
reR. Define [x] = {xr:reR}* (closure in S).

2. Preliminary results*

THEOREM 2.1. Let S be a compact UDS such that each subgroup
of S is totally disconnected. Then, for each xeS\E(S), [x] is a U-
semigroup.

Proof. Let H denote the maximal subgroup of [x] containing the
identity (e) of [x], and let K denote the kernel (minimal ideal) of [x].
Then H and K are connected subgroups of S. Hence H = {β} and
K = {/}, where / is the identity of K.

There exists a continuous one-to-one homomorphism σ from the
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additive nonnegative real numbers R into [x] such that [x] = Hσ{R)*
(closure in [x]) [4, Theorem 3.1]. Since H = {β}, [x] = <7(i?). Note
that σ(R)*\σ(R) = {/} [4, Theorem 3.1].

Let I = [0,1] under usual multiplication. Define ψ: [x] —> I by
THJO = 0 and ^r(p) = exp (— σ~\p)) if #> ^ / . Then ψ is an iseo-
morphism of [x] onto J.

COROLLARY 2.2. Le£ S be a compact semigroup such that each
subgroup of S is totally disconnected. Then S is an UDS if and
only if each point of S\E(S) lies on an unique V-semigroup in S.

COROLLARY 2.3. Let S be a semigroup on the two-cell. Then S
is an UDS if and only if each point of S\E(S) lies on an unique
U-semigroup in S.

3* Uniquely divisible semigroups on the two-celL Through-
out this section £ denotes an UDS with identity (1) on the two-cell
and B denotes the boundary of S. Note that 1 e B [10]. If S has a
zero (0) and 0 e B, then Bx and B2 denote the boundary arcs from 0
to 1 in S. Thus B = Bλ U B2 and Bx Π B, = {0,1}.

LEMMA 3.1. // S has a zero (0) and each point of E(S) lies on
a thread in S containing 1, then each point of S lies on a thread in
S from 0 to 1.

Proof. Since 0eE(S), there exists a thread T from 0 to 1 in S.
Let eeE(S). Then there exists a thread To from e to 1 in S.

Now eT is a thread from 0 to e in S. Thus eT[j To contains a thread
T(e) from 0 to 1 in S such that ee T(e). Hence, if eeE(S), then e
lies on a thread T(e) from 0 to 1 in S.

Let xeS\E(S). Then, by Corollary 2.3, x lies on an unique U-
semigroup I in S. Let z denote the zero of I and u the identity of
/. Since z,ueE(S), there exists threads T(z) and T(u) from 0 to 1
in S such that ze T(z) and ue T(u). Thus T(z) U /U 2W contains a
thread ϊ71 from 0 to 1 in S such that x e T\

LEMMA 3.2. // E(S) = {0,1}, then OeB.

Proof. Suppose OgjB. Let xeB\E(S). Then B\[x] Φ •• Let
p e I?\[#]. Since [x] f lΰ is closed, there exists a point y in the arc
from p to a? on B which does not contain 1. Then [y] must meet [p]
or [x] in a point g not in E(S). Thus # lies on two distinct U-
semigroups in S. This is a contradiction to Corollary 2.3. Hence
OeB.
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LEMMA 3.3. Suppose S has zero (0) and 0 e B. If each of Bλ

and B2 is a thread, then S = BJ$2 — B2Bλ.

Proof. Now 1 G Bλ n B2. Hence B c BλB2. Define φ: BλB2 B2->S
by φ(φj>29 b)) — bj)2 b. Then φ is continuous, φ((bj>2, 0)) = 0, and
φ((bj)2,1)) = bj>2. Hence BJB2 is contractible, and thus S = BλB2.
Similarly, S = B2BX.

LEMMA 3.4. Suppose S has a zero (0) and 0 e B. If each point
of S lies on a thread from 0 to 1 in S, then each of Bλ and B2 is
a thread.

Proof. Let x and y be distinct points of l?i\{0,1} such that y
separates x from 1 on ΰ l t Suppose [x] Φ [y]. Let Tx and T2 denote
threads from 0 to 1 in S containing x and y respectively. Then, since
y separates x from 1 on Bu TXΓ\ T2 contains an idempotent / such that
xf = x and fy = /. Hence xy = (xf)y = x(fy) = xf = x. Thus, if y
separates x from 1 on Bλ and [x] Φ [y], then xy = x.

If BJ\E(S) = D, then the fact that J5X is a thread follows from
the preceding paragraph. Suppose Bι\E(S) Φ D. Let zeB^[E(S).
Then there exists a [/-semigroup I in S such that ze I. Let α be the
zero of / and b the identity of /. Let M be the component of IΠ Bλ

containing z, h — inf M, and g = sup M in the cut-point ordering (<()
of Bλ from 0 to 1. Since Λ, = inf M, there exists a sequence {&J of
points of B\I such that hn < h for each weiV and hn—>h. Thus,
by the preceding paragraph, hnh = fen for each neN. Since multiplic-
ation is continuous in S, hji —> fe2. Hence fe = /̂ 2. Since he I,a = h.
Similarly, g = b, and hence ICLBX. Thus Bj is a thread. Similarly,
B2 is a thread. This completes the proof of Lemma 3.4.

A commutative UDS S can be considered to be a generalization
of a semilattice (a commutative idempotent semigroup). Indeed, if
S — E(S), then S is a semilattice. Consequently, Theorem 3.5 is a
generalization of Theorem 3 in [1].

If S is commutative, then the kernel K (the minimal ideal) of S
is a compact connected group. Hence K is either the circle group C
or a point. It is not difficult to show that K is uniquely divisible.
Thus, since C is not uniquely divisible, K is a point. Hence, if S is
commutative, then S has a zero (0).

THEOREM 3.5. If S is commutative and 0 e B, then these are
equivalent:

(i) each point of E(S) lies on a thread in S containing 1;
(ii) each point of S lies on a thread from 0 to 1 in S;

(iii) each of Bx and B2 is a thread;
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(iv) S is the continuous homomorphic image of the cartesian
product of two threads.

Proof, (i) implies (ii). [Lemma 3.1].
(ii) implies (iii). [Lemma 3.4],

(iii) implies (iv). By Lemma 3.3, S = BJ32.
Define ψ: Bx x 1?2 —> S by ψ{{bλ, b2)) = bλb2. Then ψ is a continuous
homomorphism onto S.

(iv) implies (i). Let Iλ and I2 be threads and φ a continuous
homomorphism of Ix x I2 onto S. Let geE(S) and peφ~\g). Then
there exists a thread from (0, 0) to (1,1) in Iλ x I2 containing p.
Hence, by Theorem 2 of [3], φ(T) is a thread in S containing g and 1.

COROLLARY 3.6. If S is commutative and E(S) = {0,1}, then S
is iseomorphic to (I x 1)1 J, where I = [0,1] is a U-semigroup and J
is the ideal {(x, y): x = 0 or y = 0}.

Proof. By Lemma 3.2, 0 e β. By Theorem 1 in [7], there exists
a thread from 0 to 1 in S. Therefore, by Theorem 3.5, each of Bx

and B2 is a thread, and thus are t/-semigroups. The map ψ: Bλx B2-+S
defined by ψ((bu b2)) = bj>2 is a continuous homomorphism of Bx x B2

onto S.

Suppose ψ((bu b2)) - 0. Then bxb2 = 0. Suppose bλ Φ 0 Φ b2. Then,
for each n e ΛΓ, 6;/wδ^ =• 0. But 6}/w -> 1 and &J/W -> 1. Thus 1 - 0 .
This contradiction implies that either bλ = 0 or δ2 = 0. Hence
ψ((bl9 b2)) = 0 if and only if (6X, 62) e / .

Suppose ψ((a, b)) = f ((c, d)), (α, 6), (c, d) e (J5X x B2)\J. Then αδ =
cd. Since J5X and i?2 are Z7-semigroups, there exist pzBx and qeB2

such that one of the following cases hold:
(i) a — cp and b = dg;

(ii) a = cp and ώ = δg;
(iii) c — ap and 6 = dg:
(iv) c — ap and cZ = δg.
We will assume that case (i) holds. The proof for the other cases

is similar. Thus we have cp-dq = cd. Hence (pq)(cd) — cd. Let
x = pq and y = cd. Then xy = y. Hence, for each neN, xny = y.
If x Φ 1, then xn —> 0. Thus, if x Φ 1, then y = 0, and hence cd = 0.
By the preceding paragraph, either c = 0 or cί = 0. But c Φ 0 Φ d.
Hence x = 1 and pg = 1. Then for each neN, pnqn = 1. If p =£ 1,
p71 —> 0, and hence 0 = 1. Similarly, if q Φ 1, then 0 = 1. This con-
tradiction implies that p = q = 1. Thus a = c,b = d, and (α, 6) = (c, d).
Hence ψ* is one-to-one on {BJE>2)\J, thus completing the proof of the
corollary.
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