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LINEAR FUNCTIONALS ON ORLICZ SPACES:
GENERAL THEORY

M. M. RAO

Let Φ be a generalized Young's function and Lφ the
corresponding Orlicz space, on a general measure space. The
problem considered here is the characterization of the dual
space (Lφ)*, in terms of integral representations, without any
further restrictions. A complete solution of the problem is
presented in this paper. If Φ is continuous and the measure
space is sigma finite (or localizable), then a characterization
of the second dual (Lφ)** is also given. A detailed account
of the quotient spaces of Lφ relative to certain subspaces is
presented; and the analysis appears useful in the study of
such spaces as the Riesz and Kδthe-Toeplitz spaces.

The purpose of this paper is two-fold. First it contains a complete
study centering around the singular linear functionals, analyzing
certain factor (or quotient) spaces, of the Orlicz spaces. Second, the
so-called 'generalized Young's functions' and the associated Orlicz
spaces, and their adjoint spaces, are also considered. (Precise defini-
tions will be given later.) The work here is a continuation of [19]
and the notation and terminology of that paper will be maintained.
However, the theory presented here subsumes [19], and the exposition
is essentially self-contained.

If Φ and Ψ are complementary Young's functions (cf. Definition
1 below), let Lφ and U be the corresponding Orlicz spaces on a (not
necessarily finite or even localizable) measure space (Ω, Σ, μ) which
has only the (nonrestrictive) finite subset property. This latter means
that every set of positive μ-measure has a subset of positive finite
μ-measure. Then the representation problem for continuous linear
functionals on Lφ is to express them as integrals relative to appropriate
additive set functions on Σ. In [1] and [19] certain general integral
representations of such elements were obtained when the Young's
function Φ and the measure μ satisfy some restrictions. If ^/ί/φ is
the closed subspace of Lφ spanned by the «-step functions then
x*e(Lφ)*, adjoint of Lφ

9 is termed singular if x*(^/έ/φ) = 0, i.e.,
x* e (^f/φγ, and it is absolutely continuous if there exists a ^ e ^/?φ,
and x*(χE) Φ 0, where χB is the indicator of EeΣ. It is known that
{^//ΦY Φ {0} if Φ is continuous and grows exponentially fast. In
Theorem 2 (and hence 3) of [19] it was announced that every x* e (I/)*

is of the form x*(f) — \ fdG for a certain additive set function G.

However, the result was proved only for such x* that x*(χE) Φ 0 for
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at least one χE e ^//φ, and the case that x* e {^Φ)L was inadvertently
left out. Thus Theorems 2 and 3 of [19] must be understood as
results on representing absolutely continuous linear functionals on Lφ

in the sense defined above where Φ is a Young's function. The result
is restated precisely in Theorem 1 below for completeness. Moreover,
it is shown later (Proposition 2) that (Lφ)* admits a direct sum
decomposition consisting of the singular and the absolutely continuous
elements. Also the generalized (or the extended from the original
version of) Young's functions are considered in detail below. This
distinction is irrelevant for the elementary theory of Orlicz spaces
(such as completeness, etc.), or if the underlying measure μ is finite,
but will be relevant for the study of the adjoint spaces and the
understanding of their structures when μ is nonfinite. This will be
clear from the work of § 3 and § 4 below.

The main contribution of this paper is the complete characteriza-
tion of (I/)*, the adjoint space of Lφ, when both Φ and μ are general.
This is achieved by considering, somewhat more generally, the properties
of certain factor spaces of Lφ which in particular illuminate the
structure of singular linear functionals. Also the (Lφ)*-space when Φ
is a 'generalized Young's function' is considered and characterized.
Moreover, the general methods presented here are applicable in analyzing
the more general Banach function spaces such as the Kδthe-Toeplitz
spaces [12] and their extensions [15]. A brief summary of the results
is as follows.

After preliminaries in the next section, representation theorems,
extending the work of [1] and [19], are proved in §3. These results
are further extended, when Φ is a generalized Young's function, in
§ 4. Some miscellaneous results are given in § 5 where the current
status of the work, and the representation of the elements of (I/)**,
and related problems are discussed.

2* Preliminaries• It is convenient to start with some definitions.
The following is essentially the concept introduced in [24]. (cf. [27]
and [13].)

DEFINITION 1. A symmetric convex function Φ defined on the
line with 0(0) = 0 is said to be a Young's function if it is either
discontinuous, i.e., Φ(x) is continuous for 0 ^ | x | ^ xu Φ(x) = co for
\x\ > x19 or, if continuous satisfies Φ(t) > 0 for t > 0. A function Ψ
is said to be (Young's) complementary function to Φ and is defined
by

(2.1) Ψ(x) = sup {| x I y - Φ(y): y^O}, - co < x < M .

It is seen that ¥(•) is a symmetric convex function on the line
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with Ψ(0) = 0, but if Ψ is continuous it may fail to be a Young's
function in the above sense. However it can be described by

DEFINITION 2. A symmetric continuous convex function Φ, with
0(0) = 0, defined on the line is said to be a generalized Young's
function, if Φ(x) = 0, for 0 <Ξ x <S α, for some finite positive number
a.

Note that a discontinuous generalized Young's function and the
discontinuous (ordinary) Young's function are the same. (However,
the trivial Φ, taking only 0 and +°°, will be excluded.) Thus the
complementary Young's function can be a generalized Young's function
(as simple examples show). Clearly (2.1) implies the Young's inequality

(2.2) xy ^ Φ(x) + Ψ{y) .

There is equality if and only if either x = Ψ'(y) or y = Φ'(x). [Φ', Ψ'
stand for the right derivatives of Φ, Ψ which exist everywhere (cf.
[13], p. 5), and which are nondecreasing and right continuous.] In
what follows the above terminology will be used without further
mention. Thus (Φ, Ψ) denote complementary (generalized) Young's
functions. Some needed preliminary results will be proved in this
section.

The set Lφ is a subspace of all measurable real functions on
(Ω,Σ,μ) such that feLφ if and only if | | / | | # < oo or Nφ(f)< oo
where

(2.3) ||/!|Φ - sup {jj/or | dμ: \ψ(ϋ)dμ S l} ,

and

(2.4) Nφ(f) = inf he > 0: [φUλdμ £ l} .

Then \\ \\φ and Nφ( ) are norm functionals and they define the same
topology for Lφ in the sense that

(2.5) NΦ(f) ^ H/IU ύ 2NΦ(f) , feLφ .

With these norms Lφ becomes a Banach (or B-) space. The proofs of
these results may be found in ([13], [15], [26], or [27]). The set
Lφ is the (not necessarily linear) class of functions feLφ for which

I Φ(f)dμ exists. [Strictly speaking, Lφ is the space of equivalence

classes of measurable functions and so feLφ means that / is any
member of the class to which it belongs.] All the results of this
paper are valid for complex functions also.

In general the inequalities in (2.5) cannot be improved, as seen
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from the case that Φ(x) — \ x \p, p Ξ> 1. This is further illuminated by
the following result.

LEMMA 1. Let Φ and Ψ be continuous Young's functions that
are complementary. Then for feLφ, \\f\\Φ = Nφ(f) if and only if
f = 0, a.e. [μ].

Proof. The 'if being obvious, suppose conversely that
Nφ(f). If / = 0, a.e., is false then Nφ(f) > 0 and it may be assumed,
by a normalization if necessary, that Nφ(f) = l( = \\f\\φ). Since Φ
and Ψ are continuous, a result of ([13], p. 92) is applicable and there
exists a bounded sequence of numbers {kn} such that

(2.6) 1 = lim-i-fl + f Φ(Kf)dμ) .
w-oo fCn \ JΩ J

So for any ε > 0, there is an nε such that n ;> nε implies

(2.7) (1 + ε)kn ^ 1 + ( Φ(Kf)dμ > 1 .
JΩ

Thus limn^k% ^ (1 + ε)~\ Since ε > 0 is arbitrary \imn^ookn ^ 1, so
there exists a subsequence, which is again denoted by {kn} itself for
convenience, such that in (2.7) kn >̂ 1. If kn = 1, then (2.7) implies

\ Φ(f)dμ ^ ε. But from the arbitrariness of ε, this implies / — 0,
)Ω

a.e. (since Φ(x) > 0 for x > 0), which is impossible. Thus kn > 1 for

all large enough n. Consequently (2.7) gives, \ Φ(af)dμ < oo for
JΩ

some a > 1. From this result and ([27], p. 175, below eq. (10.20))

one can conclude that \ Φ(f)dμ = 1. Thus, the convexity of Φ, and
)Ω

(2.7) imply

(2.8) oo > ( l + ε)kn ^ 1 + kλ Φ(f)dμ = 1 + kn > 2 .

Since ε is arbitrary one has from (2.8) the inequality

(2.9) oo > lim kn ^ 1 + lim kn ^ 2
which is impossible. This shows that / = 0, a.e. must be true, com-
pleting the proof.

REMARKS. 1* This lemma says that, unless Φ or Ψ is discontinu-
ous, the inequalities in (2.5) are strict if / Φ 0, a.e.

2. If Φ and Φ' are continuous then there exists a k for which
(2.6) holds (without the limit there) by ([13], pp. 92-93). It was
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proved in ([20], Th. 4) that under this hypothesis one always has

Φ(f/NΦ(f))dμ = 1.

3. The structure of continuous Young's functions may be illumi-
nated by the following remark: If Φ is a continuous Young's function
then it is always possible to find a strictly convex Young's function
Φ1 such tha Φ[ is strictly increasing (continuous) and Φ(x)^Φi(x)^2Φ(x),
for all x (so Lφ and IΛ are topologically equivalent). This follows
from the constructions of Young's functions given in ([13], p. 21).
In fact, let Φ[{u) = Φ'(u)(l + a(u)), where a(-) is a strictly increasing
continuous (probability) distribution on the positive line, e.g. a(u) —

S \x\
Φ[(u)dμ. Clearly Φ1 satisfies the require-

o

ments stated above. Moreover, since Φr can be taken continuous by
a redefinition (e.g., joining the discontinuities with straight line seg-
ments; cf. [27], p. 25), it follows that Φ[ is also continuous.

Let ^//φ be the closed subspace of L* spanned by all step functions.
[A step function takes finitely many finite values on measurable sets,
possibly of infinite measure.] Let Mφ = {/: I Φ(kf)dμ< oo, all k>0}.
Then Mφ is also a J5-space (the same space with the same notation
as introduced in [19]). The relation between these space is given by
the following:

LEMMA 2. M φ g ^ f φ g i φ , There is equality between the first
two spaces if Φ is a continuous Young's function. The last two
spaces are equal if Φ is a discontinuous Young's function and
μ{Ω) < oo or Φ is of the form Φ(x) = 0 for 0 £ x ^ x0, = Φ^x) for
XQ ^ Φ ̂  #i 0Md — oo for x > χί (and μ(Ω) ̂  oo) where Φ1 is a con-
tinuous convex function such that Φλ(x) > 0 for x > xQ and x0 > 0.

Proof. The inclusions are clear. If the Young's function Φ is
continuous then every step function in Lφ is also a //-simple function
(i.e., a step function that vanishes outside a set of finite //-measure),
since every element of ^fφ must vanish outside a set of σ-finite
measure. So by ([19], Lemma 2) it follows that Mφ = ^£φ. (Note
that if Φ does not satisfy a growth condition, [13], or grows expon-
entially fast then ^ ^ g i ^ holds. If Φ is discontinuous, then it is
clear that Mφ = {0} so that Mφ^^/Φ. This proves half of the
lemma.

About the second equality, if Φ is discontinuous, it follows from
the definition, of the norm (2.4), that every element of Lφ is essentially
bounded so that Lφ c L°° always holds. If the discontinuous Φ is such
that Φ(x) = 0, for 0 ^ x ^ x0 where xo> 0, then Lφ = L°° since feL°°
implies, for some k > 0, 0 ^ (\f\/k) ^ α?0, a.e. [μ], so that feLφ, by
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(2.4). If x0 = 0 in the above and Φ is discontinuous (but is a positive
convex function for x <̂  xγ as in the lemma), and if μ(Ω) < oo then
every / in L°° satisfies, 0 ^ (\f\/K) < Xi for some fc0 > 0. Hence

< CO

so that feLφ. Thus in both these cases Lφ = L°°. Moreover every
feLφ satisfies (cf. (2.4) again) | i / |U ^ xxN0(f) where ||-1[«, is the
essential supremum norm of L°°. Since 1/ and L°° are both J3-spaces
and contain the same elements it follows by an application of the
closed graph theorem, on using the inequalities between the norms
just noted, that the norms || ||oo and Nφ(>) are equivalent (cf., [22],
Ex. 2, p. 184) and hence also that j|-1)<« and \\-\\φ are equivalent, by
(2.5). But step functions are dense in L~ by ([6], p. 296). Since L°°
and Lφ are topologically equivalent under conditions of the lemma,
proved above, it follows that Lφ = ^/fφ in these cases. This completes
the proof.

REMARK. The above proof shows that, if μ(Ω) = oo, and Φ is
discontinuous, Z/giL0 0 can happen only if Φ{x) > 0 for 0 < x ^ xl9

and = oo for x > xlm Note that the nonfiniteness of the measure
space does interfere in the treatment here. For this Φ, ̂ //φ is just
the closure of simple functions in Lφ since then each step function
is a simple function. Also if Φ is any continuous generalized Young's
function, then Mφξ^ ^///φ can happen. In this case Φ is not a Young's
function and Lr^^//Φ holds, and in fact ^ φ is then the Z/~closure
of L°°. It should also be remarked that in this case, ^//φahφ holds
only if μ(Ω) < oo in addition to the continuity of Φ, since then
Mφ = ^f/φ. [Simple function = step function with support of finite
measure.]

Motivated by the above lemma the set Lφ — ^//φ will now be
examined. However, this set is not even linear (since the difference
of two functions in it can belong to ΛZ Φ) and moreover the structure
of functions that are not in ^//φ is desired. So it will be appropriate
to consider ^//"φ = Lφ\^/Sφ, the factor or quotient space of Lφ relative
to ^fΐίφ. Thus /i ,/ 2 in Lφ belong to the same equivalence class (or
coset) in <yf/"φ if and only if fz = f1 + g, a.e., for some g in ^/fφ.
The norm d( ) in Λ"φ is given by: if fe^Kφ (i.e., / = / + ^ φ ,
feLφ) then

(2.10) d(f) = mΐ{\\f+g\\Φ:ge^//φ} .

[Hereafter when no mention is made, Φ may be either an ordinary
or a generalized Young's function.]

The mapping λ: Lφ —* <yl/"φ is the canonical mapping of Lφ onto
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^4^φ, and is continuous in the metric defined by (2.10). The following
facts on factor spaces will be needed in the sequel.

LEMMA 3. (i) Λ~φ is a B-space with (2.10) as norm and λ
maps the open unit ball of If onto the open unit ball of Λ^φ.
(ii) If {^//ΦY is the annihilator of ^fφ (i.e., the set of elements
of (Lφ)* that vanish on ^y//φ), then there is an isometric isomorphism
of (^fφ)λ onto all of (^Ϋ"φ)* given by the mapping, j : x*
%*£(^/SφY and z*e{tyKφ)*, the z* being defined by z*(f +
x*(f). [Thus, #* e {^//ΦY if and only if j(x*) = z* e

The statements (i) and (ii) are immediate consequences of the
facts about factor spaces in general J5-spaces ([6], p. 72; [22], p. 105).
These properties clarify the structure of (Λ?*)1. Because of (ii) of
the lemma, (^ΦY and {^4^ΦY can and will be identified below, if
there is no confusion. It will follow from results (Propositions 2, 3)
in the next sections (after the introduction of some new concepts),
that (L*)* admits a direct sum decomposition into complementary
subspaces one of which is {^tφ)L.

The first part of the above lemma for the particular space ^ί^φ

can be specialized as follows, and this is useful later.

LEMMA 4. Let Lφ be given the norm (2.3). Then X(LΦ) is mapped
into the closed unit ball of ^4^φ, and λ(Lφ) contains the open unit
ball of ^yi^φ, where X:LΦ—•+Λ^0 is the canonical map and Lφ was
defined after (2.5). The inclusions above can be proper.

The proof of this lemma may be found in ([13], p. 82) for a
finite nonatomic measure and for a continuous Young's function Φ,
where Lφ has norm (2.3) as here. The same proof also holds verbatim
for general μ and continuous Φ. If Φ is discontinuous and μ is
nonfinite, then the only case when ^4^φ Φ {0} is when Φ(x) > 0 for
0 < x ^ Xj_ and = oo for x > xt (where Φ(x) is continuous on 0<a?<a?1)
as shown in the proof of Lemma 2. In this case the proof that λ(Lφ)
is mapped into the closed unit ball of ^4^φ, given in ([13], p. 82),
again holds without change as before. On the other hand, if d(f) < 1,
then, by definition, there is an fef such that | |/ |U < 1 and by (2.5)
Nφ(f) < 1. So feLφ and fe\(Lφ). Hence λ(Z>) contains the open
unit ball of ^Vφ, as desired.

The lattice structure of the spaces Lφ, Lφ and <yy~φ is needed and
it will be discussed now. It is clear that Lφ is a Banach lattice,
where the ordering / <̂  g stands for / ^ g, a.e. With this ordering
Lφ is a lattice, since /, g in Lφ implies clearly inf (/, g)eLφ, and if
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h = sup(/, g), then

Φ(h)dμ = I Φ(f)dμ + I Φ(g)dμ < oo ,
Ω JΩ1 JΩ2

where Ω, = {ω: f(ω) ^ g(ω)} and Ω2 = Ω - Ωly so that ΛeL*. The
quotient space κyf/"φ{ = Lφj^fφ) inherits a 'natural' ordering from that
of ZΛ With respect to that ordering Λ ~φ is also a vector lattice.
The ordering and the proof that ίyί/"φ is a vector lattice follow.

If /, g are the elements (cosets of /, g in Lφ) in %ArΦ define f ^ §
if there exist an / o e / and #o€0 such that fQ ^ #0, a.e. It is clearly
reflexive, and to see transitivity, let / , g, h be in ^4^φ such that
f ^ g and g ^ h. Then there exist /0, g0, gι and /̂  such that / o e / ,
fifoe§, g^gyh^h and such that fo^gO1 9i^h19 a.e. If g2—gx — go(e ~^fφ),
then /2 = /0 + ^2 e / and f2 ^ gQ + g2 = gi £ hu a.e., so that f ^ h.
To see it is anti-symmetric, let j5, q in ^/~φ satisfy p ^ q and q ^ p.
Then there are p0, Pi in P, QΌ> 1̂ in q such that pQ ^ qO1 and ^ ^ p1?

a.e. If r = q1 - qo( e ^fφ), then p2 = p0 + r ^ q0 + r = qλ ^ ply a.e.,
so that 0 ̂  2>L — p2 = (Pi — Po) — ^ € o^"φ and 0 ̂  pL — gL ^ ^ — p2 e ^/έφ.
So p1 — q^^f0, since ^ ^ φ is 'normal' (i.e., ge^fφ, \h\ ^ \g\, a.e.
implies fc € ^J?φ). Thus both ^! and qγ belong to p. Consequently
p = q. It follows that ' ̂ ' is a partial ordering in ^//"φ. In a similar
manner it can be easily checked that for /, g in Λ^φ,fef,geg, if
h = sup (/, #) and ti = h + ^J?φ, then f ^ h and £ ^ fe and Λ e ^/"φ.
It therefore follows that t^^φ is also a vector lattice under this
ordering with h = sup (/, g) = f V g. Since under the norm (2.10),
the map λ is continuous (Lemma 3) it is trivial to note that the 'sup'
and 'inf (defined similarly and denoted V and Λ) operations in Λ^φ

are continuous so that it is actually a Banach lattice. These and
certain other lattice properties are summarized in the following.

LEMMA 5. The space Λ^φ with norm (2.10) is a Banach lattice
under the ordering: For /, g, e J / ^ define f ^ g to mean f ^ g a.e.,
for some fef and geg and if h = h + ^ φ where h — max (/, g),
then h—fVg is the 'sup' and similarly define the kinf* as Jc=fΛg.
\Then htίce^0.] Also f,ge\(Lφ) implies f Λg = ίceX(Lφ) and
f v g = heX{Lφ). Moreover, (^i^ΦY, the adjoint space, is also a
Banach lattice where the ordering is: For z*e(Λ/"φ)*, let z* ;> 0
if and only if z*(f) ^ 0 for all / ^ 0. Every z* in {Λ^Y can be
decomposed into the difference of two functionals as

(2.11) z* = (z*)+ - (z*)" , (z*)+ Λ (z*)~ = 0 ,

where (z*)+ are positive functionals. (F is a positive functional if
F(f) ^ 0 whenever / ^ 0.)
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Proof. The first part of the lemma, including the lattice property
of λ(£φ), is already proved in the preceding discussion, and this is
just a restatement. So consider {^Γφγ.

If O^f^g then by definition of norm (2.10), it follows that
d(f) £ d(g). So if z* e UΓT, then | **(/) | ^ || z* \\.d(f) g || z* \\.d(g),
and this means that each z* in {^VΦY is bounded on every order
interval, {f:ίc<,f^h} of Λ~*. Since Λ"φ is a vector lattice, it
follows by ([3], p. 88, 6(e)) that {,yf/"ΦY is also a vector lattice. By
([3], p. 99, Lemma 2) (<sK*)* is a Banach lattice since ^ί^φ is. Finally,
(2.11) holds in every vector lattice ([22], p. 391) and (<yKφY is just
shown to be one. This completes the proof of the lemma.

Another important property of the elements of {.y\^φY is given
in

LEMMA 6. If z* e (^TΎ and \z*\ = (z*)+ + (z*)~, where (z*)* are
the same symbols given in (2.11), then

II z * II - III z * III = s u p {| z* I ( / ) : 6 £ f e λ ( L * ) }

= l l ( « * ) + l l + l l ( « * ) - | | .

In fact, if zf and zf are any two positive elements of (Λ"*φ)*, then

(2.13)

Proof. The equality between the first three quantities of (2.12)
holds in any Banach lattice on replacing X(LΦ) by the unit ball there.
Since the norm is determined by the elements of the closed or open
unit ball in a l?-space, and λ(Lφ) contains the open unit ball of ΛrΦ

and is contained in its closure (by Lemma 4 and Lemma 3(ii)) it
follows that the norms of the elements of {Λ/"*)* are determined by
the elements of X(LΦ) alone. With this, the proof of all the equalities
of (2.12) is similar to that given in ([22], p. 396), for the space of
continuous functions with compact support, with simple modifications.
The needed modifications will be indicated by proving (2.13) here.

Since || z? + z2* || ^ || z? || + || 22* || is always true for any sf, zξ in
(^VΦYJ the hypothesis zf ^ 0 is needed only for the opposite inequality.
The nontrivial case is when both zf, z2* are nonvanishing. Since, by
Lemma 5, f,ge λ(Lφ) implies / V g e λ(Lφ) and by the preceding
paragraph \\zf\\ = sup {«*(/): 0 ̂  fe λ(Lφ)), given ε > 0, there exist
6 ^ £ e \(L*), such that Jl zf \\ ̂  zfif,) + ε/2, i = 1, 2. If fe - Λ V Λ,
then h e λ(Lφ) and /* ̂  Λ, and since zf is order-preserving, it follows
that

II s? II + II z* II - e ̂  z*&) + zUΛ) £ (zΐ + zi)(K) £ || zf + zf \\ .
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From the arbitrariness of ε, the desired inequality is obtained from
the above. This proves (2.13), and the lemma follows as indicated.

REMARK. 1. The equation (2.13) implies (Λ^φ)* is an abstract
L-space in the sense of Kakutani [10], and (even only with (2.12)
{^ί^ΦT is an abstract Banach lattice, in the sense of ([3], p. 98)).
Hence, from the general properties of such lattices,

(9 1 Ψ\ II ** 4 - ** II — II ** r * II i f I ** I Λ I ̂ * I — Π
{Δ.Lό ) I) Zλ -f Z2 || — || «i — Z2 | | , I I | Zx \ /\ | Z2 | — U .

2. The results of Lemmas 5 and 6 and the discussion preceding
Lemma 5, show that one can treat Λ/~φ simply as a Banach function
space with / in Λ^ as a function to mean any member / of /. This
is no different from considering Lφ (or Lv) as a Banach function space
by treating / in Lφ (or Lv) as a function to mean a member of its
equivalence class. The ordering introduced in ^>"φ simply emphasizes
this point. For this reason (when no confusion results), hereafter
^A^φ can he treated, and referred to, as a Banach function space.
Thus, the decomposition (2.11) may also be obtained formally from
the classical case (cf., [25], p. 192). Moreover z* in {.yΓφ)* is positive,
with the ordering in ^4^φ, if and only if i"1^*) in (^f/φ)L is positive
in the usual order of ZΛ In fact, the order in ^/^φ was motivated
by this fact and avoids the cumbersome references to {^/fφ)L at every
stage. Here it may be mentioned that this point of view extends
naturally for spaces of set functions and others as well. Mr. J. J.
Uhl, Jr., has recently exploited this point successfully in his thesis
[23], and proved several results on Orlicz spaces of finitely additive
set functions.

3* Representation theorems. In this section various (integral)
representations of continuous linear functionals on Lφ spaces, where
Φ is a Young's function will be presented, culminating in a complete
characterization of (Lφ)* in Theorem 4 below. Hereafter all set
functions will be assumed to have the (convenient) finite subset pro-
perty, FSP, as discussed in some detail, for instance, in ([20], pp.
672-673).

It is convenient to call a Young's function Φf purely discontinuous
if Φ(x) = 0 for 0 <̂  x ^ x0, x0 > 0, and Φ(x) > 0, for x0 g x ^ x19 = oo
for x > xu and continuous in the extended sense (this was introduced
in [17], p. 1452), if Φ(x) and Φ'(x) are continuous for 0 ^ x < x0,
Φ'{x) > 0 for x > 0, x0 > 0 and Φ(x) —> oo and Φ'{x) —> oo as x —> x0.
Note that both these situations can occur for a discontinuous Young's
function.

DEFINITION 3. Let Φ be a Young's function and Aφ(μ) be the
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class of real additive set functions on Σ, vanishing on μ-null sets,
and satisfying the conditions: (i) (a) if the complementary function
Ψ of Φ is not purely discontinuous, then G on Σu the ring of sets
of finite /^-measure in 2, is not identically zero and (b) if Ψ is purely
discontinuous, then G is defined on all of 2, (ϋ) | |G|U < c o where

( 3 1 } fClFW
IΦ(G, E) = sup Σ n-^j^T

and where the supremum is taken relative to all finite disjoint collec-
tions of sets {Ei} c Σi Π E, if Ψ is not purely discontinuous and replace
Σj_ by Σ otherwise in the last inclusion; and IΦ{G) — IΦ(G, Ω).

REMARK. It may be noted that if Ψ is purely discontinuous with
0 < x0 < xι < co in its definition (i.e., Ψ(x) = 0 for 0 < x <S x0, x0 > 0
for x0 <S x ^ xu and = co for x > xj then from the relationship
between Φ, Ψ it follows that xQ\x\ ^ Φ(x) ^ x1 \ x |, for all x (see, e.g.
[13], p. 11), and conversely. Thus in the above definition any reference
to Ψ may be suppressed, if so desired, using the fulfilment (or other-
wise) of the above inequality. It should be remarked that in [15],
[17], and [26] Φ' was taken to be left continuous whereas in this
paper and in [13] it is right continuous.

For the generalized Young's functions a slightly different formula-
tion of the above definition is useful. [Compare with ([7], p. 592),
where a similar concept was briefly discussed.] This will now be
introduced and shown to be equivalent to the above definition for
Young's functions.

DEFINITION 4. Let Φ be a (generalized) Young's function and Ψ
its complementary function (cf. (2.1) or [26], or [15]). Let Af

φ{μ) be
the class of real additive set functions G on Σ, vanishing on //-null
sets, such that | | | G | | | Φ < °o where

(3.2) | | | G | | | #

Here the integral relative to the finitely additive set function G is
understood as in ([6], Ch. Ill, or [2]), and || | | r is defined in (2.3).

That (3.1) and (3.2) are norms and Aφ(μ) and Aφ(μ) are normed
linear spaces is obvious. The relation between these spaces is given
by the following.

LEMMA 7. Let Φ be a Young's function. Then Aφ(μ) = AΦ(μ)
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in the sense that they contain the same elements. Moreover, for any
G e Aφ(μ), if the complementary function Ψ is not purely discontinuous,
then

(3.3) | | G | | # ^ | | | G | | U ^ 2 | | G | U ,

and if Ψ is purely discontinuous one has

(3.4) av(G) £ HI G \\\Φ £β\\G\\Φ£ ΊV(G)

where a, β and 7 are positive constants depending on Φ (or rather
x0 and Xj) and where v(G) is the total variation (norm) of G.

Proof. It is sufficient to prove (3.3) and (3.4). Suppose first
that Ψ is not purely discontinuous. If GeAφ(μ) is null then (3.3) is
true and trivial so if G Φ 0, it may be assumed that | | | G | | | * = 1.
Let feLψ be a simple function such that | | / | | r ^ 1 , / = Σ?=i α iZ^
where 0 < μ(Ei) < oo, E{ disjoint, and a, = Φf(G(Ei)jμ(Ei)) sgn (G(E )).
This is possible since the a{ may be replaced by aa{ in the represen-
tation of / and a may be taken as fll/Hr)"1 if II/Ik > 1. Then one
has

1 >

= Σ
i

by the condition for equality in (2.2), (cf.
[26], or [15]),

6 IKftf><*•>•
Since {J5J c Σt is arbitrary, it follows from the above that IΦ(G) ^ 1
and hence \\G\\ΦS 1 = | | | G | | | # so that half of (3.3) is proved. For
the second half, let | |G|U = 1, and / = ΣLiδίX^ be any other simple
function such that (for convenience) | | / | | Γ <£ 1. Then

LH =
^ Σ Ψ(bi)μ(Et) + Σ

by Young's inequality (2.2),

^ ( Ψ(f)dμ + IΦ(G) ^ 2 .

Since / i s arbitrary, this implies || | G\\\Φ ^ 2 = 2 || G \\Φ. This completes
the proof of (3.3).
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For (3.4), let Ψ be purely discontinuous. Then by the remark
following Definition 3, and (3.1), one has

xov(G) = sup [x0 g I G(Ei) |] ̂  IΦ(G) ̂  sup xξ± | G(E{) |] - xMG) .

Hence xov(G) g \\G\\Φ ^ xMG), i.e., || ||φ and the variation norm are
equivalent. On the other hand, as shown in the proof of Lemma 2,
in the present case II' = L°° = /̂fF and since || / | U ^ XiN¥(f) ^ a?x | |/||? ,
the norms are equivalent. So there is a positive constant a0 (depending
only on Ψ and hence only on Φ) such that aQ \\f\\Ψ ^ | | / | U £ x± \\f\\w

Since sup j l ί fdG : | | / | U ^ l } = v(G) (cf. [6], p. 296) it follows that
II Jβ J

<*o III G HI* g v(G) ^ a?i | | | G | | | r , i.e., || | ||U and the variation norm are
equivalent. Thus this and the earlier inequality imply (3.4) at once,
for some appropriate (positive) constants a, β and 7, completing the
proof.

REMARK. In view of the above lemma hereafter the prime on
Aφ(μ) can and will be dropped. Also if x0 — xλ = 1 then it can be
seen that, in (3.4), a = β — y — 1 and there is equality throughout.

The inequalities (3.3) may be refined in many cases. This can
be seen after proving the following

LEMMA 8. If Φ is a Young's function such that its complemen-
tary function Ψ is continuous, then every member of Aφ(μ) is
countably additive.

Proof. When Ψ is continuous, by ([19], Lemma 6) every G e Aφ(μ)
is /^-continuous, i.e., | G(E) | —> 0 as μ(E) —> 0. Hence if {En} c Σx and
the En decrease to 0 , the empty set, then | G(i57w) | —̂  0 so that G( )
is continuous at 0 . This implies in turn that G is countably additive
on 2Ί. So by standard extension procedures of measure theory (cf.
[9], p. 54), G is countably additive on the <7-ring S(2Ί) generated by
2Ί. It remains to show that there exists a set E in S(2Ί) such that
G coincides with its restriction GE to E, (i.e., GE = G(E f] •))• This
is seen as follows.

From the definition of IΦ(G, A) in (3.1), it is not hard to see that
IΦ{G, •) is an additive set function on Σlt (Details of computations
of this remark were given by Uhl [23].) It is clear that Iφ(Gt A) = 0
if μ(A) = 0. Since the complementary function Ψ of Φ is continuous
by hypothesis, it follows again by ([19], Lemma 6) that /Φ(G, •) is
^-continuous. But then as in the preceding paragraph IΦ(G, •) must
be countably additive on S(2Ί) and by hypothesis IΦ(G, Ω) < oo. Hence
by definition in (3.1), since Iφ(Gf •) is a measure, there exists a sequence
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{An} c Σu An c An+l1 such that l i π w IΦ(G, An) = /#(G). If # = UϊU An,
then it follows easily that IΦ(G, E) = /Φ(G) < oo, Ee S φ ) , and
IΦ(G, JS7') = 0 where Er = Ω - E (cf. also [19], p. 80). This means
G = GE, as was to be proved. [An alternate proof can be given using
([16], Theorem 7.1).]

In view of the preceding lemma the following result is of interest
as it improves upon (3.3).

COROLLARY. If Ge Aφ{μ) is countably additive (in particular
if the complementary function Ψ of Φ is continuous) then

(3.5) | | G | L = | | | G | | L .

Proof. If G is countably additive, and since it vanishes on /*-null
sets, it follows that, by a generalized Radon-Nikodym theorem (cf.
[16], p. 336), there exists a quasi-function g* (i.e., one which is
consistently equal to a measurable function on sets of finite μ-

measure) such that G(E) = \ g*dμ, EeΣ, and then by ([19], Lemma
Φ(g*)dμ. (Integrals are defined for quasi-f unctions, as

Ω

pointed out in [16].) This and (3.3) imply (see also (2.4)) immediately
| |G| | Φ = Nφ(g*). But simple functions in Lφ are norm-determining so
that

II G | | # - NΦ(g*) = s u p { | \ f f d μ \ : II/Ik ^ 1 , / simple}

This completes the proof of (3.5).
In terms of the work of this paper, the main result of [19] will

be restated more precisely as follows. Hereafter, unless the contrary
is stated, the norm in Lφ is that given by (2.3) and that in Lψ (Ψ
complementary to Φ) is that qiven by (2.4). Also Φ stands for a
Young's function.

THEOREM 1. For each x*e(^//φ)*, the adjoint space of ̂ /fφ,
there exists a unique GeAΨ(μ)1 such that

(3.6) x*(f)=\fdG,
JΩ

and

( 3 . 7 ) || a?* || = W G I I I r ,

so that || x* || = || G | | r if Φ is continuous and a \\ x* \\ <̂  || G \\Ψ ̂  β\\x*

for some positive a, β, depending only on Φ, otherwise.
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Proof. Since the proof of this result is essentially given in [19],
so only an outline (based on the preceding lemmas) will be presented
here for completeness. If GeAw(μ), and Φ is continuous, then, as in
the proof of the above Corollary, it follows that

&*(/) =\fdG=\ fg*dμ , fe
JΩ JΩ

By means of Holder's inequality, the above equation defines a bounded
linear functional and, by (3.5), | | α * | | = \\G\\Ψ = l l |G| | | r . If Φ is dis-
continuous, then for each EeΣu and GeAΨ(μ), (3.6) is well defined
for fe^fφ(E) = LΦ(E) = L~(E) where the latter symbols stand for
the spaces restricted to E. Moreover, (cf. [6], p. 296),

fdG
JE

by Lemma 7. Here k depends only on Φ, and GE is the restriction
of G to E. But λo( ) on Σt is a finitely additive bounded set function.
So by ([6], IV. 9.11) λ0 can be isometrically mapped onto a regular
countably additive bounded (by k \\f\\Φ \\ G\\Ψ = cή set function λ0

which satisfies the inequality | λo(Si) | ^ a < <», where St is the image
of Ω under the map. Using the isometry again one concludes that
I X0(Ω) I ^ α < oo, so that (3.6) defines a bounded linear functional on
not only ^ φ , but on Lφ itself. (The details of the compressed
argument here may also be found in [19], pp. 88-89.) Then (3.7)
follows from the definition of the norms involved. The last statement
now is a consequence of Lemmas 7 and 8.

Conversely if x* e ( ^ φ ) * , then G(E) = x*(χE), %E e ^ T φ , shows
that G is an additive real set function vanishing on μ-null sets, and
(3.6) holds for all simple / in ^//φ. If φ is purely discontinuous then
I G(E) \^\\x* || || %E |U ^ k || a;* || || χ0 |U = fc||aj*|| < ~ for some k > 0,
depending only on Φ, and where L°° = Lφ = ^fφ is used. But then,
by ([6], p. 97), v(G) ^ ft || »* || so that by (3.4), GeAΨ(μ) and, as in
the first paragraph, (3.6) and (3.7) hold in this case. If Φ is not
purely discontinuous, then a procedure similar to that in the proof
of Lemma 7 can be applied. Thus, excluding the true and trivial
case x* = 0, let / = Σ?-i <*«%**> 0 < μ(Et) < «>, where

Since / vanishes outside of a //-finite set, it follows that

| | / I U ^ ( Φ(f)dμ + 1< - ,
JΩ

(by Young's inequality and definition (2.3)) and one has
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1 + W * 1 * ί ^ = £•<!* II *«)
= ( Φ(f)dμ

JΩ

by equality in (2.2).

This implies, since {Ei}czΣi is arbitrary, || G | | r i* 11 x* \\ < °°. So
GeAψ(μ), and by the result of the first paragraph, (3.6) and (3.7)
hold for this G. Uniqueness being evident, the essential details of
the proof of the theorem are completed.

REMARK. The last part is again the same as in [19]. But it
should be noted that the employment of the two (equivalent) norms
in (3.1) and (3.2) makes the proof rather transparant in contrast to
using only (3.1) all the time.

As a consequence of the above result one has the following.

PROPOSITION 1. Let Φ be a Young's function and Ψ its comple-
mentary function. Then Lφ is reflexive if and only if Lφ = Mφ and
If — Mψ, where Mφ, (Mψ) is defined before Lemma 2.

Proof. If Lφ = Mφ and II = Mψ, then this implies Lφ = Mφ and
1/ = Mψ at once. In this case the result is immediate from Theorem
1, and was also given in ([19], Th. 5, cf. also [20], Theorem 4).
Conversely if Lφ is reflexive then, Lφ a (II)* c (Lφ)** = Lφ so that
(Lr)* = Lφ and, by a well known result of Pettis (cf. [6], p. 67), II
is reflexive. [Here, as usual, the inclusions and equalities are in terms
of the natural imbeddings.] Hence (Lφ)* = (I/)** = II. However,
this holds if and only if the norms in Lφ and II are absolutely
continuous, i.e., the condition given in ([8], p. 205). This means
Mφ c Lφ c Mφ, and a similar statement holds for I/. Consequently
the condition of the Proposition is necessary, completing the proof.

REMARK. If the measure space is <τ-finite, a similar result was
given in ([15], p. 60). (cf. also §4 below for some related results.)

The above Theorem 1 does not give information about functionals
in (^fφ)L

y or equivalently (^"*)* in the notation of Lemma 3. Using
the work of §2 above, integral representations of the elements of
(^fr*y can now be given. It will be shown, in Theorem 4 below,
that the general x* in (Lφ)* may be given an integral representation,
as in (3.6), with an extension of the definition of the integral.

It was pointed out after Lemma 6 above that (^Kφ)* is an
abstract (L)-space [10]. A characterization of abstract (L)-spaces,
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which are Banach lattices (so (2.13') also holds), was obtained by
Kakutani in [10]. This result will be quoted here as it enables a
better understanding of the structure of

THEOREM 2. (Kakutani) An abstract (L)-space J^ satisfying
(2.13') and having a unit (i.e., there is an xoe^ such that for
every 0 < x e ^ , x0 A x > 0 holds), is isometric and lattice isomorphic
to the Lebesgue space of integrable functions, Lι(S, j y , α ) , on some
(S, j y , a) where S is a (totally disconnected) compact topological
space, jzf is. the Borel field of S and a is a (countably additive)
measure on /

Even though (Λ^φ)* satisfies (2.13) and (2.13'), it does not have
a unit in the sense of the above theorem. [Recall that <yKφ Φ {0} so
that μ is a nontrivial measure and since Φ does not satisfy any
growth condition (Lφ and) ^vφ and hence (<yKφ)* are nonseparable
which follows, for instance, from ([15], p. 61) also, so that Lι(S, S/, a)
is not separable. Therefore, it cannot be the conjugate space of any
i?-space. Thus (Λ>~φ)* and L\S, Szf, a) cannot be isometric and lattice
isomorphic which means there cannot be a unit in (<sKφ)*.] On the
other hand, the result of Lemma 6 is well-known if «_χ//"φ is replaced
by L°°. This 'suggests' that the abstract (L)-space (Λ^ΦY is equivalent
to some subspace of ba(Ω, Σ, μ), the J3-space of bounded additive set
functions on Σ and vanishing on μ-null sets with total variation as
norm. This is indeed the case and the first step in this direction can
be obtained as follows.

If fe^φ, let fE stand for the coset fE + ^4^φ, and if z* e (_Λ/"T,
let z% be defined by z%(f) = z * ( Λ ) , / e ^ φ . With this notation one
has

LEMMA 9. To each z* e (^/Kφ)* corresponds a ve ba(Ω, Σ, μ) which
is purely finitely additive if v Ξ£ 0 (in the sense of [6], p. 163),
and an fe^Kφ,d(f) = 1, such that £(*} and v(-) are related by the
equations

(3.8) z*(f) = z*(fE) = ι>(E) , EeΣ

and

(3.9) \\zi\\ = \»\(E),

where \ v\ (•) is the variation measure of v.

Proof. In view of (2.12) it suffices to consider z* ^ 0 for this
proof. If E,FeΣ are disjoint and E[J F = Ω, then (2.13) implies



570 M. M. RAO

so that || 2*) || = v( ) defines a positive bounded additive set function
which vanishes on //-null sets. Thus (3.9) holds.

That v( ) is purely finitely additive (if v ξέ 0), can be proved
thus. For any ε > 0, there exists 0 ^foe^i^φ, depending on ε, such
that 2*(/o) = || z* || and | d(f0) — 11 < ε. (This is a simple consequence
of the definition of norm, and it holds in any i?-space.) If ϊ>{E) =
s*(Λ*) = s 2 ( Λ ) , EeΣ, t h e n O^ve ba(Ω, Σ, μ), a n d v{Ω) = ΰ(Ω). M o r e -
over v(E) ^ v(E)(l + ε), for ί^ei; so that | v - v \ (Ω) < ε. But there
is a decreasing sequence En in J? such that μ(En) —> 0 and P(2ί7Λ) = v(β)
for all w and this means 5 is purely finitely additive. In fact if
f0 — X-^/Q) where λ: Lφ —* ̂ "φ is the canonical map, and if En =
{t:fo(t) ^>n}eΣ, then the En sequence satisfies the above requirement
since fQ — fΰEn e ^//φ so that z*(f0) — z*(f0En). Now recalling the fact
that the set of purely finitely additive set functions in ba(Ω, Σ, μ) is
a closed linear subspace, it follows from the inequality | v — v \ (Ω) < ε
that v is also purely finitely additive.

The proof of (3.8) will be postponed until the end of the proof
of Theorem 3 below.

REMARKS. v(•),£(•) and /0 of the above proof (and also / o f
(3.8)) have the following noteworthy properties, (for convenience /
will be written for fQ and v for v; and this will be exact when (3.8)
is established):

(a) If / = λ-V), E = {t: \f(t) I ̂  x), and vE is the restriction of
y to £ then vE(F) = z*(fEΓιF) = 0 for every 0 ^ x < oo and FeΣx

since fE[λF^^φ.
(b) Since ^y* is nontrivial only if Φ(x) > 0 for 0 < x ^ a for

some α, it follows from the integrability of Φ(f/k), for some Jc > 0,
that Ω — E has finite /^-measure for every x and if Φ is continuous
then this measure tends to zero as x —> oo.

(c) If / is as in (a), then f/keLφ for some k ^ 1 (since feLφ

and d(f) ^ 1), and by the structure theorem for measurable functions
(cf. [9] p. 85), there exists a sequence of step functions fn, all of
whose supports lie in the support of /, such that /Λ —> / everywhere.
Moreover the sequence can be chosen such that | / — fn \ ^ | /1 and
that the positive (negative) part of / is approximated by the positive
(negative) part of fn monotonously, Thus fn e ZΛ If ^Γφ is nontrivial,
Φ cannot be purely discontinuous, and hence every step function in
Lφ is also a simple function, as pointed out in the remark after Lemma
2. It follows that fn e ^£φ for every n and by the dominated con-

r

vergence theorem, for large enough n, \ Φ((f — fn)/k)dμ can be made
JΩ

a r b i t r a r i l y smal l , i .e . , for a n y ε > 0 t h e r e is a ge^/^0 s u c h t h a t
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\ Φ((f ~ 9)/k)dμ < e. If h = (f - g)/k, then h e Lφ with the important
JΩ

property: the support of y(i.e., the sets Efor which \v\ (E) > 0) lies
in the support of h e Lφ — ̂ //φ (set theoretic difference). If μ(Ω) < oo,
then the support of h itself has arbitrarily small /^-measure. This
last observation is useful in the analysis of the structure of singular
linear functional on general Banach function spaces, ([12], [14], [15]).

It may be noted that, from Lemma 6, every element x* of the
abstract (L)-space {^"ΦY can be given an integral representation of
the abstract Radon-Stieltjes type (cf. [10], Th. 6). However, in such
a representation the particular ^/> φ itself is ignored, and consequently
a different procedure is necessary. For this, first Λ^φ will be mapped
isometrically into a subspace of L°° and then an integral (see below)
of such functions relative to the measure v( ) of Lemma 9 can be
defined. The idea here is to 'associate' a more convenient abstract
(M)-space with _yf^φ so that by ([11], Th. 15) the abstract (L)-space
{^ί^φY is determined. This construction will now be carried out.

Let O g / 6 ^ and β = d(f) where d(-) is given by (2.10).
Select fef. Since by definition of '<£' in <yKφ there exists a
ge^φ with / — g ;> 0, a.e., (and / — gef) it can be assumed that
/ > 0, a.e. since β > 0 is the only nontrivial case. Let π ~ (Eu , En)
be a partition of Ω (i.e. a finite disjoint collection of sets in Σ whose
union is Ω). Set fE = fχE, as before and let ak — d(fE]c) ^ β. If
v 6 ba(Ω, Σ, μ), consider the sum Σ?-i aM^i)- As the partitions are
refined it is seen that these sums form a (bounded) monotone sequence
of numbers and they converge to a limit which is denoted by \ fdv.

If Λ = Σ?=i ailΈi relative to a partition π, then fπ e L°° and fπ = 0 if
and only if / G ^ ^ Φ . Moreover, ||/*||o = max (α̂ ) = d(f), so that the
map / —> fπ is an isometry of ^//φ onto a subspace of L°°. Let x* be
the functional defined by

(3.11) x*(f) =\fdv,
JΩ

Then one can show (with arguments similar to, e.g., [21], Chapitre
VI; [22], p. 405) that x* is well-defined and is linear. This is clear
in v, but the linearity in / needs some computation. In fact the
following is true.

LEMMA 10. The functional a?*, given by (3.11), satisfies: (i)
x* e C ^ r T , and (ii) 0 ^ &*(/) ^ d(f)v(Ω), 0 ^f

Proof, (ii) follows directly from the definition of (3.11). Since
= ax*(f) for a ^ 0, (i) follows from (ii) if the additivity of x*
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is established. Also since d( ) is a lattice norm, it is immediate from

the definition that x*(fx + f2) ^ #*(/i) + ^*(Λ) f° r a n y OfzfuA in ^Γφ.
For the opposite inequality let 0 <̂  /4 efim The result is successively
deduced as follows.

If fx and f2 have disjoint supports (letting /' = fx + f2 in the
definition of d(-) and the integral) it is seen that ^ ( / i + / 2 ) =
α*(Λ) + α*(A). If Λ,/2 are such that 0 < fx ^ /2 then, since α(/i) ^
#*(/2) and fxlf2eL°°, one proceeds as follows. The computation may
be found in ([21], [1]). The procedure of ([21], p. 187) gives the
additivity on using the existence of the limit in (3.11). Following
[1], an alternate procedure can and will be given because of its
interest. Even here, however, the existence of the limit in (3.11)
will be implicitly used.

Since the bounded function fx/f2 can be approximated by step
functions (cf. [6], p.296), for any ε > 0, let fε = Σ? = 1 ^χ 7 , . ,^ ^ 0,
and Ei disjoint in Σ, such that 0 ^ (fjf2) ~ fε ^ ε/&, a.e., where
0 < k — x*(f2). This may be rearranged, on letting a0 — 0 and EQ —
Ω — U?=i Ei, as

n n

V a, f2yF < f. < V
i=o

The monotonicity and additivity of x* for 'functions' of disjoint
support (on noting the distributivity of the ' Λ ' notation) give,

Σ (1 + α,)a;*(ΛχΛ .) + f ^*(Λ)

- a;*^g (1 + ocdfaEi) + e ^ α;*(Λ + /2) + ε .

Hence x*(fx) + α*(/2) - s*(.Λ + /2) for 0 < /, ^ /2. If Λ,/2 ^ 0 so that
0 ^ /i e/i are arbitrary, one extends the above case by splitting Ω
into {fx <̂  /2j and its complement and then applying the preceding
case. This completes the proof of (i) and of the lemma.

REMARK. Since by (2.11) every element of (̂ /// φ)* can be decom-
posed into its positive and negative parts, and a similar result holds
for the elements of ,yγ'"φ which is a vector lattice, (3.11) can be
extended to all elements of {^Kφ)* and all / of ,yKφ by taking an
appropriate linear combination (of four terms) of the integrals in the
usual manner. This general case (integral) will be denoted by the
same symbol as in (3.11).

Motivated by the result of Lemma 9 and following remarks, the
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definition below is introduced.

DEFINITION 5. Let Br(μ) c ba(Ω, Σ, μ) be the class of set functions
v, whose support lies in the support of some feLφ — ̂ f?φ (set theoretic
difference). The norm of v in BΨ(μ) is the total variation | v | (Ω).
[Since Lφ is a lattice, it is seen that Bψ(μ) is a normed linear space,
and its completeness is a consequence of the next result.]

With the above definition, (̂ <//'φ)* may be characterized as follows.

THEOREM 3. The space (^//φ)* is isometrically equivalent to
Bψ(μ). More explicitly for each x* e (Λ"*)* there is a unique v e B(μ)
such that

(3.12) x*(f) =\fdv, /e ^r#, fef ,

and

(3.13) \\x*\\ = \v\(Ω),

where the integral in (3.12) is defined as that in (3.11).

Proof. With each #*e(^~ φ )*, by Lemma 9 and the following
remark, there exists a veBΨ(μ) satisfying (3.13). For this proof it
may and will be assumed x* Ξ> 0 so that v ^ 0. Then with this v
let the functional defined by (3.11) be £*, i.e., £*(/) = ( fdv,x* ^ 0.
It is claimed that x* = x*. For, by definition of (3.11),

x*{f) = lim Σ d(fE ME,) - lim ± d(fEi) || x^ \\ ^ x*{?)

for all feΛ^0. Hence x* ^ x*. But the above inequality and Lemma
10 imply

*x*(f) £ x(f) ^ d(f)v(Ω) ̂  d(f) || x

So \\x* \\ - || Z* || and an application of (2.13) to x* - x* ^ 0 yields
|| x* - a* II = || £* || - || x* || = 0. Thus ^* - ίc* and the proof is com-
plete in one direction.

Conversely, let vQ e BΨ(μ) and, for convenience v0 >̂ 0. Then (3.12)
defines 0 ^ xt e (Λ"*)*. If vQ is nontrivial, then x* Φ 0 and || a?0* || ^
vo(Ω). It is to be shown that there is equality here. Let π =
(Eu , En) be a partition of Ω such that v^Ei) > 0, all i. Then
there exist f{eLφ — ̂ //φ with supports Ei9i = 1, , Λ. (This is an
immediate consequence of the definition of Bψ{μ).) Let / = fx +
• + Λ = V?βiΛ So fe Lφ - ^?φ and d(fE.) = 1. Also d(/) =
max {d(/i), ΐ = 1, , n} = 1, since ^i^φ c ^ ^ φ ) * * is an abstract M-
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space. [This is also immediate from the result that ^V'φ was seen
to be isometric to a closed subspace of the abstract M-space L°\]
Thus Σ?=i d(fE.)vo(Ei) = Vo(Ω) and refining the partition π on the left
yields x*(f) = vo(Ω). It follows that || xt \\ = vo(Ω). This proves (3.13).

Uniqueness is simple. If vι and v2 in BΨ(μ) represent the same
α* in {.Λ"φ)*, then the above argument, leading to (3.13), shows
|| 0 II = I vλ — v21 (Ω) so that vλ = v2. Thus the proof of the theorem
is complete.

Proof of Equation (3.8). If 0 < z* e (^/ >φ)* and v is the corres-

ponding (positive) element of BΨ(μ), then by the first part of the

proof of Theorem 3, z*(g) = \ gdv, g e <yV*φ. But by the second part

there exists (not necessarily uniquely) 0 ^fetyK'φ such that d(f) — 1

and z*(/) = i (β) = | | s * | | . Moreover, if EeΣ, then z%(f) = z*(fE).

If vE is the restriction of v to E, and z* is the corresponding element

of (.yΓψ defined by z*(g) = \ gdvE, then \\z*\\ = vFψ) = v(E). But
JΩ

one also has (by the same argument),

z*(ΰ) = \ 9dvE - ί gEdv - z*(gE) = z%{g) , g e ^rφ .

It follows that z* — z%, so that

| | ^ | | = v{E) = \ fFdv = z*{fE) = zUf) .
JΩ

This completes the proof of (3.8).

REMARK. (3.13) can also be proved as follows. By the definition
of the integral in (3.11), or (3.12), x* represents a linear functional
on a closed subspace of L°° corresponding to Λ"*\ by the norm-
preserving correspondence/—>/!. But then by known results about
L°°, it follows that | | $ * | | = \v\ (.(?). (In this case, however, the
argument of the proof of the theorem should be given in establishing
the equation (3.8).)

Before the general representation of the elements of (Lφ)*, an
auxiliary result will be proved. As a consequence one will note the
useful fact that (Lφ)* admits of a decomposition into complementary
subspaces (cf., [3], p. 120). One of them may be identified with

PROPOSITION 2. Every element x* e (Lφ)* can be uniquely decom-

posed as x* — y* + z* where y*(f) = \ fdG, fe Lφ, for some G e AΨ(μ),
JΩ

and is absolutely continuous, and z* e (,^φ)λ.
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Proof. Let Σ^czΣ be the ring of sets of finite //-measure as

before. If EeΣu let x*{χE) = G{E). Then by the second half of the

proof of Theorem 1, GeA¥(μ). So as in that proof one can define

y*(f) = \fdG,feLφ. Then y* e (Lφ)* and is absolutely continuous.
JO

Letting z* = x* — y*, one notes that z* e (^Φ)L, and #* = y* + z* is
a decomposition of the required type.

To prove uniqueness, let x* — y* + z* be another such decomposi-

tion, so that yϊ(f) = \ fdGufeLφ, and G.eA^μ). Since y* + x? =
JO

y* + z*, it implies
»*(/) - »?(/) - ( fd(G - Gd = z*(f) - z*(f) = 0 , fe^/φ .

JΩ

Since G — G1eAψ(μ)J it follows from Theorem 1 above (cf. (3.7)) that
HI G - Gx \\\Ψ = || (y* - y?) \ ̂ φ || - 0 where y* \ ̂ //φ is the restriction
of y* to ^//φ. Thus G = Gi and hence y* = yf and ^* - ^*. Thus
the decomposition is unique and the proposition is proved.

REMARK. Professor A. C. Zaanen has remarked that the above
result is also a consequence of general theorems on normed vector
lattices. Thus if x* e {Lφ)* then x* = y* + z* uniquely on Lφ, where
z* e {^//ΦY and | y* \ A | z* \ = 0, in the notation of Lemma 6. I wish
to thank Professor Zaanen for this and other helpful comments.

DEFINITION 6. Let <SsfΦ(μ) = Aφ(μ)ζ$BΦ(μ), with norm

(3.14) i| G ||; - III G, \\\Φ + | ̂  | W ) , G e

where G = Gx + vu Gx e AΦ(μ), vx e J5#(/i). Replacing <? by Ψ, the cor-
responding definition gives j&(μ). [||| |IU ί s given by (3.2).]

Combining all the preceding results (Z/)* can be characterized
completely, and the result is given in the following.

THEOREM 4. Let Φ,Ψ be an arbitrary pair of Young's comple-
mentary functions and Lφ, J&fΨ{μ) be the Orlicz space on (Ω, Σ, μ) and
the space of additive set functions {given in Definition 6). Then
(LΦY and J^ί(μ) are isometrically isomorphic. More explicitly, for
each x*e(Lφ)*, there exists a unique Gej^ψ(μ) such that

(3.15) x*(f) = \/dG(= \/dGx + \fd»ϊ) , /e Lφ ,

and

(3.16)

This result is an immediate consequence of Theorems 1 and 3,
and Proposition 2. If μ(Ω) < oo, this can be specialized as follows.
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COROLLARY 4.1. If (Ω, Σ, μ) is a finite measure space then (3.15)
and (3.16) can be written uniquely as

(3.17) **(/) = ( fgdμ + ( fdv0 + \ fdv, , fe Lφ ,
)Ω )Ω }Q

and

(3.18) || x* || - NΨ(g) + \vo\(Ω) + \v1\ (Ω) ,

where g e Lψ,v0 is a purely finitely additive set function and
v1 e BΨ(μ). Moreover, v0 — 0 if Φ is continuous and v1 = 0 if Φ is
discontinuous.

Proof. If μ(Ω) < oo then AΨ(μ)(zba(Ω, Σ, μ). Hence by the Yosida-
Hewitt Theorem ([6], p. 163), G, of (3.15) can be uniquely decomposed
into a completely additive G[ and a purely finitely additive v0. Then
with the Radon-Nikodym Theorem and ([19], Lemma 5), (3.17) and
(3.18) above follow from (3.15) and (3.16) at once.

The last statement follows from the fact that for discontinuous
Φ, by Lemma 2 above, ^/fφ = Lφ so Λ"* = {0} (or v, = 0), and for
continuous Φ, since G1eAΨ{μ)f by Lemma 8 Gi must be countably
additive so that v0 — 0, as desired.

REMARK. The result of Theorem 4 has the following interpreta-
tion. Even though Lφ need not admit a (nontrivial) direct sum
decomposition into ^,/Sφ and a complementary subspace, (Lφ)* admits
such a decomposition into (^£Φ)L and an appropriate subspace. These
are isometrically isomorphic to BΨ(μ) and AΨ(μ) respectively.

If the measure space and the Young's function are slightly
restricted then {^//ΦY, or equivalently («̂ f φ)*, can be given a different
characterization without involving BΨ{μ). The following result, when
μ(Ω) < co, was proved by Andδ [llwith a different argument.

THEOREM 5. Let x* e (I/)*, ^ φ Φ Lφ and either (i) μ is local-
izable (or σ-finite), or (ii) Mψ = U. If Φ and Ψ are continuous,
then x* e (^/SΦY if

(3.19) sup {| x*(f) |: \\f\\Φ ^ 1} = sup {| x*(f) |: MΦ(f) £ 1} .

On the other hand, if x*e(^fφ)L then (3.19) always holds without
any other conditions.

Proof. By Theorem 3 (and Lemmas 3, 9, and 10) if α ; * e ( ^ / φ ) 1

then both sides of (3.19) are equal to | v \ (Ω) so that (3.19) holds
whatever μ is and Φ is since no special use of the norms (2.3) and
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(2.4) was needed in determining (3.8) and (3.9) which are invoked
here. However, all the hypothesis will be used for the converse.

Let (3.19) hold. If x* = x* + xt is the decomposition of Proposi-
tion 2, then using the fact that xf e {^Φ)L it follows that (3.19)
implies

(3.20) sup {| »•(/) |: || / | | # <£ 1} = sup {| *?(/) |: NΦ(f) <£ 1} .

But by Theorem 1, xf(f) — \ fdG1 uniquely and since Φ is continuous,
JΩ

by Lemmas 2 and 8, M* — ̂ /ίφ and Gx is countably additive, so when

the hypothesis ((i) and (ii)) holds one has x*(f) = \ fgdμ for a unique
JΩ

gel/, (cf. [16], p. 336, and also [19], Th. 4). Moreover, as in the
proof of (3.5), sup{|a?1*(/)|: | |/| |#^l} = iSΓr(ίjf). This together with
(3.20) and (2.3) yields || g \\r = NΨ(g). But Φ and Ψ are continuous,
so by Lemma 1 of this paper it follows that 0 = 0, a.e. Hence
x* — xt, and the proof is complete.

4* Orlicz spaces with generalized Young's functions* In this
section the characterization of (Z/)*, with Φ as a generalized Young's
function, extending some results of the preceding section will be
considered. The reasons for separating these results from those of
§ 3 are: in most applications it is the Young's functions (instead of
the generalized ones) that appear and moreover the subtleties of the
theory are presented there (the whole work of [13] considers only
continuous Young's pairs), and the combination would have complicated
many of the statements. Note that most of the lemmas of § 2 hold
for generalized Young's functions also, and they will be used below.

The result on absolutely continuous functionals can be formulated
as

THEOREM 6. Let Φ be a generalized Young's function and
be the closed subspace of Lφ, spanned by the step functions. Then
for each x* e(^fφ)*, the adjoint space of Mφ, there exists a unique
GeAψ(μ), where AΨ(μ) is the space given in Definition 4, such that

(4.1) **(/)= \fdG, /e^f*

and

(4.2) l|a*ll = HIG|llr.

Proof. If Φ is a Young's function this is Theorem 1. The only
new case here is if Φ is continuous but vanishes on an interval (0, α),
a > 0 so that L w c ^ f φ c L φ . In this case ^ φ is clearly the Lφ-
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closure of L°°. Then, if G e AΨ(μ) so that G is an additive set function,
by the definition of | | |G(| |Γ, (4.1) and (4.2) obtain at once.

On the other hand if G is defined, for x* e(^f*)*, by

= x*(χs), EeΣ,

then G is additive, vanishes on /e-null sets and, using (2.5),

\G(E)\£2\\x*\\.NΦ(χE)

< 4 3> ^2||*Ίi.ΓW-L-YΓ^2(||**

Hence

a

so t h a t by ([6], p . 97), \G\ (Ω) = v(G) < °=. Then by ([6], p . 296),

χ (f)=\fdG, /eL-

holds. Since L°° is dense in ^IΓΦ, (4.1) follows. Moreover

which is (4.2). As the uniqueness is clear, the proof is complete.

REMARK. If Φ vanishes on an interval (0, α), a > 0, then the
above proof shows that AΨ(μ) contains the set of all bounded additive
set functions on Σ vanishing on μ-null sets whether Φ jumps or not.
If also Φ jumps L°° = ^€φ — Lφ also holds and this is not generally
true otherwise.

COROLLARY 6.1. If Φ, Ψ, and AΨ(μ) are as in the theorem, then
the integral (4.2) can be extended to all of Lφ, i.e., for each GeAΨ(μ)
one has

(4.4) x*(f) = \fdG, feL ,

and

( 4 . 5 ) 11**11 = III G l l l r .

Proof. By the theorem the integral is defined on ^^φ for
GeAψ(μ). So let feLφ be arbitrary. It is no restriction to assume
/ >̂ 0. (The only new case is when Φ is continuous.) Then there
exists a sequence of step functions 0 ^ fn \ f (cf. [9], p. 85), and
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/ , e ̂ \ Hence

(4.6) I *?(/.) I = .dG (say)

by (4.1) and (3.2). Since by definition it also follows easily that the
norms of the set functions G and its variation | G | ( = G+ + G~, the
positive and negative parts) are equal, the G may also be assumed
in (4.6) to be positive. Then x*(fn) ^ xf(fn+1) g a. If

(4.7) \n(E)=\f%dG, EeΣ,
JE

then l im^^ Xn(E) exists for each E, and if X0(E) is the limit then λ0

is additive on Σ and λΛ is clearly G-continuous (as well as //-continuous
since Φ is continuous). So by ([2], p. 343 or p. 345) one may write
(4.7) as

(4.8) X0(E) = lim ( fndG = \ fdG ^ a < oo , EeΣ .
«->oo JE JE

By linearity then one has

! * * ( / ) ! = \fdG
}Ω

so (4.4) holds and | |&*|| ^ | | |G| | |y. Since the opposite inequality is
obvious, (4.5) holds as desired.

If Φ is a generalized Young's function as above and μ(Ω) — oo,
then even if Φ is continuous, there exists En eΣ, EnZDEn+1, Π En =
0 , μ(En) = oo, so that χE% e ̂ fέ\ Nφ(χE%) - I/a, a > 0, all n. So the
norm in ^£φ is not absolutely continuous, and Lφ cannot be reflexive
in this case whatever other growth conditions are satisfied for Φ (cf.
[8], p. 205). This and Proposition 1 imply the following result.

COROLLARY 6.2. If Φ is a generalized Young1 s function that is
not an ordinary (in the sense of Definition 1) Young's function then
Lφ need not be reflexive. It is reflexive if and only if Lφ = Mφ and
II = Mψ where Ψ is complementary to Φ.

The relation between the ordinary and generalized Young's func-
tions is further illustrated by the following

LEMMA 11. // Φo is a continuous generalized Young's function
then there exists a continuous (ordinary) Young's function Φ, such
that ΦQ is the principal part of Φ, i.e., Φ(x) = Φ0(x) for x ^ x0, for
some xQ > 0.
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Proof. The proof is a modification of that given in ([13], p. 16)
in which Ψ, the complementary function of Φ, was also assumed
continuous. Let xλ > 0 be chosen such that Φ0(x) > 0 for x :> χιm

Since every continuous convex function is absolutely continuous, Φ'Q(x)
exists, >0, for almost all x > x± and

(4.9) Φ0(x) = Φ0(xx) + Γ (PJ

Let x2 > α?! + 1 be chosen such t h a t x2Φ'0(x2) > Φ^{x^ + XiΦ'0(Xi). This
is clearly possible since Φ0(x) —> co as x —> oo and Φ[{x2) ^ ΦΌ(%i) > 0.
I t follows, from (4.9), t h a t

Φ'0(t)dt
+ 1

^ ΦΌfa + 1) + ΦΌ(χ2)(χ2 - x, - 1) .

So ΦQ(x2) < x2ΦΌ(x2). Sett ing a = x2Φo(x2)/ΦQ(x2), one notes t h a t a > 1
and if

Φ(x)= ' ~ " ™ ' f 0 Γ

\Φ0(x) , f o r I x I ^ x2 ,

then 0( ) is a continuous Young's function with ΦQ as its principal
part for x >̂ #0 = x2 > 0, completing the proof.

REMARK. It follows from this lemma and ([13], p. 110), that
there is no need to distinguish between the Definitions 1 and 2 if
μ(Ω) < oo. However, if μ(Ω) = oo f the distinction should be maintained.

If <yίr° = Lφ\^/έφ where ^fέφ is the closed subspace spanned by
the step functions of Lφ, and if every simple function is replaced by
a step function in the work of § 3 from Lemma 9 onwards, (since no
special properties of Φ are used) then it follows that Theorem 3 holds
for <yf<^φ as defined here. In view of Corollary 6.1 above, Proposition
2 also holds. Consequently Theorem 4 takes the following form:

THEOREM 7. Let Φ, Ψ be an arbitrary complementary pair of
generalized Young's functions and Lφ, s/Ψ(μ) be the Orlicz space on
(β, Σ, μ) and the space of additive set functions (given in Definition
6, with Φ, Ψ as the generalized functions as here) then for each
x*e(Lφ)*, there exists a unique Gej^(μ) such that

(4.10) x*(f) -

where Gλ e AΨ(μ)y vι e BΨ{μ), G = Gt + vίf and
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(4Λ1) || a?* || = ||G||M = | | | G 1 | | | r + 1*1(12)).

This result is a consequence of Theorems 3 and 6.
An alternate characterization of singular functionals, given in

Theorem 5 for Young's functions need not hold if μ(Ω) — <*>. The
intervening results, Lemmas 1, 8 and others used there, are not
available now. Some subsidiary results will be presented in the next
section.

5* Miscellaneous results* It is well-known that a Hahn-Banach
extension of a continuous linear functional from a proper subspace
to the whole Banach space need not be unique. In these circumstances
the following result is of interest.

PROPOSITION 3. Let Φ be a (generalized) Young's function. Then
every x* e (^fφ)* has a unique Hahn-Banach (i.e., norm preserving)
extension to all of ZΛ

Proof. If x* e(^fφ)*, then by Theorem 6 there is a unique
GeAΨ(μ) such that for all / in Λ?φ,

(5.1) x*(f) = ( = I I I G

But the integral in (5.1) is defined for all feLφ and the norm equation
holds (cf. Corollary 6.1). Consequently if xf is the thus obtained
extension on Lφ, it is a Hahn-Banach extension. If x% is any other
such extension of x*, let z* = xt — x* so that z* e (<^€Φ)L, and x* =
x? + z? is a decomposition of the type described in Proposition 2.
Also by the first part || x} \\ = \\ x* || = || x* | |. But by Theorem 7, it
follows that

(5.2) II » ? 11 = \\x?\\ + \v\(Ω)

for a unique v in BΨ(μ) corresponding to zf. However, the equations
in the preceding two lines imply | v \ (Ω) = 0 so that zt = 0 by Theorem
3. Consequently xf — x%, as was to be shown.

In § 3 the concept of continuity in the extended sense was
considered in discussing purely discontinuous Young's functions. In
that connection the following result can be proved.

PROPOSITION 4. Let Φ, Ψ be a (generalized) Young's complementary
pair such that Ψ is continuous in the extended sense (i.e., Ψ and Ψf

are continuous on 0 g x ^ x0, for some xQ > 0, Ψ'{x) > 0, x > 0, and
Ψ{x) = ψ'(x) = co for x > xQ). Then Lφ is rotund ( = strictly convex).
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Proof. If Ψ is continuous in the extended sense, then by con-
struction of its complementary function Φ, (cf. [13], [15], [17], or
[26]) it follows that Φ and Φf are continuous, lim^o* Φ'(x) = x0, and
that Φf is strictly increasing, so that Φ is also a strictly convex,
continuous Young's function. Under these circumstances, it was
proved in ([20], p. 682) that Lφ is rotund, with the norm (2.4).
However, using ([13], Th. 10.4) one can immediately deduce the same
conclusion from the foregoing result with norm (2.3) as well. This
completes the proof.

REMARK. 1. If μ is a nonatomic ^-finite measure then the above
result was first established, with norm (2.3), in ([17], Th. 5) where
the condition was shown to be necessary. [The nonatomicity is essential
for the latter conclusion.]

2. Lemma 1 holds if the complementary function Ψ of Φ is
continuous in the extended sense. This follows from the fact that
in this case Φ is strictly convex and Φf is continuous and with this,

one can show that ί φ(f)dμ = 1 if NΦ(f) = 1, (see [20], p. 682 for
a proof). This is the crucial step (2.8) in the proof of that lemma.
Note, however, that the conditions of Lemma 1 do not assume that
Φf is continuous. Thus the above comment merely complements, but
not generalizes, the result of Lemma 1 in some cases.

Some notes. In the rest of this section some related problems
and results will be briefly discussed. With the work of § 3 and § 4,
and of [11], a general result on (Lφ)**, the second conjugate of Lφ,
can be stated as follows.

PROPOSITION 5. If Φ, Ψ are complementary functions, Φ is a
continuous Young's function and the measure space (Ω, Σ, μ) is localiza-
ble (cf. [16]) or σ-finite, then (I/)** is isometrically isomorphic to
S>fφ{μ) = Aφ(μ) 0 Bφ(μ) 0 CΦ(μ) where CΦ(μ) is an abstract (M)-space,
conjugate of BΨ(μ), and where the norm in the space j*fΦ(μ) is given
by: if H = F + v + δ e SsfΦ{μ), (FeAφ(μ), v e BΦ{μ), δ e CΦ{μ)) then

so that x**e(Lφ)** implies | |x**| | = | |fΓ| |ί for a unique

Proof. By Theorem 4, (Lφ)* - AΨ(μ) ® BΨ{μ), isometrically. If
Φ is continuous and μ is localizable or α-finite then by ([19], Lemma
5) and by Lemma 8, AΨ(μ) is equivalent to U. Hence, writing equality
for isometric equivalence,

- (Lr)* φ (BAμΨ = Aφ{μ) 0 BΦ{μ) 0 CΦ(μ)
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by Theorem 6 (since Ψ can be a generalized Young's function this
time), and where CΦ(μ) is the abstract (M)-space that is conjugate
to the abstract (L)-space Br(μ), given by ([11], Th. 15). [CΦ(μ) can
be given other representations as in [11], but it is omitted here since
it is not particularly relevant.] The norm condition is now a standard
result. The result follows.

REMARK. If Φ is not continuous, or μ is arbitrary then AΨ(μ)
cannot be identified with If. If μ(Ω) < w, and Φ is discontinuous
or μ is arbitrary and Φ is purely discontinuous, then AΨ(μ) can be
identified with ba(Ω, Σ, μ) and KakutanΓs theorem can again be applied
to yield abstract (M)-spaces to characterize (Lφ)**. The few remaining
cases are still open.

Instead of using the norms (2.3) and (2.4), only (2.4) can be used
for both IS and If with advantage, after the normalization of the
Young's functions Φ> Ψ as Φ(l) + ¥(1) = 1. Its importance was
emphasized in [27], and the work in [20] illustrates the resulting
economy and convenience in most cases of interest. (2.4) and (2.5)
then must be replaced by (5.3) and (5.4) below where feL* if and
only if NΦ(f) < oo with

(5.3) NΦ(f) = inf {k > 0, \φ(f)dμ

and

(5.4) Φ(l)NΦ(f)^\\f\\Φ^2NΦ(f).

[If Φ(l) = 0, and Φ is thus discontinuous, by definition, one can directly
show that NΦ(f) = | | / | | Φ = II/IU in this case.] Then the result of
Theorem 4 holds without change and the theory exhibits some symmetry
(cf. [20]) and its analogy with the IZ-theory is more transparent.
(The work through § 3 of this paper was referred to as Part II of [19]
in [20], [23] and certain other papers.)

The following problems are related to the work of this paper.

1. The structure of Aφ{μ) is of interest in view of Proposition
5. If Vφ(μ) is the subspace of Aφ(μ) of μ-continuous elements and
if Φ is continuous, then Uhl [23] has characterized {Vφ{μ))* when μ
is only a finitely additive (finite) nonnegative set function.

2. If Φ satisfies a growth condition (the J2-condition of [13])
then considerable work has been done by N. Dinculeanu on Lφ spaces
of vector fields, (cf. [4]). The relaxation of the growth condition is
of interest, since, for instance, it has some interesting applications
in Probability and Statistics. This may be seen from the recent work
of T. S. Pitcher [18] when one recognizes his Ev spaces, 1 <; p <̂  oo,
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to be identifiable with an appropriate space of (totally measurable)
vector fields. A more recent and readable account of the latter theory,
which is needed here, may be found in [5].

3. The work of § 3 and § 4 also shows that μ may be assumed
to be only finitely additive. If μ(Ω) < oo, the corresponding theory
of Lφ(μ) is obtainable from the recent work of Uhl [23], but it will
be of interest to remove this restriction. The corresponding theory
for Kδthe-Toeplitz and Riesz spaces appears possible with the methods
of this paper. A relatively simple representation theorem (when the
norm in the given space is absolutely continuous and the measure
space is the unit interval, which corresponds to Mφ — Lφ above) was
obtained in [14], and somewhat more general results were proved in
[7]. The general characterization of arbitrary singular linear func-
tionals on these spaces is yet to be completed.

4. (Note added, October 1967.) Using the methods of this paper,
Mr. N. E. Gretsky has recently obtained characterizations of the
conjugate spaces of a general class of Banach function spaces in his
Ph. D. thesis entitled Representation theorems on Banach function
spaces, at Carnegie Tech., 1967, and only a few more cases need be
settled in this direction.
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