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IRREGULARITIES OF DISTRIBUTION III

WOLFGANG M. SCHMIDT

This paper deals with irregularities of distribution on
spheres. Suppose there are N points on the unit sphere
S = Sn of Euclidean En+ι. If these points are reasonably
well distributed one would expect that for every simple
measurable subset A of the sphere the number v(A) of these
points in the subset is fairly close to Nμ(A), where μ denotes
the measure which is normalized so that μ(S) = 1. Hence
define the discrepancy Δ(A) by

(1) AA) = i v{A) - Nμ(A) I .

It is shown in the present paper that there are very
simple sets A, namely intersections of two half spheres, for
which Δ(A) is large. This result is analogous to a theorem
of K. F. Roth concerning irregularities of distribution in an
^-dimensional cube.

To be more precise, let ω(x, y) be the spherical distance of two
points x, y on S If x is on S, let H(x) be the half sphere con-
sisting of points z on S with ω(x, z) <̂  ττ/2, and if x and y are on
S, let L{x, y) be the slice defined by

(2) L(x, y) = H(x) Π H(y) .

THEOREM 1. Suppose n = 2. Then

(3) f ( Δ{L{x, y)fdsxdsy ^ Cl log N .

COROLLARY. Again suppose that n — 2. There are slices L =
L(x> y) with

(4)

and hence there are spherical triangles T with

(5) Δ(T) ^ c3(log N)112 .

THEOREM 2. Suppose n > 2. Then

(6) ( \ A(L{x, y))2dsxdsy ^ c,(

COROLLARY. Assume that n > 2. There are slices L — L(x, y)
with
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(7) A(L) ^ cδ(n)N{ll2)-{lln) .

As was mentioned above, our theorems are similar to a theorem
of K. F. Roth [2]. In contrast to Roth we prove our theorems by
means of certain integral equations. The method is entirely analogous
to that used in the second paper of this series, although the details are
rather simpler in the present case. Neither of the two previous papers
[3], [4] of this series is prerequisite for reading the present paper.

P. Erdos asked about the existence of " spherical caps " C on S
with A(C) large. At present we are unable to prove anything in this
direction. In fact the proofs of our estimates for slices depend on
the trivial estimate.

(8) A(C)^ \\Nμ(C)\\

for caps, where || || denotes the distance from the nearest integer.1

There are no known examples of N points for which Δ(L) is
small for all slices L. I believe it would be possible to construct a
distribution of N points with A{L) < jγi-(i/»>β Perhaps probabilistic
methods would yield even better upper estimates.

2* An integral equation* For 0 < p ^ π/2 and for zeS, let
C(p z) be the spherical cap of radius p and center z consisting of
the points x with

ω(x, z)^ρ ,

and let μ(ρ) be the measure of a cap of radius p. Put

(1 if xeC(p z),
fc(p;z\x) =

(0 otherwise .

Given two points x, y on S put

(9) hc(ρ ;x,y) =\ fc(p z \ x)fc(p z | y)dsz .

It is clear that hc(p x, y) as a function of x, y depends only on the
spherical distance ω(x, y):

(10)

and

Put

write

hc ip

,w X)

) = kt

(1

Ho

Λp;

if .

ω(x, y)) .

x e L(z, w) ,

otherwise ,

1 Added in proof. Recently (Irreg . of Distr. IV, Inventiones math 7 (1969), 55-82)
I succeeded in proving results on caps. Combining these results with the integral
equations of the present paper I obtained improved versions of Theorems 1 and 2.
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(11) hL(x, U) =\ \ fL(z, w I x)fL(z, w I y)dszdsιv .
Jsjs

There is a function kL(ω) such that

(12) hL(x, y) = kL(ω{x, y)) .

LEMMA 1. Suppose f(p) is nonnegative and continuous in
0 < p ^ π/2 and satisfies the integral equation

(13) [\(p; (o)f(p)dp = kL(ω) (0 ^ ω ^ π) .
Jo

Then

(14) \Φdp\ dszJ(C(p;z)Yf(p) = \ \ AUz, w))*dszd8w .
Jo Js JSJS

Proof. We observe that

1 I kc(p ω(x, y))dsxdsy =\\\ Mp z I x)fc(p z I y)dsxdsydsz

Let Λ, , pN be the given 2V points on the sphere. We have

J(C(p • z)fdsz = Σ,\fc(p ; Z \ Pi)fc(p z I Pί)dsz

- 2JV/£(/o) Σ ί fdp; z I Λ ) d s z + N*μ(pγ
i = ί JS

= Σ
i

; ω(Pi,Ps)) ~ \ \ K(p; ω(x, y))dsxdsy) .
JSjS J

In a similar fashion one arrives at

\ \ Δ(L{z, w))2dszdsw

ί, Λ )) - \ \ kL(ω(x, y))dsxdsy) .
JSJS /

= Σ
i

The equation (14) now is an immediate consequence of (13), (15)
and (16).

3* Application of the integral equation* Assume that n ^ 2.
In § 5 we shall find a continuous nonnegative solution f(p) of (13)
which satisfies

(17) f(p) » Pι~n
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as p—>0. Hence by v ir tue of (8) t h e left hand side and therefore
also t h e r ight hand side of (14) exceeds

(18) c6(

Here

(19) μ(p) - c8(n)\P(sin φγ-ιdφ = c9(n)pn + cQΛ(n)pn+1 +
Jo

To evaluate (18) we put

(20) x == Nμ(p) = Nc,(n)pn + Nc9Λ(n)pn+1 + .

We obtain the lower bound

(21)

for (18). When n = 2 this is

Ξ> c^n) log N

and Theorem 1 follows. When n > 2 then (21) is

and Theorem 2 follows.

4* Auxiliary functions*

LEMMA 2.

Proof. Suppose x, y are any two points on S with ω(x, y) — ω.
Then we have

kL(ω) = hL(x, y) = 1 \ Λ(z, ι̂  | x)Λ(-, M? | y)dszdsw
JSJS

= I 1 Λ(AΓ, y I 2r)/z(Λτ, ^ I w)dszdsw =

We say a function f(y) defined in 0 < y ^ π is o/ ί/̂ e ί?/pe (r, s)
where r, s are nonnegative integers if it can be written as a finite
sum of the type
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where the coefficients a{ are positive and rif s€ are integers with

(22) r< ^ r(i = 1, , 6), s< ̂  l(i = 1, , &) and max(slf , sb) = s .

We say f(y) is of the type (r, s)' if it satisfies the same conditions
as before except that some of the exponents s{ may be 0 rather than
^ 1 as in (22).

If r > 0, s > 0 and f(y) is of the type (r, s), then — f'(y) is of
the type (r — 1, s + 1)' and — /'(^/) cos3 (yβ)(sίn(yβ))-1 is of the type
(r + 2, s + 2).

We are going to construct functions l^y), I2{y), •••, £ίθ/) where

(23) ί = {(n + l)/2} ,

i.e., the smallest integer t ^ (n + l)/2, as follows. Our functions
will be defined in 0 < y ^ π. First put

ΪΛ2/) - -2πk'L(y) = 2(π - y)

and

I2(y) = -2(n - I)- 1 cos3 (y/2)(smy/2)-%(y)

= A(n - I)- 1 cos3 (i//2)(sin (2//2))-1 .

Then Z2(2/) is of the type (3, 1).
Now suppose t > 2 and £i_1(2/) with 3 ^ j ^ ί has already been

constructed and is of the type (2(j — 1) — 1, 2(j — 1) — 3). Then put

(24) ls(y) = - 2(n + 3 - 2j)~' cos3 (y/2)(&m(y/2))-HU(y) .

Then Z,(7/) is of the type (2i - 1, 2j - 3).
This finishes our construction of l^iy), , lt(y). In particular,

^(l/) is of the type (2ί - 1, 2ί - 3) and - #(2/) is of the type
(2t - 2, 2ί - 2)' .

LEMMA 3. Suppose 0 < p ^ π/2 and 0 <^ ω <^ π. Then

(25) fcc(p; ω) = (w - l)τr-1fC(|t>'ω/2>(c(/o, φ) - (ω/2)) cos φ (sin φ)n~2dφ
Jo

/Λ/1X , x (arc cos (cos x/eos y) if 0 ^ y < x <ί= π/2 ,
(26) c(x,y) =

(0 otherwise.

Proof. The function Λ̂ /O ω) is equal to the measure of the
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intersection of two spherical caps of radius p whose centers have
spherical distance ω. It is therefore zero when ω ^ 2p, and since
also c(p, ω/2) is zero in this case, the formula (25) is then correct.

Hence assume that 0 ^ ω < 2p. We may write

kc(ρ ω) = hc(p x, y)

where JC, y are any two points on S having ω(w, y) = ω. We choose

x = (cos (ω/2), sin (ω/2), 0, , 0) ,

y = (cos (ω/2), - sin (ω/2), 0, , 0) .

Every point z on Sn with n ^ 2 may be written

(27) z = (cos φ cos ψ, cos φ sin τ/r, (sin φ)w)

where 0 ^ φ ^ ττ/2, 0 ^ ψ* < 2ττ and M? is on Sn~2. This representa-
tion is unique except for a set of measure zero, and

(28) dsz = (2τr)"1(^ — 1) cos φ (sin φ)n"2dφdψdsn-2W .

(When n = 2 then S%~2 consists of only two points (1) and ( - 1) and
the integral of a function f(w) over Sn~2 is (l/2)(/(l) + / ( - 1))).

One has hc(p; x, y) = μ(C(ρ, x) ΓlC(ρ y)). The point z lies in
C(p x) and in C(|0 y) if and only if the point

(29) Z' = (COS φ COS i/r, COS φ Sin α/r, Sin 9?)

satisfies

ω(z', x') ^ |0 and ω(z', x/') ^ |0

with x' = (cos (ω/2), sin (ω/2), 0) and y' = (cos (ω/2), - sin (ω/2), 0). We
are thus left with a problem on the 2-sphere.

By symmetry it will suffice to look at points z' with 0 <g ψ ^ π,
and for such points z' one has ω(z\ x') ^ ω(^', ^/'). The points
y\z' ,uf = (cos ψ, sin α/r, 0) form a spherical triangle with a right
angle at ur. Hence by a formula in spherical trigonometry,

cos (ω(z', y')) = cos (ω(z\ u')) cos (ω(̂ /', u')) = cos <p cos (ψ + (ω/2)) ,

and o)(z', y
r
) < p is true exactly if

cos ̂  cos (ψ + (ω/2)) ̂  cos p .

Since we have 0<,ψ ^π and 0 ̂  ω < TΓ, this implies cos φ cos (ω/2) ^
cos jθ and therefore

(30) 0 ^φ ^ c(ρ, ω/2) .

If φ satisfies 0 <^ φ < c(ρ, ω/2), then ψ is in the interval
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(31) 0 ^ ψ ^ c(p, φ) - (ω/2) .

Combining the information gathered we obtain

S
c(p,ωβ) Γc(pfφ)-(ω/2) Γ

dφ cos φ (sin φ)n~2 dψ \ dsw ,
0 JO Js^-2

and (25) follows.

COROLLARY. Suppose 0 < ω < 2ρ < π. Then

—kc(ρ; ω) = - (2τr)-1(l - (cos2,0/cos2 (ω/2)))(w~1)/2 .
do)

Proof. Using the standard rules for differentiation of an integral
(for a justification see, e.g., [4, Lemma 2]), we derive from (25) the
equation

3 fc(|0,ω/2)

—kc(p; ω) = - (n - l)(2ττ)-1 cos φ (sin φ)n~2dφ
00) Jo

= - (2τr)-ι(sin (c(p, ω/2)))-1

= -(2ττ)-1(l - (cos2 p/cos2 (ω/2))yn-ί)/2 .

5. Solution of the integral equation* Suppose f(p) is continu-
ous in 0 < p ^ π and satisfies

(32) f(p) « / o
1 -

as p —* 0. Since

kc(p;ω) ^ μ(,o) < ^

by (19), the function kc(p;ω)f(p) tends uniformly to zero as p—> 0,
and hence may be extended to a function which is continuous in
0 ^ p ^ τr/2, 0 ^ α> ̂  7Γ. Therefore both sides of (13) are continuous
functions of ω, and it will suffice to show that f(ρ) satisfies (13) in
0 < ω < π. The equation (13) may be rewritten as

(33) \'kc(p; ω)f(p)dp = kL{ω) (0 < ω < π) .
Jω/2

Differentiating and using the corollary to Lemma 3 we obtain

(34) - (2ττ)-1ίT/2(l - (cos2 p/cos2 (ω/2))Yn-1)l2f(p)dρ - k'L{ω) (0 < ω < π) .
Jα>/2

Since both sides of (33) tend to zero as ω—>π, any solution of (34)
is also a solution of (33). We now change the notation and rewrite
(34) in the form
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(35) ΓV(x)(l - (cos2 x/cos2 {yβ)Yn-l)l2dx = k{y) (0 < y < π) .
J2//2

Differentiating again and simplifying we obtain

Γ/ 2cos2 xf(x)(l - (cos2 x/cos2 (γ/2))Yn-3)l2dx = I2(y) (0 < y < π) .
J 2//2

and any solution of this equation is in fact also a solution of (35).
We may continue in this fashion until we arrive at the equation

(36) ('/a(cosa;)8ί-2/(fl?)(l - (cos2α;/cos2(W2))) ( % + 1-2 ί ) / 2^ - lt(y) (0<y<π).
J2//2

We now have to distinguish the cases when n is even and when
n is odd. First assume that

n is odd

Then t = (n + l)/2 and (36) reduces to

(37) Γ/2(cos x)n~1f(x)dx = lt{y) (0 < y < π) .
J2//2

Differentiating once more we obtain

- -i(cos (yβ)γ-ιAyβ) = I'tiv) (0<y<π)

whence

(38) f(x) = - 2Z;(2^)(cos x)ι~n (0 < x < π/2) .

Since both sides of (37) tend to zero as y—*π, this is in fact a
solution of (37).

The function

f(y/2) = -2«(i/)(cos (y/2)y-« (0 < y < π)

is the restriction to 0 < y < π of a function of the type

(2ί - 2 + 1 - n, 2ί - 2)' = (0, ̂  - 1)' .

It follows that f(x) is positive in 0 < x < 7r/2 and it may be extended
to a function which is continuous in 0 < x ^ π/2. Finally, when x
is small then f(x) has the same order of magnitude as (sin#)1~~w, and
we have

f(x)

Thus (17) and (32) are satisfied.
Now assume that
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n is even

Then t = (n + 2)/2 and (36) may be rewritten as

(39) Γ/2(cos x)*f(x){pin* x - sin2 (y/2))~ιl2dx = lt(y)/<x>s (y/2) (0<y<π).
Jyl2

The right hand side of this equation is the restriction to 0 < y < π
of some function m(y) of the type (2t — 2, 2ί — 3) = (w, % — 1).

The substitution sin2 a? = X, sin2 (y/2) = Y transforms (39) into
an integral equation of Abel type which can be readily solved ([1],
Chapter I). One obtains the solution

(40) f(x) = - 27Γ-1 sin a;(cos x)l-*[* m'(t)(sin2 (t/2) - sin2 x)~ll2dt
J2x

(0<x< π/2) .

Indeed, if we substitute this expression for f(x) into the left hand
side of (39) we obtain

J τr/2

dx sin x cos #(sin2 x — sin2 (y/2))~112

x Γ dί m'(ί)(sin2 (t/2) - sin2a;)-1/2

J2x

S π f ί /2

dt m'(t) dx 2 sin x cos x (sin2 x - sin2 (y/2))~112

y Jy/2

x (sin2 (t/2) - sin2 x)~112 .

The inner integral is equal to π and we get

— I m'(t)dt = m(y) — m(π) = m(i/) ,

as desired.
The function — m'(y) is of the type (n — 1, %)' and hence we

have

(41) - m'(ί) - cos (ί/2))^-1(sin (t/2))~H(t)

where l(t) is a continuous function in 0 g ί ^ TΓ with i(0) > 0. Now
sin (ί/2) and its inverse function are continuous in 0 ^ t ^ TΓ, and we
may therefore write

ί(ί) - L(sin (ί/2))

where L(T) is a continuous function in 0 ^ Γ ^ l which has L(0) > 0.
Substituting (41) into (40) and putting sin (t/2) = T we obtain
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(Λθ\ f(τ\ — Λ.7Γ-1 ςίn r((*n<*. τY~n\ TAT\T~n(Λ ψ2γn—z)iz
y±.£Ji} J \*Λ// — rkJL D i l l *(/^v^UD *kj I -*-'\ -*•/•*• \"*- •*• /

Jsin x

x (T2 - sin2 a:)-ι/2cZT (o < α <—) .

Now l{t) is positive in 0 < t < π and hence /(*) is positive and
continuous in 0 < x < π/2. One has

lim f(x) = 4π~ιL(l) lim (cos α?)1—f' (1 - r«)t—*)/*(Γ» - sin2 x)~ιliTdT ,
z-+π{2 x-*πj2. Jsinx

provided the limit on the right hand side exists. But the expression
to the right of lim on the right hand side is in fact a constant, and
therefore the limit does exist. It follows that fix) may be extended
to a function which is continuous in 0 < x ̂  π/2.

Putting T = u sin x we obtain from (42) the estimate

J l

as x->0. Therefore (32) holds. When 0 < T< c12(ri), then L(Γ) > 1.
It follows that

J l«v/ /^^ *v 1 ^ O l l l *ΛJ t (4/ \lΛs JL J U/(A/ /y tΛ/

when x is small, and (17) is satisfied.
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